
Foundations and TrendsR© in
Theoretical Computer Science
Vol. 4, Nos. 3–4 (2008) 157–288
c© 2009 R. Kannan and S. Vempala
DOI: 10.1561/0400000025

Spectral Algorithms

By Ravindran Kannan and Santosh Vempala

Contents

I Applications 158

1 The Best-Fit Subspace 159

1.1 Singular Value Decomposition 161
1.2 Algorithms for Computing the SVD 166
1.3 The k-Variance Problem 166
1.4 Discussion 170

2 Mixture Models 171

2.1 Probabilistic Separation 172
2.2 Geometric Separation 173
2.3 Spectral Projection 176
2.4 Weakly Isotropic Distributions 178
2.5 Mixtures of General Distributions 179
2.6 Spectral Projection with Samples 182
2.7 An Affine-Invariant Algorithm 184
2.8 Discussion 188

3 Probabilistic Spectral Clustering 190

3.1 Full Independence and the Basic Algorithm 191
3.2 Clustering Based on Deterministic Assumptions 194

3.3 Proof of the Spectral Norm Bound 198
3.4 Discussion 202

4 Recursive Spectral Clustering 203

4.1 Approximate Minimum Conductance Cut 203
4.2 Two Criteria to Measure the Quality of a Clustering 208
4.3 Approximation Algorithms 209
4.4 Worst-Case Guarantees for Spectral Clustering 215
4.5 Discussion 216

5 Optimization via Low-Rank Approximation 218

5.1 A Density Condition 220
5.2 The Matrix Case: MAX-2CSP 222
5.3 MAX-rCSPs 225
5.4 Metric Tensors 228
5.5 Discussion 229

II Algorithms 230

6 Matrix Approximation via Random Sampling 231

6.1 Matrix–vector Product 231
6.2 Matrix Multiplication 233
6.3 Low-Rank Approximation 234
6.4 Invariant Subspaces 241
6.5 SVD by Sampling Rows and Columns 248
6.6 CUR: An Interpolative Low-Rank Approximation 252
6.7 Discussion 256

7 Adaptive Sampling Methods 258

7.1 Adaptive Length-Squared Sampling 259
7.2 Volume Sampling 265
7.3 Isotropic Random Projection 270
7.4 Discussion 273

8 Extensions of SVD 275

8.1 Tensor Decomposition via Sampling 275
8.2 Isotropic PCA 281
8.3 Discussion 283

References 284

Foundations and TrendsR© in
Theoretical Computer Science
Vol. 4, Nos. 3–4 (2008) 157–288
c© 2009 R. Kannan and S. Vempala
DOI: 10.1561/0400000025

Spectral Algorithms

Ravindran Kannan1 and Santosh Vempala2

1 Microsoft Research, India, kannan@microsoft.com
2 Georgia Institute of Technology, USA, vempala@cc.gatech.edu

Abstract

Spectral methods refer to the use of eigenvalues, eigenvectors, singu-
lar values, and singular vectors. They are widely used in Engineering,
Applied Mathematics, and Statistics. More recently, spectral methods
have found numerous applications in Computer Science to “discrete”
as well as “continuous” problems. This monograph describes modern
applications of spectral methods and novel algorithms for estimating
spectral parameters. In the first part of the monograph, we present
applications of spectral methods to problems from a variety of top-
ics including combinatorial optimization, learning, and clustering. The
second part of the monograph is motivated by efficiency considera-
tions. A feature of many modern applications is the massive amount
of input data. While sophisticated algorithms for matrix computations
have been developed over a century, a more recent development is algo-
rithms based on “sampling on the fly” from massive matrices. Good
estimates of singular values and low-rank approximations of the whole
matrix can be provably derived from a sample. Our main emphasis in
the second part of the monograph is to present these sampling methods
with rigorous error bounds. We also present recent extensions of spec-
tral methods from matrices to tensors and their applications to some
combinatorial optimization problems.

Part I

Applications

1
The Best-Fit Subspace

Many computational problems have explicit matrices as their input
(e.g., adjacency matrices of graphs, experimental observations, etc.)
while others refer to some matrix implicitly (e.g., document-term matri-
ces, hyperlink structure, object–feature representations, network traffic,
etc.). We refer to algorithms which use the spectrum, i.e., eigenvalues
and vectors, singular values, and vectors, of the input data or matri-
ces derived from the input as Spectral Algorithms. Such algorithms are
the focus of this monograph. In the first part of this monograph, we
describe applications of spectral methods in algorithms for problems
from combinatorial optimization, learning, clustering, etc. In the sec-
ond part, we study efficient randomized algorithms for computing basic
spectral quantities such as low-rank approximations.

The Singular Value Decomposition (SVD) from linear algebra and
its close relative, Principal Component Analysis (PCA), are central
tools in the design of spectral algorithms. If the rows of a matrix
are viewed as points in a high-dimensional space, with the columns
being the coordinates, then SVD/PCA are typically used to reduce
the dimensionality of these points, and solve the target problem in
the lower-dimensional space. The computational advantages of such a

159

160 The Best-Fit Subspace

projection are apparent; in addition, these tools are often able to high-
light hidden structure in the data. Section 1 provides an introduction
to SVD via an application to a generalization of the least-squares fit
problem. The next three chapters are motivated by one of the most
popular applications of spectral methods, namely clustering. Section 2
tackles a classical problem from Statistics, learning a mixture of Gaus-
sians from unlabeled samples; SVD leads to the current best guarantees.
Section 3 studies spectral clustering for discrete random inputs, using
classical results from random matrices, while Section 4 analyzes spec-
tral clustering for arbitrary inputs to obtain approximation guarantees.
In Section 5, we turn to optimization and see the application of tensors
to solving maximum constraint satisfaction problems with a bounded
number of literals in each constraint. This powerful application of low-
rank tensor approximation substantially extends and generalizes a large
body of work.

In the second part of this monograph, we begin with algorithms
for matrix multiplication and low-rank matrix approximation. These
algorithms (Section 6) are based on sampling rows and columns of
the matrix from explicit, easy-to-compute probability distributions and
lead to approximations additive error. In Section 7, the sampling meth-
ods are refined to obtain multiplicative error guarantees. Finally, in
Section 8, we see an affine-invariant extension of standard PCA and a
sampling-based algorithm for low-rank tensor approximation.

To provide an in-depth and relatively quick introduction to SVD
and its applicability, in this opening chapter, we consider the best-fit
subspace problem. Finding the best-fit line for a set of data points is
a classical problem. A natural measure of the quality of a line is the
least-squares measure, the sum of squared (perpendicular) distances
of the points to the line. A more general problem, for a set of data
points in Rn, is finding the best-fit k-dimensional subspace. SVD can
be used to find a subspace that minimizes the sum of squared distances
to the given set of points in polynomial time. In contrast, for other
measures such as the sum of distances or the maximum distance, no
polynomial-time algorithms are known.

A clustering problem widely studied in theoretical computer science
is the k-median problem. In one variant, the goal is to find a set of k

1.1 Singular Value Decomposition 161

points that minimize the sum of the squared distances of the data points
to their nearest facilities. A natural relaxation of this problem is to find
the k-dimensional subspace for which the sum of the squared distances
of the data points to the subspace is minimized (we will see that this
is a relaxation). We will apply SVD to solve this relaxed problem and
use the solution to approximately solve the original problem.

1.1 Singular Value Decomposition

For an n × n matrix A, an eigenvalue λ and corresponding eigenvector
v satisfy the equation

Av = λv.

In general, i.e., if the matrix has nonzero determinant, it will have
n nonzero eigenvalues (not necessarily distinct) and n corresponding
eigenvectors.

Here we deal with an m × n rectangular matrix A, where the m

rows denoted A(1),A(2), . . .A(m) are points in Rn; A(i) will be a row
vector.

If m �= n, the notion of an eigenvalue or eigenvector does not make
sense, since the vectors Av and λv have different dimensions. Instead,
a singular value σ and corresponding singular vectors u ∈ Rm,v ∈ Rn

simultaneously satisfy the following two equations

1. Av = σu

2. uT A = σvT .

We can assume, without loss of generality, that u and v are unit
vectors. To see this, note that a pair of singular vectors u and v must
have equal length, since uT Av = σ‖u‖2 = σ‖v‖2. If this length is not 1,
we can rescale both by the same factor without violating the above
equations.

Now we turn our attention to the value max‖v‖=1 ‖Av‖2. Since the
rows of A form a set of m vectors in Rn, the vector Av is a list of the
projections of these vectors onto the line spanned by v, and ‖Av‖2 is
simply the sum of the squares of those projections.

162 The Best-Fit Subspace

Instead of choosing v to maximize ‖Av‖2, the Pythagorean theorem
allows us to equivalently choose v to minimize the sum of the squared
distances of the points to the line through v. In this sense, v defines
the line through the origin that best fits the points.

To argue this more formally, Let d(A(i),v) denote the distance of
the point A(i) to the line through v. Alternatively, we can write

d(A(i),v) = ‖A(i) − (A(i)v)vT ‖.

For a unit vector v, the Pythagorean theorem tells us that

‖A(i)‖2 = ‖(A(i)v)vT ‖2 + d(A(i),v)2.

Thus we get the following proposition:

Proposition 1.1.

max
‖v‖=1

‖Av‖2 = ||A||2F − min
‖v‖=1

‖A − (Av)vT ‖2
F

= ||A||2F − min
‖v‖=1

∑
i

‖A(i) − (A(i)v)vT ‖2

Proof. We simply use the identity:

‖Av‖2 =
∑

i

‖(A(i)v)vT ‖2 =
∑

i

‖A(i)‖2 −
∑

i

‖A(i) − (A(i)v)vT ‖2

The proposition says that the v which maximizes ‖Av‖2 is the “best-
fit” vector which also minimizes

∑
i d(A(i),v)2.

Next, we claim that v is in fact a singular vector.

Proposition 1.2. The vector v1 = argmax‖v‖=1 ‖Av‖2 is a singular
vector, and moreover ‖Av1‖ is the largest (or “top”) singular value.

Proof. For any singular vector v,

(AT A)v = σAT u = σ2v.

1.1 Singular Value Decomposition 163

Thus, v is an eigenvector of AT A with corresponding eigenvalue σ2.
Conversely, an eigenvector of AT A is also a singular vector of A. To see
this, let v be an eigenvector of AT A with corresponding eigenvalue λ.
Note that λ is positive, since

‖Av‖2 = vT AT Av = λvT v = λ‖v‖2

and thus

λ =
‖Av‖2

‖v‖2 .

Now if we let σ =
√

λ and u = Av
σ . it is easy to verify that u,v, and σ

satisfy the singular value requirements.
The right singular vectors {vi} are thus exactly equal to the eigen-

vectors of AT A. Since AT A is a real, symmetric matrix, it has n

orthonormal eigenvectors, which we can label v1, . . . ,vn. Expressing a
unit vector v in terms of {vi} (i.e., v =

∑
i αivi where

∑
i α

2
i = 1), we see

that ‖Av‖2 =
∑

i σ
2
i α

2
i which is maximized exactly when v corresponds

to the top eigenvector of AT A. If the top eigenvalue has multiplicity
greater than 1, then v should belong to the space spanned by the top
eigenvectors.

More generally, we consider a k-dimensional subspace that best fits
the data. It turns out that this space is specified by the top k singular
vectors, as stated precisely in the following proposition.

Theorem 1.3. Define the k-dimensional subspace Vk as the span of
the following k vectors:

v1 = arg max
‖v‖=1

‖Av‖
v2 = arg max

‖v‖=1,v·v1=0
‖Av‖

...

vk = arg max
‖v‖=1,v·vi=0 ∀i<k

‖Av‖,

164 The Best-Fit Subspace

where ties for any argmax are broken arbitrarily. Then Vk is optimal
in the sense that

Vk = arg min
dim(V)=k

∑
i

d(A(i),V)2.

Further, v1,v2, . . . ,vn are all singular vectors, with corresponding sin-
gular values σ1,σ2, . . . ,σn and

σ1 = ‖Av1‖ ≥ σ2 = ‖Av2‖ ≥ · · · ≥ σn = ‖Avn‖.

Finally, A =
∑n

i=1 σiuiv
T
i .

Such a decomposition where,

1. The sequence of σis is nonincreasing
2. The sets {ui},{vi} are orthonormal

is called the Singular Value Decomposition (SVD) of A.

Proof. We first prove that Vk are optimal by induction on k. The case
k = 1 is by definition. Assume that Vk−1 is optimal.

Suppose V ′
k is an optimal subspace of dimension k. Then we can

choose an orthonormal basis for V ′
k, say w1,w2, . . .wk, such that wk is

orthogonal to Vk−1. By the definition of V ′
k, we have that

||Aw1||2 + ||Aw2
2|| + . . . ||Awk||2

is maximized (among all sets of k orthonormal vectors.) If we replace
wi by vi for i = 1,2, . . . ,k − 1, we have

‖Aw1‖2 + ‖Aw2
2‖ + . . .‖Awk‖2 ≤ ‖Av1‖2 + . . . + ‖Avk−1‖2 + ‖Awk‖2.

Therefore we can assume that V ′
k is the span of Vk−1 and wk. It then

follows that ‖Awk‖2 maximizes ‖Ax‖2 over all unit vectors x orthogonal
to Vk−1.

Proposition 1.2 can be extended to show that v1,v2, . . . ,vn are all
singular vectors. The assertion that σ1 ≥ σ2 ≥ ·· · ≥ σn ≥ 0 follows from
the definition of the vis.

1.1 Singular Value Decomposition 165

We can verify that the decomposition

A =
n∑

i=1

σiuiv
T
i

is accurate. This is because the vectors v1,v2, . . . ,vn form an orthonor-
mal basis for Rn, and the action of A on any vi is equivalent to the
action of

∑n
i=1 σiuiv

T
i on vi.

Note that we could actually decompose A into the form
∑n

i=1 σiuiv
T
i

by picking {vi} to be any orthogonal basis of Rn, but the proposition
actually states something stronger: that we can pick {vi} in such a way
that {ui} is also an orthogonal set.

We state one more classical theorem. We have seen that the span
of the top k singular vectors is the best-fit k-dimensional subspace for
the rows of A. Along the same lines, the partial decomposition of A

obtained by using only the top k singular vectors is the best rank-k
matrix approximation to A.

Theorem 1.4. Among all rank-k matrices D, the matrix Ak =∑k
i=1 σiuiv

T
i is the one which minimizes ‖A − D‖2

F =
∑

i,j(Aij − Dij)2.
Further,

‖A − Ak‖2
F =

n∑
i=k+1

σ2
i .

Proof. We have

‖A − D‖2
F =

m∑
i=1

‖A(i) − D(i)‖2.

Since D is of rank at most k, we can assume that all the D(i) are
projections of A(i) to some rank-k subspace and therefore,

m∑
i=1

‖A(i) − D(i)‖2 =
m∑

i=1

‖A(i)‖2 − ‖D(i)‖2

= ‖A‖2
F −

m∑
i=1

‖D(i)‖2.

166 The Best-Fit Subspace

Thus the subspace is exactly the SVD subspace given by the span of
the first k singular vectors of A.

1.2 Algorithms for Computing the SVD

Computing the SVD is a major topic of numerical analysis [48, 64, 67].
Here we describe a basic algorithm called the power method.

Assume that A is symmetric.

1. Let x be a random unit vector.
2. Repeat:

x :=
Ax

‖Ax‖
For a nonsymmetric matrix A, we can simply apply the power iteration
to AT A.

Exercise 1.5. Show that the power iteration applied k times to a
symmetric matrix A finds a vector xk such that

E
(‖Axk‖2) ≥

(
1
n

)1/k

σ2
1(A).

[Hint: First show that ‖Axk‖ ≥ (|x · v|)1/kσ1(A) where x is the starting
vector and v is the top eigenvector of A; then show that for a random
unit vector x, E ((x · v)2) = 1/n].

The second part of this monograph deals with faster, sampling-
based algorithms.

1.3 The k-Variance Problem

This section contains a description of a clustering problem which is
often called k-means in the literature and can be solved approximately
using SVD. This illustrates a typical use of SVD and has a provable
bound.

We are given m points A = {A(1),A(2), . . .A(m)} in n-dimensional
Euclidean space and a positive integer k. The problem is to find k

1.3 The k-Variance Problem 167

points B = {B(1),B(2), . . . ,B(k)} such that

fA(B) =
m∑

i=1

(dist(A(i),B))2

is minimized. Here dist(A(i),B) is the Euclidean distance of A(i) to its
nearest point in B. Thus, in this problem we wish to minimize the sum
of squared distances to the nearest “cluster center”. We call this the
k-variance problem. The problem is NP-hard even for k = 2.

Note that the solution is given by k clusters Sj , j = 1,2, . . .k. The
cluster center B(j) will be the centroid of the points in Sj , j = 1,2, . . . ,k.
This is seen from the fact that for any set S = {X(1),X(2), . . . ,X(r)} and
any point B we have

r∑
i=1

‖X(i) − B‖2 =
r∑

i=1

‖X(i) − X̄‖2 + r‖B − X̄‖2, (1.1)

where X̄ is the centroid (X(1) + X(2) + · · · + X(r))/r of S. The next
exercise makes this clear.

Exercise 1.6. Show that for a set of point X1, . . . ,Xk ∈ Rn, the point
Y that minimizes

∑k
i=1 |Xi − Y |2 is their centroid. Give an example

when the centroid is not the optimal choice if we minimize sum of
distances rather than squared distances.

The k-variance problem is thus the problem of partitioning a set of
points into clusters so that the sum of the variances of the clusters is
minimized.

We define a relaxation called the Continuous Clustering Problem
(CCP), as the problem of finding the subspace V of Rn of dimension
at most k which minimizes

gA(V) =
m∑

i=1

dist(A(i),V)2.

The reader will recognize that this is given by the SVD. It is easy to
see that the optimal value of the k-variance problem is an upper bound
for the optimal value of the CCP. Indeed for any set B of k points,

fA(B) ≥ gA(VB), (1.2)

where VB is the subspace generated by the points in B.

168 The Best-Fit Subspace

We now present a factor-2 approximation algorithm for the k-
variance problem using the relaxation to the best-fit subspace. The
algorithm has two parts. First we project to the k-dimensional SVD
subspace. Then we solve the problem in the smaller-dimensional space
using a brute-force algorithm with the following guarantee.

Theorem 1.7. The k-variance problem can be solved in O(mk2d/2)
time when the input A ⊆ Rd.

We describe the algorithm for the low-dimensional setting. Each
set B of “cluster centers” defines a Voronoi diagram where cell Ci =
{X ∈ Rd : |X − B(i)| ≤ |X − B(j)| for j �= i} consists of those points
whose closest point in B is B(i). Each cell is a polyhedron and the total
number of faces in C1,C2, . . . ,Ck is no more than

(
k
2

)
since each face is

the set of points equidistant from two points of B.
We have seen in Equation (1.1) that it is the partition of A that

determines the best B (via computation of centroids) and so we can
move the boundary hyperplanes of the optimal Voronoi diagram, with-
out any face passing through a point of A, so that each face contains
at least d points of A.

Assume that the points of A are in general position and 0 /∈ A (a
simple perturbation argument deals with the general case). This means
that each face now contains d affinely independent points of A. We
ignore the information about which side of each face to place these
points and so we must try all possibilities for each face. This leads to the
following enumerative procedure for solving the k- variance problem:

Algorithm: k-variance

1. Enumerate all sets of t hyperplanes, such that

k ≤ t ≤ k(k − 1)/2 hyperplanes, and each hyperplane

contains d affinely independent points of A. The

number of sets is at most

(k
2)∑

t=k

((m
d

)
t

)
= O(mdk2/2).

1.3 The k-Variance Problem 169

2. Check that the arrangement defined by these

hyperplanes has exactly k cells.

3. Make one of 2td choices as to which cell to assign

each point of A which lies on a hyperplane

4. This defines a unique partition of A. Find

the centroid of each set in the partition and

compute fA.

Now we are ready for the complete algorithm. As remarked previously,
CCP can be solved by Linear Algebra. Indeed, let V be a k-dimensional
subspace of Rn and Ā(1), Ā(2), . . . , Ā(m) be the orthogonal projections
of A(1),A(2), . . . ,A(m) onto V . Let Ā be the m × n matrix with rows
Ā(1), Ā(2), . . . , Ā(m). Thus Ā has rank at most k and

‖A − Ā‖2
F =

m∑
i=1

|A(i) − Ā(i)|2 =
m∑

i=1

(dist(A(i),V))2.

Thus to solve CCP, all we have to do is find the first k vectors of the
SVD of A (since by Theorem 1.4, these minimize ‖A − Ā‖2

F over all
rank-k matrices Ā) and take the space VSV D spanned by the first k

singular vectors in the row space of A.
We now show that combining SVD with the above algorithm gives

a 2-approximation to the k-variance problem in arbitrary dimension.
Let Ā = {Ā(1), Ā(2), . . . , Ā(m)} be the projection of A onto the subspace
Vk. Let B̄ = {B̄(1), B̄(2), . . . , B̄(k)} be the optimal solution to k-variance
problem with input Ā.

Algorithm for the k-variance problem

• Compute Vk.
• Solve the k-variance problem with input Ā to obtain B̄.
• Output B̄.

It follows from Equation (1.2) that the optimal value ZA of the
k-variance problem satisfies

ZA ≥
m∑

i=1

|A(i) − Ā(i)|2. (1.3)

170 The Best-Fit Subspace

Note also that if B̂ = {B̂(1), B̂(2), . . . , B̂(k)} is an optimal solution to the
k-variance problem and B̃ consists of the projection of the points in B̂
onto V , then

ZA =
m∑

i=1

dist(A(i), B̂)2 ≥
m∑

i=1

dist(Ā(i), B̃)2 ≥
m∑

i=1

dist(Ā(i), B̄)2.

Combining this with Equation (1.3) we get

2ZA ≥
m∑

i=1

(|A(i) − Ā(i)|2 + dist(Ā(i), B̄)2) =
m∑

i=1

dist(A(i), B̄)2 = fA(B̄)

proving that we do indeed get a 2-approximation.

Theorem 1.8. Algorithm k-variance finds a factor-2 approximation
for the k-variance problem for m points in Rn in O(mn2 + mk3/2)
time.

1.4 Discussion

In this chapter, we reviewed basic concepts in linear algebra from a
geometric perspective. The k-variance problem is a typical example of
how SVD is used: project to the SVD subspace, then solve the original
problem. In many application areas, the method known as “Principal
Component Analysis” (PCA) uses the projection of a data matrix to the
span of the largest singular vectors. There are several general references
on SVD/PCA, e.g., [12, 48].

The application of SVD to the k-variance problem is from [33] and
its hardness is from [3]. The following complexity questions are open:
(1) Given a matrix A, is it NP-hard to find a rank-k matrix D that
minimizes the error with respect to the L1 norm, i.e.,

∑
i,j |Aij − Dij |?

(more generally for Lp norm for p �= 2)? (2) Given a set of m points
in Rn, is it NP-hard to find a subspace of dimension at most k that
minimizes the sum of distances of the points to the subspace? It is
known that finding a subspace that minimizes the maximum distance
is NP-hard [58]; see also [49].

2
Mixture Models

This chapter is the first of three motivated by clustering problems.
Here we study the setting where the input is a set of points in Rn

drawn randomly from a mixture of probability distributions. The sam-
ple points are unlabeled and the basic problem is to correctly classify
them according to the component distribution which generated them.
The special case when the component distributions are Gaussians is
a classical problem and has been widely studied. In the next chapter,
we move to discrete probability distributions, namely random graphs
from some natural classes of distributions. In Section 4, we consider
worst-case inputs and derive approximation guarantees for spectral
clustering.

Let F be a probability distribution in Rn with the property that
it is a convex combination of distributions of known type, i.e., we can
decompose F as

F = w1F1 + w2F2 + · · · + wkFk,

where each Fi is a probability distribution with mixing weight wi ≥ 0,
and

∑
i wi = 1. A random point from F is drawn from distribution Fi

with probability wi.

171

172 Mixture Models

Given a sample of points from F , we consider the following
problems:

1. Classify the sample according to the component distribu-
tions.

2. Learn the component distributions (find their means, covari-
ances, etc.).

For most of this chapter, we deal with the classical setting: each Fi

is a Gaussian in Rn. In fact, we begin with the special case of spherical
Gaussians whose density functions (i) depend only on the distance of
a point from the mean and (ii) can be written as the product of den-
sity functions on each coordinate. The density function of a spherical
Gaussian in Rn is

p(x) =
1

(
√

2πσ)n
e−‖x−µ‖2/2σ2

,

where µ is its mean and σ is the standard deviation along any direction.
If the component distributions are far apart, so that points from

one component distribution are closer to each other than to points
from other components, then classification is straightforward. In the
case of spherical Gaussians, making the means sufficiently far apart
achieves this setting with high probability. On the other hand, if the
component distributions have large overlap, then for a large fraction of
the mixture, it is impossible to determine the origin of sample points.
Thus, the classification problem is inherently tied to some assumption
on the separability of the component distributions.

2.1 Probabilistic Separation

In order to correctly identify sample points, we require a small overlap
of distributions. How can we quantify the distance between distribu-
tions? One way, if we only have two distributions, is to take the total
variation distance,

dTV (f1,f2) =
1
2

∫
Rn

|f1(x) − f2(x)|dx.

2.2 Geometric Separation 173

We can require this to be large for two well-separated distributions, i.e.,
dTV (f1,f2) ≥ 1 − ε, if we tolerate ε error. We can incorporate mixing
weights in this condition, allowing for two components to overlap more
if the mixing weight of one of them is small:

dTV (f1,f2) =
∫
Rn

|w1f1(x) − w2f2(x)|dx ≥ 1 − ε.

This can be generalized in two ways to k > 2 components. First, we
could require the above condition holds for every pair of components,
i.e., pairwise probabilistic separation. Or we could have the following
single condition.

∫
Rn

(
2max

i
wifi(x) −

k∑
i=1

wifi(x)

)+

dx ≥ 1 − ε. (2.1)

The quantity inside the integral is simply the maximum wifi at x, minus
the sum of the rest of the wifis. If the supports of the components are
essentially disjoint, the integral will be 1.

For k > 2, it is not known how to efficiently classify mixtures when
we are given one of these probabilistic separations. In what follows, we
use stronger assumptions.

2.2 Geometric Separation

Here we assume some separation between the means of component
distributions. For two distributions, we require ‖µ1 − µ2‖ to be large
compared to max{σ1,σ2}. Note this is a stronger assumption than that
of small overlap. In fact, two distributions can have the same mean,
yet still have small overlap, e.g., two spherical Gaussians with different
variances.

Given a separation between the means, we expect that sample
points originating from the same component distribution will have
smaller pairwise distances than points originating from different dis-
tributions. Let X and Y be two independent samples drawn from the

174 Mixture Models

same Fi.

E
(‖X − Y ‖2) = E

(‖(X − µi) − (Y − µi)‖2)
= 2E

(‖X − µi‖2) − 2E ((X − µi)(Y − µi))

= 2E
(‖X − µi‖2)

= 2E

(
n∑

j=1

|xj − µj
i |2
)

= 2nσ2
i

Next let X be a sample drawn from Fi and Y a sample from Fj .

