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Hyperbolic Geometry, Nehari’s Theorem,
Electric Circuits, and Analog Signal Processing

JEFFERY C. ALLEN AND DENNIS M. HEALY, JR.

Abstract. Underlying many of the current mathematical opportunities in
digital signal processing are unsolved analog signal processing problems.
For instance, digital signals for communication or sensing must map into
an analog format for transmission through a physical layer. In this layer
we meet a canonical example of analog signal processing: the electrical
engineer’s impedance matching problem. Impedance matching is the de-
sign of analog signal processing circuits to minimize loss and distortion as
the signal moves from its source into the propagation medium. This pa-
per works the matching problem from theory to sampled data, exploiting
links between H∞ theory, hyperbolic geometry, and matching circuits. We
apply J. W. Helton’s significant extensions of operator theory, convex anal-
ysis, and optimization theory to demonstrate new approaches and research
opportunities in this fundamental problem.
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1. The Impedance Matching Problem

Figure 1 shows a twin-whip HF (high-frequency) antenna mounted on a su-
perstructure representative of a shipboard environment. If a signal generator is
connected directly to this antenna, not all the power delivered to the antenna can
be radiated by the antenna. If an impedance mismatch exists between the signal
generator and the antenna, some of the signal power is reflected from the antenna
back to the generator. To effectively use this antenna,
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Figure 1

a matching circuit must be inserted between the signal
generator and antenna to minimize this wasted power.

Figure 2 shows the matching circuit connecting the
generator to the antenna. Port 1 is the input from the
generator. Port 2 is the output that feeds the antenna.

The matching circuit is called a 2-port. Because the
2-port must not waste power, the circuit designer only
considers lossless 2-ports. The mathematician knows
the lossless 2-ports as the 2 × 2 inner functions. The
matching problem is to find a lossless 2-port that trans-
fers as much power as possible from the generator to
the antenna.

The mathematical reader can see antennas every-
where: on cars, on rooftops, sticking out of cell phones.
A realistic model of an antenna is extremely complex
because the antenna is embedded in its environment.
Fortunately, we only need to know how the antenna be-
haves as a 1-port device. As indicated in Figure 2, the
antenna’s scattering function or reflectance sL characterizes its 1-port behavior.
The mathematician knows sL as an element in the unit ball of H∞.

Figure 3 displays sL : jR → C of an HF antenna measured over the frequency
range of 9 to 30 MHz. (Here j = +

√−1 because i is used for current.) At
each radian frequency ω = 2πf , where f is the frequency in Hertz, sL(jω) is a
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Figure 2. An antenna connected to a lossless matching 2-port.
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complex number in the unit disk that specifies the relative strength and phase
of the reflection from the antenna when it is driven by a pure tone of frequency
ω. sL(jω) measures how efficiently we could broadcast a pure sinusoid of fre-
quency ω by directly connecting the sinusoidal signal generator to the antenna.
If |sL(jω)| is near 0, almost no signal is reflected back by the antenna towards
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Figure 3. The reflectance sL(jω) of an HF antenna.

the generator or, equivalently, almost all of the signal power passes through the
antenna to be radiated into space. If |sL(jω)| is near 1, most of this signal is
reflected back from the antenna and so very little signal power is radiated.

Most signals are not pure tones, but may be represented in the usual way
as a Fourier superposition of pure tones taken over a band of frequencies. In
this case, the reflectance function evaluated at each frequency in the band mul-
tiplies the corresponding frequency component of the incident signal. The net
reflection is the superposition of the resulting component reflections. To ensure
that an undistorted version of the generated signal is radiated from the antenna,
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the circuit designer looks for a lossless 2-port that “pulls sL(jω) to 0 over all
frequencies in the band.” As a general rule, the circuit designer must pull sL

inside the disk of radius 0.6 at the very least.
To take a concrete example, the circuit designer may match the HF antenna

using a transformer as shown in Figure 4. If we put a signal into in Port 1

sG

s1
sL

Figure 4. An antenna connected to a matching transformer.

of the transformer and measure the reflected signal, their ratio is the scattering
function s1. That is, s1 is how the antenna looks when viewed through the trans-
former. The circuit designer attempts to find a transformer so that the “matched
antenna” has a small reflectance. Figure 5 shows the optimal transformer does
provide a minimally acceptable match for the HF antenna. The grey disk shows
all reflectances |s| ≤ 0.6 and contains s1(jω) over the frequency band.

However, this example raises the following question: Could we do better with a
different matching circuit? Typically, a circuit designer selects a circuit topology,
selects the reactive elements (inductors and capacitors), and then undertakes a
constrained optimization over the acceptable element values. The difficulty of
this approach lies in the fact that there are many circuit topologies and each
presents a highly nonlinear optimization problem. This forces the circuit designer
to undertake a massive search to determine an optimal network topology with
no stopping criteria. In practice, often the circuit designer throws circuit after
circuit at the problem and hopes for a lucky hit. And there is always the nagging
question: What is the best matching possible? Remarkably, “pure” mathematics
has much to say about this analog signal processing problem.

2. A Synopsis of the H∞ Solution

Our presentation of the impedance matching problem weaves together many
diverse mathematical and technological threads. This motivates beginning with
the big picture of the story, leaving the details of the structure to the subse-
quent sections. In this spirit, the reader is asked to accept for now that to
every N -port (generalizing the 1- and 2-ports we have just encountered), there
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Figure 5. The reflectance sL (solid line) of an HF antenna and the reflectance

s1 (dotted line) obtained by a matching transformer.

corresponds an N × N scattering matrix S ∈ H∞(C+,CN×N ), whose entries
are analytic functions of frequency generalizing the reflectances of the previous
section. Mathematically, S : C+ → CN×N is a mapping from open right half
plane C+ (parameterizing complex frequency) to the space of complex N × N

matrices that is analytic and bounded with sup-norm

‖S‖∞ := ess.sup{‖S(jω)‖ : ω ∈ R} < ∞.

For a 1-port, S is scalar-valued and, as we saw previously, is called a scattering
function or reflectance. Scattering matrix entries for physical circuits are not
arbitrary functions of frequency. The circuits in this paper are linear, causal,
time-invariant, and solvable. These constraints force their scattering matrices
into H∞; see [3; 4; 31].
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Figure 6 presents the schematic of the matching 2-port. The matching 2-port
is characterized by its 2× 2 scattering matrix

S(jω) =
[

S11(jω) S12(jω)
S21(jω) S22(jω)

]
.

The matrix entries measure the output response of the 2-port. For example, s22

Lossless 2-portsG

sLvG v1 v2

+ +i1 i2

- -

s1

s11 s12
s21 s22

s2

S=

Figure 6. Matching circuit and reflectances.

measures the response reflected from Port 2 when a unit signal is driving Port 2;
s12 is the signal from Port 1 in response to a unit signal input to Port 2. If the
2-port is consumes power, it is called passive and its corresponding scattering
matrix is a contraction on jR:

S(jω)HS(jω) ≤
[

1 0
0 1

]

almost everywhere in frequency (a.e. in ω), or equivalently that S belongs to the
closed unit ball: S ∈ BH∞(C+,C2×2). The reflectances of the generator and
load are assumed to be passive also: sG, sL ∈ BH∞(C+). Because the goal is
to avoid wasting power, the circuit designer matches the generator to the load
using a lossless 2-port:

S(jω)HS(jω) =
[

1 0
0 1

]
a.e.

Scattering matrices satisfying this constraint provide the most general model for
lossless 2-ports. These are the 2 × 2 real inner functions, denoted by U+(2) ⊂
H∞(C+,C2×2). The circuit designer does not actually have access to all of
U+(2) through practical electrical networks. Instead, the circuit designer op-
timizes over a practical subclass U ⊂ U+(2). For example, some antenna ap-
plications restrict the total number d of inductors and capacitors. In this case,
U = U+(2, d) consists of the real, rational, inner functions of Smith–McMillan
degree not exceeding degree d (d defined in Theorem 6.2).

The figure-of-merit for the matching problem of Figure 6 is the transducer
power gain GT defined as the ratio of the power delivered to the load to the
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maximum power available from the generator [44, pages 606-608]:

GT (sG, S, sL) := |s21|2 1− |sG|2
|1− s1sG|2

1− |sL|2
|1− s22sL|2 , (2–1)

where s1 is the reflectance seen looking into Port 1 of the matching circuit at
the load sL terminating Port 2. This is computed by acting on sL by a linear-
fractional transform parameterized by the matrix S:

s1 = F1(S, sL) := s11 + s12sL(1− s22sL)−1s21. (2–2)

Likewise, looking into Port 2 with Port 1 terminated in sG gives the reflectance

s2 = F2(S, sG) := s22 + s21sG(1− s11sG)−1s12. (2–3)

The worst case performance of the matching circuit S is represented by the
minimum of the gain over frequency:

‖GT (sG, S, sL)‖−∞ := ess.inf{|GT (sG, S, sL; jω)| : ω ∈ R}.
In terms of this gain we can formulate the Matching Problem:

Matching Problem. Maximize the worst case of the transducer power gain
GT over a collection U ⊆ U+(2) of matching 2-ports:

sup{‖GT (sG, S, sL)‖−∞ : S ∈ U}.
The current approach is to convert the 2-port matching problem to an equivalent
1-port problem and optimize over an orbit in the hyperbolic disk. Specifically,
the transducer power gain can be written

GT (sG, S, sL) = 1−∆P (F2(S, sG), sL)2 = 1−∆P (sG, F1(S, sL))2,

where the power mismatch

∆P (s1, s2) :=
∣∣∣∣

s1 − s2

1− s1s2

∣∣∣∣
is the pseudohyperbolic distance between s̄1 and s2. The orbit of the generator’s
reflectance sG under the action of U is the set of reflectances

F2(U, sG) := {F2(S, sG) : S ∈ U} ⊆ BH∞(C+).

Thus, the matching problem is equivalent to maximizing the transducer power
gain over this orbit. The transducer power gain is bounded as follows:

sup{‖GT (sG, S, sL)‖−∞ : S ∈ U} = 1− inf{‖∆P (F2(S, sG), sL)‖2∞ : S ∈ U}
= 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U, sG)}
≤ 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ BH∞(C+)}.

Expressing matching in terms of power mismatch in this way manifests the un-
derlying hyperbolic geometry approximation problem. The reflectance of the
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generator is transformed to various new reflectances in the hyperbolic disk un-
der the action of the possible matching circuits. We look for the closest approach
of this orbit to the load sL with respect to the (pseudo) hyperbolic metric. The
last bound is reducible to a matrix calculation by a hyperbolic version of Ne-
hari’s Theorem [42], a classic result relating analytic approximation to an oper-
ator norm calculation. The resulting Nehari bound gives the circuit designer an
upper limit on the possible performance for any class U ⊆ U+(2) of matching
circuits. For some classes, this bound is tight, telling the circuit designer that
the benchmark is essentially obtainable with matching circuits from the specified
class. For example, when U is the class of all lumped lossless 2-ports (networks
of discrete inductors and capacitors)

U+(2,∞) :=
⋃

d≥0

U+(2, d)

and sG = 0, Darlington’s Theorem establishes that

sup{‖GT (sG = 0, S, sL)‖−∞ : S ∈ U+(2,∞)}
= 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ BH∞(C+),

provided sL is sufficiently smooth. In this case, the circuit designer knows that
there are lumped, lossless 2-ports that get arbitrarily close to the Nehari bound.
The limitation of this approach is the requirement that the generator reflectance
sG = 0, which is not always true. Thus, a good research topic is to relax this
constraint, or to generalize Darlington’s Theorem. Another limitation of the
techniques described in this paper is that the Nehari methods produce only a
bound— they do not supply the matching circuit. However, the techniques do
compute the optimal s2, leading to another excellent research topic— the “uni-
tary dilation” of s2 to a scattering matrix with s2 = s22. That such substantial
research topics naturally arise shows how an applied problem brings depth to
mathematical investigations.

3. Technical Preliminaries

The real numbers are denoted by R. The complex numbers are denoted by
C. The set of complex M ×N matrices is denoted by CM×N . IN and 0N denote
the N ×N identity and zero matrices. Complex frequency is written p = σ + jω.
The open right-half plane is denoted by C+ := {p ∈ C : Re[p] > 0}. The open
unit disk is denoted by D and the unit circle by T.

3.1. Function spaces.

• L∞(jR) denotes the class of Lebesgue-measurable functions defined on jR
with norm ‖φ‖∞ := ess.sup{|φ(jω)| : ω ∈ R}.

• C0(jR) denotes the subspace of those continuous functions on jR that vanish
at ±∞ with sup norm.
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• H∞(C+) denotes the Hardy space of functions bounded and analytic on C+

with norm ‖h‖∞ := sup{|h(p)| : p ∈ C+}.
H∞(C+) is identified with a subspace of L∞(jR) whose elements are obtained by
the pointwise limit h(jω) = limσ→0 h(σ + jω) that converges almost everywhere
[39, page 153]. Convergence in norm occurs if and only if the H∞ function has
continuous boundary values. Those H∞ functions with continuous boundary
values constitute the disk algebra:

• A1(C+) := 1+̇H∞(C+)∩C0(jR) denotes those continuous H∞(C+) functions
that are constant at infinity.

These spaces nest as

A1(C+) ⊂ H∞(C+) ⊂ L∞(jR).

Tensoring with CM×N gives the corresponding matrix-valued functions:

L∞(jR,CM×N ) := L∞(jR)⊗ CM×N

with norm ‖φ‖∞ := ess.sup{‖φ(jω)‖ : ω ∈ R} induced by the matrix norm.

3.2. The unit balls. The open unit ball of L∞(jR,CM×N ) is denoted as

BL∞(jR,CM×N ) :=
{

φ ∈ L∞(jR,CM×N ) : ‖φ‖∞ < 1
}

.

The closed unit ball of L∞(jR,CM×N ) is denoted as

BL∞(jR,CM×N ) :=
{

φ ∈ L∞(jR,CM×N ) : ‖φ‖∞ ≤ 1
}

.

Likewise, the open unit ball of H∞(C+,CM×N ) is

BH∞(C+,CM×N ) := BL∞(jR,CM×N ) ∩H∞(C+,CM×N ).

3.3. The real inner functions. The class of real H∞(C+,CM×N ) functions
is denoted

Re H∞(C+,CM×N ) = {S ∈ H∞(C+,CM×N ) : S(p̄) = S(p)}.

