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Abstract. Seismic signals are typically compared using travel time difference or L2 difference.
We propose the Wasserstein metric as an alternative measure of fidelity or misfit in seismology. It
exhibits properties from both of the traditional measures mentioned above. The numerical computa-
tion is based on the recent development of fast numerical methods for the Monge-Ampère equation
and optimal transport. Applications to waveform inversion and registration are discussed and simple
numerical examples are presented.
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1. Introduction A classical way of comparing seismic signals is to use the
travel time difference. This can be done in the time domain or, more recently, by
different measures of the phase shift; see for example [17]. The misfit or fidelity
estimate can be between two measured signals or between a computed signal and a
measured seismic signal. For more complex signals, travel time estimates may not be
appropriate and L2 estimates of misfit are often used in full waveform inversion [15,
16].

We propose the Wasserstein metric as a measure of misfit that combines many of
the best features of the metrics given by travel time and L2. The Wasserstein metric
measures the difference between two distributions by the optimal cost of rearranging
one distribution into the other [18]. The mathematical definition of the distance
between the distributions f :X→R, g :Y →R can be formulated as

W 2
2 (f,g) = inf

T∈M

∫
X

|x−T (x)|2f(x)dx (1.1)

where M is the set of all maps that rearrange the distribution f into g.
We consider two simple one-dimensional examples to show the relation of the

Wasserstein metric to travel time and L2. First, we compare the hat functions f(x)
and g(x,s) =f(x−s) with

f(x) = max{1−|x|,0}. (1.2)

For small s, the L2 distance is

‖f−g‖2L2
= 2s2 +O(s3),

and the Wasserstein metric measures the misfit by

W 2
2 (f,g) =s2.
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2 Application of the Wasserstein metric to seismic signals

For large s, on the other hand, the L2 distance is given by

‖f−g‖2L2
=‖f‖2L2

+‖g‖2L2
= 2,

which is independent of s and of no value in minimisation. However, the Wasserstein
distance preserves the ideal O(s2) scaling.

For an example that better resembles seismic signals, consider the misfit between
the simple wavelet f in Figure 1.1(a) and another wavelet shifted by a distance s.
Figures 1.1(b)-1.1(c) clearly illustrate the advantage of using the Wasserstein distance
in minimisation processes.

Earlier algorithms for the numerical computation of the Wasserstein distance
required a large number of operations [3, 4, 1]. The optimal transportation problem
can be rigorously related to the following Monge-Ampère equation [5, 14], which
enables the construction of more efficient methods for computing the Wasserstein
distance. 

det(D2u(x)) =f(x)/g(∇u(x))+〈u〉, x∈X
∇u(X) =Y

u is convex.

(1.3)

The Wasserstein distance is then given by

W 2
2 (f,g) =

∫
X

|x−∇u(x)|2f(x)dx. (1.4)

There are now fast and robust numerical algorithms for the solution of (1.3), and thus
for the computation of W 2

2 [2].
The solution u of the Monge-Ampère equation contains additional information

since the vector ∇u(x)−x indicates which parts of the distributions f and g are
connected under the optimal transport map. This information is useful for problems
in image registration [13], meteorology [7], mesh generation [6], reflector design [12],
and astrophysics [8]. As we will see, it can also be of great value in seismology.

2. Challenges in application to seismology While the Wasserstein distance
has many excellent properties, there remain challenges that need to be addressed due
to the specific nature of seismic signals. Some of these difficulties come from the
formulation of the Wasserstein metric and some from the numerical algorithm used
to solve the Monge-Ampère equation.

2.1. Positivity The Wasserstein metric requires f,g≥0, which is typically not
the case with seismic signals. This could be achieved by adding positive constants
to f and g, but this would distort the optimal transportation map. Another option
is to compare envelopes of the functions. We have chosen to compare separately the
positive and negative parts of f =f+−f−, g=g+−g−, then add the results. Then
the misfit we compute is

W 2
2 (f+,g+)+W 2

2 (f−,g−).

2.2. Mass conservation The Wasserstein metric also requires that mass is
conserved, ∫

X

f(x)dx=

∫
Y

g(y)dy.
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Fig. 1.1. (a) A wavelet profile f(x). The distances between f(x) and g(x) =f(x−s) measured
by (b) L2

2(f,g), and (c) W 2
2 (f+,g+)+W 2

2 (f−,g−).



4 Application of the Wasserstein metric to seismic signals

This can be achieved most easily by a simple constant scaling of the densities f and
g.

Other scalings are also possible when additional information about the distribu-
tion is available. For instance, if the signals f and g are close to each other, with each
consisting of two separate components, we could rescale the components separately.
This would reduce the risk that the optimal transportation plan T (x) could trans-
port some mass between separate components, which may not be desirable in certain
applications.