E
(‖X − Y ‖2) = E

(‖(X − µi) − (Y − µj) + (µi − µj)‖2)
= E

(‖X − µi‖2) + E
(‖Y − µj‖2) + ‖µi − µj‖2

= nσ2
i + nσ2

j + ‖µi − µj‖2

Note how this value compares to the previous one. If ‖µi − µj‖2 were
large enough, points in the component with smallest variance would all
be closer to each other than to any point from the other components.
This suggests that we can compute pairwise distances in our sample
and use them to identify the subsample from the smallest component.

We consider separation of the form

‖µi − µj‖ ≥ βmax{σi,σj}, (2.2)

between every pair of means µi,µj . For β large enough, the distance
between points from different components will be larger in expectation
than that between points from the same component. This suggests the
following classification algorithm: we compute the distances between
every pair of points, and connect those points whose distance is less
than some threshold. The threshold is chosen to split the graph into
two (or k) cliques. Alternatively, we can compute a minimum span-
ning tree of the graph (with edge weights equal to distances between
points), and drop the heaviest edge (k − 1 edges) so that the graph has
two (k) connected components and each corresponds to a component
distribution.

2.2 Geometric Separation 175

Both algorithms use only the pairwise distances. In order for any
algorithm of this form to work, we need to turn the above arguments
about expected distance between sample points into high probabil-
ity bounds. For Gaussians, we can use the following concentration
bound.

Lemma 2.1. Let X be drawn from a spherical Gaussian in Rn with
mean µ and variance σ2 along any direction. Then for any α > 1,

Pr
(|‖X − µ‖2 − σ2n| > ασ2√n

) ≤ 2e−α2/8.

Using this lemma with α = 4
√

ln(m/δ), to a random point X from
component i, we have

Pr
(
|‖X − µi‖2 − nσ2

i | > 4
√

n ln(m/δ)σ2
)

≤ 2
δ2

m2 ≤ δ

m

for m > 2. Thus the inequality

|‖X − µi‖2 − nσ2
i | ≤ 4

√
n ln(m/δ)σ2

holds for all m sample points with probability at least 1 − δ. From this
it follows that with probability at least 1 − δ, for X,Y from the i-th
and j-th Gaussians, respectively, with i �= j,

‖X − µi‖ ≤
√

σ2
i n + α2σ2

i

√
n ≤ σi

√
n + α2σi

‖Y − µj‖ ≤ σj

√
n + α2σj

‖µi −µj‖−‖X −µi‖−‖Y − µj‖ ≤ ‖X − Y ‖
≤ ‖X −µi‖+‖Y −µj‖+‖µi −µj‖

‖µi − µj‖ − (σi + σj)(α2 +
√

n) ≤ ‖X − Y ‖
≤ ‖µi − µj‖ + (σi + σj)(α2 +

√
n)

Thus it suffices for β in the separation bound (2.2) to grow as Ω(
√

n)
for either of the above algorithms (clique or MST). One can be more
careful and get a bound that grows only as Ω(n1/4) by identifying

176 Mixture Models

components in the order of increasing σi. We do not describe this
here.

The problem with these approaches is that the separation needed
grows rapidly with n, the dimension, which in general is much higher
than k, the number of components. On the other hand, for classi-
fication to be achievable with high probability, the separation does
not need a dependence on n. In particular, it suffices for the means
to be separated by a small number of standard deviations. If such
a separation holds, the projection of the mixture to the span of the
means would still give a well-separate mixture and now the dimension
is at most k. Of course, this is not an algorithm since the means are
unknown.

One way to reduce the dimension and therefore the dependence on n

is to project to a lower-dimensional subspace. A natural idea is random
projection. Consider a projection from Rn → R� so that the image of
a point u is u′. Then it can be shown that

E
(‖u′‖2) =

�

n
‖u‖2

In other words, the expected squared length of a vector shrinks by
a factor of �

n . Further, the squared length is concentrated around its
expectation.

Pr
(

|‖u′‖2 − �

n
‖u‖2| >

ε�

n
‖u‖2

)
≤ 2e−ε2�/4

The problem with random projection is that the squared distance
between the means, ‖µi − µj‖2, is also likely to shrink by the same
�
n factor, and therefore random projection acts only as a scaling and
provides no benefit.

2.3 Spectral Projection

Next we consider projecting to the best-fit subspace given by the top k

singular vectors of the mixture. This is a general methodology — use
principal component analysis (PCA) as a preprocessing step. In this
case, it will be provably of great value.

2.3 Spectral Projection 177

Algorithm: Classify-Mixture

1. Compute the singular value decomposition of the

sample matrix.

2. Project the samples to the rank-k subspace spanned

by the top k right singular vectors.

3. Perform a distance-based classification in the

k-dimensional space.

We will see that by doing this, a separation given by

‖µi − µj‖ ≥ c(k logm)
1
4 max{σi,σj},

where c is an absolute constant, is sufficient for classifying m points.
The best-fit vector for a distribution is one that minimizes the

expected squared distance of a random point to the vector. Using this
definition, it is intuitive that the best-fit vector for a single Gaussian is
simply the vector that passes through the Gaussian’s mean. We state
this formally below.

Lemma 2.2. The best-fit one-dimensional subspace for a spherical
Gaussian with mean µ is given by the vector passing through µ.

Proof. For a randomly chosen x, we have for any unit vector v,

E
(
(x · v)2

)
= E

(
((x − µ) · v + µ · v)2

)
= E

(
((x − µ) · v)2

)
+ E

(
(µ · v)2

)
+E (2((x − µ) · v)(µ · v))

= σ2 + (µ · v)2 + 0

= σ2 + (µ · v)2

which is maximized when v = µ/‖µ‖.

Further, due to the symmetry of the sphere, the best subspace of
dimension 2 or more is any subspace containing the mean.

178 Mixture Models

Lemma 2.3. Any k-dimensional subspace containing µ is an optimal
SVD subspace for a spherical Gaussian.

A simple consequence of this lemma is the following theorem, which
states that the best k-dimensional subspace for a mixture F involving
k spherical Gaussians is the space which contains the means of the
Gaussians.

Theorem 2.4. The k-dimensional SVD subspace for a mixture of k

Gaussians F contains the span of {µ1,µ2, . . . ,µk}.

Now let F be a mixture of two Gaussians. Consider what happens
when we project from Rn onto the best two-dimensional subspace R2.
The expected squared distance (after projection) of two points drawn
from the same distribution goes from 2nσ2

i to 4σ2
i . And, crucially, since

we are projecting onto the best two-dimensional subspace which con-
tains the two means, the expected value of ‖µ1 − µ2‖2 does not change!

What property of spherical Gaussians did we use in this analysis?
A spherical Gaussian projected onto the best SVD subspace is still a
spherical Gaussian. In fact, this only required that the variance in every
direction is equal. But many other distributions, e.g., uniform over a
cube, also have this property. We address the following questions in the
rest of this chapter.

1. What distributions does Theorem 2.4 extend to?
2. What about more general distributions?
3. What is the sample complexity?

2.4 Weakly Isotropic Distributions

Next we study how our characterization of the SVD subspace can be
extended.

Definition 2.1. Random variable X ∈ R
n has a weakly isotropic dis-

tribution with mean µ and variance σ2 if

E (w · (X − µ))2 = σ2, ∀w ∈ R
n, ‖w‖ = 1.

2.5 Mixtures of General Distributions 179

A spherical Gaussian is clearly weakly isotropic. The uniform dis-
tribution in a cube is also weakly isotropic.

Exercise 2.5. Show that the uniform distribution in a cube is weakly
isotropic.

Exercise 2.6. Show that a distribution is weakly isotropic if its covari-
ance matrix is a multiple of the identity.

Exercise 2.7. The k-dimensional SVD subspace for a mixture F with
component means µ1, . . . ,µk contains span{µ1, . . . ,µk} if each Fi is
weakly isotropic.

The statement of Exercise 2.7 does not hold for arbitrary distribu-
tions, even for k = 1. Consider a non-spherical Gaussian random vec-
tor X ∈ R

2, whose mean is (0,1) and whose variance along the x-axis
is much larger than that along the y-axis. Clearly the optimal one-
dimensional subspace for X (that maximizes the squared projection in
expectation) is not the one passes through its mean µ; it is orthogonal to
the mean. SVD applied after centering the mixture at the origin works
for one Gaussian but breaks down for k > 1, even with (nonspherical)
Gaussian components.

2.5 Mixtures of General Distributions

For a mixture of general distributions, the subspace that maximizes
the squared projections is not the best subspace for our classification
purpose any more. Consider two components that resemble “parallel
pancakes”, i.e., two Gaussians that are narrow and separated along one
direction and spherical (and identical) in all other directions. They are
separable by a hyperplane orthogonal to the line joining their means.
However, the two-dimensional subspace that maximizes the sum of
squared projections (and hence minimizes the sum of squared distances)
is parallel to the two pancakes. Hence after projection to this subspace,

180 Mixture Models

the two means collapse and we cannot separate the two distributions
anymore.

The next theorem provides an extension of the analysis of spher-
ical Gaussians by showing when the SVD subspace is “close” to the
subspace spanned by the component means.

Theorem 2.8. Let F be a mixture of arbitrary distributions F1, . . . ,Fk.
Let wi be the mixing weight of Fi, µi be its mean and σ2

i,W be the max-
imum variance of Fi along directions in W , the k-dimensional SVDsub-
space of F . Then

k∑
i=1

wid(µi,W)2 ≤ k

k∑
i=1

wiσ
2
i,W ,

where d(., .) is the orthogonal distance.

Theorem 2.8 says that for a mixture of general distributions, the
means do not move too much after projection to the SVD subspace.
Note that the theorem does not solve the case of parallel pancakes, as
it requires that the pancakes be separated by a factor proportional to
their “radius” rather than their “thickness”.

Proof. Let M be the span of µ1,µ2, . . . ,µk. For x ∈ Rn, we write πM (x)
for the projection of x to the subspace M and πW (x) for the projection
of x to W .

We first lower bound the expected squared length of the projection
to the mean subpspace M .

E
(‖πM (x)‖2) =

k∑
i=1

wiE Fi

(‖πM (x)‖2)

=
k∑

i=1

wi

(
E Fi

(‖πM (x) − µi‖2) + ‖µi‖2)

≥
k∑

i=1

wi‖µi‖2

=
k∑

i=1

wi‖πW (µi)‖2 +
k∑

i=1

wid(µi,W)2.

2.5 Mixtures of General Distributions 181

We next upper bound the expected squared length of the projection to
the SVD subspace W . Let 	e1, . . . ,	ek be an orthonormal basis for W .

E
(‖πW (x)‖2) =

k∑
i=1

wi

(
E Fi

(‖πW (x − µi)‖2) + ‖πW (µi)‖2)

≤
k∑

i=1

wi

k∑
j=1

E Fi

(
(πW (x−µi) · 	ej)2

)
+

k∑
i=1

wi‖πW (µi)‖2

≤ k

k∑
i=1

wiσ
2
i,W +

k∑
i=1

wi‖πW (µi)‖2.

The SVD subspace maximizes the sum of squared projections among
all subspaces of rank at most k (Theorem 1.3). Therefore,

E
(‖πM (x)‖2) ≤ E

(‖πW (x)‖2)
and the theorem follows from the previous two inequalities.

The next exercise gives a refinement of this theorem.

Exercise 2.9. Let S be a matrix whose rows are a sample of m points
from a mixture of k distributions with mi points from the i-th distri-
bution. Let µ̄i be the mean of the subsample from the i-th distribution
and σ̄2

i be its largest directional variance. Let W be the k-dimensional
SVD subspace of S.

1. Prove that

‖µ̄i − πW (µ̄i)‖ ≤ ‖S − πW (S)‖√
mi

,

where the norm on the RHS is the 2-norm (largest singular
value).

2. Let S̄ denote the matrix where each row of S is replaced by
the corresponding µ̄i. Show that (again with 2-norm),

‖S − S̄‖2 ≤
k∑

i=1

miσ̄
2
i .

182 Mixture Models

3. From the above, derive that for each component,

‖µ̄i − πW (µ̄i)‖2 ≤
∑k

j=1 wj σ̄
2
j

wi
,

where wi = mi/m.

2.6 Spectral Projection with Samples

So far we have shown that the SVD subspace of a mixture can be
quite useful for classification. In reality, we only have samples from the
mixture. This section is devoted to establishing bounds on sample com-
plexity to achieve similar guarantees as we would for the full mixture.
The main tool will be distance concentration of samples. In general, we
are interested in inequalities such as the following for a random point
X from a component Fi of the mixture. Let R2 = E (‖X − µi‖2).

Pr(‖X − µi‖ > tR) ≤ e−ct.

This is useful for two reasons:

1. To ensure that the SVD subspace the sample matrix is not
far from the SVD subspace for the full mixture. Since our
analysis shows that the SVD subspace is near the subspace
spanned by the means and the distance, all we need to show
is that the sample means and sample variances converge to
the component means and covariances.

2. To be able to apply simple clustering algorithms such as
forming cliques or connected components, we need distances
between points of the same component to be not much higher
than their expectations.

An interesting general class of distributions with such concentration
properties are those whose probability density functions are logconcave.
A function f is logconcave if ∀x,y, ∀λ ∈ [0,1],

f(λx + (1 − λ)y) ≥ f(x)λf(y)1−λ

2.6 Spectral Projection with Samples 183

or equivalently,

logf(λx + (1 − λ)y) ≥ λ logf(x) + (1 − λ) logf(y).

Many well-known distributions are log-concave. In fact, any distribu-
tion with a density function f(x) = eg(x) for some concave function
g(x), e.g., e−c‖x‖ or ec(x·v) is logconcave. Also, the uniform distribution
in a convex body is logconcave. The following concentration inequality
[55] holds for any logconcave density.

Lemma 2.10. Let X be a random point from a logconcave density in
Rn with µ = E (X) and R2 = E (‖X − µ‖2). Then,

Pr(‖X − µ‖2 ≥ tR) ≤ e−t+1.

Putting this all together, we conclude that Algorithm Classify-
Mixture, which projects samples to the SVD subspace and then clusters,
works well for mixtures of well-separated distributions with logconcave
densities, where the separation required between every pair of means
is proportional to the largest standard deviation.

Theorem 2.11. Algorithm Classify-Mixture correctly classifies a sam-
ple of m points from a mixture of k arbitrary logconcave densities
F1, . . . ,Fk, with probability at least 1 − δ, provided for each pair i, j we
have

‖µi − µj‖ ≥ Ckc log(m/δ)max{σi,σj},

µi is the mean of component Fi, σ2
i is its largest variance and c,C are

fixed constants.

This is essentially the best possible guarantee for the algorithm.
However, it is a bit unsatisfactory since an affine transformation,
which does not affect probabilistic separation, could easily turn a well-
separated mixture into one that is not well-separated.

184 Mixture Models

2.7 An Affine-Invariant Algorithm

The algorithm described here is an application of isotropic PCA, an
algorithm discussed in Section 8. Unlike the methods we have seen
so far, the algorithm is affine-invariant. For k = 2 components it has
nearly the best possible guarantees for clustering Gaussian mixtures.
For k > 2, it requires that there be a (k − 1)-dimensional subspace
where the overlap of the components is small in every direction. This
condition can be stated in terms of the Fisher discriminant, a quantity
commonly used in the field of Pattern Recognition with labeled data.
The affine invariance makes it possible to unravel a much larger set
of Gaussian mixtures than had been possible previously. Here we only
describe the case of two components in detail, which contains the key
ideas.

The first step of the algorithm is to place the mixture in isotropic
position via an affine transformation. This has the effect of making the
(k − 1)-dimensional Fisher subspace, i.e., the one that minimizes the
Fisher discriminant (the fraction of the variance of the mixture taken
up the intra-component term; see Section 2.7.2 for a formal definition),
the same as the subspace spanned by the means of the components
(they only coincide in general in isotropic position), for any mixture.
The rest of the algorithm identifies directions close to this subspace
and uses them to cluster, without access to labels. Intuitively this is
hard since after isotropy, standard PCA/SVD reveals no additional
information. Before presenting the ideas and guarantees in more detail,
we describe relevant related work.

As before, we assume we are given a lower bound w on the minimum
mixing weight and k, the number of components. With high probabil-
ity, Algorithm Unravel returns a hyperplane so that each halfspace
encloses almost all of the probability mass of a single component and
almost none of the other component.

The algorithm has three major components: an initial affine trans-
formation, a reweighting step, and identification of a direction close
to the Fisher direction. The key insight is that the reweighting tech-
nique will either cause the mean of the mixture to shift in the inter-
mean subspace, or cause the top principal component of the second

2.7 An Affine-Invariant Algorithm 185

moment matrix to approximate the intermean direction. In either case,
we obtain a direction along which we can partition the components.

We first find an affine transformation W which when applied to F
results in an isotropic distribution. That is, we move the mean to
the origin and apply a linear transformation to make the covariance
matrix the identity. We apply this transformation to a new set of
m1 points {xi} from F and then reweight according to a spherically
symmetric Gaussian exp(−‖x‖2/α) for α = Θ(n/w). We then compute
the mean û and second moment matrix M̂ of the resulting set. After
the reweighting, the algorithm chooses either the new mean or the
direction of maximum second moment and projects the data onto this
direction h.

Algorithm Unravel
Input: Scalar w > 0.
Initialization: P = R

n.

1. (Rescale) Use samples to compute an affine

transformation W that makes the distribution

nearly isotropic (mean zero, identity covariance

matrix).

2. (Reweight) For each of m1 samples, compute a

weight e−‖x‖2/α.

3. (Find Separating Direction) Find the mean

of the reweighted data µ̂. If ‖µ̂‖ >
√

w/(32α)
(where α > n/w), let h = µ̂. Otherwise, find the

covariance matrix M̂ of the reweighted points and

let h be its top principal component.

4. (Classify) Project m2 sample points to h and

classify the projection based on distances.

2.7.1 Parallel Pancakes

We now discuss the case of parallel pancakes in detail. Suppose F is
a mixture of two spherical Gaussians that are well-separated, i.e., the
intermean distance is large compared to the standard deviation along

186 Mixture Models

any direction. We consider two cases, one where the mixing weights are
equal and another where they are imbalanced.

After isotropy is enforced, each component will become thin in the
intermean direction, giving the density the appearance of two parallel
pancakes. When the mixing weights are equal, the means of the com-
ponents will be equally spaced at a distance of 1 − φ on opposite sides
of the origin. For imbalanced weights, the origin will still lie on the
intermean direction but will be much closer to the heavier component,
while the lighter component will be much further away. In both cases,
this transformation makes the variance of the mixture 1 in every direc-
tion, so the principal components give us no insight into the intermean
direction.

Consider next the effect of the reweighting on the mean of the mix-
ture. For the case of equal mixing weights, symmetry assures that the
mean does not shift at all. For imbalanced weights, however, the heav-
ier component, which lies closer to the origin will become heavier still.
Thus, the reweighted mean shifts toward the mean of the heavier com-
ponent, allowing us to detect the intermean direction.

Finally, consider the effect of reweighting on the second moments
of the mixture with equal mixing weights. Because points closer to
the origin are weighted more, the second moment in every direction is
reduced. However, in the intermean direction, where part of the moment
is due to the displacement of the component means from the origin, it
shrinks less. Thus, the direction of maximum second moment is the
intermean direction.

2.7.2 Analysis

The algorithm has the following guarantee for a two-Gaussian mixture.

Theorem 2.12. Let w1,µ1,Σ1 and w2,µ2,Σ2 define a mixture of two
Gaussians and w = minw1,w2. There is an absolute constant C such
that, if there exists a direction v such that

|πv(µ1 − µ2)| ≥ C
(√

vT Σ1v +
√

vT Σ2v
)

w−2 log1/2
(

1
wδ

+
1
η

)
,

2.7 An Affine-Invariant Algorithm 187

then with probability 1 − δ algorithm Unravel returns two comple-
mentary halfspaces that have error at most η using time and a number
of samples that is polynomial in n,w−1, log(1/δ).

So the separation required between the means is comparable to
the standard deviation in some direction. This separation condition
of Theorem 2.12 is affine-invariant and much weaker than conditions
of the form ‖µ1 − µ2‖ � max{σ1,max,σ2,max} that came up earlier in
the chapter. We note that the separating direction need not be the
intermean direction.

It will be insightful to state this result in terms of the Fisher discrim-
inant, a standard notion from Pattern Recognition [38, 44] that is used
with labeled data. In words, the Fisher discriminant along direction
p is

J(p) =
the intra-component variance in direction p

the total variance in direction p

Mathematically, this is expressed as

J(p) =
E
[‖πp(x − µ�(x))‖2

]
E [‖πp(x)‖2]

=
pT (w1Σ1 + w2Σ2)p

pT (w1(Σ1 + µ1µT
1) + w2(Σ2 + µ2µT

2))p

for x distributed according to a mixture distribution with means µi and
covariance matrices Σi. We use �(x) to indicate the component from
which x was drawn.

Theorem 2.13. There is an absolute constant C for which the fol-
lowing holds. Suppose that F is a mixture of two Gaussians such that
there exists a direction p for which

J(p) ≤ Cw3 log−1
(

1
δw

+
1
η

)
.

With probability 1 − δ, algorithm Unravel returns a halfspace with
error at most η using time and sample complexity polynomial in
n,w−1, log(1/δ).

188 Mixture Models

In words, the algorithm successfully unravels arbitrary Gaussians
provided there exists a line along which the expected squared distance
of a point to its component mean is smaller than the expected squared
distance to the overall mean by roughly a 1/w3 factor. There is no
dependence on the largest variances of the individual components, and
the dependence on the ambient dimension is logarithmic. Thus the
addition of extra dimensions, even with large variance, has little impact
on the success of the algorithm. The algorithm and its analysis in terms
of the Fisher discriminant have been generalized to k > 2 [15].

2.8 Discussion

Mixture models are a classical topic in statistics. Traditional methods
such as EM or other local search heuristics can get stuck in local optima
or take a long time to converge. Starting with Dasgupta’s paper [22] in
1999, there has been much progress on efficient algorithms with rigorous
guarantees [6, 23], with Arora and Kannan [6] addressing the case of
general Gaussians using distance concentration methods. PCA was ana-
lyzed in this context by Vempala and Wang [65] giving nearly optimal
guarantees for mixtures of spherical Gaussians (and weakly isotropic
distributions). This was extended to general Gaussians and logconcave
densities [51, 1] (Exercise 2.9 is based on [1]), although the bounds
obtained were far from optimal in that the separation required grows
with the largest variance of the components or with the dimension of
the underlying space. In 2008, Brubaker and Vempala [15] presented an
affine-invariant algorithm that only needs hyperplane separability for
two Gaussians and a generalization of this condition for k > 2. A related
line of work considers learning symmetric product distributions, where
the coordinates are independent. Feldman et al. [39] have shown that
mixtures of axis-aligned Gaussians can be approximated without any
separation assumption at all in time exponential in k. Chaudhuri and
Rao [17] have given a polynomial-time algorithm for clustering mixtures
of product distributions (axis-aligned Gaussians) under mild separation
conditions. A. Dasgupta et al. [21] and later Chaudhuri and Rao [18]
gave algorithms for clustering mixtures of heavy-tailed distributions.

2.8 Discussion 189

A more general question is “agnostic” learning of Gaussians, where
we are given samples from an arbitrary distribution and would like
to find the best-fit mixture of k Gaussians. This problem naturally
accounts for noise and appears to be much more realistic. Brubaker [14]
gave an algorithm that makes progress towards this goal, by allowing a
mixture to be corrupted by an ε fraction of noisy points with ε < wmin,
and with nearly the same separation requirements as in Section 2.5.

3
Probabilistic Spectral Clustering

We revisit the problem of clustering under a model which assumes
that the data is generated according to a probability distribution in
Rn. One line of work in this area pertains to mixture models where the
components are assumed to have special distributions (e.g., Gaussians);
in this situation, we saw in Section 2 that spectral methods are useful.
Another line of work is based on models of random graphs. Typically,
a random graph G on n vertices is assumed to be partitioned into k

(k << n) unknown parts and an edge from a vertex in the r-th part
to a vertex in the s-th part appears with probability prs, where these
could be different for different r,s. The problem is to find the hidden
partition and estimate the unknown prs values. Denoting by A the
adjacency matrix of the graph, the problem can be stated succinctly:
given (one realization of) A, find E A the entry-wise expectation (since
E A contains information on the partition as well as the prs values).

We may view this as a mixture model. Denote by A the adjacency
matrix of the graph. Each row A(i) is a point (with 0–1 coordinates)
in Rn generated from a mixture of k probability distributions, where
each component distribution generates the adjacency vectors of ver-
tices in one part. It is of interest to cluster when the prs as well as their

190

3.1 Full Independence and the Basic Algorithm 191

differences are small, i.e., o(1). However, since the rows of A are 0–1
vectors, they are very “far” along coordinate directions (measured in
standard deviations, say) from the means of the distributions. This is
quite different from the case of a Gaussian (which has a very narrow
tail). The fat tail is one of the crucial properties that makes the planted
graph problem very different from the Gaussian mixture problem.
Indeed, the literature often treats them as different subareas. In spite
of this, as we will see in this chapter, spectral clustering can be used.

3.1 Full Independence and the Basic Algorithm

The basic tool which has been used to tackle the fat tails is the assump-
tion of full independence which postulates that the edges of the graph
are mutually independent random variables. This is indeed a natural
conceptual off-shoot of random graphs. Now, under this assumption,
the very rough outline of the spectral clustering algorithm is as follows:
we are given A and wish to find the generative model E A which tells us
the probabilities prs (and the parts). The matrix A − E A has random
independent entries each with mean 0. There is a rich theory of ran-
dom matrices where the generative model satisfies full independence
and the following celebrated theorem was first stated qualitatively by
the physicist Wigner.

Theorem 3.1. Suppose A is a symmetric random matrix with inde-
pendent (above-diagonal) entries each with standard deviation at
most ν and bounded in absolute value by 1. Then, with high prob-
ability, the largest eigenvalue of A − E A is at most cν

√
n.1

The strength of this theorem is seen from the fact that each row
of A − E A is of length O(ν

√
n), so the theorem asserts that the top

eigenvalue amounts only to the length of a constant number of rows; i.e.,
there is almost no correlation among the rows (since the top eigenvalue
= max|x|=1 ‖(A − E A)x‖ and hence the higher the correlation of the
rows in some direction x, the higher its value).

1 We use the convention that c refers to a constant. For example, the statement a ≤ (cp)cp

will mean that there exist constants c1, c2 such that a ≤ (c1p)c2p.

192 Probabilistic Spectral Clustering

Thus one gets whp an upper bound on the spectral norm of A − EA:

‖A − E A‖ ≤ cν
√

n.

Now an upper bound on the Frobenius norm ‖A − E A‖F follows from
the following basic lemma that we prove shortly.