A function S ∈ H∞(C+,CM×N ) is called inner provided

S(jω)HS(jω) = IN a.e.

The class of real inner functions is denoted

U+(N) := {S ∈ Re BH∞(C+,CN×N ) : S(jω)HS(jω) = IN a.e.}.

Lemma 3.1. U+(N) is closed subset of the boundary of ReBH∞(C+,CN×N ).
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Proof. It suffices to show closure. If {Sm} ⊂ U+(N) converges to S ∈
H∞(C+,CN×N ), then Sm(jω) → S(jω) almost everywhere so that

IN = lim
m→∞

Sm(jω)HSm(jω) = S(jω)HS(jω) a.e.

That is, S(jω) is unitary almost everywhere or S ∈ U+(N). ¤

3.4. The weak-∗ topology. We use the weak-∗ topology on L∞(jR) =
L1(jR)∗. A weak-∗ subbasis at 0 ∈ L∞(jR) is the collection of weak-∗ open sets

O[w, ε] := {φ ∈ L∞(jR) : |〈w, φ〉| < ε},

where ε > 0, w ∈ L1(jR), and

〈w, φ〉 :=
∫ ∞

−∞
w(jω)φ(jω)dω.

Every weak-∗ open set that contains 0 ∈ L∞(jR) is a union of finite intersections
of these subbasic sets. The Banach–Alaoglu Theorem [47, Theorem 3.15] gives
that the unit ball BL∞(jR) is weak-∗ compact. The next lemma shows that the
same holds for a distorted version of the unit ball, a fact that will have significant
import for the optimization problems we consider later.

Lemma 3.2. Let c, r ∈ L∞(jR) with r ≥ 0 define the disk

D(c, r) := {φ ∈ L∞(jR) : |φ− c| ≤ r a.e.}.

Then D(c, r) a closed , convex subset of L∞(jR) that is also weak-∗ compact .

Proof. Closure and convexity follow from pointwise closure and convexity.
To prove weak-∗ compactness, let Mr : L∞(jR) → L∞(jR) be multiplication:
Mrφ := rφ. Observe D(k, r) = k + MrBL∞(jR). Assume for now that Mr is
weak-∗ continuous. Then MrBL∞(jR) is weak-∗ compact, because BL∞(jR)
is weak-∗ compact, and the image of a compact set under a continuous function
is compact. This forces D(k, r) to be weak-∗ compact, provided Mr is weak-∗
continuous. To see that Mr is weak-∗ continuous, it suffices to shows that Mr

pulls subbasic sets back to subbasic sets. Let ε > 0, w ∈ L1(jR). Then

ψ ∈ M−1
r (O[w, ε])Mrψ ∈ O[w, ε] ⇐⇒ |〈w, rψ〉| < ε

⇐⇒ |〈rw, ψ〉| < ε ⇐⇒ ψ ∈ O[rw, ε],

noting that rw ∈ L1(jR). ¤

If K is a convex subset L∞(jR), then K is closed ⇐⇒ K is weak-∗ closed [17,
page 422]. Because H∞(C+) is a closed subspace of L∞(C+), is it also weak-∗
closed. Intersecting weak-∗ closed H∞(C+) with the weak-∗ compact unit ball
of L∞(jR) forces BH∞(C+) to be weak-∗ compact.
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3.5. The Cayley transform. Many computations are more conveniently
placed in function spaces defined on the open unit disk D rather than on the
open right half-plane C+. The notation for the spaces on the disk follows the
preceeding nomenclature with the unit disk D replacing C+ and the unit circle
T replacing jR. H∞(D) denotes the collection of analytic functions on the
open unit disk with essentially bounded boundary values. C(T) denotes the
continuous functions on the unit circle, A(D) := H∞(D)∩C(T) denotes the disk
algebra, and L∞(T) denotes the Lebesgue-measurable functions on the unit circle
T with norm determined by the essential bound. A Cayley transform connects
the function spaces on the right half plane to their counterparts on the disk.

Lemma 3.3 ([27, page 99]). Let the Cayley transform c : C+ → D

c(p) :=
p− 1
p + 1

extend to the composition operator c : L∞(T) → L∞(jR) as

h(p) := H ◦ c(p) (p = jω).

Then c is an isometry mapping





A(D)
H∞(D)
C(T)

L∞(T)





onto





A1(C+)
H∞(C+)
1+̇C0(jR)
L∞(jR)





.

3.6. Factoring H∞ functions. The boundary values and inner-outer factor-
ization of H∞ functions are notions most conveniently developed on the unit
disk and then transplanted to the right half-plane by the Cayley transform [35].
Let φ ∈ L1(T) have the Fourier expansion in z = exp(jθ)

φ(z) =
∞∑

n=−∞
φ̂(n)zn; φ̂(n) :=

∫ π

−π

e−jnθφ(ejθ)
dθ

2π
.

For 1 ≤ p ≤ ∞, define Hp(D) as the subspace of Lp(T) with vanishing negative
Fourier coefficients [27, page 77]:

Hp(D) := {h ∈ Lp(T) : ĥ(n) = 0 for n = −1,−2, . . . }.
Then Hp(D) is a closed subspace of Lp(T) and as [27, page 3]:

H∞(T) ⊂ Hp2(T) ⊂ Hp1(T) ⊂ H1(T) (1 ≤ p1 ≤ p2 ≤ ∞)

Each h ∈ Hp(D) admits an analytic extension on the open unit disk [27, p. 77]:

h(z) =
∞∑

n=0

ĥ(n)zn (z = rejθ).

From the analytic extension, define hr(ejθ) := h(rejθ) for 0 ≤ r ≤ 1. For r < 1,
hr is continuous and analytic. As r increases to 1, hr converges to h in the Lp

norm, provided 1 ≤ p < ∞. For p = ∞, hr converges to h in the weak-∗ topology
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(discussed on page 10). If hr does converge to h in the L∞ norm, convergence
is uniform and forces h ∈ A(D). Although disk algebra A(D) is a strict subset
of H∞(D) in the norm topology, it is a weak-∗ dense subset.

If φ is a positive, measurable function with log(φ) ∈ L1(T) then the analytic
function [48, page 370]:

q(z) = exp
(∫ π

−π

ejt + z

ejt − z
log |φ(ejt)| dt

2π

)
(z ∈ D),

is called an outer function. The magnitude of q(z) matches φ [48, page 371]:

lim
r→1

|qr(rejθ)| = φ(rejθ) (a.e.)

and leads to the equivalence: φ ∈ Lp(T) ⇐⇒ q ∈ Hp(D). We call q(z) a spectral
factor of φ. Every h ∈ H∞(D) admits an inner-outer factorization [48, pages
370-375]:

h(z) = ejθ0b(z)s(z)q(z),

where the outer function q(z) is a spectral factor of |h| and the inner function
consists of the Blaschke product [48, page 333]

b(z) := zk
∞∏

n=1

zn − z

1− z̄nz

z̄n

zn
,

zn 6= 0,
∑

(1− |zn|) < ∞, and the singular inner function

s(z) = exp
(
−

∫ π

−π

ejt + z

ejt − z
dµ(t)

)
,

for µ a finite, positive, Borel measure on T that is singular with respect to
the Lebesgue measure. In the electrical engineering setup, we will see that the
Blaschke products correspond to lumped, lossless circuits while a transmission
line corresponds to a singular inner function.

4. Electric Circuits

The impedance matching problem may be formulated as an optimization of
certain natural figures of merit over structured sets of candidate electrical match-
ing networks. We begin the formulation in this section, starting with an ex-
amination of the sorts of electrical networks available for impedance matching.
Consideration of various choices of coordinate systems parameterizing the set of
candidate matching circuits leads to the scattering formalism as the most suit-
able choice. Next we consider appropriate objective functions for measuring the
utility of a candidate impedance matching circuit. This leads to description and
characterization of power gain and mismatch functions as natural indicators of
the suitability of our circuits. With the objective function and the parameteriza-
tion of the admissible candidate set, we are in position to formulate impedance
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matching as a constrained optimization problem. We will see that hyperbolic
geometry plays a natural and enabling role in this formulation.

4.1. Basic components. Figure 7 represents an N -port— a box with N

pairs of wire sticking out of it. The use of the word “port” means that each
pair of wires obeys a conservation of current —the current flowing into one
wire of the pair equals the current flowing out of the other wire. We can imagine

1•
•
•

v1( t )

i1( t )+

-

vN ( t )

iN ( t )+

-

Figure 7. The N -port.

characterizing such a box by supplying current and voltage input signals of given
frequency at the various ports and observing the current and voltages induced
at the other ports. Mathematically, the N -port is defined as the collection N of
voltage v(p) and current i(p) vectors that can appear on its ports for all choices
of the frequency p = σ + jω [31]:

N ⊆ L2(jR,CN )× L2(jR,CN ).

If N is a linear subspace, then the N -port is called a linear N -port. Figures 8
and 9 present the fundamental linear 1-ports and 2-ports. These examples show

+

-

+ +

- -

v( p)

i( p)

R
C

L

Figure 8. The lumped elements: resistor v(p) = Ri(p); capacitor i(p) = pCv(p);

inductor v(p) = pLi(p).

that N can have the finer structure as the graph of a matrix-valued function: for
instance, with the inductor N is the graph of the function i(p) 7→ pLi(p).
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 v1( p)  v2( p)

 i1( p)  i2( p)
+ +

- -

π

 v1( p)  v2( p)

 i1( p)  i2( p)
+ +

- -

Figure 9. The transformer and gyrator.

More generally, if the voltage and current are related as v(p) = Z(p)i(p)
then Z(p) is called the impedance matrix with real and imaginary parts Z(p) =
R(p)+jX(p) called the resistance and reactance, respectively. If the voltage and
current are related as i(p) = Y (p)v(p) then Y (p) is called the admittance matrix
with real and imaginary parts Y (p) = B(p) + jG(p) called the conductance and
susceptance, respectively. The chain matrix T (p) relates 2-port voltages and
currents as [

v1

i1

]
=

[
t11(p) t12(p)
t21(p) t22(p)

] [
v2

−i2

]
.

The ideal transformer has chain matrix [3, Eq. 2.4]:
[

v1

i1

]
=

[
n−1 0
0 n

] [
v2

−i2

]
, (4–1)

where n is the turns ratio of the windings on the transformer. The gyrator has
chain matrix [3, Eq. 2.14]:

[
v1

i1

]
=

[
0 α

α−1 0

] [
v2

−i2

]
.

Figure 10 shows how the 1-ports can build the series and shunt 2-ports with
chain matrices

v1( p)

i2( p)i1( p)

v1( p) v2( p)

z( p )

y( p )

 i2( p) i1( p)

 v2( p)

Figure 10. Series and shunt 2-ports.

Tseries(p) =
[

1 z(p)
0 1

]
Tshunt(p) =

[
1 0

y(p) 1

]

using the using the impedance z(p) and admittance y(p). Connecting the series
and shunts in a “chain” produces a 2-port called a ladder. The ladder’s chain
matrix is the product of the individual chain matrices of the series and shunt 2-
ports. For example, the low-pass ladders are a classic family of lossless matching
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2-ports. Figure 11 shows a low-pass ladder with Port 2 terminated in a load zL.
The low-pass ladder has chain matrix

v1 v2

+ +

i1 i2

 - -

L1 L2 L3

C1 C1

zL

z1

Figure 11. A low-pass ladder terminated in a load.

T (p) =
[

1 pL1

0 1

] [
1 0

pC1 1

] [
1 pL2

0 1

] [
1 0

pC2 1

] [
1 pL3

0 1

]
.

The impedance looking into Port 1 is computed

z1 =
v1

i1
=

t11zL + t12
t21zL + t22

=: G(T, zL).

Thus, the chain matrices provide a natural parameterization for the orbit of the
load zL under the action of the low-pass ladders. Section 1 showed that these
orbits are fundamental for the matching problem. Even at this elementary level,
the mathematician can raise some pretty substantial questions regarding how
these ladders sit in U+(2) or how the orbit of the load sits in the unit ball of
H∞.

Unfortunately, the impedance, the admittance, and the chain formalisms do
not provide ideal representations for all circuits of interest. For example, there
are N -ports that do not have an impedance matrix (i.e., the transformer does
not have an impedance matrix). There are difficulties inherent in attempting
the matching problem in a formalism where the some of the basic objects under
discussion fail to exist.

In fact, much of the debate in electrical engineering in the 1960’s focused
on finding the right formalism that guaranteed that every N -port had a repre-
sentation as the graph of a linear operator. For example, the existence of the
impedance matrix Z(p) is equivalent to

N =
{[

Zi
i

]
: i ∈ L2(jR,CN )

}
.

but this formalism is not so useful when we need to describe circuits with trans-
formers in them. The claim is that any linear, passive, time-invariant, solvable
N -port always admits a scattering matrix S ∈ BH∞(C+,CN×N ); see [3; 4; 31].
Consequently, we work the matching problem in the scattering formalism, which
we now describe.
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4.2. The scattering matrices. Specializing to the 2-port in Figure 12, define

 2-Port
v1 v2

+ +i1 i2

- -

s11 s12
s21 s22

S=

a1

b1

a2

b2

r2r1

Figure 12. The 2-port scattering formalism.

the incident signal (see [3, Eq. 4.25a] and [4, page 234]):

a = 1
2{R

−1/2
0 v + R

1/2
0 i} (4–2)

and the reflected signal (see [3, Eq. 4.25b] and [4, page 234]):

b = 1
2{R

−1/2
0 v−R

1/2
0 i}, (4–3)

with respect to the normalizing1 matrix

R0 =
[

r1 0
0 r2

]
.

The scattering matrix maps the incident wave to the reflected wave:

b =
[

b1

b2

]
=

[
s11 s12

s21 s22

] [
a1

a2

]
= Sa.

The scattering description can be readily related to other representations when
the latter exist. For instance, the scattering matrix determines the impedance
matrix as

Z̃ := R
−1/2
0 ZR

−1/2
0 = (I + S)(I − S)−1.

To see this, invert Equations 4–2 and 4–3 and substitute into v = Zi. Conversely,
if the N -port admits an impedance matrix, normalize and Cayley transform to
get

S = (Z̃ − I)(Z̃ + I)−1.

Usually, R0 = r0I with r0 = 50 ohms so the normalizing matrix disappear.
The math guys always take r0 = 1. The EE’s have endless arguments about
normalizations. Unless stated otherwise, we’ll always normalize with respect to
r0.