2.3. Convexity Other challenges come from the solution of the Monge-Ampère
equation. In particular, the set Y where the target density g(y) is positive must be
convex. This can be accomplished by first selecting a convex set Ỹ containing Y , then
preprocessing the data as follows,

g̃+(y) =

{
g+(y)+θ, y∈ Ỹ +

0, otherwise.
(2.1)

Here θ>0, Ỹ + is a convex set containing the support of g+, and the same type of
transformation can be applied to the other components f+,f−,g−. In the examples
below, we choose the convex sets to be rectangles. This θ-layer will introduce a small
amount of artificial transport into and out of the layer. To reduce distortion of the
optimal transportation plan, we will choose all rectangles to have the same size, with
each one centred at the centre of mass of the corresponding distribution. If the optimal
transportation plan itself is of interest, we can reduce some of the artificial transport
by thresholding the transport vectors ∇u(x)−x to zero in the layer.

2.4. Regularity The numerical method used to solve the Monge-Ampère equa-
tion also requires that the ratio f(x)/g(y) is Lipschitz continuous in the y variable.
This leads to the requirement that θ cannot be too small, particularly if there are
regions where g= 0 and the corresponding gradient is not small. Appropriate choice
of θ and convolution of g (and f for symmetry) with a regularising kernel will ensure
the success of the numerical method.

3. Numerical algorithm We describe here a two-dimensional form of the
algorithm we use to solve the Monge-Ampère equation. The method is based on the
following variational characterisation of the Monge-Ampère equation (1.3) combined
with the convexity constraint [9, 10].

det+(D2u) = min
{ν1,ν2}∈V

{max{uν1,ν1 ,0}max{uν2,ν2 ,0}+min{uν1,ν1 ,0}+min{uν2,ν2 ,0}}

(3.1)
where V is the set of all orthonormal bases for R2. The transportation constraint
∇u(X) =Y can be re-expressed as the Hamilton-Jacobi equation

H(∇u(x)) = 0, x∈∂X (3.2)

where H(y) is the signed distance to the convex target set Y [2].

The discretisation described below leads to a large system of nonlinear equations,
which is solved using Newton’s method. The linear equations arising in each Newton
iteration are solved using a direct sparse solver. In a typical example, fewer than ten
iterations are required for convergence.
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3.1. Monotone approximation of the Monge-Ampère equation Equa-
tion (3.1) can be discretised by computing the minimum over finitely many directions
{ν1,ν2}, which may require the use of a wide stencil. For simplicity and brevity, we
describe a compact version of the scheme and refer to [10] for complete details.

We begin by introducing the finite difference operators

[Dx1x1u]ij =
1

dx2
(ui+1,j+ui−1,j−2ui,j)

[Dx2x2u]ij =
1

dx2
(ui,j+1 +ui,j−1−2ui,j)

[Dx1u]ij =
1

2dx
(ui+1,j−ui−1,j)

[Dx2
u]ij =

1

2dx
(ui,j+1−ui,j−1)

[Dvvu]ij =
1

2dx2
(ui+1,j+1 +ui−1,j−1−2ui,j)

[Dv⊥v⊥u]ij =
1

2dx2
(ui+1,j−1 +ui+1,j−1−2ui,j)

[Dvu]ij =
1

2
√

2dx
(ui+1,j+1−ui−1,j−1)

[Dv⊥u]ij =
1

2
√

2dx
(ui+1,j−1−ui−1,j+1) .

In the compact version of the scheme, the minimum in (3.1) is approximated using
only two possible values. The first uses directions aligning with the grid axes.

MA1[u] = max{Dx1x1
u,δ}max{Dx2x2

u,δ}
−min{Dx1x1

u,δ}−min{Dx2x2
u,δ}−f/g (Dx1

u,Dx2
u)−u0. (3.3)

Here dx is the resolution of the grid, δ>K∆x/2 is a small parameter that bounds
second derivatives away from zero, u0 is the solution value at a fixed point in the
domain, and K is the Lipschitz constant in the y-variable of f(x)/g(y).

For the second value, we rotate the axes to align with the corner points in the
stencil, which leads to

MA2[u] = max{Dvvu,δ}max{Dv⊥v⊥u,δ}−min{Dvvu,δ}−min{Dv⊥v⊥u,δ}

−f/g
(

1√
2

(Dvu+Dv⊥u),
1√
2

(Dvu−Dv⊥u)

)
−u0. (3.4)

Then the compact monotone approximation of the Monge-Ampère equation is

−min{MA1[u],MA2[u]}= 0. (3.5)