Lemma 3.2. Suppose A,B are m × n matrices with rank(B) = k. If
Â is the best rank-k approximation to A, then

‖Â − B‖2
F ≤ 5k‖A − B‖2.

We use this with B = E A and ν equal to the maximum standard
deviation of any row of A in any direction. We can find the SVD of A

to get Â. By the above, we have that whp,

‖Â − E A‖2
F ≤ cν2nk

Let ε be a positive real < 1/(10k). The above implies that for all but
a small fraction of the rows, we find the vectors (E A)(i) within error
cν

√
k; i.e., for all but εn of the rows of A, we have (whp)

|Â(i) − E A(i)| ≤ cν

√
k

ε
.

Let G be the set of rows of A satisfying this condition.
Now, we assume a separation condition between the centers

µr,µs of the component distributions r �= s (as in the case of Gaus-
sian mixtures):

‖µr − µs‖ ≥ ∆ = 20cν

√
k

ε
.

We note that ∆ depends only on k and not on n (recall that k << n).
In general, a point A(i) may be at distance O(

√
nν) from the center of

its distribution which is much larger than ∆.
It follows that points in G are at distance at most ∆/20 from their

correct centers and at least 10 times this distance from any other center.
Thus, each point in G is at distance at most ∆/10 from every other

3.1 Full Independence and the Basic Algorithm 193

point in G in its own part and at distance at least ∆/2 from each point
in G in a different part. We use this to cluster most points correctly as
follows:

Pick at random a set of k points from the set of projected rows by
picking each one uniformly at random from among those at distance
at least 9cν

√
k/ε from the ones already picked. This yields with high

probability k good points one each from each cluster, assuming ε <

1/(10k). We define k clusters, each consisting of the points at distance
at most ∆/5 from each of the k points picked.

After this, all known algorithms resort to a clean-up phase where
the wrongly clustered vertices are reclassified correctly. The clean-up
phase is often technically very involved and forces stricter (and awk-
ward) separation conditions. We give a complete algorithm with a
clean-up phase in Section . The algorithm is based only on linear alge-
braic assumptions rather than probabilistic ones.

We conclude this section with a proof of the lemma connecting the
spectral norm and the Frobenius norm (from [1]).

Proof. (of Lemma 3.2): Let u(1),u(2), . . .u(k) be the top k singular vec-
tors of A. Extend this to an orthonormal basis u(1),u(2), . . .u(p) of the
vector space spanned by the rows of Â and B. [Note that p ≤ 2k.] Then,
we have

|Â − B‖2
F =

k∑
t=1

|(Â − B)u(t)|2 +
p∑

t=k+1

|(Â − B)u(t)|2

=
k∑

t=1

|(A − B)u(t)|2 +
p∑

t=k+1

|Bu(t)|2

≤ k‖A − B‖2
2 +

p∑
t=k+1

|Au(t) + (B − A)u(t)|2

≤ k‖A − B‖2
2 + 2

p∑
t=k+1

|Au(t)|2 + 2
p∑

t=k+1

|(B − A)u(t)|2

≤ k‖A − B‖2
2 + 2kσ2

k+1(A) + 2k‖A − B‖2
2.

194 Probabilistic Spectral Clustering

Now Lemma 3.2 follows from the claim : σk+1(A) ≤ ‖A − B‖2. This
is because, if not, letting now v(1),v(2), . . .v(k),v(k+1) be the top k + 1
singular vectors of A, we would have

|Bv(t)| ≥ |Av(t)| − ‖A − B‖2 > 0,

contradicting the hypothesis that rank of B is k.

3.2 Clustering Based on Deterministic Assumptions

We started earlier with a random generative model of data–A. We used
Random Matrix theory to show a bound on ‖A − EA‖. Then we argued
that Â, the best rank-k approximation to A is in fact close to EA in
spectral norm and used this to cluster “most” points correctly. However,
the “clean-up” of the misclassified points presents a technical hurdle
which is overcome often by extra assumptions and involved technical
arguments. Here we make an attempt to present a simple algorithm
which classifies all points correctly at once. We start by making certain
assumptions on the model; these assumptions are purely geometric–
we do not assume any probabilistic model. Under these assumptions,
we prove that a simple algorithm correctly classifies all the points.
A new feature of this proof is the use of the “Sin Θ” theorem from
Numerical Analysis to argue that not only are the singular values of Â

and EA close, but the spaces spanned by these two matrices are close
too. However, our result currently does not subsume earlier results
under the probabilistic model. [See discussion below.]

We are given m points in Rn (as the rows of an m × n matrix A)
and an integer k and we want to cluster (partition) the points into k

clusters. As in generative models, we assume that there is an under-
lying (desirable) partition of {1,2, . . .m} into T1,T2, . . .Tk which forms
a “good” clustering and the objective is to find precisely this cluster-
ing (with not a single “misclassified” point). For r = 1,2, . . .k, define
µr = 1

|Tr|
∑

i∈Tr
A(i) as the center (mean) of the points in the cluster.

Let C be the m × n matrix with C(i) = µr for all i ∈ Tr. We will now
state the assumptions under which we will prove that spectral cluster-
ing works. [We write assumptions of the form a ∈ Ω(b) below to mean
that there is some constant c > 0 such that if the assumption a ≥ cb

3.2 Clustering Based on Deterministic Assumptions 195

holds, then the assertions/algorithms work as claimed. Similarly for
a ∈ O(b).] We first assume

Assumption 0 :

‖A − C‖ = ∆ ≤ O(σk(C)/ logn).

[This is not a major assumption; see discussion below.] We note that
‖A − C‖2 can be viewed as the maximum total distance squared in
any direction of the points from their respective centers. So ∆ being
small is the same as saying the displacements of A(i) from their respec-
tive centers are not “biased” toward any direction, but sort of spread
out. [This is the intuition leading to Wigner-type bound on the largest
singular value of a random matrix.]

Our main assumptions on the model are stated below.
Assumption 1 : Boundedness For all r and all i ∈ Tr,

|A(i) − µr| ≤ M ; |µr| ≤ M.

Assumption 2 : Correct Center is closest. Let

∆2 =
M∆logn

σk(C)
.

Let F1 be the orthogonal projection onto the space spanned by the
rows of C. Then, for all r �= s and all i ∈ Tr,

|F1(A(i) − µr)| ≤ |F1(A(i) − µs)| − Ω(∆2).

Assumption 3 : No Small Clusters

|Tr| ≥ m0 ∈ Ω(m) ∀r.

Note that Assumption 2 implies an inter-center separation

|µr − µs| = Ω(∆2).

Such an assumption is a regular feature of most results.
Now consider the random case when the Aij are Bernoulli random

variables with EAij = Cij .(the Full-Independent case). For ease of com-
parison, assume m ∈ Θ(n) and that all (most) Cij are Θ(p) for a positive
real p. In this case, it is easy to see that we can take M ∈ Θ̃(

√
np). Also

196 Probabilistic Spectral Clustering

Random Matrix Theory implies that ∆ ∈ Θ(
√

np). We also a need a
lower bound on σk(C) or in other words, we need C have rank k. We
assume that σk(C) = Ω(np).

Thus ∆2 = Õ(1). The best-known results for probabilistic models
assume a separation of

|µr − µs| ≥ poly(k)
√

p.

Thus our otherwise more general result does not match these.
We conjecture that the following clean result holds which would then

subsume known previous results under various probabilistic models.
Conjecture We can exactly classify all points provided only the

following assumption holds:

∀r �= s, ∀i ∈ Tr,

|F1(A(i) − µr)| ≤ |F1(A(i) − µs)| − Ω(poly(k)‖A − C‖/
√

n) .

3.2.1 The Algorithm

We use an approximation algorithm to solve the k-means problem on
the points–Â(i), i = 1,2, . . .m to within a factor of say c2. A simple algo-
rithm has been shown to achieve c2 ∈ O(logn) [9], but c2 ∈ O(1) can
be achieved by more complex algorithms [16].

Theorem 3.3. Under Assumptions (0)–(3), the algorithm finds the
correct clustering, i.e., all i for which A(i) is closest to a particular row
of C are put in the same cluster.

Suppose the centers produced by the approximation algorithm are
v1,v2, . . .vr. Let c1 = 6

√
c2 + 2.

Note that the optimal k-means solution has optimal value OPT at
most

∑
i |Â(i) − C(i)|2 = ‖Â − C‖2

F .

Claim 3.4. In a c2-approximate solution, we must have that for each
r,1 ≤ r ≤ k, there is a center vir (in the solution) such that |vir − µr| ≤
c1

√
k√

m0
‖A − C‖.

3.2 Clustering Based on Deterministic Assumptions 197

Proof. Let c1
√

k√
m0

‖A − C‖ = β. Suppose for some r, there is no center
in the solution within distance β of µr. Then we have using triangle
inequality and the fact that (a − b)2 ≥ 1

2a2 − b2 for any reals a,b that
the sum of distances squared of Â(i), i ∈ Tr to their nearest center in
the solution is at least∑

i∈Tr

(β − |Â(i) − µr|)2 ≥ (|Tr|/2)β2 − ‖Â − C‖2
F > c2 OPT

producing a contradiction.

Now σk(C) ≤ 1√
k
‖C‖F ≤

√
m√
k
M ; thus,

√
k√
m

∆ ∈ O(∆2). Thus, for a
suitable choice of c1, c2, there must be k different vr; for notational
convenience, we assume from now on that

|vr − µr| ∈ O(∆2). (3.1)

Let

Sr = {i : |Â(i) − vr| ≤ |Â(i) − vs|∀s}.

Now, we will argue using the assumption that Sr is exactly equal to Tr

for all r.
To this end let F2 denote (orthogonal) projection onto the space

spanned by the top k right singular vectors of A and recall that F1

denotes the orthogonal projection onto the space spanned by the rows
of C. We argue that F1 ≈ F2 using Davis–Kahan Sinθ theorem. The
theorem applies to Hermitian matrices. Of course A,C are in general
rectangular. So first let |A| denote

√
AT A and similarly |C| denote√

CT C (standard notation). It is known ([11], Equation (5.10)) that
there is a fixed constant with

|| |A| − |C| || ≤ c3 logn‖A − C‖.

Clearly σk(A) ≥ σk(C) − ‖A − C‖ ≥ 1
2σk(C). F⊥

1 can be viewed as the
projection onto the eigenvectors of |C| with eigenvalues less than or
equal to 0. Now we know ([12] Exercise VII.1.11 and the sine θ theorem:
Theorem VII.3.1)

‖F⊥
1 F2‖ = ‖F2 − F1‖ ≤ c4 logn∆

σk(C)
∈ O(∆2/M). (3.2)

198 Probabilistic Spectral Clustering

Now we use this as follows: for any r �= s and i ∈ Tr,

|F2(A(i) − vr)| ≤ |F2(A(i) − µr)| + |F2(µr − vr)|
≤ |F1(A(i) − µr)| + O(∆2) + |vr − µr| Assumption 1

and Equation (3.2)

≤ |F1(A(i) − µs)| − Ω(∆2) Assumption 2

≤ |F2(A(i) − µs)| − Ω(∆2) using Equation (3.2)

provided |A(i) − µs| ∈ O(M)

≤ |F2(A(i) − vs)| − Ω(∆2) using Equation (3.1)

Now if |A(i) − µs| ≥ 10M , then we argue differently. First we have

|F1(A(i) − µs)|2 = |A(i) − µs|2 − |A(i) − F1(A(i))|2

≥ |A(i) − µs|2 − |A(i) − µr|2.

Thus, |F1(A(i) − µs)| ≥ 0.9|A(i) − µs|. So we have (recalling Assump-
tion (0))

|F2(A(i) − µs)| ≥ |F1(A(i) − µs)| − |A(i) − µs|∆2

M

≥ 0.8|A(i) − µs|
≥ |A(i) − µr|.

3.3 Proof of the Spectral Norm Bound

Here we prove Wigner’s theorem (Theorem 3.1) for matrices with ran-
dom ±1 entries. The proof is probabilistic, unlike the proof of the gen-
eral case for symmetric distributions. The proof has two main steps. In
the first step, we use a discretization (due to Kahn and Szemerédi) to
reduce from all unit vectors to a finite set of lattice points. The second
step is a Chernoff bound working with fixed vectors belonging to the
lattice.

Let L be the lattice
(

1
r
√

n
Z

)n
. The diagonal length of its basic

parallelepiped is diag(L) = 1/r.

3.3 Proof of the Spectral Norm Bound 199

Lemma 3.5. Any vector u ∈ Rn with ‖u‖ = 1 can be written as

u = lim
N→∞

N∑
i=0

(
1
r

)i

ui,

where

‖ui‖ ≤ 1 +
1
r
, ∀ i ≥ 0.

and ui ∈ L, ∀ i ≥ 0.

Proof. Given u ∈ Rn with ‖u‖ = 1, we pick u0 ∈ L to be its nearest
lattice point. Therefore,

‖u0‖ ≤ 1 + diag(L) = 1 +
1
r

Now (u − u0) belongs to some basic parallelepiped of L and therefore
‖u − u0‖ ≤ 1/r. Consider the finer lattice L/r = {x/r : x ∈ L}, and
pick u1/r to be the point nearest to (u − u0) in L/r. Therefore,

‖u1

r
‖ ≤ ‖u − u0‖ + diag(L/r) ≤ 1

r
+

1
r2 =⇒ ‖u1‖ ≤ 1 +

1
r

and

‖u − u0 − 1
r
u1‖ ≤ 1

r2

Continuing in this manner we pick uk/rk as the point nearest to
(
u −∑k−1

i=0 (1/r)iui

)
in the finer lattice L/rk =

{
x/rk : x ∈ L}. Therefore,

we have

‖uk

rk
‖ ≤ ‖u −

k−1∑
i=0

(
1
r

)i

ui‖ + diag(L/rk) ≤ 1
rk

+
1

rk+1

=⇒ ‖uk‖ ≤ 1 +
1
r

‖u −
k∑

i=0

(
1
r

)i

ui‖ ≤ 1
rk+1 −→ 0.

That completes the proof.

200 Probabilistic Spectral Clustering

Now using Lemma 3.5, we will show that it suffices to consider only
the lattice vectors in L ∩ B(0̄,1 + 1/r) instead of all unit vectors in
order to bound λ(A). Indeed, this bound holds for the spectral norm
of a tensor.

Proposition 3.6. For any matrix A,

λ(A) ≤
(

r

r − 1

)2 (
sup
u,v

∈ L ∩ B

(
0̄,1 +

1
r

)∣∣uT Av
∣∣) .

Proof. From Lemma 3.5, we can write any u with ‖u‖ = 1 as

u = lim
N→∞

N∑
i=0

(
1
r

)i

ui,

where ui ∈ L ∩ B(0̄,1 + 1/r), ∀ i. We similarly define vj . Since uT Av

is a continuous function, we can write

∣∣uT Av
∣∣ = lim

N→∞

∣∣∣∣∣∣
(

N∑
i=0

(
1
r

)i

ui

)T

A

∞∑
j=0

(
1
r

)j

vj

∣∣∣∣∣∣
≤
(∞∑

i=0

(
1
r

)i
)2

sup
u,v∈L∩B(0̄,1+ 1

r
)

∣∣uT Av
∣∣

≤
(

r

r − 1

)2

sup
u,v∈L∩B(0̄,1+ 1

r
)

∣∣uT Av
∣∣ ,

which proves the proposition.

We also show that the number of r vectors u ∈ L ∩ B(0̄,1 + 1/r)
that we need to consider is at most (2r)n.

Lemma 3.7. The number of lattice points in L ∩ B(0̄,1 + 1/r) is at
most (2r)n.

3.3 Proof of the Spectral Norm Bound 201

Proof. We can consider disjoint hypercubes of size 1/r
√

n centered at
each of these lattice points. Each hypercube has volume (r

√
n)−n, and

their union is contained in B(0̄,1 + 2/r). Hence,

|L ∩ B(0̄,1 + 1/r)| ≤ Vol(B(0̄,1 + 1/r))
(r

√
n)−n

≤ 2πn/2(1 + 2
r)nrnnn/2

Γ(n/2)

≤ (2r)n,

The following Chernoff bound will be used.

Exercise 3.8. Let X1,X2, . . . ,Xm be independent random variables,
X =

∑m
i=1 Xi, where each Xi is ai with probability 1/2 and −ai with

probability 1/2. Let σ2 =
∑m

i=1 a2
i . Then, for t > 0,

Pr(|X| ≥ tσ) ≤ 2e−t2/2

Now we can prove the spectral norm bound for a matrix with ran-
dom ±1 entries.

Proof. Consider fixed u,v ∈ L ∩ B(0̄,1 + 1/r). For I = (i, j), define a
two-valued random variable

XI = Aijuivj .

Thus aI = uivj , X =
∑

I XI = uT Av, and

σ2 =
∑

I

a2
I = ‖u‖2‖v‖2 ≤

(
r + 1

r

)4

.

So using t = 4
√

nσ in the Chernoff bound Equation (3.8),

Pr
(∣∣uT Av

∣∣ ≥ 4
√

n · σ
) ≤ 2e−8n.

According to Lemma 3.7, there are at most (2r)2n ways of picking
u,v ∈ L ∩ B(0̄,1 + 1/r). so we can use union bound to get

Pr

(
sup

u,v∈L∩B(0̄,1+ 1
r
)

∣∣uT Av
∣∣ ≥ 4

√
nσ

)
≤ (2r)2n(e)−8n ≤ e−5n

202 Probabilistic Spectral Clustering

for r = 2. And finally using Proposition 3.6 and the facts that for our
choice of r, σ ≤ 9/4 and (r/r − 1)2 ≤ 4, we have

Pr
(
λ(A) ≥ 36

√
n
) ≤ e−5n.

This completes the proof.

The above bound can be extended to r-dimensional tensors.

Exercise 3.9. Let A be an n × n × . . . × n r-dimensional array with
real entries. Its spectral norm λ(A) is defined as

λ(A) = sup
‖u(1)‖=‖u(2)‖=...=‖u(r)‖=1

∣∣∣A(u(1),u(2), . . . ,u(r)
)∣∣∣ ,

where A
(
u(1),u(2), . . . ,u(r)

)
=
∑

i1,i2,...,ir
A(i1,i2,...,ir) u

(1)
i1

u
(2)
i2

· · ·u(r)
ir

.
Suppose each entry of A is 1 or −1 with equal probability. Show that
whp,

λ(A) = O(
√

nr logr). (3.3)

3.4 Discussion

The bounds on eigenvalues of symmetric random matrices, formulated
by Wigner, were proved by Füredi and Komlos [45] and tightened by
Vu [66]. Unlike the concentration based proof given here, these papers
use combinatorial methods and derive sharper bounds. Spectral meth-
ods were used for planted problems by Boppana [13] and Alon et al. [5].
Subsequently, McSherry gave a simpler algorithm for finding planted
partitions [57]. Spectral projection was also used in random models of
information retrieval by Papadimitriou et al. [59] and extended by Azar
et al. [10].

A body of work that we have not covered here deals with limited
independence, i.e., only the rows are i.i.d. but the entries of a row could
be correlated. Dasgupta et al. [20] give bounds for spectral norms of
such matrices based on the functional analysis work of Rudelson [60]
and Lust-Piquard [56]. It is an open problem to give a simple, optimal
clean-up algorithm for probabilistic spectral clustering.

4
Recursive Spectral Clustering

In this chapter, we study a spectral algorithm for partitioning a graph.
The key algorithmic ingredient is a procedure to find an approximately
minimum conductance cut. This cutting procedure is used recursively
to obtain a clustering algorithm. The analysis is based on a natural
bicriteria measure for assessing the quality of a clustering and makes
no probabilistic assumptions on the input data. We begin with an
important definition. Given a graph G = (V,E), with non-negative edge
weights aij , for a subset of vertices S, we let a(S) denote the total weight
of edges incident to vertices in S. Then the conductance of a subset S is

φ(S) =

∑
i∈S,j �∈S aij

min{a(S),a(V \ S)} ,

and the conductance of the graph is

φ = min
S⊂V

φ(S).

4.1 Approximate Minimum Conductance Cut

The following simple algorithm takes a weighted graph (or weighted
adjacency matrix) as input and outputs a cut of the graph.

203

204 Recursive Spectral Clustering

Algorithm: Approximate-Cut

1. Normalize the adjacency matrix so each row sum

is 1.
2. Find the second largest eigenvector of this

matrix.

3. Order the vertices according to their components

in this vector.

4. Find the minimum conductance cut among cuts

given by this ordering.

The following theorem bounds the conductance of the cut found by
this heuristic with respect to the minimum conductance. This theorem
plays an important role in the analysis of Markov chains, where conduc-
tance is often easier to estimate than the desired quantity, the spectral
gap. The latter determines the mixing rate of the Markov chain. Later
in this chapter, we will use this cutting procedure as a tool to find a
clustering.

Theorem 4.1. Suppose B is an N × N matrix with non-negative
entries with each row sum equal to 1 and suppose there are positive
real numbers π1,π2, . . .πN summing to 1 such that πibij = πjbji for
all i, j. If v is the right eigenvector of B corresponding to the second
largest eigenvalue λ2, and i1, i2, . . . iN is an ordering of 1,2, . . .N so that
vi1 ≥ vi2 . . . ≥ viN , then

min
S⊆{1,2,...N}

∑
i∈S,j /∈S

πibij

min
(∑

i∈S

πi,
∑
j /∈S

πj

)

≥ 1 − λ2 ≥ 1
2


 min

l,1≤l≤N

∑
1≤u≤l;l+1≤v≤N

πiubiuiv

min
(∑

1≤u≤l

πiu ,
∑

l+1≤v≤N

πiv

)



2

4.1 Approximate Minimum Conductance Cut 205

We note here that the leftmost term above is just the conductance
of the graph with weights bij , while the rightmost term is the square
of the minimum conductance of cuts along the ordering given by the
second eigenvector of the of the normalized adjacency matrix. Since the
latter is trivially at least as large as the square of the overall minimum
conductance, we get

min conductance ≥ 1 − λ2 ≥ 1
2

(min conductance)2 .

Proof (of Theorem 4.1). We first evaluate the second eigenvalue.
Toward this end, let D2 = diag(π). Then, from the time-reversibility
property of B, we have D2B = BT D2. Hence Q = DBD−1 is symmet-
ric. The eigenvalues of B and Q are the same, with their largest eigen-
value equal to 1. In addition, πT D−1Q = πT D−1 and therefore πT D−1

is the left eigenvector of Q corresponding to the eigenvalue 1. So we
have,

λ2 = max
πT D−1x=0

xT DBD−1x

xT x

Thus, substituting y = D−1x, we obtain

1 − λ2 = min
πT D−1x=0

xT D(I − B)D−1x

xT x
= min

πT y=0

yT D2(I − B)y
yT D2y

The numerator can be rewritten as

yT D2(I − B)y = −
∑
i�=j

yiyjπibij +
∑

i

πi(1 − bii)y2
i

= −
∑
i�=j

yiyjπibij +
∑
i�=j

πibij

y2
i + y2

j

2

=
∑
i<j

πibij(yi − yj)2

Denote this final term by E(y,y). Then

1 − λ2 = min
πT y=0

E(y,y)∑
i πiy2

i

206 Recursive Spectral Clustering

To prove the first inequality of the theorem, let (S,S̄) be the cut with
the minimum conductance. Define a vector w as follows

wi =



√

1∑
u a(u)

π(S̄)
π(S) if i ∈ S

−
√

1∑
u a(u)

π(S)
π(S̄) if i ∈ S̄

It is then easy to check that
∑

i πiwi = 0 and that

φ(S) ≥ E(w,w)∑
i πiw2

i

≥ 1 − λ2

Hence we obtain the desired lower bound on the conductance.
We will now prove the second inequality. Suppose that the minimum

above is attained when y is equal to v. Then Dv is the eigenvector of
Q corresponding to the eigenvalue λ2 and v is the right eigenvector of
B corresponding to λ2. Our ordering is then with respect to v in accor-
dance with the statement of the theorem. Assume that, for simplicity
of notation, the indices are reordered (i.e., the rows and corresponding
columns of B and D are reordered) so that

v1 ≥ v2 ≥ ·· · ≥ vN .

Now define r to satisfy

π1 + π2 + · · · + πr−1 ≤ 1
2

< π1 + π2 + · · · + πr,

and let zi = vi − vr for i = 1, . . . ,n. Then

z1 ≥ z2 ≥ ·· · ≥ zr = 0 ≥ zr+1 ≥ ·· · ≥ zn,

and
E(v,v)∑

i πiv2
i

=
E(z,z)

−v2
r +
∑

i πiz2
i

≥ E(z,z)∑
i πiz2

i

=

(∑
i<j

πibij(zi − zj)2
)(∑

i<j
πibij(|zi| + |zj |)2

)
(∑

i
πiz2

i

)(∑
i<j

πibij(|zi| + |zj |)2
)

4.1 Approximate Minimum Conductance Cut 207

Consider the numerator of this final term. By Cauchy–Schwartz(∑
i<j

πibij(zi − zj)2
)(∑

i<j

πibij(|zi| + |zj |)2
)

≥
(∑

i<j

πibij |zi − zj |(|zi| + |zj |)
)2

≥
(∑

i<j

πibij

j−1∑
k=i

|z2
k+1 − z2

k|
)2

(4.1)

Here the second inequality follows from the fact that if i < j then

|zi − zj |(|zi| + |zj |) ≥
j−1∑
k=i

|z2
k+1 − z2

k|.

This follows from the following observations:

a. If zi and zj have the same sign (i.e., r �∈ {i, i + 1, . . . , j}) then

|zi − zj |(|zi| + |zj |) = |z2
i − z2

j |.
b. Otherwise, if zi and zj have different signs then

|zi − zj |(|zi| + |zj |) = (|zi| + |zj |)2 > z2
i + z2

j .

Also, ∑
i<j

πibij(|zi| + |zj |)2 ≤ 2
∑
i<j

πibij(z2
i + z2

j) ≤ 2
∑

i

πiz
2
i

As a result we have,

E(v,v)∑
i πiv2

i

≥

(∑
i<j

πibij(zi − zj)2
)(∑

i<j
πibij(|zi| + |zj |)2

)
(∑

i
πiz2

i

)(∑
i<j

πibij(|zi| + |zj |)2
)

≥
(∑

i<j πibij
∑j−1

k=i |z2
k+1 − z2

k|
)2

2
(∑

i πiz2
i

)2

208 Recursive Spectral Clustering

Set Sk = {1,2, . . . ,k}, Ck = {(i, j) : i ≤ k < j} and

α̂ = min
k,1≤k≤N

∑
(i,j)∈Ck

πibij

min
(∑

i:i≤k

πi,
∑

i:i>k

πi

)

Since zr = 0, we obtain

∑
i<j

πibij

j−1∑
k=i

|z2
k+1 − z2

k|

=
N−1∑
k=1

|z2
k+1 − z2

k|
∑

(i,j)∈Ck

πibij

≥ α̂

(
r−1∑
k=1

(z2
k − z2

k+1)π(Sk) +
N−1∑
k=r

(z2
k+1 − z2

k)(1 − π(Sk))

)

= α̂

(
N−1∑
k=1

(z2
k − z2

k+1)π(Sk) + (z2
N − z2

r)

)

= α̂

N∑
k=1

πkz
2
k.