1Two accessible books on the scattering parameters are [3] and [4]. The first of these

omits the factor 1
2

but carries this rescaling onto the power definitions. Most other books

use the power-wave normalization [16]: a = R
−1/2
0 {v + Z0i}/2, where the normalizing matrix

Z0 = R0 + jX0 is diagonal with diagonal resistance R0 > 0 and reactance X0.
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4.3. The chain scattering matrix. Closely related to the scattering matrix
is the chain scattering matrix Θ [25, page 148]:

[
b1

a1

]
= Θ

[
a2

b2

]
=

[
θ11 θ12

θ21 θ22

] [
a2

b2

]
.

When multiple 2-ports are connected in a chain the chain scattering matrix of the
chain is the product of the individual chain scattering matrices. The mappings
between the scattering and chain scattering matrices are [25]:

S 7→ s−1
21

[ − det[S] s11

−s22 1

]
= Θ 7→ θ−1

22

[
θ12 det[Θ]
1 −θ21

]
= S. (4–4)

Although every 2-port has a scattering matrix, it admits chain scattering matrix
only if s21 is invertible.

4.4. Passive terminations. In Figure 6, Port 2 is terminated with the load
reflectance sL so that

a2 = sLb2. (4–5)

Then the reflectance looking into Port 1 is obtained by the chain-scattering
matrix:

s1 :=
b1

a1
=

θ11a2 + θ12b2

θ21a2 + θ22b2
=

θ11sL + θ12

θ21sL + θ22
=: G1(Θ, sL).

Equation 4–4 also allows us to express s1 in terms of the linear-fractional form
of the scattering matrix introduced in Equation 2–2: s1 = F1(S, sL). Similarly,
if Port 1 of the 2-port is terminated with the load reflectance sG, then the
reflectance looking into Port 2 is

s2 = G2(Θ, sG) :=
θ22sG + θ21

θ12sG + θ11
= F2(S, sG),

with F2(S, sG) as introduced in Equation 2–3.

4.5. Active terminations. Equation 4–5 admits a generalization to include
the generators. Figure 13 shows the labeling convention of the scattering vari-
ables. The generalization includes the scattering of the generator in terms of the

 2-Port
s11 s12
s21 s22

S=

a1

b1

bL

b2

cG

aG

bG a2

cL

aL

sG sL
+

-
v1

  i1
  i2

v2

+

-

Figure 13. Scattering conventions.
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voltage source [16, Eq. 3.2]:

bG = sGaG + cG; cG :=
r
−1/2
0

zG + r0
vG. (4–6)

To get this result, use Equations 4–2 and 4–3 to write v1 = r
1/2
0 (a1 + b1) and

i1 = r
−1/2
0 (a1 − b1). Substitute this into the voltage drops vG = zGi1 + v1 of

Figure 13 to get

cG =
r
−1/2
0 vG

zG + r0
= a1 − zG − r0

zG + r0
b1 = bG − sGaG.

We can now analyze the setup in Figure 13. Equations 4–5 and 4–6 give

a =
[

a1

a2

]
=

[
sG 0
0 sL

] [
b1

b2

]
+

[
cG

cL

]
=: SXb + cX .

Substitution into b = Sa solves the 2-port scattering as

a = (I2 − SXS)−1cX .

4.6. Power flows in the 2-port. With respect to an N -port, the complex
power2 is [4, page 241]:

W (p) := v(p)H i(p).

Because v(p) has units volts second and i(p) has units ampères second, W (p)
units of watts/Hz2. The average power delivered to the N -port is [21, page 19]

Pavg := 1
2 Re[W ] = 1

2{aHa− bHb} = 1
2a

H{I − SHS}a. (4–7)

We’re dragging the 1/2 along so our power definitions coincide with [21]. If the
N -port consumes power (Pavg ≥ 0) for all its voltage and current pairs, then the
N -port is said to be passive. If the N -port consumes no power (Pavg = 0) for all
its voltage and current pairs, then the N -port is said to be lossless. In terms of
the scattering matrices [28]:

• Passive: SH(jω)S(jω) ≤ IN

• Lossless: SH(jω)S(jω) = IN

for all ω ∈ R. Specializing these concepts to the 2-port of Figure 14, leads to
the following power flows:

• The average power delivered to Port 1 is

P1 := 1
2 (|a1|2 − |b1|2) =

|a1|2
2

(1− |s1|2).

• The average power delivered to Port 2 is

P2 := 1
2 (|a2|2 − |b2|2) = −PL.

2Baher uses [3, Eq. 2.17]: W (p) = i(p)Hv(p).
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sG

sLcG

a2

P1

s11 s12
s21 s22

S=

a1

b1 b2

PL

bG

aG

bL

aL

P2PG

Figure 14. Matching circuit and reflectances.

• The average power delivered to the load is [21, Eq. 2.6.6]

PL := 1
2 (|aL|2 − |bL|2) =

|b2|2
2

(1− |sL|2).
• The average power delivered by the generator:

PG = 1
2 (|bG|2 − |aG|2).

To compute PG, observe that Figure 14 gives aG = b1 and bG = a1. Substitute
these and b1 = s1a1 into Equation 4–6 to get cG = (1− sGs1)a1. Then

PG = 1
2 (|a1|2 − |b1|2) =

|a1|2
2

(1− |s1|2) =
|cG|2

2
1− |s1|2
|1− sGs1|2 . (4–8)

Lemma 4.1. Assume the setup of Figure 14. There always holds P2 = −PL and
PG = P1. If the 2-port is lossless, P1 + P2 = 0.

4.7. The power gains in the 2-port. The matching network maps the
generator’s power into a form that we hope will be more useful at the load
than if the generator drove the load directly. The modification of power is
generically described as “gain.” The matching problem puts us in the business of
gain computations, and we need the maximum power and mismatch definitions.
The maximum power available from a generator is defined as the average power
delivered by the generator to a conjugately matched load. Use Equation 4–8 to
get [21, Eq. 2.6.7]:

PG,max := PG|s1=sG =
|cG|2

2
(1− |sG|2)−1.

The source mismatch factor is [21, Eq. 2.7.17]:

PG

PG,max
=

(1− |sG|2)(1− |s1|2)
|1− sGs1|2 .

The maximum power available from the matching network is defined as the
average power delivered from the network to a conjugately matched load [21,
Eq. 2.6.19]:

PL,max := PL|sL=s2 :=
|b2|sL=s2 |2

2
(1− |s2|2).
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Less straightforward to derive is the load mismatch factor [21, Eq. 2.7.25]:

PL

PL,max
=

(1− |sL|2)(1− |s2|2)
|1− sLs2|2 .

These powers lead to several types of power gains [21, page 213]:

• Transducer power gain

GT :=
PL

PG,max
=

power delivered to the load
maximum power available from the generator

.

• Power gain or operating power gain

GP :=
PL

P1
=

power delivered to the load
power delivered to the network

.

• Available power gain

GA :=
PL,max

PG,max
=

maximum power available from the network
maximum power available from the generator

.

Lemma 4.2. Assume the setup of Figure 14. If the 2-port is lossless,

GT =
(1− |sG|2)(1− |s1|2)

|1− sGs1|2 .

Proof.

GT =
PL

PG,max

Lemma 4.1=
−P2

PG,max

lossless=
P1

PG,max

Lemma 4.1=
PG

PG,max
.

¤

What’s nice about the proof is that it makes clear that the equality holds because
the power flowing into the lossless 2-port is the power flowing out of the 2-port.
The key to analyzing the transducer power gain is the power mismatch.

4.8. Power mismatch. Previously we established that the power mismatch
is the key to the matching problem. In fact, this is a concept that brings to-
gether ideas from pure mathematics and applied electrical engineering, as seen
in the engineer’s Smith Chart— a disk-shaped analysis tool marked with coordi-
nate curves which look compellingly familiar to the mathematician. A standard
engineering reference observes the connection [51]:

The transformation through a lossless junction [2-port] . . . leaves invariant
the hyperbolic distance . . . The hyperbolic distance to the origin of the
[Smith] chart is the mismatch, that is, the standing-wave ratio expressed
in decibels: It may be evaluated by means of the proper graduation on
the radial arm of the Smith chart. For two arbitrary points W1, W2, the
hyperbolic distance between them may be interpreted as the mismatch that
results from the load W2 seen through a lossless network that matches W1

to the input waveguide.
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Hyperbolic metrics have been under mathematical development for the last 200
years, while Phil Smith introduced his chart in the late 1930’s with a somewhat
different motivation. It is fascinating to see how hyperbolic analysis transcribes
to electrical engineering. Mathematically, we start with the pseudohyperbolic
metric3 on D defined as follows (see [58, page 58]):

ρ(s1, s2) :=
∣∣∣∣

s1 − s2

1− s1s2

∣∣∣∣ (s1, s2 ∈ D).

The Möbius group of symmetries of D consists of all maps g : D → D [20,
Theorem 1.3]:

g(s) = ejθ s− a

1− ās
,

where a ∈ D and θ ∈ R. That ρ is invariant under the Möbius maps g is
fundamental (see [20] and [58, page 58]):

ρ(g(s1),g(s2)) = ρ(s1, s2). (4–9)

The hyperbolic metric4 on D is [58, page 59]:

β(s1, s2) = 1
2 log

(
1 + ρ(s1, s2)
1− ρ(s1, s2)

)
.

Because ρ is Möbius-invariant, it follows that β is also Möbius-invariant:

β(g(s1),g(s2)) = β(s1, s2).

One can visualize the matching problem in terms of the action of this group
of symmetries. At fixed frequency, a given load reflectance sL corresponds to a
point in D. Attaching a matching network to the load modifies this reflectance
by applying to it the Möbius transformation associated with the chain scattering
matrix of the matching network. By varying the choice of the matching network,
we vary the Möbius map applied to sL and sweep the modified reflectance around
the disk to a desirable position.

The series inductor of Figure 10 provides an excellent example of this action
of a circuit as Möbius map acting on the reflectances parameterized as points
of the unit disk. The series inductor has the chain scattering matrix [25, Table
6.2]:

Θ(p) =
[

1− Lp/2 Lp/2
−Lp/2 1 + Lp/2

]
.

that acts on s ∈ D as

G(Θ; s) =
Θ11s + Θ12

Θ21s + Θ22
= − ā

a

s− a

1− ās

∣∣∣∣
a=(1+j2/(ωL))−1

.

3Also known as the Poincaré hyperbolic distance function; see [50].
4Also known as the Bergman metric or the Poincaré metric.
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Figure 15 shows the Möbius action of this lossless 2-port on the disk. Frequency
is fixed at p = j. The upper left panel shows the unit disk partitioned into
radial segments. Each of the other panels show the action of an inductor on
the points of this disk. Increasing the inductance warps the radial pattern to
the boundary. The radial segments are geodesics of ρ and β. Because the
Möbius maps preserve both metrics, the resulting circles are also geodesics. More
generally, the geodesics of ρ and β are either the radial lines or the circles that
meet the boundary of the unit disk at right angles.

−1 −0.5 0 0.5 1
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0.5

1
 L=0

ℜ
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Figure 15. Möbius action of the series inductor on the unit disk for increasing

inductance values (frequency fixed at p = j).

Several electrical engineering figures of merit for the matching problem are
naturally understood in terms of the geometry of the hyperbolic disk. We are
concerned primarily with three: (1) the power mismatch, (2) the VSWR, (3) the
transducer power gain. The power mismatch between two passive reflectances
s1, s2 is [29]:

∆P (s1, s2) :=
∣∣∣∣

s1 − s2

1− s1s2

∣∣∣∣ = ρ(s̄1, s2), (4–10)
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or the pseudohyperbolic distance between s̄1 and s2 measured along their geo-
desic. Thus, the geodesics of ρ attach a geometric meaning to the power mis-
match and illustrate the quote at the beginning of this section.

The voltage standing wave ratio (VSWR) is a sensitive measure of impedance
mismatch. Intuitively, when power is pushed into a mismatched load, part of the
power is reflected back measured by the reflectance s ∈ D. Superposition of the
incident and reflected wave sets up a voltage standing wave pattern. The VSWR
is the ratio of the maximum to minimum voltage in this pattern: [6, Equation
3.51]:

VSWR(s) = 20 log10

(
1 + |s|
1− |s|

)
[dB].

Referring to Figure 15, the VSWR is a scaled hyperbolic distance from the origin
to s measured along its radial line. Thus, the geodesics of β attach a geometric
meaning to the VSWR.

The transducer power gain GT links to the power mismatch ∆P by the clas-
sical identity of the hyperbolic metric [58, page 58]:

1− ρ(s1, s2)2 =
(1− |s1|2)(1− |s2|2)

|1− s1s2|2 (s1, s2 ∈ D), (4–11)

and Lemma 4.2 provided the matching 2-port is lossless.

Lemma 4.3. If the 2-port is lossless in Figure 14, GT = 1−∆P (sG, s1)2.

That is, maximizing GT is equivalent to minimizing the power mismatch. As the
next result shows, we can use either Port 1 or Port 2 (Proof in Appendix B).

Lemma 4.4. Assume the 2-port is lossless in Figure 6: S ∈ U+(2). Assume
sG and sL are strictly passive: sG, sL ∈ BH∞(C+). Then s1 = F1(S, sL) and
s2 = F2(S, sG) (defined in Equations 2–2 and 2–3 respectively) are well-defined
and strictly passive with the LFT (Linear Fractional Transform) law

∆P (sG, F1(S, sL)) = ∆P (F2(S, sG), sL)

and the TPG (Transducer Power Gain) law

GT (sG, S, sL) = 1−∆P (sG,F1(S, sL))2 = 1−∆P (F2(S, sG), sL)2

holding on jR.

The LFT law is not true if S is strictly passive. For SHS < I2, define the gains
at Port 1 and 2 as follows:

G1(sG, S, sL) := 1−∆P (sG, F1(S, sL))2

G2(sG, S, sL) := 1−∆P (F2(S, sG), sL)2.
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Lemma 4.4 gives that GT = G1 = G2, provided S is lossless. If S is only passive,
we can only say GT ≤ G1, G2. To see this, Equation 4–11 identifies G1 and G2

as mismatch factors:

G1(sG, S, sL) = 1−∆P (sG, s1)2 =
PG

PG,max
,

G2(sG, S, sL) := 1−∆P (s2, sL)2 =
PL

PL,max
.