3.2. Monotone approximation of the Hamilton-Jacobi boundary condi-
tion We describe the boundary conditions in the special case where the source and
target sets are rectangles and refer to [2] for details of the more general setting. In
this setting, the Hamilton-Jacobi equation can be written as the Neumann boundary
condition

ux1
(xmin1 ) =ymin1 , ux1

(xmax1 ) =ymax1 , ux2
(xmin2 ) =ymin2 , ux2

(xmin2 ) =ymin2 , (3.6)
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which transports each side of the domain X to the corresponding side of the target
rectangle Y . A monotone discretisation is easily constructed; on the left side of the
domain, for example,

u2,j−u1,j
dx

=ymin1 . (3.7)

3.3. Filtered approximation For improved accuracy, we can combine the
monotone scheme FM just described with a scheme that is formally more accurate FA.
A second-order scheme is easily constructed using a centred difference discretisation
of the two-dimensional Monge-Ampère equation

uxxuyy−u2xy =f/g(ux,uy)

and a one-sided second-order approximation of the Neumann boundary conditions.
We introduce a filter such as

S(x) =


x |x|≤1

0 |x|≥2

−x+2 1≤x≤2

−x−2 −2≤x≤−1.

(3.8)

Then a convergent, higher-order scheme is given by

FF [u] =FM [u]+εS

(
FA[u]−FM [u]

ε

)
. (3.9)

In many cases, the higher order accuracy can be achieved even when the filtered
scheme is based on a compact monotone scheme; see [11].

4. Numerical examples for a two-layer material
We consider the example of the response from a two-layer material width up-

per and lower depths d1,d2 and wave speeds v1,v2 respectively; see Figure 4.1(a).
Typical seismic signals are pictured in Figure 4.1(b)-4.1(c) in the offset-time domain.
After preprocessing, we compute the optimal transportation plan between these two
distributions.

4.1. Inversion One potential application of optimal transportation is full wave-
form inversion. To accomplish this, it is necessary to determine the unknown param-
eters that minimise the misfit between the observed and synthetic signals. In this
example, the unknown parameters are d1,d2,v1,v2. To demonstrate the advantage of
the Wasserstein metric as a measure of misfit, we fix one signal g that is computed
using d1 = 1,d2 = 0.5,v1 = 1,v2 = 1.5. We then compute the distance W 2

2 (f,g), where f
is computed for a range of different parameter values. We plot several cross-sections
of this distance in Figure 4.2. For comparison, we also plot several cross-sections of
the L2

2 distance ‖f−g‖2L2
. It is clear that the Wasserstein distance is much more

suitable for minimisation. In preliminary computations, the minimisation has been
successfully accomplished using a simple Matlab implementation of the Nelder-Mead
simplex method.

4.2. Registration A second application we have in view is seismic registration.
With this in mind, we consider the (scaled) displacement vectors ∇u(x)−x, which are
pictured in Figure 4.1(d). This figure indicates that the two components of the initial
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distribution are being transported towards the two corresponding components of the
target distribution. (The small amount of artificial transport due to the preprocessing
is truncated to zero). The vector ∇u(x)−x then gives the connection between f and
g and det(D2u) can be used to measure the registered amplitude difference.
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Fig. 4.1. (a) A two-layer material, (b),(c) seismic signals from different materials, and (d) the
displacement ∇u(x)−x coming from the optimal transportation map that defines registration between
the two signals.

4.3. Noise The W2 metric is highly robust to noise. The difference between a
noisy signal

f(x)+h(x)>0, E[h(x)] = 0

and the clean signal f(x)>0 is typically minimal owing to the strong cancellation
between nearby positive and negative values of h(x). The L2 difference ‖h‖L2

is
typically substantially larger.

To demonstrate the insensitivity to noise, we repeat the computation of the
W 2

2 (f(x),f(x−s)) distance for the wavelet profiles in Figure 1.1. However, this time
we add uniform random noise into either the source distribution f or both distributions
f,g. While the noise has a clear effect on the computed values of the L2

2 difference, the
W 2

2 distance computed between the noisy profiles is nearly indistinguishable from the
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Fig. 4.2. Distances between profiles in Figure 4.1. Cross-sections of (a),(b) L2
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original setting; see Figure 4.3. For clarity, we restrict this presentation to one dimen-
sion, but similar results are observed when we introduce noise into two-dimensional
distributions.
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Fig. 4.3. (a) Sample noisy profiles f(x) and g(x). The distances between f(x) and g(x)
measured by (b) L2
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5. Conclusions We have introduced the Wasserstein metric W 2
2 as a measure

of fidelity or misfit in seismology. It can be seen as incorporating the most desirable
properties from both the travel time difference and the L2

2 difference. We exploit re-
cent progress in the theory of optimal transport and in fast, robust numerical methods
for the Monge-Ampère equation. We further present solutions to specific challenges
coming from seismic signals. A set of simple numerical examples illustrates the ad-
vantages of this approach for potential application to full waveform inversion and
registration. Our Monge-Ampère based techniques are easily generalised to higher
dimensions.
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