Consequently, if πT y = 0 then

1 − λ2 =
E(v,v)∑

i πiv2
i

≥ α̂2

2
.

4.2 Two Criteria to Measure the Quality of a Clustering

The measure of the quality of a clustering we will use here is based
on expansion-like properties of the underlying pairwise similarity
graph. The quality of a clustering is given by two parameters: α, the
minimum conductance of the clusters, and ε, the ratio of the weight of
inter-cluster edges to the total weight of all edges. Roughly speaking, a
good clustering achieves high α and low ε. Note that the conductance
provides a measure of the quality of an individual cluster (and thus
of the overall clustering) while the weight of the inter-cluster edges
provides a measure of the cost of the clustering. Hence, imposing a

4.3 Approximation Algorithms 209

lower bound, α, on the quality of each individual cluster we seek to
minimize the cost, ε, of the clustering; or conversely, imposing an
upper bound on the cost of the clustering we strive to maximize its
quality. For a detailed motivation of this bicriteria measure we refer
the reader to the introduction of [52].

Definition 4.1. We call a partition {C1,C2, . . . ,Cl} of V an (α,ε)-
clustering if:
1. The conductance of each Ci is at least α.
2. The total weight of inter-cluster edges is at most an ε fraction of the
total edge weight.

Associated with this bicriteria measure is the following optimiza-
tion problem: (P1) Given α, find an (α,ε)-clustering that minimizes ε

(alternatively, we have (P2) Given ε, find an (α,ε)-clustering that max-
imizes α). We note that the number of clusters is not restricted.

4.3 Approximation Algorithms

Problem (P1) is NP-hard. To see this, consider maximizing α with ε

set to zero. This problem is equivalent to finding the conductance of a
given graph which is well-known to be NP-hard [46]. We consider the
following heuristic approach.

Algorithm: Recursive-Cluster

1. Find a cut that approximates the minimum

conductance cut in G.

2. If the conductance of the cut obtained is below a

preset threshold, recurse on the pieces induced

by the cut.

The idea behind our algorithm is simple. Given G, find a cut (S,S̄)
of minimum conductance. Then recurse on the subgraphs induced by
S and S̄. Finding a cut of minimum conductance is hard, and hence we
need to use an approximately minimum cut. There are two well-known

210 Recursive Spectral Clustering

approximations for the minimum conductance cut, one is based on a
semidefinite programming relaxation (and precurson on a linear pro-
gramming relaxation) and the other is derived from the second eigen-
vector of the graph. Before we discuss these approximations, we present
a general theorem that captures both for the purpose of analyzing the
clustering heuristic.

Let A be an approximation algorithm that produces a cut of con-
ductance at most Kxν if the minimum conductance is x, where K is
independent of x (K could be a function of n, for example) and ν is a
fixed constant between 0 and 1. The following theorem provides a guar-
antee for the approximate-cluster algorithm using A as a subroutine.

Theorem 4.2. If G has an (α,ε)-clustering, then the recursive-cluster
algorithm, using approximation algorithm A as a subroutine, will find
a clustering of quality((

α

6K log n
ε

)1/ν

, (12K + 2)εν log
n

ε

)
.

Proof. Let the cuts produced by the algorithm be (S1,T1),(S2,T2), . . .,
where we adopt the convention that Sj is the “smaller” side (i.e.,
a(Sj) ≤ a(Tj)). Let C1,C2, . . .Cl be an (α,ε)-clustering. We use the ter-
mination condition of α∗ = α

6logn/ε . We will assume that we apply the
recursive step in the algorithm only if the conductance of a given piece
as detected by the heuristic for the minimum conductance cut is less
than α∗. In addition, purely for the sake of analysis we consider a
slightly modified algorithm. If at any point we have a cluster Ct with
the property that a(Ct) < ε

na(V) then we split Ct into singletons. The
conductance of singletons is defined to be 1. Then, upon termination,
each cluster has conductance at least(

α∗

K

)1/ν

=
(

α

6K log n
ε

)1/ν

.

Thus it remains to bound the weight of the inter-cluster edges. Observe
that a(V) is twice the total edge weight in the graph, and so W = ε

2 a(V)
is the weight of the inter-cluster edges in this optimal solution.

4.3 Approximation Algorithms 211

Now we divide the cuts into two groups. The first group, H, consists
of cuts with “high” conductance within clusters. The second group
consists of the remaining cuts. We will use the notation w(Sj ,Tj) =∑

u∈Sj ,v∈Tj
auv. In addition, we denote by wI(Sj ,Tj) the sum of the

weights of the intra-cluster edges of the cut (Sj ,Tj), i.e., wI(Sj ,Tj) =∑l
i=1 w(Sj ∩ Ci,Tj ∩ Ci). We then set

H =
{

j : wI(Sj ,Tj) ≥ 2α∗
l∑

i=1

min(a(Sj ∩ Ci),a(Tj ∩ Ci))
}

We now bound the cost of the high-conductance group. For all j ∈ H,
we have,

α∗a(Sj) ≥ w(Sj ,Tj) ≥ wI(Sj ,Tj) ≥ 2α∗∑
i

min(a(Sj ∩ Ci),a(Tj ∩ Ci))

Consequently we observe that∑
i

min(a(Sj ∩ Ci),a(Tj ∩ Ci)) ≤ 1
2
a(Sj)

From the algorithm’s cuts, {(Sj ,Tj)}, and the optimal clustering, {Ci},
we define a new clustering via a set of cuts {(S′

j ,T
′
j)} as follows. For each

j ∈ H, we define a cluster-avoiding cut (S′
j ,T

′
j) in Sj ∪ Tj in the follow-

ing manner. For each i,1 ≤ i ≤ l, if a(Sj ∩ Ci) ≥ a(Tj ∩ Ci), then place
all of (Sj ∪ Tj) ∩ Ci into S′

j . If a(Sj ∩ Ci) < a(Tj ∩ Ci), then place all
of (Sj ∪ Tj) ∩ Ci into T ′

j .
Notice that, since |a(Sj) − a(S′

j)| ≤ 1
2a(Sj), we have that

min(a(S′
j),a(T ′

j)) ≥ 1
2a(Sj). Now we will use the approximation guar-

antee for the cut procedure to get an upper bound on w(Sj ,Tj) in terms
of w(S′

j ,T
′
j).

w(Sj ,Tj)
a(Sj)

≤ K

(
w(S′

j ,T
′
j)

min{a(S′
j),a(T ′

j)}

)ν

≤ K

(2w(S′
j ,T

′
j)

a(Sj)

)ν

Hence we have bounded the overall cost of the high-conductance cuts
with respect to the cost of the cluster-avoiding cuts. We now bound
the cost of these cluster-avoiding cuts. Let P (S) denote the set of

212 Recursive Spectral Clustering

inter-cluster edges incident at a vertex in S, for any subset S of V .
Also, for a set of edges F , let w(F) denote the sum of their weights.
Then, w(S′

j ,T
′
j) ≤ w(P (S′

j)), since every edge in (S′
j ,T

′
j) is an inter-

cluster edge. So we have,

w(Sj ,Tj) ≤ K
(
2w(P (S′

j))
)ν

a(Sj)1−ν (4.2)

Next we prove the following claim.
Claim 1. For each vertex u ∈ V , there are at most log n

ε values of j

such that u belongs to Sj . Further, there are at most 2log n
ε values of

j such that u belongs to S′
j .

To prove the claim, fix a vertex u ∈ V . Let

Iu = {j : u ∈ Sj} Ju = {j : u ∈ S′
j \ Sj}

Clearly if u ∈ Sj ∩ Sk (with k > j), then (Sk,Tk) must be a partition of
Sj or a subset of Sj . Now we have, a(Sk) ≤ 1

2a(Sk ∪ Tk) ≤ 1
2a(Sj). So

a(Sj) reduces by a factor of 2 or greater between two successive times u

belongs to Sj . The maximum value of a(Sj) is at most a(V) and the
minimum value is at least ε

na(V), so the first statement of the claim
follows.

Now suppose j,k ∈ Ju;j <k. Suppose also u ∈ Ci. Then u ∈ Tj ∩ Ci.
Also, later, Tj (or a subset of Tj) is partitioned into (Sk,Tk) and,
since u ∈ S′

k \ Sk, we have a(Tk ∩ Ci) ≤ a(Sk ∩ Ci). Thus a(Tk ∩ Ci) ≤
1
2a(Sk ∪ Tk) ≤ 1

2a(Tj ∩ Ci). Thus a(Tj ∩ Ci) halves between two suc-
cessive times that j ∈ Ju. So, |Ju| ≤ log n

ε . This proves the second state-
ment in the claim (since u ∈ S′

j implies that u ∈ Sj or u ∈ S′
j \ Sj).

Using this claim, we can bound the overall cost of the group of cuts
with high conductance within clusters with respect to the cost of the
optimal clustering as follows:∑

j∈H

w(Sj ,Tj) ≤
∑
all j

K
(
2w(P (S′

j))
)ν

a(Sj)1−ν

≤ K

(
2
∑
all j

w(P (S′
j))

)ν(∑
j

a(Sj)

)1−ν

≤ K
(
2ε log

n

ε
a(V)

)ν (
2log

n

ε
a(V)

)1−ν

≤ 2Kεν log
n

ε
a(V) (4.3)

4.3 Approximation Algorithms 213

Here we used Hölder’s inequality: for real sequences a1, . . . ,an and
b1, . . . , bn, and any p,q ≥ 1 with (1/p) + (1/q) = 1, we have

n∑
i=1

aibi ≤
(

n∑
i=1

ap
i

) 1
p
(

n∑
i=1

bq
i

) 1
q

.

Next we deal with the group of cuts with low conductance within
clusters, i.e., those j not in H. First, suppose that all the cuts together
induce a partition of Ci into P i

1,P
i
2, . . .P

i
ri

. Every edge between two
vertices in Ci which belongs to different sets of the partition must
be cut by some cut (Sj ,Tj) and, conversely, every edge of every cut
(Sj ∩ Ci,Tj ∩ Ci) must have its two endpoints in different sets of the
partition. So, given that Ci has conductance α, we obtain

∑
all j

wI(Sj ∩ Ci,Tj ∩ Ci) =
1
2

ri∑
s=1

w(P i
s ,Ci \ P i

s)

≥ 1
2
α
∑

s

min(a(P i
s),a(Ci \ P i

s))

For each vertex u ∈ Ci there can be at most log n
ε values of j such that u

belongs to the smaller (according to a(·)) of the two sets Sj ∩ Ci and
Tj ∩ Ci. So, we have that

ri∑
s=1

min(a(P i
s),a(Ci \ P i

s)) ≥ 1
log n

ε

∑
j

min(a(Sj ∩ Ci),a(Tj ∩ Ci))

Thus,

∑
all j

wI(Sj ,Tj) ≥ α

2log n
ε

l∑
i=1

∑
j

min(a(Sj ∩ Ci),a(Tj ∩ Ci))

Therefore, from the definition of H, we have

∑
j /∈H

wI(Sj ,Tj) ≤ 2α∗∑
all j

l∑
i=1

min(a(Sj ∩ Ci),a(Tj ∩ Ci))

≤ 2
3

∑
all j

wI(Sj ,Tj)

214 Recursive Spectral Clustering

Thus, we are able to bound the intra-cluster cost of the low-conductance
group of cuts in terms of the intra-cluster cost of the high-conductance
group. Applying Equation (4.3) then gives∑

j /∈H

wI(Sj ,Tj) ≤ 2
∑
j∈H

wI(Sj ,Tj) ≤ 4Kεν log
n

ε
a(V) (4.4)

In addition, since each inter-cluster edge belongs to at most one cut
Sj ,Tj , we have that∑

j /∈H

(w(Sj ,Tj) − wI(Sj ,Tj)) ≤ ε

2
a(V) (4.5)

We then sum up Equations (4.3)–(4.5). To get the total cost we
note that splitting up all the Vt with a(Vt) ≤ ε

na(V) into singletons
costs us at most ε

2 a(V) on the whole. Substituting a(V) as twice the
total sum of edge weights gives the bound on the cost of inter-cluster
edge weights. This completes the proof of Theorem 4.2.

The Leighton–Rao algorithm for approximating the conductance
finds a cut of conductance at most 2logn times the minimum [54]. In
our terminology, it is an approximation algorithm with K = 2logn and
ν = 1. Applying Theorem 4.2 leads to the following guarantee.

Corollary 4.3. If the input has an (α,ε)-clustering, then, using the
Leighton–Rao method for approximating cuts, the recursive-cluster
algorithm finds an(

α

12logn log n
ε

,26ε logn log
n

ε

)
-clustering.

We now assess the running time of the algorithm using this heuris-
tic. The fastest implementation for this heuristic runs in Õ(n2) time
(where the Õ notation suppresses factors of logn). Since the algorithm
makes less than n cuts, the total running time is Õ(n3). This might be
slow for some real-world applications. We discuss a potentially more
practical algorithm in the next section. We conclude this section with
the guarantee obtained using Arora et al.’s improved approximation [8]
of O(

√
logn).

4.4 Worst-Case Guarantees for Spectral Clustering 215

Corollary 4.4. If the input to the recursive-cluster algorithm has an
(α,ε)-clustering, then using the ARV method for approximating cuts,
the algorithm finds an(

α

C
√

logn log n
ε

,Cε
√

logn log
n

ε

)
-clustering.

where C is a fixed constant.

4.4 Worst-Case Guarantees for Spectral Clustering

In this section, we describe and analyze a recursive variant of the spec-
tral algorithm. This algorithm, outlined below, has been used in com-
puter vision, medical informatics, Web search, spam detection, etc. We
note that the algorithm is a special case of the recursive-cluster algo-
rithm described in the previous section; here we use a spectral heuristic
to approximate the minimum conductance cut. We assume the input
is a weighted adjacency matrix A.

Algorithm: Recursive-Spectral

1. Normalize A to have unit row sums and find its

second right eigenvector v.

2. Find the best ratio cut along the ordering given

by v.

3. If the value of the cut is below a chosen

threshold, then recurse on the pieces induced

by the cut.

Thus, we find a clustering by repeatedly solving a one-dimensional
clustering problem. Since the latter is easy to solve, the algorithm is
efficient. The fact that it also has worst-case quality guarantees is less
obvious.

We now elaborate upon the basic description of this variant of the
spectral algorithm. Initially, we normalize our matrix A by scaling the
rows so that the row sums are all equal to one. At any later stage

216 Recursive Spectral Clustering

in the algorithm we have a partition {C1,C2, . . . ,Cs}. For each Ct, we
consider the |Ct| × |Ct| submatrix B of A restricted to Ct. We normalize
B by setting bii to 1 −∑j∈Ct,j �=i bij . As a result, B is also non-negative
with row sums equal to one.

Observe that upon normalization of the matrix, our conductance
measure corresponds to the familiar Markov Chain conductance mea-
sure, i.e.,

φ(S) =

∑
i∈S,j �∈S aij

min(a(S),a(S̄))
=

∑
i∈S,j �∈S πibij

min(π(S),π(S̄))

where π is the stationary distribution of the Markov Chain.
We then find the second eigenvector of B. This is the right eigenvec-

tor v corresponding to the second largest eigenvalue λ2, i.e., Bv = λ2v.
Then order the elements (rows) of Ct decreasingly with respect to their
component in the direction of v. Given this ordering, say {u1,u2, . . .ur},
find the minimum ratio cut in Ct. This is the cut that minimizes
φ({u1,u2, . . .uj},Ct) for some j, 1 ≤ j ≤ r − 1. We then recurse on the
pieces {u1, . . . ,uj} and Ct \ {u1, . . . ,uj}.

We combine Theorem 4.1 with Theorem 4.2 to get a worst-case
guarantee for Algorithm Recursive-Spectral. In the terminology of
Theorem 4.2, Theorem 4.1 says that the spectral heuristic for mini-
mum conductance is an approximation algorithm with K =

√
2 and

ν = 1/2.

Corollary 4.5. If the input has an (α,ε)-clustering, then, using the
spectral heuristic, the approximate-cluster algorithm finds an(

α2

72log2 n
ε

,20
√

ε log
n

ε

)
-clustering.

4.5 Discussion

This chapter is based on Kannan et al. [52] and earlier work by Sinclair
and Jerrum [62]. Theorem 4.1 was essentially proved by Sinclair and
Jerrum (in their proof of Lemma 3.3 in [62], although not mentioned in

4.5 Discussion 217

the statement of the lemma). Cheng et al. [19] give an efficient imple-
mentation of recursive-spectral that maintains sparsity, and has been
used effectively on large data sets from diverse applications.

Spectral partitioning has also been shown to have good guarantees
for some special classes of graphs. Notably, Spielman and Teng [63]
proved that a variant of spectral partitioning produces small separators
for bounded-degree planar graphs, which often come up in practical
applications of spectral cuts. The key contribution of their work was
an upper bound on the second smallest eigenvalue of the Laplacian of
a planar graph. This work was subsequently generalized to graphs of
bounded genus [53].

5
Optimization via Low-Rank Approximation

In this chapter, we study Boolean constraint satisfaction problems
(CSPs) with r variables per constraint. The general problem is weighted
MAX-rCSP: given an rCSP with a weight for each constraint, find a
Boolean assignment that maximizes the total weight of satisfied con-
straints. This captures numerous interesting special cases, including
problems on graphs such as max-cut. We study an approach based
on low-rank tensor approximation, i.e., approximating a tensor (multi-
dimensional array) by the sum of a small number of rank-1 ten-
sors. An algorithm for efficiently approximating a tensor by a small
number of rank-1 tensors is given in Section 8. Here we apply it
to the max-rCSP problem and obtain a polynomial-time approxima-
tion scheme under a fairly general condition (capturing all known
cases).

A MAX-rCSP problem can be formulated as a problem of maxi-
mizing a homogenous degree r polynomial in the variables x1,x2, . . .xn,

(1 − x1),(1 − x2), . . .(1 − xn) (see, e.g., [4].) Let

S = {y = (x1, . . .xn,(1 − x1), . . .(1 − xn)) : xi ∈ {0,1}}

218

219

be the solution set. Then the problem is

MAXy∈S

2n∑
i1,i2,...ir=1

Ai1,i2,...iryi1yi2 . . .yir ,

where A is a given non-negative symmetric r-dimensional array, i.e.,

Ai1,i2,...ir = Aiσ(1),iσ(2),...iσ(r)

for any permutation σ. The entries of the r-dimensional array A can
be viewed as the weights of an r-uniform hypergraph on 2n vertices.
Throughout, we assume that r is fixed.

Our main tool to solve this problem is a generalization of low-rank
matrix approximation. A rank-1 tensor is the outer product of r vectors
x(1), . . .x(r−1),x(r), given by the r-dimensional array whose (i1, . . . ir)’th
entry is x

(1)
i1

x
(2)
i2

, . . .x
(r)
ir

; it is denoted x(1) ⊗ x(2) ⊗ . . .x(r).
In Section 8, it is shown that

1. For any r-dimensional array A, there exists a good approx-
imation by the sum of a small number of rank-1 tensors
(Lemma 8.1).

2. We can algorithmically find such an approximation (Theo-
rem 8.2).

In the case of matrices, traditional Linear Algebra algorithms
find good approximations. Indeed, we can find the best approxi-
mations under both the Frobenius and L2 norms using the Singu-
lar Value Decomposition. Unfortunately, there is no such theory for
r-dimensional arrays when r ≥ 2. Nevertheless, the sampling-based
algorithm from Section 8 will serve our purpose.

We conclude this section by defining two norms of interest for ten-
sors, the Frobenius norm and the 2-norm, generalizing the correspond-
ing norms for matrices.

‖A‖F =
(∑

A2
i1,i2,...ir

) 1
2

‖A‖2 = max
x(1),x(2),...x(r)

A(x(1),x(2), . . .x(r−1),x(r))
|x(1)||x(2)|

220 Optimization via Low-Rank Approximation

5.1 A Density Condition

We begin with a density condition on tensors. We will see later that
if a MAX-rCSP viewed as a weighted r-uniform hypergraph satisfies
this condition, then there is a PTAS for the problem. This condition
provides a unified framework for a large class of weighted MAX-rCSPs.

Define the node weights D1, . . . ,D2n of A and their average as

Di =
∑

i2,i3,...ir∈V

Ai,i2,...ir D̄ =
1
2n

n∑
i=1

Di.

Note that when r = 2 and A is the adjacency matrix of a graph, the
Di are the degrees of the vertices and D̄ is the average degree.

Definition 5.1. The core-strength of a weighted r-uniform hypergraph
given by an r-dimensional tensor A is(

2n∑
i=1

Di

)r−2 ∑
i1,i2,...,ir

A2
i1,...,ir∏r

j=1(Dij + D̄)

We say that a class of weighted hypergraphs (MAX-rCSPs) is core-
dense if the core-strength is O(1) (i.e., independent of A,n).

To motivate the definition, first suppose the class consists of
unweighted hypergraphs. Then if a hypergraph in the class has E

as the edge set with |E| = m edges, the condition says that (for any
constant r),

mr−2
∑

(i1,...,ir)∈E

1∏r
j=1(Dij + D̄)

= O(1). (5.1)

Note that here the Dis are the degrees of the hypergraph vertices in the
usual sense of the number of edges incident to the vertex. It is easy to
see this condition is satisfied for dense hypergraphs, i.e., for r-uniform
hypergraphs with Ω(nr) edges, because in this case, D̄ ∈ Ω(nr−1). The
dense case was the first major milestone of progress on this problem.

The condition can be specialized to the case r = 2, where it says
that

∑
i,j

A2
ij

(Di + D̄)(Dj + D̄)
= O(1). (5.2)

5.1 A Density Condition 221

We will show that all metrics satisfy this condition. Also, so do quasi-
metrics. These are weights that satisfy the triangle inequality up to a
constant factor (e.g., powers of a metric). So a special case of the main
theorem is a PTAS for metrics and quasi-metrics. The main result of
this chapter is the following.

Theorem 5.1. There is a PTAS for any core-dense weighted MAX-
rCSP.

The algorithm and proof are given in Section 5.3. We will also show
(in Section 5.4) that a generalization of the notion of metric for higher
r also satisfies our core-dense condition.

Theorem 5.2. Suppose for a MAX-rCSP, the tensor A satisfies the
following local density condition:

∀ i1, . . . , ir, Ai1,...,ir ≤ c

nr−1

r∑
j=1

Dij

where c is a constant. Then there is a PTAS for the MAX-rCSP defined
by A.

The condition in the theorem says that no entry of A is “wild” in
that it is at most a constant times the average entry in the r “planes”
passing through the entry. The reason for calling such tensors “metric
tensors” will become clear when we see in Section 5.4 that for r = 2,
metrics do indeed satisfy this condition. When the matrix A is the
adjacency matrix of a graph, then the condition says that for any edge,
one of its end points must have degree Ω(n). This is like the “everywhere
dense” condition in [7]. Theorem 5.2 has the following corollary for
“quasi-metrics”, where the triangle inequality is only satisfied within
constant factors - Aik ≤ c(Aij + Ajk).

Corollary 5.3. There exists a PTAS for metric and quasimetric
instances of MAX-CSP.

222 Optimization via Low-Rank Approximation

5.2 The Matrix Case: MAX-2CSP

In this section, we prove Theorem 5.1 in the case r = 2. This case
already contains the idea of scaling which we will use for the case of
higher r. However, this case does not need new algorithms for finding
low-rank approximations as they are already available from classical
linear algebra.

Recall that we want to find

MAXy∈SAijyiyj = yT Ay,

where

S = {y = (x1,x2, . . .xn,(1 − x1),(1 − x2), . . .(1 − xn)),xi ∈ {0,1}}
is the solution set. We will describe in this section an algorithm to solve
this problem to within additive error O(εnD̄), under the assumption
that that the core-strength of A is at most a constant c. The algorithm
will run in time polynomial in n for each fixed ε > 0. Note that

MAXy∈SyT Ay ≥ E (yT Ay) =
1
2
nD̄,

where E denotes expectation over uniform random choice of x ∈
{0,1}n. Thus, this will prove Theorem 5.1 for this case (of r = 2).

In the algorithm below for MAX-2CSP, we assume the input is a
matrix A whose entries denote the weights of the terms in the CSP
instance.

Algorithm: Approximate MAX-2CSP

1. Scale the input matrix A as follows:

B = D−1AD−1

where D is the diagonal matrix with Dii =√
Di + D̄.

2. Find a low-rank approximation B̂ to B such that

‖B − B̂‖2 ≤ ε

2
‖B‖F

and rank of B̂ is O(1/ε2).
3. Set Â = DB̂D.

4. Solve maxy∈S yT Ây approximately.

5.2 The Matrix Case: MAX-2CSP 223

The last step above will be expanded presently. We note here that
it is a low-dimensional problem since Â is a low-rank matrix.

In the first step, the algorithm scales the matrix A. A related scaling,

Bij =
Aij√

Di

√
Dj

is natural and has been used in other contexts (for example when A

is the transition matrix of a Markov chain). This scaling unfortunately
scales up “small degree” nodes too much for our purpose and so we
use a modified scaling. We will see that while the addition of D̄ does
not increase the error in the approximation algorithms, it helps by
modulating the scaling up of low degree nodes. From the definition of
core-strength, we get the next claim.

Claim 5.4. ‖B‖2
F is the core-strength of the matrix A.

The second step is performed using the SVD of the matrix B in
polynomial-time. In fact, as shown in [43], such a matrix B̂ can be
computed in linear in n time with error at most twice as large.

After the third step, the rank of Â equals the rank of B̂. In the last
step, we solve the following problem approximately to within additive
error O(εnD̄):

max
y∈S

yT Ây (5.3)

We will see how to do this approximate optimization presently.
First, we analyze the error caused by replacing A by Â.

MAXy∈S|yT (A − Â)y| = MAXy∈S|yT D(B − B̂)Dy|
≤ MAXy∈S|Dy|2‖B − B̂‖2

≤ ε
∑

i

(Di + D̄)‖B‖F

≤ 4εnD̄(core-strength of A)1/2,

the last because of Claim 5.4 and the fact that
∑

i Di = 2nD̄.
Now for solving the non-linear optimization Problem (5.3), we pro-

ceed as follows: suppose the SVD of B̂ expressed B̂ as UΣV , where the

224 Optimization via Low-Rank Approximation

U is an 2n × l matrix with orthonormal columns, Σ is a l × l diagonal
matrix with the singular values of B̂ and V is a l × 2n matrix with
orthonormal rows. We write

yT Ây = (yT DU)Σ(V Dy) = uT Σv

where, uT = yT DU and v = V Dy

are two l- vectors. This implies that there are really only 2l “variables”–
ui,vi in the problem (and not the n variables–y1,y2, . . .yn). This is the
idea we will exploit. Note that for y ∈ S, we have (since U,V have
orthonormal columns, rows, respectively)

|u|2 ≤ |yT D|2 ≤
∑

i

(Di + D̄) ≤ 4nD̄.