If we believe that a passive 2-port forces the available gain GA ≤ 1 and power
gain GP ≤ 1 of Section 4.7, the inequalities GT ≤ G1, G2 are explained as

GT =
PL

PG,max
=

PL,max

PG,max

PL

PL,max
= GAG2

GT =
PL

PG,max
=

P1

PG,max

PL

P1
= GP G1.

4.9. Sublevel sets of the power mismatch. We have just seen that
impedance matching reduces to minimization of the power mismatch. We can
obtain some geometrical intuition for the behavior of this by examining Fig-
ure 16, which shows the isocontours of the function s2 7→ ∆P (s2, sL) for a fixed
reflectance sL in the unit disk (at a fixed frequency). The key observation is
that for each fixed frequency, the sublevel sets {s2 ∈ D : ∆P (s2, sL) ≤ ρ} com-
prise a family of concentric disks with hyperbolic center sL. Of course, we must
actually consider power mismatch over a range of frequencies. To this end, the
next lemma characterizes the corresponding sublevel sets in L∞(jR).

Lemma 4.5 (∆P Disks). Let sL ∈ BL∞(jR). Let 0 ≤ ρ ≤ 1. Define the center
function

k := s̄L
1− ρ2

1− ρ2|sL|2 ∈ BL∞(jR), (4–12)

the radius function

r := ρ
1− |sL|2

1− ρ2|sL|2 ∈ BL∞(jR), (4–13)

and the disk

D(k, r) := {φ ∈ L∞(jR) : |φ(jω)− k(jω)| ≤ r(jω)}.

Then,

D-1: D(k, r) is a closed , convex subset of L∞(jR).
D-2: D(k, r) = {φ ∈ BL∞(jR) : ρ ≥ ‖∆P (φ, sL)‖∞}.
D-3: D(k, r) is a weak-∗ compact , convex subset of L∞(jR).
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Figure 16. Sublevel sets of ∆P (s2, sL) in the unit disk.

Proof. Under the assumption that ‖sL‖∞ < 1, it is straightforward to verify
that the center and radius functions are in the open and closed unit balls of
L∞(jR), respectively.
D-1: Convexity and closure follow from pointwise convexity and closure.
D-2: Basic algebra computes D(k, r) = {φ ∈ L∞(jR) : ρ ≥ ‖∆P (φ, sL)‖∞}.
The “free” result is that ‖D(k, r)‖∞ ≤ 1. To see this, let s := ‖sL‖∞. The norm
of any element in D(k, r) is bounded by

‖k‖∞ + ‖r‖∞ ≤ s
1− ρ2

1− ρ2s2
+ ρ

1− s2

1− ρ2s2
=: u(s, ρ).

For s ∈ [0, 1) fixed, we obtain

∂u

∂ρ
= − −1 + s2

(ρs + 1)2
.
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Thus, u(s, ◦) attains its maximum on the boundary of [0, 1]: u(s, 1) = 1. Thus,
‖D(k, r)‖∞ ≤ 1.
D-3: D-1 and Lemma 3.2. ¤

4.10. Continuity of the power mismatch. Consider the mapping ∆ρ :
BL∞(jR) → R+

∆ρ(s2) := ‖∆P (s2, sL)‖∞,

for fixed sL ∈ BL∞(jR). The main problem of this paper concerns the min-
imization of this functional over feasible classes (ultimately, the orbits of the
reflectance under classes of matching circuits). This problem is determined by
the structure of the sublevel sets of ∆ρ. What we have just seen is that the
sublevel sets are disks in function space, a very nice structure indeed. As the
“level” of ∆ρ is decreased, these sets neck down; the question of existence of a
minimizer in a feasible class comes down to the intersection of the feasible class
with these sublevel sets.

Definition 4.1. [48, pages 38–39], [57, page 150] Let γ be a real or extended-
real function on a topological space X.

• γ is lower semicontinuous provided {x ∈ X : γ(x) ≤ α} is closed for every real
α.

• γ is lower semicompact provided {x ∈ X : γ(x) ≤ α} is compact for every
real α.

These properties produce minimizers by the Weierstrass Theorem.

Theorem 4.1 (Weierstrass). [57, page 152] Let K be a nonempty subset of
a a topological space X. Let γ be a real or extended-real function defined on K.
If either condition holds:

• γ is lower semicontinuous on the compact set K, or
• γ is lower semicompact ,

then inf{γ(x) : x ∈ K} admits minimizers.

Lemma 4.5 demonstrates that ∆ρ is both weak-∗ lower semicontinuous and weak-
∗ lower compact. The minimum of ∆ρ in BL∞(jR) is 0 = ∆ρ(sL) that corre-
sponds to a perfect match over all frequencies. However, the matching functions
at our disposal are not arbitrary, and this trivial solution is typically not ob-
tainable with real matching circuits. The constraints on allowable matching
functions lead us to consider minimizing ∆ρ restricted to BH∞(C+), BA1(C+),
and associated orbits. Finally, straight-forward sequence arguments show that
∆ρ is also continuous as a function on BL∞(jR) in the norm topology.

Lemma 4.6. If sL ∈ BL∞(jR), then ∆ρ : BL∞(jR) → R+ is continuous.

Proof. Define ∆P1 : BL∞(jR) → L∞(jR) as ∆P1(s) := (s̄− sL)(1− ssL)−1.
If we show that ∆P1 is continuous then composition with ‖◦‖∞ shows continuity
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of ∆ρ. The first task is to show ∆P1 is well-defined. For each s ∈ BL∞(jR),
∆P1(s) is measurable and

∣∣∣∣
s̄− sL

1− ssL

∣∣∣∣ ≤
2

1− ‖s‖∞‖sL‖∞ ≤ 2
1− ‖sL‖∞ .

Thus, ∆P1(s) ∈ L∞(jR) so is well-defined. For continuity, let {sn} ⊂ BL∞(jR)
and sn → s. Then

∆P1(sn)−∆P1(s) =
sn−sL

1−snsL
− s̄−sL

1−ssL

=
1

(1−snsL)(1−ssL)
{(sn−sL)(1−ssL)−(s̄−sL)(1−snsL)}

=
1

(1−snsL)(1−ssL)
{
sn−s+sL(s̄sn−sns)+(s−sn)s2

L

}
.

In terms of the norm,

‖∆P1(sn)−∆P1(s)‖
≤ (1− ‖sL‖∞)−2{‖sn − s‖∞ + ‖sL‖∞‖s̄sn − sns‖∞ + ‖s− sn‖∞‖sL‖2∞},

so that the difference converges to zero. With ∆P1 a continuous mapping, the
continuity of the norm ‖ ◦ ‖∞ : L∞(jR) → R+ makes the mapping ∆ρ(s) :=
‖∆P1(s)‖∞ also continuous. ¤

5. H∞ Matching Techniques

Recalling the matching problem synopsis of Section 2, our goal is to maximize
the transducer power gain GT over a specified class U of scattering matrices. By
Lemma 4.3, we can equivalently minimize the power mismatch:

sup{‖GT (sG, S, sL)‖−∞ : S ∈ U} = 1− inf{‖∆P (F2(S, sG), sL)‖2∞ : S ∈ U}
= 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U, sG)}
≤ 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ BH∞(C+)}.

The next step in our program is to develop tools for computing the upper bound
at the end of this chain of expressions, based on what we know of sL. Ultimately,
we will try to make this a tight bound given the right properties of the admissible
matching circuits parameterized by U. The key computation is a hyperbolic
version of Nehari’s Theorem that computes the minimum power mismatch from
the Hankel matrix determined by sL.

We start towards this in Section 5.1 by reviewing the concept of Hankel op-
erators and their relation to best approximation from H∞ as expressed by the
linear Nehari theory. Section 5.2 extends this to a nonlinear framework that in-
cludes the desired hyperbolic Nehari bound on the power mismatch as a special
case.
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Having computed a bound on our ability to match a given load, we consider
how closely one can approach this in a practical implementation with real cir-
cuits. The key matching circuits we consider in practice are the lumped, lossless
2-ports with scattering matrices in U+(2,∞). Later on, Section 7 demonstrates
that the orbit of sG = 0 under U+(2,∞) is dense in the real disk algebra,
Re BA1(C+) (Darlington’s Theorem), so that smallest mismatch approachable
with lumped circuits is

inf{‖∆P (s2, sL)‖∞ : s2 ∈ F2(U+(2,∞), 0)}
= inf{‖∆P (s2, sL)‖∞ : s2 ∈ ReBA1(C+)}.

If we can relate the latter infimum to the minimization over the larger space
H∞(C+), then minimizing the power mismatch over the lumped circuits can be
related to the computable hyperbolic Nehari bound. This seems plausible from
experience with the classical linear Nehari Theory, where φ real and continuous
implies that the distance from the real subset of disk algebra is the same as the
distance to H∞:

‖φ−H∞(C+)‖∞ = ‖φ− Re A1(C+)‖∞.

Section 5.3 obtains similar results for the nonlinear hyperbolic Nehari bound
using metric properties of the power mismatch ∆P .

Thus, the results of this section will provide the desired result: the Nehari
bound for the matching problem is both computable and tight in the sense that
a sequence of lumped, lossless 2-ports can be found that approach the Nehari
bound.

5.1. Nehari’s theorem. The Toeplitz and Hankel operators are most con-
veniently defined on L2(T) using the Fourier basis. Let φ ∈ L2(T) have the
Fourier expansion

φ(z) =
∞∑

n=−∞
φ̂(n)zn (z = ejθ).

Let P denote the orthogonal projection of L2(T) onto H2(D):

P φ (z) =
∞∑

n=0

φ̂(n)zn.

The Toeplitz operator with symbol φ ∈ L∞(T) is the mapping Tφ : H2(D) →
H2(D)

Tφ h := P (φh).

The Hankel operator with symbol φ ∈ L∞(T) is the mapping Hφ : H2(D) →
H2(D)

Hφ h := U(I − P )(φh),
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where U : H2(D)⊥ → H2(D) is the unitary “flipping” operator:

Uh (z) := z−1h(z−1).

These operators admit matrix representations with respect to the Fourier basis
[56, page 173]:

Tφ =




φ̂(0) φ̂(1) φ̂(2)
. . .

φ̂(−1) φ̂(0) φ̂(1)
. . .

φ̂(−2) φ̂(−1) φ̂(0)
. . .

. . . . . . . . . . . .




and [56, page 191]

Hφ =




φ̂(−1) φ̂(−2) φ̂(−3) · · ·
φ̂(−2) φ̂(−3) φ̂(−4) · · ·
φ̂(−3) φ̂(−4) φ̂(−5) · · ·

...
...

...




.

The operator norm is

‖Hφ‖ := sup{‖Hφh‖∞ : h ∈ BH∞(D)}.

The essential norm is

‖Hφ‖e := inf{‖Hφ −K‖ : K is a compact operator}.

The following version of Nehari’s Theorem emphasizes existence and uniqueness
of best approximations.

Theorem 5.1 (Nehari [56; 45]). If φ ∈ L∞(T), then φ admits best approxi-
mations from H∞(D) as follows:

N-1: ‖φ−H∞(D)‖∞ = ‖Hφ‖.
N-2: ‖φ− {H∞(D) + C(T)}‖∞ = ‖Hφ‖e.
N-3: If ‖Hφ‖e < ‖Hφ‖ then best approximations are unique.

Thus, Nehari’s Theorem computes the distance from φ to H∞(D) using the
Hankel matrix. However, solving the matching problem with lumped circuits
forces us to minimize from the disk algebra A(D). Because the disk algebra is a
proper subset of H∞(D), there always holds the inequality:

‖φ−A(D)‖∞ ≥ ‖φ−H∞(D)‖∞ = ‖Hφ‖.

Fortunately for our application, equality holds when φ is continuous.
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Theorem 5.2 (Adapted from [39, pages 193–195], [33; 34]). If φ ∈ 1+̇C0(jR),

‖φ−A1(C+)‖∞ = ‖φ−H∞(C+)‖∞
and there is exactly one h ∈ H∞(C+) such that

‖φ−A1(C+)‖∞ = |φ(jω)− h(jω)| a.e.

Thus, continuity forces unicity and characterizes the minimum by the circularity
of the error φ − h. To get existence in the disk algebra requires more than
continuity. Let φ : R → C be periodic with period 2π. The modulus of continuity
of φ is the function [18, page 71]:

ω(φ; t) := sup{|φ(t1)− φ(t2)| : t1, t2 ∈ R, |t1 − t2| ≤ t}.
Let Λα denote those functions that satisfy a Lipschitz condition of order α ∈
(0, 1]:

|φ(t1)− φ(t2)| ≤ A|t1 − t2|α.

Let Cn+α denote those functions with φ(n) ∈ Λα [5]. Let Cω denote those
functions that are Dini-continuous:

∫ ε

0

ω(φ; t)t−1dt < ∞,

for some ε > 0. A sufficient condition for a function φ(t) to be Dini-continuous
is that |φ′(t)| be bounded [19, section IV.2]. Carleson & Jacobs have an amazing
paper that addresses best approximation from the disk algebra [5]:

Theorem 5.3 (Carleson & Jacobs [5]). If φ ∈ L∞(T), then there always
exists a best approximation h ∈ H∞(D):

‖φ− h‖∞ = ‖φ−H∞(D)‖∞.

If φ ∈ C(T), then the best approximation is unique. Moreover ,

(a): If φ ∈ Cω then h ∈ Cω.
(b): If φ(n) ∈ Cω then h(n) ∈ Cω.
(c): If 0 < α < 1 and φ ∈ Λα then h ∈ Λα.
(d): If 0 < α < 1, n ∈ N , and φ ∈ Cn+α then h ∈ Cn+α.

As noted by Carleson & Jacobs [5]: “the function-theoretic proofs . . . are all
of a local character, and so all the results can easily be carried over to any
region which has in each case a sufficiently regular boundary.” Provided we
can guarantee smoothness across ±j∞, Theorem 5.3 carries over to the right
half-plane.

Corollary 5.1. If φ ∈ 1+̇C0(jR), then the best approximation

‖φ− h‖∞ = ‖φ−H∞(C+)‖∞
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exists and is unique. Moreover , if φ ◦ c−1 ∈ Cω, then h ◦ c−1 ∈ Cω so that

‖φ− h‖∞ = ‖φ−H∞(C+)‖∞ = ‖φ−A1(C+)‖∞.