Similarly, |v|2 ≤ 4nD̄. So letting

α =
√

nD̄,

we see that the vectors u,v live in the rectangle

R = {(u,v) : −2α ≤ ui,vj ≤ +2α}.

Also, the gradient of the function uT Σv with respect to u is Σv and with
respect to v is uT Σ; in either case, the length of the gradient vector is
at most 2ασ1(B̂) ≤ 2α

√
c. We now divide up R into small cubes; each

small cube will have side

η =
εα

20
√

l
,

and so there will be ε−O(l) small cubes. The function uT Σv does not
vary by more than εnD̄

√
c/10 over any small cube. Thus we can solve

Equation (5.3) by just enumerating all the small cubes in R and for
each determining whether it is feasible (i.e., whether there exists a
0–1 vector x such that for some (u,v) in this small cube, we have
uT = yT Du,v = V Dy, for y = (x,1 − x)).

For each small cube C in R, this is easily formulated as an integer
program in the n 0,1 variables x1,x2, . . .xn with 4l constraints (arising
from the upper and lower bounds on the coordinates of u,v which
ensure that (u,v) is in the small cube.)

5.3 MAX-rCSPs 225

For a technical reason, we have to define a Di to be “exceptional”
if Di ≥ ε6nD̄/106; also call an i exceptional if either Di or Di+n is
exceptional. Clearly, the number of exceptional Di is at most 2 × 106/ε6

and we can easily identify them. We enumerate all possible sets of
2O(1/ε6) 0,1 values of the exceptional xi and for each of these set of
values, we have an Integer Program again, but now only on the non-
exceptional variables.

We consider the Linear Programming (LP) relaxation of each of
these Integer Programs obtained by relaxing xi ∈ {0,1} to 0 ≤ xi ≤ 1.
If one of these LPs has a feasible solution, then, it has a basic feasi-
ble solution with at most 4l fractional variables, Rounding all these
fractional variables to 0 changes Dy by a vector of length at most√

4lε6nD̄/106 ≤ η.

Thus, the rounded integer vector y gives us a (u,v) in the small cube
C enlarged (about its center) by a factor of 2 (which we call 2C).
Conversely, if none of these LPs has a feasible solution, then clearly
neither do the corresponding Integer Programs and so the small cube
C is infeasible. Thus, for each small cube C, we find (i) either C is
infeasible or (ii) 2C is feasible. Note that uT Σv varies by at most εnD̄/5
over 2C. So, it is clear that returning the maximum value of uT Σv over
all centers of small cubes for which (ii) holds suffices.

We could have carried this out with any “scaling”. The current
choice turns out to be useful for the two important special cases here.
Note that we are able to add the D̄ almost “for free” since we have∑

i Di + D̄ ≤ 2
∑

Di.

5.3 MAX-rCSPs

In this section, we consider the general case of weighted MAX-rCSPs
and prove Theorem 5.1. The algorithm is a direct generalization of the
two-dimensional case.

For any k vectors x(1),x(2), . . .x(k), the r − k-dimensional tensor

A(x(1),x(2), . . .x(k), ·, ·) =
∑

i1,i2,...ir−1

Ai1,i2,...ir−1,ix
(1)
i1

x
(2)
i2

, . . .x
(r−1)
ir−1

.

226 Optimization via Low-Rank Approximation

We wish to solve the problem

max
y∈S

A(y,y, . . . ,y).

Algorithm: Approximate MAX-rCSP

1. Scale the input tensor A as follows:

Bi1,...,ir =
Ai1,...,ir∏r

j=1 αij

,

where α = (α1, . . . ,αn) ∈ Rn is defined by αj =
√

D̄ + Dj.

2. Find a tensor B̂ of rank at most k satisfying

‖B − B̂‖2 ≤ ε

2
‖B‖F .

3. Let zj = yjαj, for y ∈ S, so that

A(y, . . . ,y) = B(z, . . . ,z).

4. Solve

max
z:yj∈S1

B̂(z,z, . . . ,z)

to within additive error ε|α|r‖B‖F /2.

The error of approximating B by B̂ is bounded by

max
z∈S1

|(B − B̂)(z, . . . ,z)| ≤ max
z:|z|≤|α|}

|(B − B̂)(z, . . . ,z)|

≤ |α|r‖B − B̂‖2

≤ ε|α|r‖B‖F

≤ ε

(
n∑

i=1

(D̄ + Di)

)r/2

 ∑

i1,...,ir

A2
i1,...,ir∏r
j=1 Dij




1/2

≤ ε2r/2c

(
n∑

i=1

Di

)

5.3 MAX-rCSPs 227

where c is the bound on the core-strength, noting that
∑

i(D̄ + Di) =
2
∑

i Di.

5.3.1 Optimizing Constant-Rank Tensors

From the above it suffices to deal with a tensor of constant rank. Let
A be a tensor of dimension r and rank �, say:

A =
∑

1≤j≤�

A(j)

with

A(j) = ajx
(j,1) ⊗ x(j,2) · · · ⊗ x(j,r)

where the x(j,i) ∈ R2n are length one vectors and moreover we have
that ‖A(j))‖F ≤ ‖A‖F and � = O(ε−2). We want to maximize approxi-
mately B(y,y, · · ·y), over the set of vectors y satisfying for each i ≤ n

either (yi,yn+i) = (0,αn+i) or (yi,yn+i) = (αi,0) where α is a given 2n-
dimensional positive vector. Let us define the tensor B by

Bi1,i2,...,ir = αi1αi2 , . . . ,αirAi1,i2,...,ir ∀ i1, i2, . . . , ir ∈ V.

Then, with yj = αjxj , we have that

B(x,x, . . . ,x) = A(y,y, . . . ,y).

Thus, we can as well maximize approximately B now for y in S. We
have

B(y,y, · · ·y) =
�∑

j=1

aj

(
r∏

k=1

(z(j,k) · y

)
(5.4)

with

z(j,r) = αT x(j,r), 1 ≤ j ≤ �, 1 ≤ k ≤ r.

Similarly as in the two-dimensional case, B(y,y, · · ·y) depends
really only on the �r variables uj,i, say, where uj,i = z(j,i) · y, j =
1,2, . . . , �, i = 1,2, . . . , r, and the values of each of these products are
confined to the interval [−2|α|,+2|α|]. Then, exactly similarly as in the

228 Optimization via Low-Rank Approximation

two-dimensional case, we can get in polynomial-time approximate val-
ues for the uj,i within ε|α| from the optimal ones. Inserting then these
values in Equation (5.4) gives an approximation of maxB(y) with addi-
tive error O (ε|α|r‖B‖F) which is what we need (taking A = B̂ of the
previous subsection.)

5.4 Metric Tensors

Lemma 5.5. Let A be an r-dimensional tensor satisfying the following
local density condition:

∀ i1, . . . , ir ∈ V, Ai1,...,ir ≤ c

rnr−1

r∑
j=1

Dij

where c is a constant. Then A is a core-dense hypergraph with core-
strength c.

Proof. We need to bound the core-strength of A. To this end,

∑
i1,i2,...,ir∈V

A2
i1,...,ir∏r

j=1(Dij + D̄)

≤ c

rnr−1

∑
i1,i2,...,ir∈V

Ai1,...,ir

∑r
j=1 Dij∏r

j=1(Dij + D̄)

≤ c

rnr−1

∑
i1,i2,...,ir∈V

Ai1,...,ir

r∑
j=1

1∏
k∈{1,...,r}\j(Dik + D̄)

≤ c

rnr−1


 ∑

i1,i2,...,ir∈E

Ai1,...,ir


 r

D̄r−1

=
c

(
∑n

i=1 Di)r−2 .

Thus, the core-strength is at most(
n∑

i=1

Di

)r−2 ∑
i1,i2,...,ir∈E

A2
i1,...,ir

Πr
j=1(Dij + D̄)

≤ c.

5.5 Discussion 229

Theorem 5.2 follows directly from Lemma 5.5 and Theorem 5.1. We
next prove Corollary 5.3 for metrics.

Proof. (of Corollary 5.3) For r = 2, the condition of Theorem 5.2 says
that for any i, j ∈ V ,

Ai,j ≤ c

2n
(Di + Dj).

We will verify that this holds for a metric MAX-2CSP with c = 2. When
the entries of A form a metric, for any i, j,k, we have

Ai,j ≤ Ai,k + Ak,j

and so

Ai,j ≤ 1
n

(
n∑

k=1

Ai,k +
n∑

k=1

Aj,k

)

=
1
n

(Di + Dj).

A non-negative real function d defined on M × M is called a
quasimetric if d(x,y) = 0 when x = y, d(x,y) = d(y,x) and d(x,z) ≤
C(d(x,y) + d(y,z)), the last for some positive real number C, and all
x,y,z ∈ M . Thus if it holds with C = 1, then d is a metric on M . The
proof of Corollary 5.3 easily extends to quasi-metrics.

Quasi-metrics include a number of interesting distance functions
which are not metrics, like the squares of Euclidean distances used in
clustering applications.

5.5 Discussion

This chapter is based on Fernandez de la Vega et al. [25]. Prior to that
paper, there was much progress on special cases. In particular, there
were polynomial-time approximation schemes for dense unweighted
problems [7, 24, 40, 47, 41, 4], and several cases of MAX-2CSP with
metric weights including maxcut and partitioning [28, 50, 27, 26]. It is
also shown in [25] that these methods can be applied to rCSPs with an
additional constant number of global constraints, such as finding the
maximum weight bisection.

Part II

Algorithms

6
Matrix Approximation via Random Sampling

In this chapter, we study randomized algorithms for matrix mul-
tiplication and low-rank approximation. The main motivation is to
obtain efficient approximations using only randomly sampled subsets of
given matrices. We remind the reader that for a vector-valued random
variable X, we write Var (X) = E (‖X − E (X)‖2) and similarly for a
matrix-valued random variable, with the norm denoting the Frobenius
norm in the latter case.

6.1 Matrix–vector Product

In many numerical algorithms, a basic operation is the matrix–vector
product. If A is an m × n matrix and v is an n vector, we have (A(j)

denotes the j-th column of A):

Av =
n∑

j=1

A(j)vj .

The right-hand side is the sum of n vectors and can be estimated by
using a sample of the n vectors. The error is measured by the variance of
the estimate. It is easy to see that a uniform random sample could have
high variance–consider the example when only one column is nonzero.

231

232 Matrix Approximation via Random Sampling

This leads to the question: what distribution should the sample
columns be chosen from? Let p1,p2, . . .pn be non-negative reals adding
up to 1. Pick j ∈ {1,2, . . .n} with probability pj and consider the vector-
valued random variable

X =
A(j)vj

pj
.

Clearly E X = Av, so X is an unbiased estimator of Av. We also get

Var (X) = E ‖X‖2 − ‖E X‖2 =
n∑

j=1

‖A(j)‖2v2
j

pj
− ‖Av‖2. (6.1)

Now we introduce an important probability distribution on the columns
of a matrix A, namely the length-squared (LS) distribution, where
a column is picked with probability proportional to its squared length.
We will say

j is drawn from LScol(A) if pj = ‖A(j)‖2/‖A‖2
F .

This distribution has useful properties. An approximate version of this
distribution–LScol(A,c), where we only require that

pj ≥ c‖A(j)‖2/‖A‖2
F

for some c ∈ (0,1) also shares interesting properties. If j is from
LScol(A,c), then note that the expression (6.1) simplifies to yield

Var X ≤ 1
c
‖A‖2

F ‖v‖2.

Taking the average of s i.i.d. trials decreases the variance by a factor
of s. So, if we take s-independent samples j1, j2, . . . js (i.i.d., each picked
according to LScol(A,c)), then with

Y =
1
s

s∑
t=1

A(jt)vjt

pjt

,

we have

E Y = Av

6.2 Matrix Multiplication 233

and

Var Y =
1
s

∑
j

‖A(j)‖2v2
j

pj
− 1

s
‖Av‖2 ≤ 1

cs
‖A‖2

F ‖v‖2. (6.2)

Such an approximation for matrix vector products is useful only
when ‖Av‖ is comparable to ‖A‖F ‖v‖. It is greater value for matrix
multiplication.

In certain contexts, it may be easier to sample according to
LS(A,c) than the exact length squared distribution. We have used the
subscriptcol to denote that we sample columns of A; it will be some-
times useful to sample rows, again with probabilities proportional to the
length squared (of the row, now). In that case, we use the subscript row.

6.2 Matrix Multiplication

The next basic problem is that of multiplying two matrices, A,B, where
A is m × n and B is n × p. From the definition of matrix multiplication,
we have

AB =
(
AB(1),AB(2), . . . ,AB(p)).

Applying Equation (6.2) p times and adding, we get the next theorem
(recall the notation that B(j) denotes row j of B).

Theorem 6.1. Let p1,p2, . . . ,pn be non-negative reals summing to 1
and let j1, j2, . . . , js be i.i.d. random variables, where jt is picked to be
one of {1,2, . . . ,n} with probabilities p1,p2, . . . ,pn, respectively. Then
with

Y =
1
s

s∑
t=1

A(jt)B(jt)

pjt

,

E Y = AB and Var Y =
1
s

n∑
j=1

‖A(j)‖2‖B(j)‖2

pj
− ‖AB‖2

F . (6.3)

If jt are distributed according to LScol(A,c), then

Var Y ≤ 1
cs

‖A‖2
F ‖B‖2

F .

234 Matrix Approximation via Random Sampling

A special case of matrix multiplication which is both theoretically
and practically useful is the product AAT .

The singular values of AAT are just the squares of the singular
values of A. So it can be shown that if B ≈ AAT , then the eigenvalues of
B will approximate the squared singular values of A. Later, we will want
to approximate A itself well. For this, we will need in a sense a good
approximation to not only the singular values, but also the singular
vectors of A. This is a more difficult problem. However, approximating
the singular values well via AAT will be a crucial starting point for the
more difficult problem.

For the matrix product AAT , the expression for Var Y (in Equa-
tion (6.3)) simplifies to

Var Y =
1
s

∑
j

‖A(j)‖4

pj
− ‖AAT ‖2

F .

The second term on the right-hand side is independent of pj . The first
term is minimized when the pj conform to the length-squared distribu-
tion. The next exercise establishes the optimality of the length-squared
distribution.

Exercise 6.2. Suppose a1,a2, . . . ,an are fixed positive reals. Prove that
the minimum of the constrained optimization problem

Min
n∑

j=1

aj

xj
subject to xj ≥ 0 ;

∑
j

xj = 1

is attained at xj = √
aj/
∑n

i=1
√

ai.

6.3 Low-Rank Approximation

When B = AT , we may rewrite the expression (6.3) as

Y = CCT , where C =
1√
s

(
A(j1)

√
pj1

,
A(j2)

√
pj2

, . . . ,
A(js)

√
pjs

)

and the next theorem follows.

6.3 Low-Rank Approximation 235

Theorem 6.3. Let A be an m × n matrix and j1, j2, . . . , js be
i.i.d. samples from {1,2, . . . ,n}, each picked according to probabilities
p1,p2, . . . ,pn. Define

C =
1√
s

(
A(j1)

√
pj1

,
A(j2)

√
pj2

, . . . ,
A(js)

√
pjs

)
.

Then,

E CCT =AAT

and

E ‖CCT − AAT ‖2
F =

1
s

n∑
j=1

|A(j)|4
pj

− 1
s
‖AAT ‖2

F .

If the pjs conform to the approximate length-squared distribution
LScol(A,c), then

E ‖CCT − AAT ‖2
F ≤ 1

cs
‖A‖4

F .

The fact that ‖CCT − AAT ‖F is small implies that the singular
values of A are close to the singular values of C. Indeed the Hoffman–
Wielandt inequality asserts that∑

t

(
σt(CCT) − σt(AAT)

)2 ≤ ‖CCT − AAT ‖2
F . (6.4)

(Exercise 6.7 asks for a proof of this inequality.)
To obtain a good low-rank approximation of A, we will also need a

handle on the singular vectors of A. A natural question is whether the
columns of C already contain a good low-rank approximation to A. To
this end, first observe that if u(1),u(2), . . . ,u(k) are orthonormal vectors
in Rm, then

k∑
t=1

u(t)u(t)T
A

236 Matrix Approximation via Random Sampling

is the projection of A into the space H spanned by u(1),u(2), . . . ,u(k),
namely

(i) For any u ∈ H, uT A = uT
∑k

t=1 u(t)u(t)T
A and

(ii) For any u ∈ H⊥, uT
∑k

t=1 u(t)u(t)T
A = 0.

This motivates the following algorithm for low-rank approximation.

Algorithm: Fast SVD

1. Sample s columns of A from the squared length

distribution to form a matrix C.

2. Find u(1), . . . ,u(k), the top k left singular vectors

of C.

3. Output
∑k

t=1 u(t)u(t)T
A as a rank-k approximation

to A.

The running time of the algorithm (if it uses s samples) is O(ms2).
We now state and prove the main lemma of this section. Recall that

Ak stands for the best rank-k approximation to A (in Frobenius norm
and 2-norm) and is given by the first k terms of the SVD.

Lemma 6.4. Suppose A,C are m × n and m × s matrices respectively
with s ≤ n and U is the m × k matrix consisting of the top k singular
vectors of C. Then,

‖A − UUT A‖2
F ≤ ‖A − Ak‖2

F + 2
√

k‖AAT − CCT ‖F

‖A − UUT A‖2
2 ≤ ‖A − Ak‖2 + ‖CCT − AAT ‖2 + ‖CCT − AAT ‖F .

Proof. We have∥∥∥∥∥A −
k∑

t=1

u(t)u(t)T
A

∥∥∥∥∥
2

F

= ‖A‖2
F − ‖UT A‖2

F

and

‖Ck‖2
F = ‖UT C‖2

F .

6.3 Low-Rank Approximation 237

Using these equations,

‖A −
k∑

t=1

u(t)u(t)T
A‖2

F − ‖A − Ak‖2
F

= ‖A‖2
F − ‖UT A‖2

F − (‖A‖2
F − ‖Ak‖2

F)

=
(‖Ak‖2

F − ‖Ck‖2
F

)
+ ‖UT C‖2

F − ‖UT A‖2
F

=
k∑

t=1

(
σt(A)2 − σt(C)2

)
+

k∑
t=1

(
σt(C)2 −

∥∥∥u(t)T A
∥∥∥2)

≤
√√√√k

k∑
t=1

(σt(A)2 − σt(C)2)2 +

√√√√k

k∑
t=1

(
σt(C)2 −

∥∥∥u(t)T A
∥∥∥2)2

=

√√√√k

k∑
t=1

(σt(AAT) − σt(CCT))2

+

√√√√k

k∑
t=1

(
u(t)T (CCT − AAT)u(t)

)2

≤ 2
√

k‖AAT − CCT ‖F .

Here we first used the Cauchy–Schwarz inequality on both summations
and then the Hoffman–Wielandt inequality (6.4).

The proof of the second statement also uses the Hoffman–Wielandt
inequality.

We can now combine Theorem 6.3 and Lemma 6.4 to obtain the
main theorem of this section.

Theorem 6.5. Algorithm Fast SVD finds a rank-k matrix Ã such that

E
(‖A − Ã‖2

F

) ≤ ‖A − Ak‖2
F + 2

√
k
s‖A‖2

F

E
(‖A − Ã‖2

2
) ≤ ‖A − Ak‖2 + 2√

s
‖A‖2

F .

238 Matrix Approximation via Random Sampling

Exercise 6.6. Using the fact that ‖A‖2
F = Tr(AAT) show that:

1. For any two matrices P,Q, we have |TrPQ| ≤ ‖P‖F ‖Q‖F .
2. For any matrix Y and any symmetric matrix X, |TrXY X| ≤

‖X‖2
F ‖Y ‖F .

Exercise 6.7. Prove the Hoffman–Wielandt inequality for symmetric
matrices: for any two n × n symmetric matrices A and B,

n∑
t=1

(σt(A) − σt(B))2 ≤ ‖A − B‖2
F .

(Hint: consider the SVD of both matrices and note that any doubly
stochastic matrix is a convex combination of permutation matrices).

Exercise 6.8. (Sampling on the fly) Suppose you are reading a list of
real numbers a1,a2, . . . ,an in a streaming fashion, i.e., you only have
O(1) memory and the input data comes in arbitrary order in a stream.
Your goal is to output a number X between 1 and n such that:

Pr(X = i) =
a2

i∑n
j=1 a2

j

.

How would you do this? How would you pick values for X1,X2, . . . ,Xs

(s ∈ O(1)) where the Xi are i.i.d.?

In this section, we considered projection to the span of a set of
orthogonal vectors (when the u(t) form the top k left singular vectors
of C). In the next section, we will need to deal also with the case when
the u(t) are not orthonormal. A prime example we will deal with is the
following scenario: suppose C is an m × s matrix, for example obtained
by sampling s columns of A as above. Now suppose v(1),v(2), . . . ,v(k)

are indeed an orthonormal set of vectors for which C ≈ C
∑k

t=1 v(t)v(t)T
;

i.e.,
∑k

t=1 v(t)v(t)T
is a “good right projection” space for C. Then sup-

pose the u(t) are defined by u(t) = Cv(t)/|Cv(t)|. We will see later that

6.3 Low-Rank Approximation 239

C ≈∑k
t=1 u(t)u(t)T

C; i.e., that
∑k

t=1 u(t)u(t)T
is a good left projection

space for C. The following lemma which generalizes some of the argu-
ments we have used here will be useful in this regard.

Lemma 6.9. Suppose u(1),u(2), . . . ,u(k) are any k vectors in Rm. Sup-
pose A,C are any two matrices, each with m rows (and possibly differ-
ent numbers of columns). Then, we have

∥∥∥∥∥A −
k∑

t=1

u(t)u(t)T
A

∥∥∥∥∥
2

F

−
∥∥∥∥∥C −

k∑
t=1

u(t)u(t)T
C

∥∥∥∥∥
2

F

≤ ‖A‖2
F − ‖C‖2

F + ‖AAT −CCT ‖F

∥∥∥∥∥
k∑

t=1

u(t)u(t)T

∥∥∥∥∥
F

×
(

2+

∥∥∥∥∥
k∑

t=1

u(t)u(t)T

∥∥∥∥∥
F

)∥∥∥∥∥A −
k∑

t=1

u(t)u(t)T
A

∥∥∥∥∥
2

2

(6.5)

−
∥∥∥∥∥C −

k∑
t=1

u(t)u(t)T
C

∥∥∥∥∥
2

2

≤ ‖AAT − CCT ‖2

(∥∥∥∥∥
k∑

t=1

u(t)u(t)T

∥∥∥∥∥
2

+ 1

)2

. (6.6)

Proof.

∥∥∥∥∥A −
k∑

t=1

u(t)u(t)T
A

∥∥∥∥∥
2

F

= Tr

((
A −

k∑
t=1

u(t)u(t)T
A

)(
AT − AT

k∑
t=1

u(t)u(t)T

))

= TrAAT +Tr
k∑

t=1

u(t)u(t)T
AAT

k∑
t=1

u(t)u(t)T −2Tr
k∑

t=1

u(t)u(t)T
AAT ,

240 Matrix Approximation via Random Sampling

where we have used the fact that square matrices commute under trace.
We do the same expansion for C to get∥∥∥∥∥A −

k∑
t=1

u(t)u(t)T
A

∥∥∥∥∥
2

F

−
∥∥∥∥∥C −

k∑
t=1

u(t)u(t)T
C

∥∥∥∥∥
2

F

− (‖A‖2
F − ‖C‖2

F

)

= Tr
k∑

t=1

u(t)u(t)T
(AAT − CCT)

k∑
t=1

u(t)u(t)T

−2Tr
k∑

t=1

u(t)u(t)T
(AAT − CCT)

≤
∥∥∥∥∥

k∑
t=1

u(t)u(t)T

∥∥∥∥∥
2

F

‖AAT − CCT ‖F

+2

∥∥∥∥∥
k∑

t=1

u(t)u(t)T

∥∥∥∥∥
F

‖AAT − CCT ‖F ,

where we have used two standard inequalities: |TrPQ| ≤ ‖P‖F ‖Q‖F

for any matrices P,Q and |TrXY X| ≤ ‖X‖2
F ‖Y ‖F for any Y and a

symmetric matrix X (see Exercise 6.6). This gives us Equation (6.5).
For Equation (6.6), suppose v is the unit length vector achieving∥∥∥∥∥vT

(
A −

k∑
t=1

u(t)u(t)T
A

)∥∥∥∥∥ =

∥∥∥∥∥A −
k∑

t=1

u(t)u(t)T
A

∥∥∥∥∥
2

.

Then we expand∥∥∥∥∥vT

(
A −

k∑
t=1

u(t)u(t)T
A

)∥∥∥∥∥
2

= vT

(
A −

k∑
t=1

u(t)u(t)T
A

)(
AT − AT

k∑
t=1

u(t)u(t)T

)
v

= vT AAT v − 2vT AAT
k∑

t=1

u(t)u(t)T
v

+vT
k∑

t=1

u(t)u(t)T
AAT

k∑
t=1

u(t)u(t)T
v,

6.4 Invariant Subspaces 241

and the corresponding terms for C. Now, Equation (6.6) follows by a
somewhat tedious but routine calculation.

6.4 Invariant Subspaces

The classical SVD has associated with it the decomposition of space
into the direct sum of invariant subspaces.

Theorem 6.10. Let A be an m × n matrix and v(1),v(2), . . . ,v(n) an
orthonormal basis for Rn. Suppose for k,1 ≤ k ≤ rank(A) we have

|Av(t)|2 = σ2
t (A), for t = 1,2, , . . . ,k.

Then

u(t) =
Av(t)

|Av(t)| , for t = 1,2, . . . ,k

form an orthonormal family of vectors. The following hold:

k∑
t=1

|u(t)T
A|2 =

k∑
t=1

σ2
t

∥∥∥∥∥A − A

k∑
t=1

v(t)v(t)T

∥∥∥∥∥
2

F

=

∥∥∥∥∥A −
k∑

t=1

u(t)u(t)T
A

∥∥∥∥∥
2

F

=
n∑

t=k+1

σ2
t (A)

∥∥∥∥∥A − A

k∑
t=1

v(t)v(t)T

∥∥∥∥∥
2

=

∥∥∥∥∥A −
k∑

t=1

u(t)u(t)T
A

∥∥∥∥∥
2

= σk+1(A).

Given the right singular vectors v(t), a family of left singular vectors
u(t) may be found by just applying A to them and scaling to length 1.
The orthogonality of the u(t) is automatically ensured. So we get that
given the optimal k-dimensional “right projection” A

∑k
t=1 v(t)v(t)T

, we
also can get the optimal “left projection”

k∑
t=1

u(t)u(t)T
A.

242 Matrix Approximation via Random Sampling

Counting dimensions, it also follows that for any vector w orthogo-
nal to such a set of v(1),v(2), . . . ,v(k), we have that Aw is orthogonal
to u(1),u(2), . . . ,u(k). This yields the standard decomposition into the
direct sum of subspaces.

Exercise 6.11. Prove Theorem 6.10.