Thus, the smoothness of the target function φ is invariant under the best approx-
imation operator of H∞.

5.2. Nonlinear Nehari and simple matching bounds. Helton [28; 31; 29;
32] is extending Nehari’s Theorem into a general Theory of Analytic Optimiza-
tion. Let Γ : jR × C → R+ be continuous. Define γ : L∞(jR) → R+ ∪ ∞
by

γ(h) := ess.sup{Γ(jω, h(jω)) : ω ∈ R}.
and consider the minimization of γ on K ⊆ L∞(jR):

min{γ(φ) : φ ∈ K}.

Helton observed that many interesting problems in electrical engineering and
control theory have the form of this minimization problem and furthermore in
many cases the objective functions have sublevel sets that are disks [32]:

[γ ≤ α] := {φ ∈ BL∞(jR) : γ(φ) ≤ α} = D(cα, rα).

This is certainly the case for the matching problem. For a given load sL ∈
BL∞(jR), we want to minimize the worst case mismatch

γ(s2) = ∆ρ(s2) := ess.sup{∆P (s2(jω), sL(jω)) : ω ∈ R}

over all s2 ∈ BH∞(C+). In this special case, Lemma 4.5 shows explicitly that
the sublevel sets of ∆ρ are disks. These sublevel sets govern the optimization
problem. For a start, the sublevel sets determine the existence of minimizers.

Lemma 5.1. Let γ : BL∞(jR) → R. Assume γ has sublevel sets that are disks
contained in BL∞(jR):

[γ ≤ α] = D(cα, rα) ⊆ BL∞(jR).

Then γ has a minimizer hmin ∈ BH∞(C+).

Proof. Lemma 3.2 gives that γ is lower semicontinuous in the weak-∗ topology.
Because BH∞(C+) is weak-∗ compact, the Weierstrass Theorem of Section 4.10
forces the existence of H∞ minimizers. ¤

In particular, an H∞ minimizer of power mismatch does exist. This is only the
beginning; we’ll see that the disk structure of the sublevel sets also couples with
Nehari’s Theorem to to characterize such minimizers using Helton’s fundamental
link between disks and operators. Ultimately, this line of inquiry permits us to
calculate the matching performance for real problems.



32 JEFFERY C. ALLEN AND DENNIS M. HEALY, JR.

Theorem 5.4 (Helton [29, Theorem 4.2]). Let C, P , R ∈ L∞(T,CN×N ).
Assume P and R are uniformly strictly positive. Define the disk

D(C, R, P ) := {Φ ∈ L∞(T,CN×N ) : (Φ− C)P 2(Φ− C)H ≤ R2}
and Ř(jω) := R(−jω). Then

∅ 6= D(C, R, P ) ∩H∞(D,CN×N ) ⇐⇒ HCT−1
P−2H

∗
C ≤ TŘ2 ,

For the impedance matching problem, γ is the power mismatch ∆P whose sub-
level sets are contained in BL∞(jR):

D(cα, rα) ∩BH∞(C+) = D(cα, rα) ∩H∞(C+).

Consequently, in our problem the unit ball constraint may be ignored and we may
apply Theorem 5.4 specialized to the disk theory under this stronger assumption.

Corollary 5.2. Let γ : BL∞(jR) → R. Assume γ has sublevel sets that are
disks:

[γ ≤ α] = D(cα, rα) ⊆ BL∞(jR).

Let Cα := cα ◦ c−1 and Rα = rα ◦ c−1 where c is the Cayley transform of
Lemma 3.3. Assume Rα is strictly uniformly positive with spectral factor Qα ∈
H∞(D): Rα = |Qα|. Then the following are equivalent :

(a): D(cα, rα) ∩BH∞(C+) 6= ∅
(b): HCαH∗

Cα
≤ TŘ2

α

(c): ‖Q−1
α Cα −H∞(D)‖∞ ≤ 1.

Proof. By Theorem 5.4, all that is needed is to prove (a)⇐⇒ (c). If (a) is
true, there exists an H ∈ BH∞(D) such that |H − Cα| ≤ Rα = |Qα| a.e.
Because Rα is strictly uniformly positive on T, we may divide by |Qα| to get
|Q−1

α H−Q−1
α Cα| ≤ 1 a.e. Because Qα is outer, Q−1

α H ∈ H∞(D) so that(c) must
be true. Conversely, suppose (c) is true. Because Qα is outer, Q−1

α Cα ∈ L∞(jR).
The Cayley transform of Nehari’s Theorem forces the existence of a G ∈ H∞(D)
such that ‖G −Q−1

α Cα‖∞ ≤ 1. Because Qα is outer, H = QαG ∈ H∞(D) and
|H − Cα| ≤ Rα a.e. Then H ∈ D(Cα, Rα) ∩ H∞(C). Because D(Cα, Rα)
is assumed to be contained in the unit ball of L∞(T), the Cayley transform
forces(a) to hold. ¤

Part (b) amounts to an eigenvalue test that admits a nice graphical display of the
minimizing α. Let λinf(α) denote the smallest “eigenvalue” of TŘ2

α
−HCαH∗

Cα
.

A plot of α versus λinf(α) reveals that λinf(α) is a decreasing function of α that
crosses zero at a minimum. The next result verifies this assertion regarding the
minimum.

Corollary 5.3. Let γ : BL∞(jR) → R. Assume γ has sublevel sets that are
disks contained in BL∞(jR):

[γ ≤ α] = D(cα, rα) ⊆ BL∞(jR).
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Then γ has a minimizer hmin ∈ BH∞(C+):

γBH∞ := min{γ(h) : h ∈ BH∞(C+)}.

Let cmin and rmin denote the L∞(jR) center and radius functions of the sublevel
disk at the minimum level : [γ ≤ γBH∞ ]. Let Cα := cα ◦ c−1 and Rα = rα ◦ c−1

where c is the Cayley transform of Lemma 3.3. Assume Rmin is strictly uniformly
positive with spectral factor Qmin. Then the following are equivalent :

Min-1: D(cmin, rmin) ∩BH∞ 6= ∅
Min-2: 0 = λinf(γBH∞)
Min-3: ‖Q−1

minCmin −H∞(D)‖∞ = 1.

Moreover , if Q−1
minCmin ∈ C(T) the minimizer hmin is unique.

Proof. Min-1=⇒Min-3: If the inequality were strict, |Cmin−H| < Rmin a.e. for
some H ∈ H∞(D). Then h = H ◦ c belongs to H∞(C+) and drops γ below
its minimum: γ(h) < αmin. This contradiction forces equality at the minimum.
Min-3=⇒Min-1: Corollary 5.2.

Min-1=⇒Min-2: Theorem 5.4 forces HCminH
∗
Cmin

≤ TŘ2
min

or 0 ≤ λinf(γBH∞).

This operator inequality is equivalent to 1 ≥ ‖HQ−1
minCmin‖ [29, page 42]. By

Nehari’s Theorem, 1 ≥ ‖HQ−1
minCmin‖ = ‖Q−1

minCmin −H∞(D)‖∞ = 1, where the
equivalence of Min-1 and Min-3 gives the last equality. Thus, the inequality must
be an equality. Min-2 =⇒Min-1: 0 = λinf(γBH∞) forces 1 = ‖HQ−1

minCmin‖. By

Nehari’s Theorem, 1 = ‖Q−1
minCmin −H∞(D)‖∞. The Cayley transform of Ne-

hari’s Theorem gives an H ∈ H∞(D) such that 1 = ‖Q−1
minCmin−H‖∞. Multiply

by the spectral factor to get Rmin = |Cmin − QminH‖ or that D(Cmin, Rmin) ∩
H∞(D) 6= ∅. Use the assumption that the sublevel sets are contained in the
close unit ball to get Min-1. For unicity, Min-3 forces Hmin = hmin ◦ c−1 to be
a minimizer of 1 = ‖Q−1

minCmin −H∞(D)‖∞ = ‖Q−1
minCmin −Hmin‖∞. Because

Q−1
minCmin is continuous, the Cayley transform of Corollary 5.1 forces unicity. ¤

Lumped matching circuits have continuous scattering matrices. This requires us
to constrain our minimization of power mismatch yet further to the disk algebra.
For minimization of a general γ over the disk algebra, we always have

γBH∞ ≤ γBA1
:= inf{γ(h) : h ∈ BA1(C+)}.

Under smoothness and continuity conditions, equality between the disk algebra
and H∞ can be established.

Corollary 5.4. In addition to the assumptions of Corollary 5.3, assume
Q−1

minCmin is Dini-continuous. Then

γBH∞ = γBA1
= min{γ(h) : h ∈ BA1(C+)}.
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Proof. By Corollary 5.3, there is a unique minimizer Hmin ∈ H∞(D)

1 = ‖Q−1
minCmin −H∞(D)‖∞ = ‖Q−1

minCmin −Hmin‖∞.

By Corollary 5.1, Dini-continuity forces Hmin to be Dini-continuous or hmin =
H ◦ c ∈ A1(C+), Thus, the inclusion of the H∞ minimizer in the disk algebra
forces γBH∞ = γBA1

. ¤

This is a useful general result, but for our matching problem the requirement
of Dini-continuity can in fact be relaxed. An easier approach, specialized to the
case of γ is the power mismatch, gives equality between the minimum over the
disk algebra and that over H∞ using only continuity (proof in Appendix D).

Theorem 5.5. Assume sL ∈ BA1(C+). Then

min{‖∆P (s2, sL)‖∞ : s2 ∈ BH∞(C+)} = inf{‖∆P (s2, sL)‖∞ : s2 ∈ BA1(C+)}.
5.3. The real constraint. Examination of the circuits in Section 4 shows the
scattering matrices are real: S(p) = S(p̄) In fact, the scattering matrices that
are used in the matching problem must satisfy this real constraint. Those H∞

functions satisfying this real constraint form a proper subset Re H∞(C+), which
generally forces the inequality:

inf{‖φ− h‖∞ : h ∈ Re H∞(C+)} ≥ ‖φ−H∞(C+)‖∞

However, equality is obtained provided φ is also real. That the best approxi-
mation operator preserves the real constraint is an excellent illustration of the
general principle: That the best approximation operator preserves symmetries.

Lemma 5.2. Let (X, d) be a metric space. Assume A : X → X is a contractive
map: d(A(x), A(y)) ≤ d(x, y). Let V ⊆ X be nonempty . Define dist(x,V) :=
inf{d(x, v) : v ∈ V}. Assume

A-1: V is A-invariant : A(V) ⊆ V.
A-2: x ∈ X is also A-invariant A(x) = x.

Then equality holds: dist(x,A(V)) = dist(x, V).

Proof. Let {vn} be a minimizing sequence: d(x, vn) → dist(x,V). Because
x is A-invariant, d(x,A(vn)) = d(A(x), A(vn)) ≤ d(x, vn) → dist(x, V). Thus,
dist(x,A(V)) ≤ dist(x, V) forces equality. ¤

Lemma 5.2 makes explicit the structure to handle the real constraint in the
matching problem.

Corollary 5.5. If sL ∈ B Re L∞(jR), there holds

inf{‖∆P (s2, sL)‖∞ : s2 ∈ BA1(C+)} = inf{‖∆P (s2, sL)‖∞ : s2 ∈ Re BA1(C+)}.
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Proof. Apply Lemma 5.2 identifying BL∞(jR) as the metric space, φ̃(jω) =
φ(jω) as the contraction, Re BA1(C+) as the ˜-invariant subset, and sL as the
˜-invariant target function. Recall that the power mismatch ∆P (s2, sL) is the
pseudohyperbolic metric ρ(s2, sL) (Section 4.8). Because ρ is a metric, it fol-
lows that ‖ρ‖∞ is also metric that is ˜-invariant: ‖ρ(s̃2, s̃L)‖∞ = ‖ρ(s2, sL)‖∞.

The technical complication is that ∆P (s2, sL) is well-defined only when one
of its arguments is restricted to the open unit ball BL∞(jR). With sL ∈
B Re L∞(jR), Lemma 4.6 asserts that s2 7→ ‖∆P (s2, sL)‖∞ is a continuous
mapping on BL∞(jR). Thus, we use continuity to drop the B constraint, apply
Lemma 5.2 to the open ball with the real contraction “˜”, and apply continuity
again to close the open ball:

inf{‖∆P (s2, sL)‖∞ : s2 ∈ Re BA1(C+)}
Lemma 4.6= inf{‖∆P (s2, sL)‖∞ : s2 ∈ Re BA1(C+)}
Eq. 4–10

= inf{‖ρ(s2, sL)‖∞ : s2 ∈ Re BA1(C+)}
Corollary 5.5

= inf{‖ρ(s2, sL)‖∞ : s2 ∈ BA1(C+)}
Eq. 4–10

= inf{‖∆P (s2, sL)‖∞ : s2 ∈ BA1(C+)}
Lemma 4.6= inf{‖∆P (s2, sL)‖∞ : s2 ∈ BA1(C+)}. ¤

Not surprisingly, Helton has also uncovered another notion of “real-invariance”
for general nonlinear minimization [32].

6. Classes of Lossless 2-Ports

The matching problems are optimization problems over classes of U+(2):

U+(2, d) ⊂ U+(2,∞) ⊂ U+(2) ⊂ Re BH∞(C+,C2×2).

On the left, U+(2, d) corresponds to the lumped, lossless 2-ports. Optimization
over this set represents an electrical engineering solution. On the right, the H∞

solution provided in the last section is computable from the measured data but
may not correspond to any lossless scattering matrix. The gap between the
H∞ solution and the various electrical engineering solutions may be closed by
continuity conditions.

The first result on gives the correspondence between the lumped N -ports and
their scattering matrices.

The Circuit-Scattering Correspondence [52, Theorems 3.1, 3.2]. Any
N -port composed of a finite number of lumped elements (positive resistors, ca-
pacitors, inductors, transformers, gyrators) admits a real , rational , lossless scat-
tering matrix S ∈ U+(N). Conversely , to any real , rational , scattering matrix
S ∈ U+(N) there corresponds an N -port composed of a finite number of lumped
elements
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This equivalence permits us to delineate the following class of lossless 2-ports by
their scattering matrices:

U+(2, d) := {S ∈ U+(2) : degSM[S(p)] ≤ d},
where degSM[S(p)] denotes the Smith–McMillan degree (defined in Theorem 6.2).
The second result establishes compactness (Appendix C contains the proof).

Theorem 6.1. Let d ≥ 0. U+(N, d) is a compact subset of A1(C+,CN×N ).

It is straight-forward but tedious to demonstrate that the gain function S 7→
‖GT (sG, S, sL)‖−∞ is a continuous function on U+(2, d). Thus, the matching
problem on U+(2, d) has a solution. The third result on U+(2, d) is the Belevitch
parameterization.

Belevitch’s Theorem [53] S ∈ U+(2, d) if and only if

S(p) =
[

s11(p) s12(p)
s21(p) s22(p)

]
=

1
g(p)

[
h(p) f(p)
±f∗(p) ∓h∗(p)

]
,

where f∗(p) := f(−p) and

B-1: f(p), g(p), and h(p) are real polynomials,

B-2: g(p) is strict Hurwitz5 of degree not exceeding d,

B-3: g∗(p)g(p) = f∗(p)f(p) + h∗(p)h(p) for all p ∈ C.

Belevitch’s Theorem lets us characterize several classes of 2-ports, such as the
low-pass and high-pass ladders. The low-pass ladders (Figure 11) admit the
scattering matrix characterization [3, page 121]:

s21(p) =
1

g(p)
.

These scattering matrices (f(p) = 1) form a closed and therefore compact subset
of U+(2, d). Consequently, the matching problem admits a solution over the class
of low-pass ladders. Figure 17 shows a high-pass ladder. A high-pass ladder
admits the scattering matrix characterization [3, page 122]:

s21(p) =
p∂g

g(p)
,

where ∂g denotes the degree of the polynomial g(p). The high-pass ladders form

Figure 17. A high-pass ladder.

5The zeros of g(p) lie in the open left half-plane.
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a closed and therefore compact subset of U+(2, d). Consequently, the matching
problem admits a solution over the class of high-pass ladders.

The fourth result on U+(2, d) is the state-space parameterization illustrated
in Figure 18. The N -port has a scattering matrix S ∈ U+(N, d), where d =
degSM[S(p)] counts the number of inductors and capacitors, The figure shows
that by pulling all the d reactive elements into the augmented load SL(p). What’s
left is an (N + d)-port with has a constant scattering matrix Sa called the
augmented scattering matrix. Then Sa models the (N + d)-port as a collection
of wires, transformers, and gyrators. Consequently, Sa is a real, unitary, and
constant matrix. Thus, S(p) is the image of the augmented load viewed through
the augmented scattering matrix. Theorem 6.2 gives the precise statement of
this state-space representation.

•
•
•

Wires

Transformers

Gyrators

π

•
•
•Sa

•
•
•

Port 1

Port N

SL( p)S( p)

Figure 18. State-space representation of a lumped, lossless N -port containing

d reactive elements.

Theorem 6.2 (State-Space [52, pages 90–93]). Every lumped , lossless, casual ,
time-invariant N -port admits a scattering matrix S(p) and conversely . If S(p)
has degree d, S(p) admits the following state-space representation:

S(p) = F(Sa, SL; p) := Sa,11 + Sa,12SL(p)(Id − Sa,22SL)−1Sa,21,

where the augmented load is

SL(p) =
p− 1
p + 1

[
INL 0
0 −INC

]
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and NL+NC = d counts the number of inductors and capacitors. The augmented
scattering matrix is

Sa =
[

Sa,11 Sa,12

Sa,21 Sa,22

]
N

d

N d

is a constant , real , orthogonal matrix .

This representation reveals the structure of the lumped, lossless N -ports, offers
a numerically efficient parameterization of U+(N, d) in terms of the orthogonal
group, proves the Circuit-Scattering Correspondence, generalizes to lumped, pas-
sive N -ports, and provides an approach to non-lumped or distributed N -ports.

A natural generalization drops the constraint on the number of reactive el-
ements in the 2-port and asks: What is the matching set that is obtained as
degSM[S(p)] →∞? Define

U+(2,∞) =
⋃

d≥0

U+(2, d).

The physical meaning of U+(2,∞) is that it contains the scattering matrices
of all lumped, lossless 2-ports. It is worthwhile to ask: Has the closure has
picked up additional circuits? Mathematically, a lossless matching N -port has a
scattering matrix S(p) that is a real inner function. Inner functions exhibit a fas-
cinating behavior at the boundary. For example, inner functions can interpolate
a sequence of closed, connected subsets Km ⊆ D [12]: limr→1 S(rejθm) = Km.
In contrast to this boundary behavior, if the lossless N -port is lumped, then S

is rational and so must continuous. The converse is true and demonstrated in
Appendix A.

Corollary 6.1. Let S ∈ H∞(C+,CN×N ) be an inner function. The following
are equivalent :

(a): S ∈ A1(C+,CN×N ).
(b): S is rational

Corollary 6.1 answers our question above with the negative:

U+(2,∞) =
⋃

d≥0

U+(2, d).

Thus, continuity forces S ∈ U+(2,∞) to be rational and the corresponding
lossless 2-port to be lumped. It is natural to ask: What lossless 2-ports are not
in U+(2,∞)?

Example 6.1 (Transmission Line). A uniform, lossless transmission line of
characteristic impedance Zc and commensurate length l is called a unit element
(UE) with chain matrix [3, Equation 8.1]

[
v1

i1

]
=

[
cosh(τp) Zc sinh(τp)

Yc sinh(τp) cosh(τp)

] [
v2

−i2

]
,
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where τ is the commensurate one-way delay τ = l/c determined by the speed of
propagation c.

v1 v2

i1 i2
++

- -

Zc

l

Figure 19. The unit element (UE) transmission line.

The scattering matrix of the transmission line normalized to Zc is

SUE(p) =
[

0 e−τp

e−τp 0

]

and gives rise to two observations: First, SUE(jω) oscillates out to ±∞, so
SUE(jω) cannot be continuous across ±∞. Thus, U+(2,∞) cannot contain such
a transmission line. Second, a physical transmission line cannot behave like this
near ±∞. Many electrical engineering books mention only in passing that their
models are applicable only for a given frequency band. One rarely sees much
discussion that the models for the inductor and capacitor are essentially low-
frequency models. This holds true even for the standard model of wire. One
cannot shine a light in one end of a 100-foot length of copper wire and expect
much out of the other end. These model limitations notwithstanding, the circuit-
scattering correspondence will be developed using these standard models. The
transmission line on the disk is

SUE ◦ c−1(z) =




0 exp
(
−τ

1 + z

1− z

)

exp
(
−τ

1 + z

1− z

)
0




and is recognizable as the simplest singular inner function [35, pages 66–67]
analytic on C \ {1} [35, pages 68–69]. Figure 20 shows the essential singularity
of the real part of the (1,2) element of SUE ◦ c−1(z) as z tends toward the
boundary of the unit circle.

7. Orbits and Tight Bounds for Matching

The following equalities convert a 2-port problem into a 1-port problem. Let
U be a subset of U+(2). Let

F1(U, sL) := {F1(S, sL) : S ∈ U}, F2(U, sG) := {F2(S, sG) : S ∈ U}
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Figure 20. Behavior of Re[SUE,12 ◦ c−1(z)] for z = rejθ as r → 1.

denote the orbit of the load and the orbit of the generator, respectively. By
Lemma 4.4,

sup{‖GT (sG, S, sL)‖−∞ : S ∈ U} = 1− inf{‖∆P (sG, S, sL)‖2∞ : S ∈ U}
= 1− inf{‖∆P (sG, s1)‖2∞ : s1 ∈ F1(U; sL)}
= 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U; sG)},

or maximizing the gain on U is equivalent to minimizing the power mismatch on
either orbit. Darlington’s Theorem makes explicit a class of orbits.

Theorem 7.1 (Darlington [3]). The orbits of zero under the lumped , lossless
2-ports are equal

F2(U+(2,∞), 0) = F1(U+(2,∞), 0)

and strictly dense in Re BA1(C+).

Proof. Let S ∈ U+(2,∞). Corollary 6.1 and Belevitch’s Theorem give that

S(p) =
1
g

[
h f

±f∗ ∓h∗

]
∈ Re A1(C+,C2×2),
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where (f, g, h) is a Belevitch triple. With sL = 0 and sG = 0, both s1 =
F1(S, 0) = h/g and belong to Re BA1(C+). However, Corollary 6.1 restricts S to
be rational so the orbits cannot be all of Re BA1(C+). By relabeling S with 1 ↔
2, we get equality between the orbits. To show density, suppose s ∈ Re BA1(C+).
Because the rational functions in Re BA1(C+) are a dense6 subset, we may
approximate s(p) by a real rational function: s ≈ h/g ∈ ReBA1(C+), where
h(p) and g(p) may be taken as real polynomials with g(p) strict Hurwitz and for
all ω ∈ R: g(jω)g∗(jω) − h(jω)h∗(jω) ≥ 0. By factoring g(p)g∗(p) − h(p)h∗(p)
or appealing to the Fejér–Riesz Theorem [46, page 109], we can find a real
polynomial f(p) such that

f(p)f∗(p) = g(p)g∗(p)− h(p)h∗(p).

The conditions of Belevitch’s Theorem are met and

S(p) =
1

g(p)

[
h(p) f(p)
f∗(p) −h∗(p)

]

is a lossless scattering matrix that represents a lumped, lossless 2-port. That is,
h(p)/g(p) dilates to a lossless scattering matrix S(p) for which s ≈ s11. Conse-
quentially, both orbits are dense in Re BA1(C+). ¤

At this point we are in position to obtain a tight bound on matching performance
in the special case of vanishing generator reflectance, sG = 0. For any given load
sL ∈ BH∞(C+). Lemma 4.6 shows that s2 7→ ‖∆P (s2, sL)‖∞ is continuous.
This continuity, coupled with the density claims of Darlington’s Theorem, gives:

max{GT (0, S, sL) : S ∈ U+(2, d)}
= 1−min{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U+(2, d); 0)}
≤ 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U+(2,∞); 0)}

Darlington
= 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ Re BA1(C+)}
≤ 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ BH∞(C+)}.

The “max” and the “min” are used because U+(2, d) is compact (Theorem 6.1)
and GT is continuous. The last infimum is attained by a minimizer by the Weier-
strass Theorem using the weak-∗ compactness of BH∞(C+) (page 10) and the
weak-∗ lower semicontinuity of the power mismatch (Section 4.10). The mini-
mum can be computed using the Nonlinear Nehari Theorem (See the comments
following Corollary 5.2 and Corollary 5.3). Thus, the impedance matching prob-
lem has a computable bound:

6Density claims on unbounded regions can be tricky. However, Lemma 3.3 isometrically
maps A1(C+) = A1(D) ◦ c and preserves the rational functions. Therefore, the dense rational
functions in A(D) map to a set of rational functions in A1(C+) that must be dense.
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max{GT (0, S, sL) : S ∈ U+(2, d)}
= 1−min{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U+(2, d); 0)}
≤ 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U+(2,∞); 0)}

Darlington
= 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ Re BA1(C+)}

≤ 1−
Corollary 5.3

min {‖∆P (s2, sL)‖2∞ : s2 ∈ BH∞(C+)} (computable).

The real constraint can be relaxed for real loads sL by Corollary 5.5:

max{GT (0, S, sL) : S ∈ U+(2, d)}
= 1−min{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U+(2, d); 0)}
≤ 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U+(2,∞); 0)}

Darlington
= 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ Re BA1(C+)}

Corollary 5.5
= 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ BA1(C+)}

≤ 1−
Corollary 5.3

min {‖∆P (s2, sL)‖2∞ : s2 ∈ BH∞(C+)} (computable).

Finally, the last inequality is actually equality if sL is sufficiently smooth, using
Theorem 5.5. Rolling it all up, we see that sL ∈ Re BA1(C+) forces a lot of
equalities:

max{GT (0, S, sL) : S ∈ U+(2, d)}
= 1−min{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U+(2, d); 0)}
≤ 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U+(2,∞); 0)}

Darlington
= 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ Re BA1(C+)}

Corollary 5.5
= 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ BA1(C+)}

Theorem 5.5= 1−
Corollary 5.3

min {‖∆P (s2, sL)‖2∞ : s2 ∈ BH∞(C+)} (computable).

Physically, this tight Nehari bound means that a lossless 2-port can be found
with smallest possible power mismatch and that there is a sequence of lumped,
lossless 2-ports that can get arbitrarily close to this bound. Furthermore, this
bound can be computed from measured data on the load.

8. Matching an HF Antenna

Recent measurements were acquired on the forward-mast integrated HF an-
tenna on the LPD 17, an amphibious transport dock. The problem is match this
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antenna over 9-30 MHz to a 50-ohm line impedance using the simplest match-
ing circuit possible. The goal is to find a simple matching circuit that gets the
smallest power mismatch or the smallest VSWR (Section 4.8) Thus, a practical
matching problem is complicated by not only minimizing the VSWR but making
a tradeoff between VSWR and circuit complexity.

We start with a transformer, consider low- and high-pass ladders, and then
show how the Nehari bound benchmarks these matching efforts. The transformer
has chain and chain scattering matrices parameterized by its turns ratio n (see
[3, Eq. 2.4] and [25, Table 6.2]; see also Figure 4 and Equation 4–1):

Ttransformer =
[

n−1 0
0 n

]
Θtransformer =

1
2n

[
1 + n2 1− n2

1− n2 1 + n2

]
.

Figure 21 displays the power mismatch as a function of the turns ratio n. This
optimal n produced Figure 5 in the introduction. The antenna’s load sL is
plotted as the solid curve in the unit disk. The solid disk corresponds to those
reflectances with VSWR less than 4. The dotted line plots the reflectance looking
to Port 1 of the optimal transformer with Port 2 terminated in the antenna:
s1 = G1(Θtransformer, sL). Lemma 4.4 demonstrates that matching at either port
is equivalent when the 2-port is lossless.
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Figure 21. Power mismatch of an ideal transformer.
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Figure 22. The antenna’s reflectance sL (solid) and the reflectance s1 after

matching with a low-pass ladder of order 4.