6.4.1 Approximate Invariance

The theorem below proves that even if the hypothesis of the previous
theorem |Av(t)|2 = σ2

t (A) is only approximately satisfied, an approxi-
mate conclusion follows. We give below a fairly clean statement and
proof formalizing this intuition. It will be useful to define the error
measure

∆(A,v(1),v(2), . . . ,v(k)) = Max1≤t≤k

t∑
i=1

(σ2
i (A) − |Av(i)|2) .(6.7)

Theorem 6.12. Let A be a matrix of rank r and v(1),v(2), . . . ,v(r) be
an orthonormal set of vectors spanning the row space of A (so that
{Av(t)} span the column space of A). Then, for t,1 ≤ t ≤ r, we have

r∑
s=t+1

(
v(t)T

AT Av(s)
)2 ≤ |Av(t)|2(σ2

1(A) + σ2
2(A) + . . .σ2

t (A)

−|Av(1)|2 − |Av(2)|2 − . . . |Av(t)|2).

Note that v(t)T
AT Av(s) is the (t,s) th entry of the matrix AT A

when written with respect to the basis {v(t)}. So, the quantity∑r
s=t+1

(
v(t)T

AT Av(s)
)2 is the sum-of-squares of the above-diagonal

entries of the t th row of this matrix. Theorem 6.12 implies the classical
Theorem 6.10: σt(A) = |Av(t)| implies that the right-hand side of the
inequality above is zero. Thus, v(t)T

AT A is collinear with v(t)T
and so

|v(t)T
AT A| = |Av(t)|2 and so on.

6.4 Invariant Subspaces 243

Proof. First consider the case when t = 1. We have
r∑

s=2

(
v(1)T

AT Av(s)
)2

= |v(1)T
AT A|2 −

(
v(1)T

AT Av(1)
)2

≤ |Av(1)|2σ1(A)2 − |Av(1)|4

≤ |Av(1)|2
(
σ1(A)2 − |Av(1)|2

)
. (6.8)

The proof of the theorem will be by induction on the rank of A. If
r = 1, there is nothing to prove. Assume r ≥ 2. Now, Let

A′ = A − Av(1)v(1)T
.

A′ is of rank r − 1. If w(1),w(2), . . . , are the right singular vectors of A′,
they are clearly orthogonal to v(1). So we have for any s, 1 ≤ s ≤ r − 1,

σ2
1(A

′) + σ2
2(A

′) + . . .σ2
s(A

′)

=
s∑

t=1

|A′w(t)|2

=
s∑

t=1

|Aw(t)|2

= |Av(1)|2 +
s∑

t=1

|Aw(t)|2 − |Av(1)|2

≤ MAXu(1),u(2)...u(s+1)

orthonormal

s+1∑
t=1

|Au(t)|2 − |Av(1)|2

= σ1(A)2 + σ2(A)2 + . . .σs+1(A)2 − |Av(1)|2, (6.9)

where we have applied the fact that for any k, the k-dimensional SVD
subspace maximizes the sum of squared projections among all sub-
spaces of dimension at most k.

Now, we use the inductive assumption on A′ with the orthonormal
basis v(2),v(3), . . . ,v(r). This yields for t,2 ≤ t ≤ r,

r∑
s=t+1

(v(t)T
A′T A′v(s))2 ≤ |A′v(t)|2(σ2

1(A
′) + σ2

2(A
′) + . . .σ2

t−1(A
′)

−|A′v(2)|2 − |A′v(3)|2 − . . . |A′v(t)|2)

244 Matrix Approximation via Random Sampling

Note that for t ≥ 2, we have A′v(t) = Av(t). So, we get using Equa-
tion (6.9)

r∑
s=t+1

(v(t)T
AT Av(s))2 ≤ |Av(t)|2(σ2

1(A) + σ2
2(A) + . . .σ2

t (A)

−|Av(1)|2 − |Av(2)|2 − . . . |Av(t)|2).
This together with Equation (6.8) finishes the proof of the Theorem.

We will use Theorem 6.12 to prove Theorem 6.13 below. Theo-
rem 6.13 says that we can get good “left projections” from “good right
projections”. One important difference from the exact case is that now
we have to be more careful of “near singularities”, i.e., the upper bounds
in the Theorem 6.13 will depend on a term

k∑
t=1

1
|Av(t)|2 .

If some of the |Av(t)| are close to zero, this term is large and the bounds
can become useless. This is not just a technical problem. In defining u(t)

in Theorem 6.10 as Av(t)/|Av(t)|, the hypotheses exclude t for which
the denominator is zero. Now since we are dealing with approximations,
it is not only the zero denominators that bother us, but also small
denominators. We will have to exclude these too (as in Corollary 6.14
below) to get a reasonable bound.

Theorem 6.13. Suppose A is a matrix and v(1), . . . ,v(k) are orthonor-
mal and let ∆ = ∆(A,v(1),v(2), . . . ,v(k)) be as in Equation (6.7). Let

u(t) =
Av(t)

|Av(t)| for t = 1,2, . . . ,k.

Then∥∥∥∥∥
k∑

t=1

u(t)u(t)T
A − A

∥∥∥∥∥
2

F

≤
∥∥∥∥∥A −

k∑
t=1

Av(t)v(t)T

∥∥∥∥∥
2

F

+

(
k∑

t=1

2
|Av(t)|2

)(
k∑

t=1

|Av(t)|2
)

∆

6.4 Invariant Subspaces 245

∥∥∥∥∥
k∑

t=1

u(t)u(t)T
A − A

∥∥∥∥∥
2

2

≤
∥∥∥∥∥A −

k∑
t=1

Av(t)v(t)T

∥∥∥∥∥
2

2

+

(
k∑

t=1

2
|Av(t)|2

)(
k∑

t=1

|Av(t)|2
)

∆.

Proof. Complete {v(1),v(2), . . . ,v(k)} to an orthonormal set {v(1),v(2),

. . .v(r)} such that {Av(t) : t = 1,2, . . . , r} span the range of A. Let

w(t)T
= v(t)T

AT A − |Av(t)|2v(t)T

be the component of v(t)T
AT A orthogonal to v(t)T

. We have

u(t)u(t)T
A =

Av(t)v(t)T
AT A

|Av(t)|2 = Av(t)v(t)T
+ Av(t)w(t)T

.

Using ‖X + Y ‖2
F = Tr((XT + Y T)(X + Y)) = ‖X‖2

F + ‖Y ‖2
F + 2Tr

XT Y and the convention that t runs over 1,2, . . . ,k, we have∥∥∥∥∥
∑

t

u(t)u(t)T
A − A

∥∥∥∥∥
2

F

=

∥∥∥∥∥
∑

t

Av(t)v(t)T
+
∑

t

Av(t)w(t)T

|Av(t)|2 − A

∥∥∥∥∥
2

F

=

∥∥∥∥∥A −
∑

t

Av(t)v(t)T

∥∥∥∥∥
2

F

+

(∑
t

∣∣∣∣∣ Av(t)

|Av(t)|2

∣∣∣∣∣
∣∣∣w(t)

∣∣∣
)2

−2
r∑

s=1

∑
t

(
v(s)T

w(t)
) v(t)T

AT

|Av(t)|2
(

A −
∑

t

Av(t)v(t)T

)
v(s)

≤
∥∥∥∥∥A −

∑
t

Av(t)v(t)T

∥∥∥∥∥
2

F

+

(∑
t

|w(t)|2
)(∑

t

1
|Av(t)|2

)

−2
r∑

s=k+1

∑
t

(v(t)T
AT Av(s))2

|Av(t)|2

246 Matrix Approximation via Random Sampling

since
(
A −∑t Av(t)v(t)T

)
v(s) = 0 for s ≤ k

and v(s)T
w(t) = v(s)T

AT Av(t)

≤
∥∥∥∥∥A −

∑
t

Av(t)v(t)T

∥∥∥∥∥
2

F

+

(∑
t

1
|Av(t)|2

)(
2
∑

t

r∑
s=t+1

(
v(t)T

AT Av(s)
)2
)

≤
∥∥∥∥∥A −

∑
t

Av(t)v(t)T

∥∥∥∥∥
2

F

+

(∑
t

2
|Av(t)|2

)(∑
t

|Av(t)|2
)

∆,

using Theorem 6.12.
For the 2-norm, the argument is similar. Suppose a vector p achieves

∥∥∥∥∥
∑

t

u(t)u(t)T
A − A

∥∥∥∥∥
2

=

∣∣∣∣∣
(∑

t

u(t)u(t)T
A − A

)
p

∣∣∣∣∣ .
We now use

|(X + Y)p|2 = pT XT Xp + pT Y T Y p + 2pT XT Y p

to get

∥∥∥∥∥
∑

t

u(t)u(t)T
A − A

∥∥∥∥∥
2

2

≤
∥∥∥∥∥A −

∑
t

Av(t)v(t)T

∥∥∥∥∥
2

2

+

(∑
t

|w(t)|2
)(∑

t

1
|Av(t)|2

)

−2
∑

t

(pT w(t))
v(t)T

AT

|Av(t)|2
(

A −
∑

t

Av(t)v(t)T

)
p.

6.4 Invariant Subspaces 247

If now we write p = p(1) + p(2), where p(1) is the component of p in the
span of v(1),v(2), . . . ,v(k), then we have

∑
t

(
pT w(t))v(t)T

AT

|Av(t)|2
(

A −
∑

t

Av(t)v(t)T

)
p

=
∑

t

(
p(2)T

w(t))v(t)T
AT

|Av(t)|2 Ap(2) =
∑

t

(
v(t)T

AT Ap(2)
)2

|Av(t)|2 ,

where we have used the fact that p(2) is orthogonal to v(t) to get
p(2)T

w(t) = v(t)T
AT Ap(2).

We will apply the theorem as follows. As remarked earlier, we have
to be careful about near singularities. Thus while we seek a good
approximation of rank k or less, we cannot automatically take all of
the k terms. Indeed, we only take terms for which |Av(t)| is at least a
certain threshold.

Corollary 6.14. Suppose A is a matrix, δ a positive real and
v(1), . . . ,v(k) are orthonormal vectors produced by a randomized algo-
rithm and suppose

E

(
t∑

j=1

(
σ2

j (A) − |Av(j)|2
))

≤ δ‖A‖2
F t = 1,2, . . . ,k.

Let

u(t) =
Av(t)

|Av(t)| for t = 1,2, . . . ,k.

Define l to be the largest integer in {1,2, . . . ,k} such that |Av(l)|2 ≥√
δ‖A‖2

F . Then,

E

∥∥∥∥∥A −
l∑

t=1

u(t)u(t)T
A

∥∥∥∥∥
2

F

≤ E

∥∥∥∥∥A − A

k∑
t=1

v(t)v(t)T

∥∥∥∥∥
2

F

+ 3k
√

δ‖A‖2
F .

E

∥∥∥∥∥A −
l∑

t=1

u(t)u(t)T
A

∥∥∥∥∥
2

2

≤ E

∥∥∥∥∥A − A

k∑
t=1

v(t)v(t)T

∥∥∥∥∥
2

2

+ 3k
√

δ‖A‖2
F

248 Matrix Approximation via Random Sampling

Proof. We apply the theorem with k replaced by l and taking expec-
tations of both sides (which are now random variables) to get

E

∥∥∥∥∥A −
l∑

t=1

u(t)u(t)T

∥∥∥∥∥
2

F

≤ E

∥∥∥∥∥A − A

l∑
t=1

v(t)v(t)T

∥∥∥∥∥
2

F

+
2k√

δ
E

(
l∑

t=1

(
σ2

t (A) − |Av(t)|2
))

≤ E

∥∥∥∥∥A − A

k∑
t=1

v(t)v(t)T

∥∥∥∥∥
2

F

+
k∑

t=l+1

|Av(t)|2 + 2k
√

δ‖A‖2
F ,

where, we have used the fact that from the minimax principle and
|Av(1)| ≥ |Av(2)| ≥ . . . |Av(k)| > 0, we get that σt(A) ≥ |Av(t)| for t =
1,2, . . . ,k. Now first assertion in the Corollary follows. For the 2-norm
bound, the proof is similar. Now we use the fact that∥∥∥∥∥A − A

l∑
t=1

v(t)v(t)T

∥∥∥∥∥
2

2

≤
∥∥∥∥∥A − A

k∑
t=1

v(t)v(t)T

∥∥∥∥∥
2

2

+
k∑

t=l+1

|Av(t)|2.

To see this, if p is the top left singular vector of A − A
∑l

t=1 v(t)v(t)T
,

then∣∣∣∣∣pT

(
A − A

l∑
t=1

v(t)v(t)T

)∣∣∣∣∣
2

= pT AAT p − pT A

l∑
t=1

v(t)v(t)T
AT p

≤
∥∥∥∥∥A−A

k∑
t=1

v(t)v(t)T

∥∥∥∥∥
2

2

+
k∑

t=l+1

|pT Av(t)|2.

6.5 SVD by Sampling Rows and Columns

Suppose A is an m × n matrix and ε > 0 and c a real number in [0,1].
In this section, we will use several constants which we denote c1, c2 . . .

which we do not specify.
We pick a sample of

s =
c1k

5

cε4

6.5 SVD by Sampling Rows and Columns 249

columns of A according to LScol(A,c) and scale to form an m × s

matrix C. Then we sample a set of s rows of C according to a
LSrow(C,c) distribution to form an s × s matrix W . By Theorem 6.3,
we have

E ‖CT C − W T W‖F ≤ 1√
cs

E ‖C‖2
F =

c2ε
2

k2.5 ‖A‖2
F , (6.10)

where we have used Hölder’s inequality (E X ≤ (E X2)1/2) and the fact
that E ‖C‖2

F = E Tr(CCT) = Tr(AAT).
We now find the SVD of W T W (note : This is just an s × s matrix !)

say

W T W =
∑

t

σ2
t (W)v(t)v(t)T

.

We first wish to claim that
∑k

t=1 v(t)v(t)T
forms a “good right pro-

jection” for C. This follows from Lemma 6.4 with C replacing A and
W replacing C in that Lemma and right projections instead of left
projections. Hence we get (using Equation (6.10))

E

∥∥∥∥∥C − C

k∑
t=1

v(t)v(t)T

∥∥∥∥∥
2

F

≤ E ‖C‖2
F − E

k∑
t=1

σ2
t (C) +

c3ε
2

k2 ‖A‖2
F

(6.11)

E

∥∥∥∥∥C − C

k∑
t=1

v(t)v(t)T

∥∥∥∥∥
2

2

≤ E σk+1(C)2 + (2 + 4k)O
(

ε2

k3

)
E ‖C‖2

F

(6.12)

≤ σ2
k+1(A) +

c4ε
2

k2 ‖A‖2
F . (6.13)

Since ‖C − C
∑k

t=1 v(t)v(t)T ‖2
F = ‖C‖2

F −∑k
t=1 |Cv(t)|2, we get from

Equation (6.13)

E
k∑

t=1

(
σ2

t (C) − |Cv(t)|2) ≤ c5ε
2

k2 ‖A‖2
F . (6.14)

250 Matrix Approximation via Random Sampling

Equation (6.13) also yields

E

∥∥∥∥∥C − C

k∑
t=1

v(t)v(t)T

∥∥∥∥∥
2

F

≤ ‖A‖2
F −

k∑
t=1

σ2
t (A) + ‖A‖2

F

c6ε
2

k2

Thus, E

∥∥∥∥∥C − C

k∑
t=1

v(t)v(t)T

∥∥∥∥∥
2

F

≤
n∑

t=k+1

σ2
t (A) +

c6ε
2

k2 ‖A‖2
F .(6.15)

Now we wish to use Corollary 6.14 to derive a good left projection
for C from the right projection above. To this end, we define

u(t) =
Cv(T)

|Cv(t)| for t = 1,2, . . . ,k.

Define l to be the largest integer in {1,2, . . . ,k} such that |Cv(l)|2 ≥√
c5ε
k ‖A‖2

F . Then from the Corollary, we get

E

∥∥∥∥∥C −
l∑

t=1

u(t)u(t)T
C

∥∥∥∥∥
2

F

≤ E

∥∥∥∥∥C − C

k∑
t=1

v(t)v(t)T

∥∥∥∥∥
2

F

+ O(ε)‖A‖2
F

≤
n∑

t=k+1

σ2
t (A) + O(ε)‖A‖2

F . (6.16)

E

∥∥∥∥∥C −
l∑

t=1

u(t)u(t)T
C

∥∥∥∥∥
2

2

≤ σ2
k+1(A) + O(ε)‖A‖2

F . (6.17)

Finally, we use Lemma 6.9 to argue that
∑l

t=1 u(t)u(t)T
is a good left

projection for A. To do so, we first note that ‖∑l
t=1 u(t)u(t)T ‖F ≤∑l

t=1 |u(t)|2 ≤ k. So,

E

∥∥∥∥∥A −
l∑

t=1

u(t)u(t)T
A

∥∥∥∥∥
2

F

≤ E

∥∥∥∥∥C −
l∑

t=1

u(t)u(t)T
C

∥∥∥∥∥
2

F

+
1√
cs

‖A‖2
F k(2 + k)

≤
n∑

t=k+1

σ2
t (A) + O(ε)‖A‖2

F

E

∥∥∥∥∥A −
l∑

t=1

u(t)u(t)T
A

∥∥∥∥∥
2

2

≤ σ2
k+1(A) + O(ε)‖A‖2

F .

6.5 SVD by Sampling Rows and Columns 251

Thus, we get the following lemma:

Lemma 6.15. Suppose we are given an m × n matrix A, a positive
integer k ≤ m,n and a real ε > 0. Then for the u(1),u(2), . . . ,u(l) pro-
duced by the constant-time-SVD algorithm, we have the following two
bounds:

E

∥∥∥∥∥A −
l∑

t=1

u(t)u(t)T
A

∥∥∥∥∥
2

F

≤
n∑

t=k+1

σ2
t (A) + ε‖A‖2

F

E

∥∥∥∥∥A −
l∑

t=1

u(t)u(t)T
A

∥∥∥∥∥
2

2

≤ σ2
k+1(A) + ε‖A‖2

F .

The proof is already given.

Algorithm: Constant-time SVD

1. Pick a sample of

s =
c8k

5

cε4

columns of A according to LScol(A,c) and scale to

form an m × s matrix C.

2. Sample a set of s rows of C according to an

LSrow(C,c) distribution and scale to form an s × s

matrix W.

3. Find the SVD of W T W:

W T W =
∑

t

σ2
t (W)v(t)v(t)T

.

4. Compute

u(t) =
Cv(t)

|Cv(t)| for t = 1,2, . . . ,k.

252 Matrix Approximation via Random Sampling

Let l to be the largest integer in {1,2, . . . ,k} such

that

|Cv(l)|2 ≥ c9ε‖C‖2
F /k.

5. Return

l∑
t=1

u(t)u(t)T
A

as the approximation to A.

6.6 CUR: An Interpolative Low-Rank Approximation

In this section, we wish to describe an algorithm to get an approxi-
mation of any matrix A given just a sample of rows and a sample of
columns of A. Clearly if the sample is picked according to the uniform
distribution, this attempt would fail in general. We will see that again
the length-squared distribution comes to our rescue; indeed, we will
show that if the samples are picked according to the length-squared or
approximate length-squared distributions, we can get an approximation
for A. Again, this will hold for an arbitrary matrix A.

First suppose A is an m × n matrix and R (R for rows) is an s × n

matrix constructed by picking s rows of A in i.i.d. samples, each accord-
ing to LSrow(A,c) and scaled. Similarly, let C (for columns) be an m × s

matrix consisting of columns picked according to LScol(A,c) and scaled.
The motivating question for this section is: Can we get an approxima-
tion to A given just C,R?

Intuitively, this should be possible since we know that CCT ≈ AAT

and RT R ≈ AT A. Now it is easy to see that if we are given both AAT

and AT A and A is in “general position”, i.e., say all its singular values
are distinct, then A can be found: indeed, if the SVD of A is

A =
∑

t

σt(A)u(t)v(t)T
,

then

AAT =
∑

t

σ2
t (A)u(t)u(t)T

AT A =
∑

t

σ2
t (A)v(t)v(t)T

,

6.6 CUR: An Interpolative Low-Rank Approximation 253

and so from the SVD’s of AAT ,AT A, the SVD of A can be read off if
the σt(A) are all distinct. [This is not the case if the σt are not distinct;
for example, for any square A with orthonormal columns, AAT = AT

A = I.] The above idea leads intuitively to the guess that at least in
general position, C,R are sufficient to produce some approximation
to A.

The approximation of A by the product CUR is reminiscent of the
usual PCA approximation based on taking the leading k terms of the
SVD decomposition. There, instead of C,R, we would have orthonormal
matrices consisting of the leading singular vectors and instead of U , the
diagonal matrix of singular values. The PCA decomposition of course
gives the best rank-k approximation, whereas what we will show below
for CUR is only that its error is bounded in terms of the best error we
can achieve. There are two main advantages of CUR over PCA:

1. CUR can be computed much faster from A and also we only
need to make two passes over A which can be assumed to be
stored on external memory.

2. CUR preserves the sparsity of A–namely C,R are columns
and rows of A itself. (U is a small matrix since typically s

is much smaller than m,n.) So any further matrix vector
products Ax can be approximately computed as C(U(Rx))
quickly.

The main theorem of this section is the following.

Theorem 6.16. Suppose A is any m × n matrix, C is any m × s

matrix of rank at least k. Suppose i1, i2, . . . , is are obtained from s

i.i.d. trials each according to probabilities {p1,p2, . . . ,pm} conforming
to LSrows(A,c) and let R be the s × n matrix with t th row equal to
Ait/

√
spit . Then, from C,R,{it}, we can find an s × s matrix U such

that

E (‖CUR−A‖F)≤‖A−Ak‖F +
√

k
cs‖A‖F +

√
2k

1
4 ‖AAT −CCT ‖1/2

F

E (‖CUR−A‖2) ≤ ‖A−Ak‖2 +
√

k
cs‖A‖F +

√
2‖AAT −CCT ‖1/2

F

254 Matrix Approximation via Random Sampling

Proof. The selection of rows and scaling used to obtain R from A can
be represented by as

R = DA,

where D has only one non-zero entry per row. Let the SVD of C be

C =
r∑

t=1

σt(C)x(t)y(t)T
.

By assumption σk(C) > 0. Then the SVD of CT C is

CT C =
r∑

t=1

σ2
t (C)y(t)y(t)T

.

Then, we prove the theorem with U defined by

U =
k∑

t=1

1
σ2

t (C)
y(t)y(t)T

CT DT .

Then, using the orthonormality of {x(t)},{y(t)},

CUR =
r∑

t=1

σt(C)x(t)y(t)T
k∑

s=1

1
σ2

s(C)
y(s)y(s)T

r∑
p=1

σp(C)y(p)x(p)T
DT DA

=
k∑

t=1

x(t)x(t)T
DT DA

Consider the matrix multiplication(
k∑

t=1

x(t)x(t)T

)
(A) .

DT D above can be viewed precisely as selecting some rows of the
matrix A and the corresponding columns of

∑
t x

(t)x(t)T
with suitable

scaling. Applying Theorem 6.1 directly, we thus get using ‖∑k
t=1 x(t)

x(t)T ‖2
F = k. (Note: in the theorem one is selecting columns of the first

matrix according to LScol of that matrix; here symmetrically, we are
selecting rows of the second matrix according to LSrow of that matrix.)

E

∣∣∣∣∣
∣∣∣∣∣

k∑
t=1

x(t)x(t)T
DT DA −

k∑
t=1

x(t)x(t)T
A

∣∣∣∣∣
∣∣∣∣∣
2

F

≤ k

cs
‖A‖2

F .

6.6 CUR: An Interpolative Low-Rank Approximation 255

Thus,

E ‖CUR −
k∑

t=1

x(t)x(t)T
A‖2

F ≤ k

cs
‖A‖2

F .

Next, from Lemma 6.4 it follows that∥∥∥∥∥
k∑

t=1

x(t)x(t)T
A − A

∥∥∥∥∥
2

F

≤ ‖A − Ak‖2
F + 2

√
k‖AAT − CCT ‖F

∥∥∥∥∥
k∑

t=1

x(t)x(t)T
A − A

∥∥∥∥∥
2

2

≤ ‖A − Ak‖2 + 2‖AAT − CCT ‖F .

Now the theorem follows using the triangle inequality on the norms.

As a corollary, we have the following:

Corollary 6.17. Suppose we are given C, a set of independently cho-
sen columns of A from LScol(A,c) and R, a set of s independently chosen
rows of A from LSrows(A,c). Then, in time O((m + n)s2), we can find
an s × s matrix U such that for any k,

E (‖A − CUR‖F) ≤ ‖A − Ak‖F +
(

k

s

)1/2

‖A‖F +
(

4k

s

)1/4

‖A‖F

The following open problem, if answered affirmatively, would gen-
eralize the theorem.

Problem Suppose A is any m × n matrix and C,R are any m × s

and s × n, respectively, matrices with

‖AAT − CCT ‖F ,‖AT A − RT R‖F ≤ δ‖A‖2
F .

Then, from just C,R, can we find an s × s matrix U such that

‖A − CUR‖F ≤ poly
(

δ

s

)
‖A‖F ?

So we do not assume that R is a random sample as in the theorem.

256 Matrix Approximation via Random Sampling

6.7 Discussion

Sampling from the length square distribution was introduced in a paper
by Frieze et al. [42, 43] in the context of a constant-time algorithm for
low-rank approximation. It has been used many times subsequently.
There are several advantages of sampling-based algorithms for matrix
approximation. The first is efficiency. The second is the nature of the
approximation, namely it is often interpolative, i.e., uses rows/columns
of the original matrix. Finally, the methods can be used in the streaming
model where memory is limited and entries of the matrix arrive in
arbitrary order.

The analysis for matrix multiplication is originally due to Drineas
and Kannan [31]. The linear-time low-rank approximation was given
by Drineas et al. [33]. The CUR decomposition first appeared in [32].
The best-know sample complexity for the constant-time algorithm is
O(k2/ε4) and other refinements are given in [34, 35, 36]. An alternative
sampling method which sparsifies a given matrix and uses a low-rank
approximation of the sparse matrix was given in [2].

We conclude this section with a description of some typical appli-
cations. A recommendation system is a marketing tool with wide use.
Central to this is the consumer–product matrix A where Aij is the “util-
ity” or “preference” of consumer i for product j. If the entire matrix
were available, the task of the system is simple–whenever a user comes
up, it just recommends to the user the product(s) of maximum util-
ity to the user. But this assumption is unrealistic; market surveys are
costly, especially if one wants to ask each consumer. So, the essential
problem in Recommendation Systems is Matrix Reconstruction–given
only a sampled part of A, reconstruct (implicitly, because writing down
the whole of A requires too much space) an approximation A′ to A and
make recommendations based on A′. A natural assumption is to say
that we have a set of sampled rows (we know the utilities of some con-
sumers at least their top choices) and a set of sampled columns (we
know the top buyers of some products). This model very directly sug-
gests the use of the CUR decomposition below which says that for any
matrix A given a set of sampled rows and columns, we can construct an

6.7 Discussion 257

approximation A′ to A from them. Some well-known recommendation
systems in practical use relate to on-line booksellers, movie renters, etc.

In the first mathematical model for Recommendation Systems Azar
et al. [10] assumed a generative model where there were k types of
consumers and each is a draw from a probability distribution (a mixture
model). It is easy to see then that A is close to a low-rank matrix. The
CUR type model and analysis using CUR decomposition was by [37].

We note an important philosophical difference in the use of sampling
here from previous topics discussed. Earlier, we assumed that there was
a huge matrix A explicitly written down somewhere and since it was
too expensive to compute with all of it, one used sampling to extract a
part of it and computed with this. Here, the point is that it is expensive
to get the whole of A, so we have to do with a sample from which we
“reconstruct” implicitly the whole.

7
Adaptive Sampling Methods

In this chapter, we continue our study of sampling methods for matrix
approximation, including linear regression and low-rank approxima-
tion. In the previous chapter, we saw that any matrix A has a subset of
k/ε rows whose span contains an approximately optimal rank-k approx-
imation to A. We recall the precise statement.

Theorem 7.1. Let S be a sample of s rows of an m × n matrix A,
each chosen independently from the following distribution: Row i is
picked with probability

Pi ≥ c
‖A(i)‖2

‖A‖2
F

.

If s ≥ k/cε, then the span of S contains a matrix Ãk of rank at most k

for which

E (‖A − Ãk‖2
F) ≤ ‖A − Ak‖2

F + ε‖A‖2
F .

This was turned into an efficient algorithm. The algorithm
makes one pass through A to figure out the sampling distribution

258

7.1 Adaptive Length-Squared Sampling 259

and another pass to compute the approximation. Its complexity is
O(min{m,n}k2/ε4). We also saw a “constant-time” algorithm that
samples both rows and columns.

These results naturally lead to the following two important ques-
tions: (1) The additive error in Theorem 7.1 is ε‖A‖2

F which can be
very large since we have no control on ‖A‖2

F . Can this error be reduced
significantly by using multiple passes through the data? (2) Can we get
multiplicative (1 + ε) approximations using a small sample?

7.1 Adaptive Length-Squared Sampling

As an illustrative example, suppose the data consists of points along a
one-dimensional subspace of Rn except for one point. The best rank-
2 subspace has zero error. However, one round of sampling will most
likely miss the point far from the line. So we use a two-round approach.
In the first pass, we get a sample from the squared length distribution
and find a rank-2 subspace using it. Then we sample again, but this
time with probability proportional to the squared distance to the first
subspace. If the lone far-off point is missed in the first pass, it will have
a high probability of being chosen in the second pass. The span of the
full sample now contains a good rank-2 approximation.

The main idea behind the adaptive length-squared sampling scheme
is the following generalization of Theorem 7.1. Notice that if we put V =
∅ in the following theorem then we get exactly Theorem 7.1. Recall that
for a subspace V ⊆ Rn, we denote by πV,k(A) the best rank-k approx-
imation (under the Frobenius norm) of A with rows in the span of V .

Theorem 7.2. Let A ∈ Rm×n. Let V ⊆ Rn be a vector subspace. Let
E = A − πV (A). For a fixed c ∈ R, let S be a random sample of s rows
of A from a distribution such that row i is chosen with probability

Pi ≥ c
‖E(i)‖2

‖E‖2
F

. (7.1)

Then, for any non-negative integer k,

E S(‖A − πV +span(S),k(A)‖2
F) ≤ ‖A − πk(A)‖2

F +
k

cs
‖E‖2

F .

260 Adaptive Sampling Methods

Proof. For S = (ri)s
i=1 a sample of rows of A and 1 ≤ j ≤ r, let

w(j) = πV (A)T u(j) +
1
s

s∑
i=1

u
(j)
ri

Pri

E(ri).

Then, ES(w(j)) = πV (A)T u(j) + ET u(j) = σjv
(j). Now we will bound

ES(‖w(j) − σjv
(j)‖2). Use the definition of w(j) to get

w(j) − σjv
(j) =

1
s

s∑
i=1

u
(j)
ri

Pri

E(ri) − ET u(j).

Apply the norm squared to each side and expand the left-hand side:

‖w(j) − σjv
(j)‖2 =

∥∥∥∥∥1
s

s∑
i=1

u
(j)
ri

Pri

E(ri)

∥∥∥∥∥
2

− 2
s

s∑
i=1

u
(j)
ri

Pri

E(ri) · (ET u(j))

+‖ET u(j)‖2. (7.2)

Observe that

ES

(
u

(j)
ri

Pri

E(ri)

)
=

m∑
i=1

Pi
u

(j)
i

Pi
E(i) = ET u(j), (7.3)

which implies that

ES

(
2
s

s∑
i=1

u
(j)
ri

Pri

E(ri) · (ET u(j))

)
= 2‖ET u(j)‖2.

Using this, apply ES to Equation (7.2) to get:

ES(‖w(j) − σjv
(j)‖2) = ES



∥∥∥∥∥1

s

s∑
i=1

u
(j)
ri

Pri

E(ri)

∥∥∥∥∥
2

 − ‖ET u(j)‖2 (7.4)

Now, from the left-hand side, and expanding the norm squared,

ES



∥∥∥∥∥1

s

s∑
i=1

u
(j)
ri

Pri

E(ri)

∥∥∥∥∥
2



=
1
s2

s∑
i=1

ES

(
‖u

(j)
ri E(ri)‖2

P 2
ri

)
+

2
s2

∑
1≤i<l≤s

ES

(
u

(j)
ri E(ri)

Pri

· u
(j)
rl E(rl)

Prl

)

(7.5)

7.1 Adaptive Length-Squared Sampling 261

where
s∑

i=1

ES

(
‖u

(j)
ri E(ri)‖2

P 2
ri

)
=

s∑
i=1

m∑
l=1

Pl
‖u

(j)
l E(l)‖2

P 2
l

= s

m∑
l=1

‖u
(j)
l E(l)‖2

Pl

(7.6)
and, using the independence of the ris and Equation (7.3),

∑
1≤i<l≤s

ES

(
u

(j)
ri E(ri)

Pri

· u
(j)
rl E(rl)

Prl

)

=
∑

1≤i<l≤s

ES

(
u

(j)
ri E(ri)

Pri

)
· ES

(
u

(j)
rl E(rl)

Prl

)

=
s(s − 1)

2
‖ET u(j)‖2. (7.7)

The substitution of Equations (7.6) and (7.7) in Equation (7.5) gives

ES



∥∥∥∥∥1

s

s∑
i=1

u
(j)
ri

Pri

E(ri)

∥∥∥∥∥
2

 =

1
s

m∑
i=1

‖u
(j)
i E(i)‖2

Pi
+

s − 1
s

‖ET u(j)‖2.

Using this in Equation (7.4) we have

ES(‖w(j) − σjv
(j)‖2) =

1
s

m∑
i=1

‖u
(j)
i E(i)‖2

Pi
− 1

s
‖ET u(j)‖2,

and, using the hypothesis for Pi (Equation (7.1)), remembering that
u(j) is a unit vector and discarding the second term we conclude

ES(‖w(j) − σjv
(j)‖2) ≤ 1

cs
‖E‖2

F . (7.8)

Let ŷ(j) = 1
σj

w(j) for j = 1, . . . , r, let k′ = min{k,r} (think of k′ as

equal to k, this is the interesting case), let W = span{ŷ(1), . . . , ŷ(k′)},
and F̂ = A

∑k′
t=1 v(t)ŷ(t)T . We will bound the error ‖A − πW (A)‖2

F

using F̂ . Observe that the row space of F̂ is contained in W and πW

is the projection operator onto the subspace of all matrices with row
space in W with respect to the Frobenius norm. Thus,

‖A − πW (A)‖2
F ≤ ‖A − F̂‖2

F . (7.9)

262 Adaptive Sampling Methods

Moreover,

‖A − F̂‖2
F =

r∑
i=1

‖(A − F̂)T u(i)‖2 =
k′∑

i=1

‖σiv
(i) − w(i)‖2 +

r∑
i=k′+1

σ2
i .

(7.10)
Taking expectation and using Equation (7.8) we get

ES(‖A − F̂‖2
F) ≤

n∑
i=k+1

σ2
i +

k

cs
‖E‖2

F = ‖A − πk(A)‖2
F +

k

cs
‖E‖2

F .

This and Equation (7.9) give

ES(‖A − πW (A)‖2
F) ≤ ‖A − πk(A)‖2

F +
k

cs
‖E‖2

F . (7.11)

Finally, the fact that W ⊆ V + span(S) and dim(W) ≤ k imply that

‖A − πV +span(S),k(A)‖2
F ≤ ‖A − πW (A)‖2

F ,

and, combining this with Equation (7.11), we conclude

E S(‖A − πV +span(S),k(A)‖2
F) ≤ ‖A − πk(A)‖2

F +
k

cs
‖E‖2

F .

Now we can use Theorem 7.2 to prove the main theorem of this
section by induction.

Theorem 7.3. Let S = S1 ∪ ·· · ∪ St be a random sample of rows of
an m × n matrix A, where for j = 1, . . . , t, each set Sj is a sample of s

rows of A chosen independently from the following distribution: row i

is picked with probability

P
(j)
i ≥ c

‖E
(i)
j ‖2

‖Ej‖2
F

where E1 = A, Ej = A − πS1∪···∪Sj−1(A) and c is a constant. Then for
s ≥ k/cε, the span of S contains a matrix Ãk of rank k such that

ES(‖A − Ãk‖2
F) ≤ 1

1 − ε
‖A − Ak‖2

F + εt‖A‖2
F .

7.1 Adaptive Length-Squared Sampling 263

Proof. We will prove the slightly stronger result

ES(‖A − πS,k(A)‖2
F) ≤ 1 − (k

cs)
t

1 − k
cs

‖A − πk(A)‖2
F +

(
k

cs

)t

‖A‖2
F

by induction on t. The case t = 1 is precisely Theorem 7.1.
For the inductive step, let E = A − πS1∪···∪St−1(A). By means of

Theorem 7.2 we have that,

ESt(‖A − πS1∪···∪St,k(A)‖2
F) ≤ ‖A − πk(A)‖2

F +
k

cs
‖E‖2

F .

Combining this inequality with the fact that ‖E‖2
F ≤ ‖A −

πS1∪···∪St−1,k(A)‖2
F we get

ESt(‖A − πS1∪···∪St,k(A)‖2
F)

≤ ‖A − πk(A)‖2
F +

k

cs
‖A − πS1∪···∪St−1,k(A)‖2

F .

Taking the expectation over S1, . . . ,St−1:

ES(‖A − πS1∪···∪St,k(A)‖2
F)

≤ ‖A − πk(A)‖2
F +

k

cs
ES1,...,St−1

(‖A − πS1∪···∪St−1,k(A)‖2
F

)
and the result follows from the induction hypothesis for t − 1.

This adaptive sampling scheme suggests the following algorithm
that makes 2t passes through the data and computes and a rank-k
approximation within additive error εt.

Iterative Fast SVD

Input: A ∈ Rm×n with M non-zero entries, integers k ≤ m, t, error ε > 0.
Output: A set of k vectors in Rn.

1. Let S = ∅, s = k/ε.

264 Adaptive Sampling Methods

2. Repeat t times:

(a) Let E = A − πS(A).

(b) Let T be a sample of s rows of A according to the

distribution that assigns probability ‖E(i)‖2

‖E‖2
F

to row i.

(c) Let S = S ∪ T .

3. Let h1, . . . ,hk be the top k right singular vectors of πS(A).

Theorem 7.4. Algorithm Iterative Fast SVD finds vectors
h1 . . . ,hk ∈ Rn such that their span V satisfies

E (‖A − πV (A)‖2
F) ≤ 1

1 − ε
‖A − πk(A)‖2

F + εt‖A‖2
F . (7.12)

The running time is O
(
M kt

ε + (m + n)k2t2

ε2

)
.

Proof. For the correctness, observe that πV (A) is a random variable
with the same distribution as πS,k(A) as defined in Theorem 7.3. Also,
‖A − πS,k(A)‖2

F − ‖A − πk(A)‖2
F is a non-negative random variable

and Theorem 7.3 gives a bound on its expectation:

ES(‖A − πS,k(A)‖2
F − ‖A − πk(A)‖2

F)

≤ ε

1 − ε
‖A − πk(A)‖2

F + εt‖A‖2
F .

We will now bound the running time. We maintain a basis of the
rows indexed by S. In each iteration, we extend this basis orthogo-
nally with a new set of vectors Y , so that it spans the new sam-
ple T . The residual squared length of each row, ‖E(i)‖2, as well
as the total, ‖E‖2

F , is computed by subtracting the contribution of
πT (A) from the values that they had during the previous iteration. In
each iteration, the projection onto Y needed for computing this con-
tribution takes time O(Ms). In iteration i, the computation of the
orthonormal basis Y takes time O(ns2i) (Gram–Schmidt orthonormal-
ization of s vectors in Rn against an orthonormal basis of size at
most s(i + 1)). Thus, the total time in iteration i is O(Ms + ns2i);
with t iterations, this is O(Mst + ns2t2). At the end of Step 7.1 we

7.2 Volume Sampling 265

have πS(A) in terms of our basis (an m × st matrix). Finding the
top k singular vectors in Step 7.1 takes time O(ms2t2). Bringing
them back to the original basis takes time O(nkst). Thus, the total
running time is O(Mst + ns2t2 + ms2t2 + nkst) or, in other words,
O
(
M kt

ε + (m + n)k2t2

ε2

)
.

7.2 Volume Sampling

Volume sampling is a generalization of length-squared sampling. We
pick subsets of k rows instead picking rows one by one. The probability
that we pick a subset S is proportional to the volume of the k-simplex
∆(S) spanned by these k rows along with the origin. This method will
give us a factor (k + 1) approximation (in expectation) and a proof that
any matrix has k rows whose span contains such an approximation.
Moreover, this bound is tight, i.e., there exist matrices for which no k

rows can give a better approximation.

Theorem 7.5. Let S be a random subset of k rows of a given matrix
A chosen with probability

PS =
Vol(∆(S))2∑

T :|T |=k Vol(∆(T))2
.

Then Ãk, the projection of A to the span of S, satisfies

E (‖A − Ãk‖2
F) ≤ (k + 1)‖A − Ak‖2

F .

Proof. For every S ⊆ [m], let ∆S be the simplex formed by formed by
{A(i)|i ∈ S} and the origin, and let HS be the linear subspace spanned
by these rows.

∑
S,|S|=k+1

Volk+1(∆S)2 =
1

k+1

∑
S,|S|=k

m∑
j=1

1
(k+1)2

Volk(∆S)2d(A(j),HS)2

=
1

(k+1)3
∑

S,|S|=k

Volk(∆S)2
m∑

j=1

d(A(j),HS)2

266 Adaptive Sampling Methods

Let σ1, . . . ,σn be the singular values of A. Then, using Lemma 7.6
(proved next), we can rewrite this as follows:

1
((k + 1)!)2

∑
1≤t1<...<tk+1≤n

σ2
t1 . . .σ2

tk+1

=
1

(k + 1)3
∑

S,|S|=k

Volk(∆S)2
m∑

j=1

d(A(j),HS)2

which means that∑
S,|S|=k

Volk(∆S)2‖A − πS,k(A)‖2
F

=
k + 1
(k!)2

∑
1≤t1<...<tk+1≤n

σ2
t1 . . .σ2

tk+1

≤ k + 1
(k!)2

∑
1≤t1<...<tk≤n

σ2
t1 . . .σ2

tk

m∑
j=k+1

σ2
j

≤

 ∑

S,|S|=k

Volk(∆S)2)


(k + 1)‖A − Ak‖2

F

Therefore,

1(∑
S,|S|=k Volk(∆S)2)

) ∑
S,|S|=k

Volk(∆S)2‖A − πS,k(A)‖2
F

≤ (k + 1)‖A − Ak‖2
F

And therefore there must exist a set S of k rows of A such that

‖A − πS,k(A)‖2
F ≤ (k + 1)‖A − Ak‖2

F .

The coefficient of ‖A − πS,k(A)‖2
F on the LHS is precisely the proba-

bility with which S is chosen by volume sampling. Hence,

E (‖A − πS,k(A)‖2
F) ≤ (k + 1)‖A − Ak‖2

F .

7.2 Volume Sampling 267

Lemma 7.6.∑
S,|S|=k

Volk(∆S)2 =
1

(k!)2
∑

1≤t1<t2<...<tk≤n

σ2
t1σ

2
t2 . . .σ2

tk

where σ1,σ2, . . . ,σn are the singular values of A.

Proof. Let AS be the sub-matrix of A formed by the rows {A(i) |i ∈ S}.
Then we know that the volume of the k-simplex formed by these rows
is given by

Volk(∆S) =
1
k!

√
det(ASAT

S)

Therefore, ∑
S,|S|=k

Volk(∆S)2 =
1

(k!)2
∑

S,|S|=k

det(ASAT
S)

=
1

(k!)2
∑

B : principal
k-minor of AAT

det(B)

Let det(AAT − λI) = λm + cm−1λ
m−1 + · · · + c0 be the characteristic

polynomial of AAT . From basic linear algebra we know that the roots of
this polynomial are precisely the eigenvalues of AAT , i.e., σ2

1,σ
2
2, . . . ,σ

2
n

and 0 with multiplicity (m − n). Moreover, the coefficient cm−k can be
expressed in terms of these roots as:

cm−k = (−1)m−k
∑

1≤t1<t2<···<tk≤n

σ2
t1σ

2
t2 · · ·σ2

tk

But we also know that cm−k is the coefficient of λm−k in det(AAT −
λI), which by Lemma 7.7 is

cm−k = (−1)m−k
∑

B : principal
k-minor ofAAT

det(B)

Therefore,∑
S,|S|=k

Volk(∆S)2 =
1

(k!)2
∑

1≤t1<t2<···<tk≤n

σ2
t1σ

2
t2 · · ·σ2

tk

268 Adaptive Sampling Methods

Lemma 7.7. Let the characteristic polynomial of M ∈ Rm×m be
det(M − λIm) = λm + cm−1λ

m−1 + · · · + c0. Then

cm−k = (−1)m−k
∑

B,B principal
k − minor of M

det(B) for 1 ≤ k ≤ m

Proof. We use the following notation. Let M ′ = M − λI, and Sm be the
set of permutation of {1,2, . . . ,m}. The sign of a permutation sgn(τ),
for τ ∈ Perm([m]), is equal to 1 if it can be written as a product of
an even number of transpositions and −1 otherwise. For a subset S of
rows, we denote the submatrix of entries (Mi,j)i,j∈S by MS .

det(M − λIm) = det(M ′)

=
∑

τ∈Perm([m])

sgn(τ)M ′
1,τ(1)M

′
2,τ(2) · · ·M ′

m,τ(m)

The term cm−kλ
m−k comes by taking sum over τ which fix some

set S ⊆ [m] of size (m − k), and the elements
∏

i∈S M ′
i,i contribute

(−1)m−kλm−k and the coefficient comes from the constant term in∑
τ∈Perm([m]−S) sgn(τ)

∏
i/∈S M ′

i,τ(i). This, by induction hypothesis, is
equal to

∑
S,|S|=m−k det(M[m]−S). Hence

cm−k = (−1)m−k
∑

S,|S|=m−k

det(M[m]−S) = (−1)m−k
∑

B,B principal
k − minor of M

det(B)

Volume sampling leads to the following existence result for inter-
polative low-rank approximation.

Theorem 7.8. Any matrix A contains a set of 2k log(k + 1) + (4k/ε)
rows in whose span lies a rank-k matrix Ãk with the property that

‖A − Ãk‖2
F ≤ (1 + ε)‖A − Ak‖2

F .

The proof follows from using Theorem 7.5 followed by multiple
rounds of adaptive length-squared sampling.

7.2 Volume Sampling 269

Exercise 7.9. Prove Theorem 7.8.

The next exercise gives a fast procedure that approximates the
volume sampling distribution.

Exercise 7.10. Let S be a subset of k rows of a given matrix A gen-
erated as follows: The first row is picked from LSrow(A). The ith row
is picked from LSrow(Âi) where Âi is the projection of A orthogonal to
the span of the first i − 1 rows chosen.

1. Show that

E
(‖A − πS(A)‖2

F

) ≤ (k + 1)!‖A − Ak‖2
F .

2. As in Exercise 7.9, use adaptive length-squared sampling to
reduce the error to (1 + ε). What is the overall time com-
plexity and the total number of rows sampled?

7.2.1 A Lower Bound

The following proposition shows that Theorem 7.5 is tight.

Proposition 7.11. Given any ε > 0, there exists a (k + 1) × (k + 1)
matrix A such that for any subset S of k rows of A,

‖A − πS,k(A)‖2
F ≥ (1 − ε) (k + 1) ‖A − Ak‖2

F

Proof. The tight example consists of a matrix with k + 1 rows which
are the vertices of a regular k-dimensional simplex lying on the affine
hyperplane {Xk+1 = α} in Rk+1. Let A(1),A(2), . . . ,A(k+1) be the ver-
tices with the point p = (0,0, . . . ,0,α) as their centroid. For α small
enough, the best k-dimensional subspace for these points is given by
{Xk+1 = 0} and

‖A − Ak‖2
F = (k + 1)α2

270 Adaptive Sampling Methods

Consider any subset of k points from these, say S = {A(1),A(2),

. . . ,A(k)}, and let HS be the linear subspace spanning them. Then,

‖A − πS,k(A)‖2
F = d(A(k+1),HS)2.

We claim that for any ε > 0, α can be chosen small enough so that

d(A(k+1),HS) ≥
√

(1 − ε)(k + 1)α.

Choose α small enough so that d(p,HS) ≥√(1 − ε)α. Now

d(A(k+1),HS)
d(p,HS)

=
d(A(k+1),conv(A(1), . . . ,A(k)))

d(p,conv(A(1), . . . ,A(k)))
= k + 1

since the points form a simplex and p is their centroid. The claim
follows. Hence,

‖A − πS,k(A)‖2
F = d(A(k+1),HS)2

≥ (1 − ε)(k + 1)2α2

= (1 − ε) (k + 1) ‖A − Ak‖2
F

Exercise 7.12. Extend the above lower bound to show that for 0 ≤
ε ≤ 1/2, there exist matrices for which one needs Ω(k/ε) rows to span
a rank-k matrix that is a (1 + ε) approximation.

7.3 Isotropic Random Projection

In this section, we describe another randomized algorithm which
also gives relative approximations to the optimal rank-k matrix with
roughly the same time complexity. Moreover, it makes only two passes
over the input data.

The idea behind the algorithm can be understood by going back to
the matrix multiplication algorithm described in Section 6. There to
multiply two matrices A,B, we picked random columns of A and rows
of B and thus derived an estimate for AB from these samples. The error
bound derived was additive and this is unavoidable. Suppose that we
first project the rows of A randomly to a low-dimensional subspace,
i.e., compute AR where R is random and n × k, and similarly project

7.3 Isotropic Random Projection 271

the columns of B, then we can use the estimate ARRT B. For low-rank
approximation, the idea extends naturally: first project the rows of A

using a random matrix R, then project A to the span of the columns
of AR (which is low dimensional), and finally find the best rank-k
approximation of this projection.

Isotropic RP

Input: A ∈ Rm×n with M non-zero entries, integers k ≤ m, error ε > 0.
Output: A rank-k matrix Ãk.

1. Let l = Ck/ε and S be a random l × n matrix; compute
B=SA.

2. Project A o the span of the rows of B to get Ã.
3. Output Ãk, the best rank-k approximation of Ã.

Theorem 7.13. Let A be an m × n real matrix with M nonzeros. Let
0 < ε < 1 and S be an r × n random matrix with i.i.d. Bernoulli entries
with mean zero and r ≥ Ck/ε where C is a universal constant. Then
with probability at least 3/4,

‖A − πSA,k(A)‖F ≤ (1 + ε)‖A − Ak‖F

and the singular vectors spanning πSA,k(A) can be computed in two
passes over the data in O(Mr + (m + n)r2) time using O((m + n)r2)
space.

Proof. (Outline) Consider the rank-k matrix D = AkV V T where SA =
UΣV T is the SVD of SA. The rows of D lie in the span of the rows of
SA. Hence,

‖A − πSA,kA‖2
F ≤ ‖A − D‖2

F = ‖A − Ak‖2
F + ‖Ak − D‖2

F .

We will now show that

‖Ak − D‖2
F ≤ 2ε‖A − Ak‖2

F

which completes the proof.

272 Adaptive Sampling Methods

To see this, we can view each row of A − Ak as a linear regression
problem, namely,

min
x

‖A(j) − Akx‖
for j = 1, . . . ,n and let x1, . . . ,xn be the solutions. The best approxi-
mation of A(j) from the row span of Ak is A

(j)
k . For a general linear

regression problem,

min
x

‖Ax − b‖

the solution is x = A+b where if A = Û Σ̂V̂ T is the SVD of A, then
A+ = V̂ Σ̂−1ÛT (see Exercise 7.14). Now consider the linear regressions

min
x

‖(SA)(j) − (SAk)x‖
for j = 1, . . . ,n. Let their solutions be x̃1, . . . , x̃n. Then, there exist vec-
tors w1, . . .wn orthogonal to the column span of Uk and β1, . . . ,βn ∈ Rk

such that

wj = A(j) − A
(j)
k

Uβj = Akx̃j − Akxj

From this (through a series of computations), we have, for j = 1, . . . ,n,

(UT
k ST SUk)βj = UT

k ST Swj

Now we choose r large enough so that σ2(SU) ≥ 1/
√

2 with probability
at least 7/8 and hence,

‖A − D‖2
F =

n∑
j=1

β2
j

≤ 2
n∑

i=1

‖UT
k ST Swj‖2

≤ 2ε

n∑
j=1

‖wj‖2

= 2ε

n∑
j=1

‖A − Ak‖2
F .

7.4 Discussion 273

Here the penultimate step we used the fact that random projection
preserves inner products approximately, i.e., given that wj is orthogonal
to Uk,

|UT
k ST Swj | ≤ ε2‖wj‖2.

Exercise 7.14. Let A be an m × n matrix with m > n and A = UΣV T

be its SVD. Let b ∈ Rm. Then the point x∗ which minimizes ‖Ax − b‖
is given by x∗ = V Σ−1UT b.

7.4 Discussion

In this chapter we saw asymptotically tight bounds on the number
of rows/columns whose span contains a near-optimal rank-k approx-
imation of a given matrix. We also saw two different algorithms for
obtaining such an approximation efficiently. Adaptive sampling was
introduced in [29], volume sampling in [30] and isotropic RP in [61].