Figure 22 matches the antenna with a low-pass ladder of order 4 (See Fig-
ure 11). Comparison with the transformer shows little is to be gained with the
extra complexity. So it is very tempting to try longer ladders, or switch to high-
pass ladders, or just start throwing circuits at the antenna. The first step to gain
control over the matching processes is conduct a search over all lumped, lossless
2-port of degree not exceeding d:

d 7→ min{‖∆P (F2(S, sG), sL)‖∞ : S ∈ U+(2, d)}.
The state-space representation of Theorem 6.2 provides a numerically efficient
parameterization of these lossless 2-ports. Figure 23 reports on matching from
U+(2, 4). What is interesting is that s2 is starting to take a circular shape. This
circular shape is no accident. Mathematically, Nehari’s Theorem implies that
the error is constant at optimum s2:

∆P (s2(jω), sL(jω)) = ρmin.

The electrical engineers know the practical manifestation of Nehari’s Theorem.
For example, a broadband matching technique is described as follows [55]: The
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Figure 23. The antenna’s reflectance sL (solid) and the reflectance s1 after

matching over U+(2, 4).

load impedance zL is plotted in the Smith chart. The engineer is to terminate
this load with a cascade of lossless two-ports. By repeatedly applying “shunt-
stub/series-line cascades, a skilled designer using simulation software can see
[the terminated impedance zT ] form into a fairly tight circle around z = 1.” The
appearance of a circle is a real-world demonstration that Nehari’s Theorem is
heuristically understood by microwave engineers.

The final step for bounding the matching process is to estimate the Nehari
bound. Combine the eigenvalue test of Corollary 5.2 with the characterization
of the power mismatch disks in Lemma 4.5: There is an s2 ∈ BH∞(C+) with

‖∆(s2, sL)‖∞ ≤ ρ ⇐⇒ TŘρ
2 ≥ HCρH∗

Cρ
,

where the center and radius functions are

Cρ = kρ ◦ c−1, kρ = s̄L
1− ρ2

1− ρ2|sL|2 ,

Rρ = rρ ◦ c−1, rρ = ρ
1− |sL|2

1− ρ2|sL|2 .
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Figure 24. Estimate of λinf(ρ) versus ρ in terms of the VSWR

Let λinf(ρ) denote the smallest real number in the spectrum of TŘρ
2 −HCρH∗

Cρ
.

Figure 24 plots an estimate of λinf(ρ). The optimal VSWR occurs near the
zero-crossing point.

Figure 25 uses these VSWR bounds to benchmark several classes of matching
circuits. Each circuit’s VSWR is plotted as a function of the degree d (the total
number of inductors and capacitors). The dashed lines are the VSWR from the
low- and high-pass ladders containing inductors and capacitors constrained to
practical design values. The solid line is the matching estimated from U+(2, d).
A transformer performs as well as any matching circuit of degree 0 and as well
as the low-pass ladders out to degree 6. The high-pass ladders get closer to
the VSWR bound at degree 4. A perfectly coupled transformer (coefficient of
coupling k = 1) offers only a slight improvement over the transformer. In terms
of making the tradeoff between VSWR and circuit complexity, Figure 25 directs
the circuit designer’s attention to the d = 2 region. There exist matching circuits
of order 2 with performance comparable to high-pass ladders of order 4. Thus,
the circuit designer can graphically assess trade-offs between various circuits in
the context of knowing the best match possible for any lossless 2-port.
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with the Nehari and U+(2, d) bounds.

9. Research Topics

This paper shows how to apply the Nehari bound to measured, real-world
impedances. The price of admission is learning the scattering formalism and a
few common electric circuits. The payoff is that many substantial research topics
can be tastefully guided by this concrete problem. For immediate applications,
several active and passive devices explicitly use wideband matching to improve
performance:

• antenna [49; 2; 8; 1];
• circulator [36];
• fiber-optic links [7; 26; 23];
• satellite links [40];
• amplifiers [11; 22; 37].

The H∞ applications to the transducers, antenna, and communication links
are immediate. The amplifier is an active 2-port that requires a more general
approach. The matching problem for the amplifier is to find input and output
matching 2-ports that simultaneously maximize transducer power gain, minimize



48 JEFFERY C. ALLEN AND DENNIS M. HEALY, JR.

the noise figure, and maintain stability. Although a more general problem, this
amplifier-matching problem fits squarely in the H∞ framework [28; 29; 30] and
is a current topic in ONR’s H∞ Research Initiative [41].

9.1. Darlington’s Theorem and orbits. Parameterizing the orbits currently
limit the H∞ approach and leads to a series of generalization on Darlington’s
Theorem. An immediate application of Nehari’s Theorem asks for a “unit-ball”
characterization of an orbit:

Question 9.1. For what sG ∈ BH∞(C+) is it true that F1(U+(2,∞), sG) is
dense in Re BA1(C+)?

This question of characterization is subsumed by the problem of computing or-
bits:

Question 9.2. What is the orbit of a general reflectance F1(U, sL)?

We can also generalize U+(2,∞) and ask about the orbit of sL over all lumped
2-ports.

Question 9.3. Characterize all reflectances that belong to

⋃

d≥0

F1(U+(2, d), sL)

Closely related is the question of compatible impedances or when a reflectance
sL belongs to the orbit of another reflectance s′L.

Question 9.4. Let sL, s′L ∈ BH∞(C+). Determine if there exists an S′ ∈
U+(2) such that sL = F1(S′, s′L).

The theory of compatible impedances is an active research topic in electrical
engineering [54] and has links to the Buerling–Lax Theorem [29].

9.2. U+(2) and circuits. The Circuit-Scattering Correspondence of Section 6
identified lumped, lossless N -ports and the scattering matrices of U+(N, d) [52].
By identifying an N -port as a subset of a Hilbert space, Section 1 claimed
that any linear, lossless, time-invariant, causal, maximal solvable N -port cor-
responded to a scattering matrix in U+(N) [31]. The problem is reconcile the
lumped approach, which has a concrete representation of a circuit, with Hilbert
space claim, which gets a scattering matrix — not a circuit —by operator theory.

Question 9.5. Does every element in U+(2) correspond to a lossless 2-port?

In terms of Kirkoff’s current and voltage laws, if you were handed a collection
of integro-differential partial differential equations, is it obvious that the system
admits a scattering matrix?
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9.3. Circuit synthesis and matrix dilations. If matching problem with
sG = 0

inf{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U+(2); 0)},
admits a minimizer, then

s2 = F2(S, sG = 0) = s22 + s21sG(1− s11sG)−1s12|sG=0 = s22.

How can we use s2 to get a matching scattering matrix S ∈ U+(2)? Thus, a
circuit synthesis problem is really a question in matrix dilations.

Question 9.6. Given s2 ∈ BH∞(C+), find all S ∈ U+(2) such that

S =
[

s11 s12

s21 s22

]
=

[
s11 s12

s21 s2

]
.

Not all s2’s can dilate to a lossless 2-port. Wohlers [52, page 100-101] shows that
the 1-port with impedance z(p) = arctan(p) cannot dilate to an S ∈ U+(2). The
Douglas–Helton result characterizes those elements in the unit ball of H∞ that
came from a lossless N -port.

Theorem 9.1 ([14; 15]). Let S(p) ∈ BH∞(C+,CN×N ) be a real matrix func-
tion. The following are equivalent :

(a): S(p) admits an real inner dilation S(p) =
[

S(p) S12(p)
S21(p) S22(p)

]
.

(b): S(p) has a meromorphic pseudocontinuation of bounded type to the open left
half-plane C−; that is, there exist φ ∈ H∞(C−) and H ∈ H∞(C−,CN×N )
such that

lim
σ>0
σ→0

S(σ + jω) = lim
σ>0
σ→0

H

φ
(−σ + jω) a.e.

(c): There is an inner function φ ∈ H∞(C+) such that φSH ∈ H∞(C+,CN×N ).

Let M denote the subset of BH∞(C+) of functions that have meromorphic
pseudocontinuations of bounded type. General hyperbolic Carleson–Jacob (The-
orem 5.3) line of inquiry opens up to explore when the inequality

inf{‖∆P (s2, sL)‖∞ : s2 ∈ M} ≥ min{‖∆P (s2, sL)‖2∞ : s2 ∈ BH∞(C+)}
holds with equality.

9.4. Structure of U+(2). Turning to the inclusion U+(2,∞) ⊂ U+(2), the
preceding sections have established that U+(2,∞) is a closed subset of U+(2)
that consists of all rational inner functions parameterized by Belevitch’s Theo-
rem. Physically, U+(2,∞) models all the lumped 2-ports, but does not model
the transmission line. It is natural to wonder what subclass of U+(2) contains
the lumped 2-ports and the transmission line. More precisely,

Question 9.7. What constitutes a lumped-distributed network? How do we
recognize its scattering matrix?
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Wohlers [52] answers the first question by parameterizing the class of lumped-
distributed N -ports, consisting of NL inductors, NC capacitors, and NU uniform
transmission lines using the model in Figure 26. Wohlers [52, pages 168–172]

Wires

Transformers

Gyrators

π

Sa SL( p)

Port 1

Port 2

Port N

S( p)

Figure 26. State-space representation of a lumped-distributed lossless 2-port.

establishes that such scattering matrices exist and have the form,

S(p) = F(Sa, SL; p) = Sa,11 + Sa,12SL(p)(Id − Sa,22SL(p))−1Sa,21,

where the augmented scattering matrix

Sa =
[

Sa,11 Sa,12

Sa,21 Sa,22

]

models a network of wires, transformers, and gyrators. Consequently, Sa is a
constant, real, orthogonal matrix of size d = NL + NC + 2NU . SL(p) is called
the augmented load and models the reactive elements as

SL(p) = qINL
⊕ −qINC

⊕
{

INU
⊗

[
0 e−τp

e−τp 0

]}
.

This decomposition assumes: (1) the first NL +NC ports are normalized to z0 =
1, and (2) the remaining NU pairs of ports are normalized to the characteristic
impedance Z0,nu of each transmission line. Although some work has be done
charactering these scattering matrices, the reports in Wohlers [52, page 173] are
false, as determined by Choi [10].
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9.5. Error bounds. The problem is to determine if Tr2 ≥ H∗
cHc, when all we

know are noisy samples of the center and radius functions measured at a finite
number of frequencies. Of the several approaches to this problem [29], we use
the simple Spline-FFT Method.

The Spline-FFT Nehari Algorithm Given samples {(jwk, C(jωk)} and
{(jwk, R(jωk)}, where 0 ≤ ω1 < ω2 < · · · < ωK < ∞.

SF-1: Cayley transform the samples from jR to the unit circle T:

c(ejθk) := C ◦ c−1(ejθk), r(ejθk) := R ◦ c−1(ejθk).

SF-2: Use a spline to extend {ejθk , c(ejθk)} and {ejθk , r(ejθk)} to functions on
the unit circle T.

SF-3: Approximate the Fourier coefficients using the FFT:

ĉ(N ;n) :=
1
N

N−1∑

n′=0

e−j2πnn′/Nc(e+j2πn′/N ),

r̂(N ;n) :=
1
N

N−1∑

n′=0

e−j2πnn′/Nr(e+j2πn′/N ).

SF-4: Make the truncated Toeplitz and Hankel matrices:

Tr2,M,N =
[
r̂2(N ; m1 −m2)

]M−1

m1,m2=0
,

Hc,M,N = [ĉ(N ;−(m1 + m2))]
M−1
m1,m2=0 .

SF-5: Find the smallest eigenvalue of

AM,N := Tr2,M,N −HH
c,M,NHc,M,N .

We are aware of the following sources of error:

• The samples are corrupted by measurement errors.
• The spline extensions from sampled data to functions defined on the unit

circle T.
• The Fourier coefficients are computed from an FFT of size N .
• The operator A is computed from M ×M truncations.

Question 9.8. Are these all the sources of error (neglecting roundoff)? How
can the Spline-FFT Nehari algorithm adapt to account for these errors? Can we
put error bars on Figure 24?
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10. Epilogue

One of the great joys in applied mathematics is to link an abstract compu-
tation to a physical system. Nehari’s Theorem computes the norm of a Hankel
operator Hφ as the distance between its symbol φ ∈ L∞ and the Hardy subspace
H∞:

‖Hφ‖ = inf{‖φ− h‖∞ : h ∈ H∞}.
One of J. W. Helton’s inspired observations linked this computation to a host of
problems in electrical engineering and control theory. These problems, in turn,
led Helton to deep and original extensions of operator theory, geometry, convex
analysis, and optimization theory.

By linking H∞ theory to the matching circuits, a physical meaning is attached
to the Nehari computation and produces a plot that the electrical engineers can
actually use. Along the way we encountered Darlington’s Theorem, Belevitch’s
Theorem, Weierstrass’ Theorem, the Carleson–Jacobs theorems, Nehari’s The-
orem, inner-function models, and hyperbolic geometry. Impedance-matching
provides a case study of rather surprising mathematical richness in what may
appear at first to be a rather prosaic analog signal processing issue.

A measure of the vitality of a subject is the quality of the unexplored ques-
tions. A small effort invested in circuit theory opens up a host of wonderful
research topics for mathematicians. These topics discussed in this paper indicate
only a few of the significant research opportunities that lie between mathematics
and electrical engineering. For the mathematician, there are few engineering
subjects where an advanced topic like H∞ has such an immediate connection
actual physical devices. We hope our readers do realize a rich harvest from these
research opportunities.

Appendix A. Matrix-Valued Factorizations

This appendix proves Corollary 6.1 using Blaschke–Potapov factorizations.
We start with the scalar-valued case.

Lemma A.1. Let h ∈ H∞(D) be an inner function. The following are equiva-
lent :

(a): h ∈ A(D).
(b): h is rational .

Proof. (a=⇒b) Factor h as h = cbs, where c ∈ T, b is a Blaschke and s is a
singular inner function. If za ∈ T is an accumulation point of the zeros {zn} of
b, that is, there is a subsequence znk

→ za, then continuity of h on D implies
that 0 = h(znk

) → h(za). Continuity of h on D gives a neighborhood U ⊂ T
of za for which |h(U)| < 1. Thus, h cannot be inner with b an infinite Blaschke
product. Thus, b can only be a finite product and has no accumulation points to
cancel the discontinuities of s. More formally, b never vanishes on T and neither
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s nor |s| is continously extendable to from the interior of the disk to any point
in the support of the singular measure that represents s [35, pages 68–69]. Thus,
h cannot have a singular part and we have h = cb.
(b=⇒ a) A rational h also in H∞(D) cannot have a pole in D. Then h is
continuous on D so belongs to the disk algebra. ¤

The result generalizes to matrix-valued inner functions. For a ∈ D, define the
elementary Blaschke factor [38, Equation 4.2]:

ba(z) :=




|a|
a

a− z

1− āz
if a 6= 0,

z if a = 0.