The existence of such sparse interpolative approximations has a nice
application to clustering. Given a set of points in Rn, and integers j,k,
the projective clustering problem asks for a set of j k-dimensional sub-
spaces such that the sum of squared distances of each point to its near-
est subspace is minimized. Other objective functions, e.g., maximum
distance or sum of distances has also been studied. The interpolative
approximation suggests a simple enumerative algorithm: the optimal
set of subspaces induce a partition of the point set; for each part, the
subspace is given by the best rank-k approximation of the subset (the
SVD subspace). From the theorems of this chapter, we know that a
good approximation to the latter lies in the span of a small number
(k/ε) of points. So, we simply enumerate over all subsets of points
of this size, choosing j of them at a time. For each such choice, we
have to consider all “distinct” k-dimensional subspaces in their span.
This can be achieved by a discrete set of subspaces of exponential size,
but only in k and ε. For each choice of j k-dimensional subspaces we
compute the value of the objective function and output the minimum
overall.

274 Adaptive Sampling Methods

It is an open question to implement exact volume sampling
efficiently, i.e., in time polynomial in both n and k. Another open ques-
tion is to approximate a given matrix efficiently (nearly linear time or
better) while incurring low error in the spectral norm.

8
Extensions of SVD

In this chapter, we discuss two extensions of SVD which provide sub-
stantial improvements or breakthroughs for some problems. The first
is an extension of low-rank approximation from matrices to tensors
(used in Section 5). Then we study an affine-invariant version of PCA,
called Isotropic PCA. At first glance, this appears to be a contradic-
tion in terms; however, there is a natural definition with applications
(learning mixtures).

8.1 Tensor Decomposition via Sampling

We recall the basic set up. Corresponding to an r-dimensional ten-
sor A, there is an r-linear form which for a set of r vectors,
x(1),x(2), . . . ,x(r−1),x(r) ∈ Rn, is defined as

A(x(1),x(2), . . . ,x(r)) =
∑

i1,i2,...,ir

Ai1,i2,...,ir−1,irx
(1)
i1

x
(2)
i2

, . . .x
(r)
ir

.

275

276 Extensions of SVD

Recall the two norms of interest for tensors, the Frobenius norm and
the 2-norm:

‖A‖F =
(∑

A2
i1,i2,...,ir

) 1
2

‖A‖2 = max
x(1),x(2),...,x(r)

A(x(1),x(2), . . . ,x(r−1),x(r))
|x(1)||x(2)|

We begin with the existence of a low-rank tensor decomposition.

Lemma 8.1. For any tensor A, and any ε > 0, there exist k ≤ 1/ε2

rank-1 tensors, B1,B2, . . . ,Bk such that

‖A − (B1 + B2 + . . .Bk)‖2 ≤ ε‖A‖F .

Proof. If ‖A‖2 ≤ ε‖A‖F , then we are done. If not, there are vectors
x(1),x(2), . . . ,x(r), all of length 1 such that

A(x(1),x(2), . . . ,x(r)) ≥ ε‖A‖F .

Now consider the r-dimensional array

B = A − (A(x(1),x(2), . . . ,x(r)))x(1) ⊗ x(2) ⊗ . . .x(r).

It is easy to see that

‖B‖2
F = ‖A‖2

F − A(x(1),x(2), . . . ,x(r))2.

We can repeat on B and clearly this process will only go on for at most
1/ε2 steps.

Recall that for any r − 1 vectors x(1),x(2), . . . ,x(r−1), the vector
A(x(1),x(2), . . . ,x(r−1), ·) has i-th component∑

i1,i2,...,ir−1

Ai1,i2,...,ir−1,ix
(1)
i1

x
(2)
i2

, . . .x
(r−1)
ir−1

.

We now present an algorithm to solve the following problem: Given
an r-dimensional tensor A, find unit vectors x(1),x(2), . . . ,x(r) maximiz-
ing A(x(1),x(2), . . . ,x(r)) to within additive error ε‖A‖F /2.

8.1 Tensor Decomposition via Sampling 277

Tensor decomposition

Set η = ε2/100r
√

n and s = 105r3/ε2.

1. Pick s random (r − 1)-tuples (i1, i2, . . . , ir−1) with probabil-
ities proportional to the sum of squared entries on the line
defined by it:

p(i1, i2, . . . , ir−1) =

∑
i A

2
i1,i2,...,ir−1,i

‖A‖2
F

.

Let I be the set of s r − 1 tuples picked.
2. For each i1, i2, . . . , ir−1 ∈ I, enumerate all possible values of

ẑ
(1)
i1

, ẑ
(2)
i2

, . . . , ẑ
(r−1)
ir−1

whose coordinates are in the set

J = {−1,−1 + η,−1 + 2η, . . .0, . . . ,1 − η,1}s(r−1).

(a) For each set of ẑ(t), for each i ∈ Vr, compute

yi =
∑

(i1,...,ir−1)∈I

A(i1, . . . , ir−1, i)ẑ
(1)
i1

. . . ẑ
(r−1)
ir−1

.

and normalize the resulting vector y to be a unit
vector.

(b) Consider the (r − 1)-dimensional array A(y) defined
by

(A(y))i1,i2,...,ir−1 =
∑

i

Ai1,i2,i3...ir−1,i yi

and apply the algorithm recursively to find the opti-
mum

A(y)(x(1),x(2), . . . ,x(r−1))

with |x(1)| = . . . |x(r−1)| = 1 to within additive error
ε‖A(y)‖F /2.

3. Output the set of vectors that gives the maximum among all
the candidates.

278 Extensions of SVD

To see the idea behind the algorithm, let z(1),z(2), . . . ,z(r) be unit
vectors that maximize A(x(1),x(2), . . . ,x(r)). Since

A(z(1), . . . ,z(r−1),z(r)) = z(r) · A(z(1), . . . ,z(r−1), ·),
we have

z(r) =
A(z(1),z(2), . . . ,z(r−1), ·)
|A(z(1),z(2), . . . ,z(r−1), ·)| .

Thus, z(r) is a function of z(1),z(2), . . . ,z(r−1). Therefore, we can
estimate the components of z(r) given random terms in the sum
A(z(1), . . . ,z(r−1), ·). We will need only s = O(r3/ε2) terms for a good
estimate. Also, we do not need to know the z(1),z(2), . . . ,z(r−1) com-
pletely; only s(r − 1) of coordinates in total will suffice. We enumerate
all possibilities for the values of these coordinates. For each candidate
z(r), we can reduce the problem to maximizing an (r − 1)-dimensional
tensor and we solve this recursively. We then take the best candidate
set of vectors.

We proceed to analyze the algorithm and prove the following
theorem.

Theorem 8.2. For any tensor A, and any ε > 0, we can find k rank-1
tensors B1,B2, . . . ,Bk, where k ≤ 4/ε2, in time (n/ε)O(1/ε4) such that
with probability at least 3/4 we have

‖A − (B1 + B2 + . . .Bk)‖2 ≤ ε‖A‖F .

For r = 2, the running time can be improved to a fixed polynomial
in n and exponential only in (1/ε). We begin by bounding the error
introduced by the discretization.

Lemma 8.3. Let z(1),z(2), . . . ,z(r−1) be the optimal unit vectors. Sup-
pose w(1),w(2), . . . ,w(r−1) are obtained from the zs by rounding each
coordinate down to the nearest integer multiple of η, with 0 ≤ η < 1.
Then, ∣∣∣A(z(1), . . . ,z(r−1), ·) − A(w(1), . . . ,w(r−1), ·)

∣∣∣ ≤ ηr
√

n‖A‖F .

8.1 Tensor Decomposition via Sampling 279

Proof. We can write∣∣∣A(z(1),z(2), . . . ,z(r−1), ·) − A(w(1),w(2), . . . ,w(r−1), ·)
∣∣∣

≤
∣∣∣A(z(1),z(2), . . . ,z(r−1), ·) − A(w(1),z(2), . . . ,z(r−1), ·)

∣∣∣
+
∣∣∣A(w(1),z(2), . . . ,z(r−1), ·) − A(w(1),w(2),z(3), . . . ,z(r−1), ·)

∣∣∣ . . .
A typical term above is∣∣A(w(1), . . . ,w(t),z(t+1), . . . ,z(r−1), ·)

−A
(
w(1), . . . ,w(t),w(t+1),z(t+2), . . . ,z(r−1), ·)∣∣

≤ ∣∣C(z(t+1) − w(t+1))
∣∣

≤ ‖C‖2|z(t+1) − w(t+1)|
≤ ‖C‖F η

√
n ≤ ‖A‖F η

√
n.

Here, C is the matrix defined as the matrix whose ij’th entry is∑
j1,...jt,jt+2...jr−1

Aj1,...,jt,i,jt+2,...,jr−1,jw
(1)
j1

. . .w
(t)
jt

z
(t+2)
jt+2

. . .z
(r−1)
jr−1

The claim follows.

We analyze the error incurred by sampling in the next two lemmas.

Lemma 8.4. For an (r − 1)-tuple (i1, i2, . . . , ir−1) ∈ I, define the ran-
dom variables variables Xi for i = 1, . . . ,n by

Xi =
Ai1,i2,...,ir−1,iw

(1)
i1

w
(2)
i2

. . .w
(r−1)
ir−1

p(i1, i2, . . . , ir−1)
.

Then,

E (Xi) = A(w(1),w(2) . . .w(r−1), ·)i.

and

Var (Xi) ≤ ‖A‖2
F .

280 Extensions of SVD

Proof. The expectation is immediate, while the variance can be esti-
mated as follows:

∑
i

Var (Xi) ≤
∑

i

∑
i1,i2,...,

A2
i1,i2,...,ir−1,i

(
w

(1)
i1

. . .w
(r−1)
ir−1

)2

p(i1, i2, . . . ,)

≤
∑

i1,i2,...,

(
z
(1)
i1

. . .z
(r−1)
ir−1

)2

p(i1, i2, . . . ,)

∑
i

A2
i1,i2,...,ir−1,i

≤ ‖A‖2
F .

Lemma 8.5. Define

ζ = A(z(1),z(2), . . . ,z(r−1), ·).

In the list of candidate vectors enumerated by the algorithm will be a
vector y such that

‖A

(
y

|y|
)

− A

(
ζ

|ζ|
)

‖F ≤ ε

10r
‖A‖F .

Proof. Consider the vector y computed by the algorithm when all ẑ(t)

are set to w(t), the rounded optimal vectors. This will clearly happen
sometime during the enumeration. This yi is just the sum of s i.i.d.
copies of Xi, one for each element of I. Thus, we have that

E(y) = sA(w(1),w(2) . . .w(r−1), ·)

and

Var (y) = E(|y − E(y)|2) ≤ s‖A‖2
F .

From the above, it follows that with probability at least 1 − (1/10r),
we have

|∆| ≤ 10r
√

s‖A‖F .

8.2 Isotropic PCA 281

Using this,∣∣∣∣ y

|y| − ζ

|ζ|
∣∣∣∣ =

|(y|ζ| − ζ|y|)|
|y‖ζ|

=
1

|y‖ζ| |(∆ + sζ)|ζ| − ζ(|y| − s|ζ| + s|ζ|)|

≤ 2|∆|
(s|y|) ≤ ε

50r2 ,

assuming |y| ≥ ε‖A‖F /100r. If this assumption does not hold, we know
that the |ζ| ≤ ε‖A‖F /20r and in this case, the all-zero tensor is a good
approximation to the optimum. From this, it follows that

‖A

(
y

|y|
)

− A

(
ζ

|ζ|
)

‖F ≤ ε

10r
‖A‖F .

Thus, for any r − 1 unit length vectors a(1),a(2), . . . ,a(r−1),
we have∣∣∣∣A

(
a(1), . . . ,a(r−1),

y

|y|
)

− A

(
a(1), . . . ,a(r−1),

ζ

|ζ|
)∣∣∣∣ ≤ ε

10r
‖A‖F .

In words, the optimal set of vectors for A(y/|y|) is nearly optimal for
A(ζ/|ζ|). Since z(r) = ζ/|ζ|, the optimal vectors for the latter prob-
lem are z(1), . . . ,z(r−1). Applying this argument at every phase of the
algorithm, we get a bound on the total error of ε‖A‖F /10.

The running time of algorithm is dominated by the number of
candidates we enumerate, and is at most

poly(n)
(

1
η

)s2r

=
(n

ε

)O(1/ε4)
.

This completes the proof of Theorem 8.2.

8.2 Isotropic PCA

In this section we discuss an extension of Principal Component Anal-
ysis (PCA) that is able to go beyond standard PCA in identifying

282 Extensions of SVD

“important” directions. Suppose the covariance matrix of the input
(distribution or point set in Rn) is a multiple of the identity. Then,
PCA reveals no information — the second moment along any direc-
tion is the same. The extension, called isotropic PCA, can reveal
interesting information in such settings. In Section 2, we used this
technique to give an affine-invariant clustering algorithm for points
in Rn. When applied to the problem of unraveling mixtures of arbi-
trary Gaussians from unlabeled samples, the algorithm yields strong
guarantees.

To illustrate the technique, consider the uniform distribution on the
set X = {(x,y) ∈ R

2 : x ∈ {−1,1},y ∈ [−√
3,

√
3]}, which is isotropic.

Suppose this distribution is rotated in an unknown way and that we
would like to recover the original x and y axes. For each point in a sam-
ple, we may project it to the unit circle and compute the covariance
matrix of the resulting point set. The x direction will correspond to the
greater eigenvector, the y direction to the other. Instead of projection
onto the unit circle, this process may also be thought of as importance
weighting, a technique which allows one to simulate one distribution
with another. In this case, we are simulating a distribution over the set
X, where the density function is proportional to (1 + y2)−1, so that
points near (1,0) or (−1,0) are more probable.

More generally, isotropic PCA first puts a given distribution in
isotropic position, then reweights points using a spherically symmetric
distribution and performs PCA on this reweighted distribution. The
core of PCA is finding a direction that maximizes the second moment.
When a distribution is isotropic, the second moment of a random point
X is the same for any direction v, i.e., E ((vT X)2) is constant. In this sit-
uation, one could look for directions which maximize higher moments,
e.g., the fourth moment. However, finding such directions seems to be
hard. Roughly speaking, isotropic PCA finds directions which maximize
a certain weighted averages of higher moments.

In the description below, the input to the algorithm is an m × n

matrix (rows are points in Rn).

8.3 Discussion 283

Isotropic PCA

1. Apply an isotropic transformation to the input data, so that
the mean of the resulting data is zero and its covariance matrix
is the identity.

2. Weight each point using the density of a spherically symmetric
weight function centered at zero, e.g., a spherical Gaussian.

3. Perform PCA on the weighted data.

In the application to Gaussian mixtures, the reweighting density is
indeed a spherical Gaussian.

8.3 Discussion

Tensors are natural generalizations of matrices and seem to appear in
many data sets, e.g., network traffic (sender, receiver, time), or the
Web (document, term, hyperlink). However, many algorithmic prob-
lems that can be solved efficiently for matrices appear to be harder or
intractable. Even finding the vector that maximizes the spectral norm
of a tensor is NP-hard. Thus, it seems important to understand what
properties of tensors or classes of tensors are algorithmically useful.
The sampling-based tensor approximation presented here is from [25].

Isotropic PCA was introduced in Brubaker and Vempala [15] and
applied to learning mixtures. It would be interesting to see if other
problems could be tackled using this tool. In particular, the directions
identified by the procedure might have significance in convex geometry
and functional analysis.

References

[1] D. Achlioptas and F. McSherry, “On Spectral Learning of Mixtures of Distri-
butions,” in Proceedings of COLT, 2005.

[2] D. Achlioptas and F. McSherry, “Fast computation of low-rank matrix approx-
imations,” Journal of the ACM, vol. 54, no. 2, 2007.

[3] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “NP-hardness of Euclidean
sum-of-squares clustering,” Machine Learning, vol. 75, no. 2, pp. 245–248,
2009.

[4] N. Alon, W. DeLaVega, R. Kannan, and M. Karpinski, “Random sub-problems
of Max-SNP problems,” Proceedings of the 34th Annual ACM Symposium on
Theory on Computing, pp. 668–677, 2002.

[5] N. Alon, M. Krivelevich, and B. Sudakov, “Finding a large hidden clique in a
random graph,” Random Structures and Algorithms, vol. 13, pp. 457–466, 1998.

[6] S. Arora and R. Kannan, “Learning mixtures of arbitrary Gaussians,” Annals
of Applied Probability, vol. 15, no. 1A, pp. 69–92, 2005.

[7] S. Arora, D. Karger, and M. Karpinski, “Polynomial time approximation
schemes for dense instances of NP-hard problems,” Proceedings of the 27th
Annual ACM Symposium on Theory of Computing, pp. 284–293, 1995.

[8] S. Arora, S. Rao, and U. Vazirani, “Expander flows, geometric embeddings and
graph partitioning,” in STOC ’04: Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pp. 222–231, 2004.

[9] D. Arthur and S. Vassilvitskii, “k-means++: The Advantages of Careful Seed-
ing,” in Proceedings of SODA, 2007.

[10] Y. Azar, A. Fiat, A. Karlin, and F. McSherry, “Spectral analysis of data,” in
Proceedings of STOC, pp. 619–626, 2001.

284

References 285

[11] R. Bhatia, “Matrix factorizations and their perturbations,” Linear Algebra and
its applications, vol. 197, 198, pp. 245–276, 1994.

[12] R. Bhatia, Matrix Analysis. Springer, 1997.
[13] R. Boppana, “Eigenvalues and graph bisection: An average-case analysis,” in

Proceedings of the 28th IEEE Symposium on Foundations of Computer Science,
pp. 280–285, 1987.

[14] S. C. Brubaker, “Robust PCA and Clustering on Noisy Mixtures,” in Proceed-
ings of SODA, 2009.

[15] S. C. Brubaker and S. Vempala, “Isotropic PCA and affine-invariant cluster-
ing,” in Building Bridges Between Mathematics and Computer Science, 19,
(M. Grötschel and G. Katona, eds.), Bolyao Society Mathematical Studies,
2008.

[16] M. Charikar, S. Guha, Éva Tardos, and D. B. Shmoys, “A constant-factor
approximation algorithm for the k-median problem,” in Proceedings of the 31st
Annual ACM Symposium on Theory of Computing, pp. 1–10, 1999.

[17] K. Chaudhuri and S. Rao, “Beyond Gaussians: Spectral Methods for Learning
Mixtures of Heavy-Tailed Distributions,” in Proceedings of COLT, 2008.

[18] K. Chaudhuri and S. Rao, “Learning mixtures of product distributions using
correlations and independence,” in Proceedings of COLT, 2008.

[19] D. Cheng, R. Kannan, S. Vempala, and G. Wang, “A divide-and-merge method-
ology for clustering,” ACM Transactions on Database Systems, vol. 31, no. 4,
pp. 1499–1525, 2006.

[20] A. Dasgupta, J. Hopcroft, R. Kannan, and P. Mitra, “Spectral clustering with
limited independence,” in Proceedings of SODA, pp. 1036–1045, Philadelphia,
PA, USA, Society for Industrial and Applied Mathematics, 2007.

[21] A. Dasgupta, J. Hopcroft, J. Kleinberg, and M. Sandler, “On learning mixtures
of heavy-tailed distributions,” in Proceedings of FOCS, 2005.

[22] S. DasGupta, “Learning mixtures of Gaussians,” in Proceedings of FOCS, 1999.
[23] S. DasGupta and L. Schulman, “A two-round variant of EM for Gaussian mix-

tures,” in Proceedings of UAI, 2000.
[24] W. F. de-la Vega, “MAX-CUT has a randomized approximation scheme in

dense graphs,” Random Structures and Algorithms, vol. 8, pp. 187–199, 1996.
[25] W. F. de la Vega, M. Karpinski, R. Kannan, and S. Vempala, “Tensor decom-

position and approximation schemes for constraint satisfaction problems,” in
STOC ’05: Proceedings of the thirty-seventh annual ACM symposium on The-
ory of computing, pp. 747–754, 2005.

[26] W. F. de la Vega, M. Karpinski, and C. Kenyon, “Approximation schemes for
metric bisection and partitioning,” in Proceedings of 15th ACM-SIAM SODA,
pp. 499–508, 2004.

[27] W. F. de la Vega, M. Karpinski, C. Kenyon, and Y. Rabani, “Approximation
schemes for clustering problems,” in Proceedings of 35th ACM STOC, pp. 50–
58, 2003.

[28] W. F. de la Vega and C. Kenyon, “A randomized approximation scheme for met-
ric MAX-CUT,” Journal of Computer and System Sciences, vol. 63, pp. 531–
541, 2001.

286 References

[29] A. Deshpande, L. Rademacher, S. Vempala, and G. Wang, “Matrix approxi-
mation and projective clustering via volume sampling,” Theory of Computing,
vol. 2, no. 1, pp. 225–247, 2006.

[30] A. Deshpande and S. Vempala, “Adaptive sampling and fast low-rank matrix
approximation,” in APPROX-RANDOM, pp. 292–303, 2006.

[31] P. Drineas and R. Kannan, “Fast Monte-Carlo algorithms for approximate
matrix multiplication,” in Proceedings of the 42nd Annual IEEE Symposium
on Foundations of Computer Science, pp. 452–459, 2001.

[32] P. Drineas and R. Kannan, “Pass efficient algorithms for approximating large
matrices,” in SODA ’03: Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 223–232, 2003.

[33] P. Drineas, R. Kannan, A. Frieze, S. Vempala, and V. Vinay, “Clustering
large graphs via the singular value decomposition,” Machine Learning, vol. 56,
pp. 9–33, 2004.

[34] P. Drineas, R. Kannan, and M. Mahoney, “Fast Monte Carlo algorithms for
matrices II: Computing a low-rank approximation to a matrix,” SIAM Journal
on Computing, vol. 36, pp. 132–157, 2006.

[35] P. Drineas, R. Kannan, and M. Mahoney, “Fast Monte Carlo algorithms for
matrices II: Computing a low-rank approximation to a matrix,” SIAM Journal
on Computing, vol. 36, pp. 158–183, 2006.

[36] P. Drineas, R. Kannan, and M. Mahoney, “Fast Monte Carlo algorithms for
matrices II: Computing a low-rank approximation to a matrix,” SIAM Journal
on Computing, vol. 36, pp. 184–206, 2006.

[37] P. Drineas, I. Kerenidis, and P. Raghavan, “Competitive recommendation sys-
tems,” Proceedings of the 34th Annual ACM Symposium on Theory of Com-
puting, pp. 82–90, 2002.

[38] R. O. Duda, P. Hart, and D. Stork, Pattern Classification. John Wiley & Sons,
2001.

[39] J. Feldman, R. A. Servedio, and R. O’Donnell, “PAC learning axis-aligned
mixtures of Gaussians with no separation assumption,” in Proceedings of COLT,
pp. 20–34, 2006.

[40] A. Frieze and R. Kannan, “The regularity lemma and approximation schemes
for dense problems,” Proceedings of the 37th Annual IEEE Symposium on Foun-
dations of Computing, pp. 12–20, 1996.

[41] A. Frieze and R. Kannan, “MAX-CUT has a randomized approximation scheme
in dense graphs,” Quick Approximation to matrices and applications, vol. 19,
no. 2, pp. 175–200, 1999.

[42] A. Frieze, R. Kannan, and S. Vempala, “Fast Monte-Carlo algorithms for find-
ing low-rank approximations,” in Proceedings of FOCS, pp. 370–378, 1998.

[43] A. Frieze, R. Kannan, and S. Vempala, “Fast Monte-Carlo algorithms for find-
ing low-rank approximations,” Journal of the ACM, vol. 51, no. 6, pp. 1025–
1041, 2004.

[44] K. Fukunaga, Introduction to Statistical Pattern Recognition. Academic Press,
1990.

[45] Z. Füredi and J. Komlós, “The eigenvalues of random symmetric matrices,”
Combinatorica, vol. 1, no. 3, pp. 233–241, 1981.

References 287

[46] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[47] O. Goldreich, S. Goldwasser, and D. Ron, “Property testing and its connection
to learning and approximation,” Journal of the ACM, vol. 5, no. 4, pp. 653–750,
1998.

[48] G. H. Golub and C. F. van Loan, Matrix Computations. Johns Hopkins Uni-
versity Press, 3rd ed., 1996.

[49] S. Har-Peled and K. R. Varadarajan, “Projective clustering in high dimen-
sions using core-sets,” in Symposium on Computational Geometry, pp. 312–318,
2002.

[50] P. Indyk, “A sublinear time approximation scheme for clustering in metric
spaces,” in Proceedings of 40th IEEE FOCS, pp. 154–159, 1999.

[51] R. Kannan, H. Salmasian, and S. Vempala, “The spectral method for general
mixture models,” SIAM Journal on Computing, vol. 38, no. 3, pp. 1141–1156,
2008.

[52] R. Kannan, S. Vempala, and A. Vetta, “On clusterings: Good, bad and spec-
tral,” Journal of ACM, vol. 51, no. 3, pp. 497–515, 2004.

[53] J. A. Kelner, “Spectral partitioning, eigenvalue bounds, and circle packings
for graphs of bounded genus,” SIAM Journal on Computing, vol. 35, no. 4,
pp. 882–902, 2006.

[54] F. T. Leighton and S. Rao, “Multicommodity max-flow min-cut theorems and
their use in designing approximation algorithms,” Journal of the ACM, vol. 46,
no. 6, pp. 787–832, 1999.

[55] L. Lovász and S. Vempala, “The geometry of logconcave functions and sampling
algorithms,” Random Structures and Algorithms, vol. 30, no. 3, pp. 307–358,
2007.

[56] F. Lust-Piquard, “Inégalites de Khinchin dans Cp(1 < p < ∞),” Comptes Ren-
dus de l’Académie des sciences, Paris, vol. 303, pp. 289–292, 1986.

[57] F. McSherry, “Spectral partitioning of random graphs,” in FOCS, pp. 529–537,
2001.

[58] N. Megiddo and A. Tamir, “On the complexity of locating facilities in the
plane,” Operations Research Letters, vol. I, pp. 194–197, 1982.

[59] C. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala, “Latent semantic
indexing: A probabilistic analysis,” in Proceedings of PODS, 1998.

[60] M. Rudelson, “Random vectors in the isotropic position,” Journal of Functional
Analysis, vol. 164, pp. 60–72, 1999.

[61] T. Sarlós, “Improved approximation algorithms for large matrices via random
projections,” in FOCS, pp. 143–152, 2006.

[62] A. Sinclair and M. Jerrum, “Approximate counting, uniform generation
and rapidly mixing Markov chains,” Information and Computation, vol. 82,
pp. 93–133, 1989.

[63] D. A. Spielman and S.-H. Teng, “Spectral partitioning works: Planar graphs
and finite element meshes,” Linear Algebra and its Applications, vol. 421,
no. 2–3, pp. 284–305, 2007.

[64] G. Strang, Linear Algebra and Its Applications. Brooks Cole, 1988.

288 References

[65] S. Vempala and G. Wang, “A spectral algorithm for learning mixtures of distri-
butions,” Journal of Computer and System Sciences, vol. 68, no. 4, pp. 841–860,
2004.

[66] V. H. Vu, “Spectral norm of random matrices,” in Proceedings of STOC,
pp. 423–430, 2005.

[67] J. Wilkinson, The algebraic eigenvalue problem (paperback ed.). Oxford: Claren-
don Press, 1988.