To get a matrix-valued version, let P ∈ CN×N be an orthogonal projection:
P 2 = P and PH = P . The Blaschke–Potapov elementary factor associated with
a and P is [38, Equation 4.4]:

Ba,P (z) := IM + (ba(z)− 1)P.

There are a couple of ways to see that Ba,P is inner. Let U be a unitary matrix
that diagonalizes P :

UHPU =
[

IK 0
0 0

]
.

Then,

UHBa,P (z)U =
[

ba(z)IK 0
0 IM−K

]
.

From this, we get [38, Equation 4.5]:

det[Ba,P (z)] = ba(z)rank[P ].

Definition A.1 ([38, pages 320–321]). The function B : D → CN×N is called
a left Blaschke–Potapov product if either B is a constant unitary matrix or there
exists a unitary matrix U , a sequence of orthogonal projection matrices {Pk :
k ∈ K}, and a sequence {zk : k ∈ K} ⊂ D such that

∑

k∈K

(1− |zk|)trace[Pk] < ∞

and the representation

B(z) =

{ →∏

k∈K

Bzk,Pk
(z)

}
U

holds.

Definition A.2 ([38, pages 319]). Let S ∈ H∞(D,CN×N ) be an inner function.
S is called singular if and only if det[S(z)] 6= 0 for all z ∈ D.
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Theorem A.1 ([38, Theorem 4.1]). Let S ∈ H∞(D,CN×N ) be an inner func-
tion. There exists a left Blaschke–Potapov product and a CN×N -valued singular
inner function Ξ such that

S = BΞ.

Moreover , the representation is unique up to a unitary matrix U . If

S = B1Ξ1 = B2Ξ2,

then B2 = B1U and Ξ2 = UHΞ1.

Critical for our use is that the determinant maps these matrix-valued generaliza-
tions of the Blaschke and singular functions to their scalar-valued counterparts.

Theorem A.2 ([38, Theorem 4.2]). Let S ∈ BH∞(D,CN×N ).

(a): det[S] ∈ BH∞(D).
(b): S is inner if and only if det[S] is inner .
(c): S is singular if and only if det[S] is singular .

With these results in place, Lemma A.1 generalizes to the matrix-valued case.

Proof of Corollary A.1. (a=⇒b) Lemma 3.3 and Assumption (a) give
that W = S ◦ c−1 is a continuous inner function in A(D,C2×2). Theorem A.1
gives that W = BΞ for a left Blaschke–Potapov product B and singular Ξ.
Observe that det[W ] = det[B] det[Ξ]. If W is inner, then det[W ] is inner by
Theorem A.2(a). Because W is continuous, det[W ] is continuous and Lemma A.1
forces det[W ] to be rational. Therefore, det[W ] cannot admit the singular factor
det[Ξ]. Consequently, W cannot have a singular factor by Theorem A.2(c).
Because det[W ] is rational and

det[W ] = det[B] =
∏

brank[Pk]
zk

,

we see that B must be a finite left Blaschke–Potapov product. Consequently,
S = W ◦ c is rational. Finally, this gives that S is rational.

(b=⇒ a) Let

S(p) =
1

g(p)
H(p),

where g(p) is a real polynomial

g(p) = g0 + g1p + · · ·+ gLpL,

of degree K that is strict Hurwitz (zero only in C−) and H(p) is a real N ×N

polynomial
H(p) = H0 + H1p + · · ·+ HMpM

of degree L. Boundedness forces L ≥ M . Then,

H(p)
g(p)

=
H0 + · · ·+ HMpM

g0 + · · ·+ gLpL

p→∞→
{

0 if L > M ,
HN/gN if L = M .
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Thus, H(p)/g(p) is continuous across p = ±j∞. Thus, S(p) is continuous at
±j∞. ¤

Appendix B. Proof of Lemma 4.4

The chain scattering representations are [25]:

G(Θ1; s) := F1(S, s), Θ1 ∼ 1
s21

[ − det[S] s11

−s22 1

]
,

G(Θ2; s) := F2(S, s), Θ2 ∼ 1
s12

[ − det[S] s22

−s11 1

]
,

where “∼” denotes equality in homogeneous coordinates: Θ ∼ Φ if and only if
G(Θ) = G(Φ). Because S(p) is unitary on jR, Θ1(p) and Θ2(p) are J-unitary on
jR [29]:

ΘHJΘ = J =
[

1 0
0 −1

]
.

Fix ω ∈ R. Define the maps g1 and g2 on the unit disk D as

g1(s) := G(Θ1(jω), s), g2(s) := G(Θ2(jω), s).

Because Θ1(p) and Θ2(p) are J-unitary on jR, it follows that g1 and g2 are
invertible automorphisms of the unit disk onto itself with inverses:

g−1
1 (s) = G(Θ1(jω)−1, s), Θ1(jω)−1 ∼

[ −1 s11(jω)
−s22(jω) det[S(jω)]

]

g−1
2 (s) = G(Θ2(jω)−1, s), Θ2(jω)−1 ∼

[ −1 s22(jω)
−s11(jω) det[S(jω)]

]
.

Because the gk’s and their inverses are invertible automorphisms, Equation 4–9
gives that ∣∣∣∣∣

g(s1)− g(s2)
1− g(s1)g(s2)

∣∣∣∣∣ =
∣∣∣∣

s1 − s2

1− s1s2

∣∣∣∣ ,

for s1, s2 ∈ D and g denoting either g1, g2, g−1
1 , or g−1

2 . For all p ∈ jR, we
obtain

∆P (s2, sL) =
∣∣∣∣

s2 − sL

1− s2sL

∣∣∣∣ =
∣∣∣∣
g2(sG)− sL

1− g2(sG)sL

∣∣∣∣

=

∣∣∣∣∣
sG − g−1

2 (sL)

1− sGg−1
2 (sL)

∣∣∣∣∣ = ∆P (sG,g−1
2 (sL)).

Then ∆P (s2, sL) = ∆P (sG, s1), provided we can show s1 = g−1
2 (sL). In terms

of the chain matrices, this requires us to show

s1 = G(Θ1; sL) = G(Θ−1
2 ; sL) = G(Θ−1

2 ; sL).
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This equality will follow if we can show Θ1 ∼ Θ−1
2 or that

Θ1 ∼
[ −1 s11/ det[S]
−s22/ det[S] 1/ det[S]

]
∼

[ −1 s22

−s11 det[S]

]
∼ Θ−1

2 .

Because S(p) is inner, det[S] is inner so that det[S] = 1/ det[S] on jR. Also, on
jR, S(p) is unitary so that

S−1 =
1

det[S]

[
s22 −s12

−s21 s11

]
=

[
s11 s12

s21 s22

]
.

Then, s22 = s11/ det[S] and s11 = s22/ det[S]. Thus, Θ1 ∼ Θ−1
2 so that s1 =

g−1
2 (sL) or that the LFT law holds. By Lemma 4.3, the LFT laws give the TGP

laws.

Appendix C. Proof of Theorem 6.1

Let C(T,CN×N ) denote the continuous functions on the unit circle T. Let RL
M

denote those rational functions g−1(q)H(q) in C(T,CN×N ) where g(q) and H(q)
are polynomials with degrees ∂[g] ≤ M and ∂[H] ≤ L. The Existence Theorem
[9, page 154] shows that RL

M is a boundedly compact subset of C(T,CN×N ).
Lemma 3.3 shows the Cayley transform preserves compactness. Thus, RL

M ◦ c is
a boundedly compact subset of 1+̇C(jR,CN×N ). By Lemma 3.1, U+(N) is a
closed subset of L∞(jR,CN×N ). The intersection of a closed and bounded set
with a boundedly compact set is compact. Thus, U+(N) ∩RL

M ◦ c is a compact
subset of 1+̇C(jR,CN×N ). We claim that U+(N, d) = U+(N)∩Rd

d ◦c. Observe
Rd

d ◦ c consists of all rational functions with the degree of the numerator and
denominator not exceeding d and that are also continuous on jR, including the
point at infinity. If S ∈ U+(N) ∩ Rd

d ◦ c,then degSM[S] ≤ d. This forces S

into U+(N, d). Consequently, U+(N, d) ⊇ U+(N) ∩ Rd
d ◦ c. For the converse,

suppose S ∈ U+(N, d). By Corollary 6.1, S ∈ A1(C+,CN×N ) and thus forces S

into Rd
d ◦ c. Thus, U+(N, d) ⊆ U+(N) ∩ Rd

d ◦ c and equality must hold. Thus,
U+(N, d) is compact.

Appendix D. Proof of Theorem 5.5

We start by remarking upon the disk with strict inequalities:

D(c, r) := {φ ∈ L∞(jR) : |φ(jω)− c(jω)| < r(jω) a.e.}.

First, D(c, r) need not be open. For example, D(0, 1) contains the open unit
ball and is contained in its closure:

BL∞(jR) ⊂ D(0, 1) ⊂ BL∞(jR).
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However,

φ(jω) :=
ω

1 + |ω|
belongs to D(0, 1) but with ‖φ‖∞ = 1, there is no neighborhood of φ that is
contained in the open unit ball.

Second, consider what the strict inequalities mean for those γ : L∞(jR) → R
that are continuous with sublevel sets

[γ ≤ α] = D(cα, rα).

We cannot claim that [γ < α] is D(cα, rα). Instead, [γ < α] is an open set
contained by D(cα, rα). In this regard, the following result gives us some control
of the strict inequality.

Theorem D.1. Let c, r ∈ L∞(jR). Assume r−1 ∈ L∞(jR). Let V be any
nonempty open subset of L∞(jR) such that V ⊆ D(c, r). For any φ ∈ V ,

‖r−1(φ− c)‖∞ < 1.

Proof. For any φ ∈ V , the openness of V implies there is an ε > 0 such that

φ + εBL∞(jR) ⊂ V.

Consider the particular element of the open ball:

∆φ := ε′ × sgn(φ− c)
r

‖r‖∞ ,

where 0 < ε′ < ε and

sgn(z) :=
{

z/|z| if z 6= 0,
0 if z = 0.

Then φ + ∆φ ∈ D(c, r) so that

r > |φ + ∆φ− c| = |φ− c|+ ε′
r

‖r‖∞ a.e.

Divide by r and take the norm to get

1 ≥ ‖r−1(φ− c)‖∞ + ε′‖r‖−1
∞ ,

or that 1 > ‖r−1(φ− c)‖∞. To complete the argument, we need to demonstrate
that the preceding argument is not vacuous. That is, D(c, r) does indeed contain
an open set. Because r does not “pinch off”, 0 < ‖r‖−∞. Choose any 0 < η <

‖r‖−∞. For any φ ∈ BL∞(jR)

‖(ηφ + c)− c‖∞ ≤ η < r a.e.

Thus, the open set c + ηBL∞(jR) is contained in D(c, r). ¤
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Proof of Theorem 5.5. There always holds

ρBA1
:= inf{‖∆P (s2, sL)‖∞ : s2 ∈ BA1(C+)}
≥ min{‖∆P (s2, sL)‖∞ : s2 ∈ BH∞(C+)} = ρBH∞ .

Suppose the inequality is strict. Then there is an s2 ∈ BH∞(C+) such that

ρBA1
> ‖∆P (s2, sL)‖∞. (D–1)

By Lemma 4.6, the mapping ∆ρ(s2) := ‖∆P (s2, sL)‖∞ is a continuous function
on BL∞(jR). Consequently, [∆ρ < ρBA1

] is open with

[∆ρ < ρBA1
] ⊂ D(kA, rA),

where the center function and radius functions are

kA := s̄L

1− ρ2
BA1

1− ρ2
BA1

|sL|2 , rA := ρBA1

1− |sL|2
1− ρ2

BA1
|sL|2 .

Let rA have spectral factorization rA = |qA|. By Theorem D.1,

‖q−1
A kA − q−1

A s2‖∞ < 1.

If we assume that q−1
A kA ∈ 1+̇C0(jR), Theorem 5.2 forces equality:

1 > ‖q−1
A kA −H∞(C+)‖∞ = ‖q−1

A kA −A1(C+)‖∞.

The equality lets us select sA ∈ A1(C+) that satisfies

1− ε0 > ‖q−1
A (kA − sA)‖∞,

for some 1 > ε0 > 0. This forces the pointwise result:

(1− ε0)rA ≥ |kA − sA| a.e.

With some effort, we will show that this pointwise equality implies

∆ρ(sA) < ρBA1
.

This contradiction implies that Equation D–1 cannot be true or that the inequal-
ity ρBA1

≥ ρBH∞ cannot be strict.
To start this demonstration, we first prove q−1

A kA is continuous. Because sL

belongs to the open unit ball of the disk algebra, both kA and rA belong to
1+̇C0(jR). Thus, it remains to prove that q−1

A is continuous. Lemma 3.3 gives
that RA = rA ◦ c−1 belongs to C(T). Ignore the trivial case when ρBA1

= 0.
Because

RA ≥ ρBA1
(1− ‖sL‖2∞) > 0

it follows that log(RA) ∈ C(T) and defines the outer function [18, page 24]:

QA(z) := exp
(

1
2π

∫ 2π

0

ejt + z

ejt − z
log(RA(ejt))dt

)
∈ A(D).
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Lemma 3.3 gives that qA = QA ◦ c ∈ A1(C+) and is also an outer function.
Because qA is an outer function q−1

A ∈ A1(C+). Thus, a spectral factorization
exists in the disk algebra.

To continue, define for ε ∈ [0, ε0],

ρ(ε) := (1− ε)ρBA1
.

Define

kε := s̄L
1− ρ(ε)2

1− ρ(ε)2|sL|2 , rε := ρρ(ε)
1− |sL|2

1− ρ(ε)2|sL|2 .

In L∞(jR), kε → kA and rε → rA as ε → 0. Then

|sA−kε| ≤ |sA−kA|+ |kA−kε|
≤ (1−ε0)rA + |kA−kε| ≤ (1−ε0)rε + |rA−rε|+ |kA−kε|.

Because the last two terms are bounded as O[ε],

|sA − kε| ≤ rε − ε0rε + O[ε].

Because rA is uniformly positive, and rε converges to rA, the last two terms are
uniformly negative for all ε > 0 sufficiently small. This puts

sA ∈ D(kε, rε) ⇐⇒ ∆ρ(sA) < (1− ε)ρBA1
. ¤
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