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Natural demodulation of two-dimensional fringe
patterns. II. Stationary phase analysis

of the spiral phase quadrature transform
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Utilizing the asymptotic method of stationary phase, I derive expressions for the Fourier transform of a two-
dimensional fringe pattern. The method assumes that both the amplitude and the phase of the fringe pattern
are well-behaved differentiable functions. Applying the limits in two distinct ways, I show, first, that the spi-
ral phase (or vortex) transform approaches the ideal quadrature transform asymptotically and, second, that
the approximation errors increase with the relative curvature of the fringes. The results confirm the validity
of the recently proposed spiral phase transform method for the direct demodulation of closed fringe patterns.
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1. INTRODUCTION
This is the second of two papers on the demodulation of
two-dimensional (2-D) patterns. In the first paper an iso-
tropic transform was proposed for generating 2-D quadra-
ture functions in a manner analogous to the Hilbert
transform (HT) in one dimension.1 In that publication a
number of intriguing historical and conceptual issues
were discussed in conjunction with a heuristic description
of the method. In this paper we wish to outline the
mathematical basis for the quadrature properties of the
spiral phase transform. In so doing, we apply the
method of stationary phase to a 2-D fringe pattern of
quite general form. As far as the author is aware, this
powerful method has not been successfully applied to the
demodulation and the analysis of fringe patterns before.
Stationary phase methods are, however, familiar in the
closely related field of computer-generated holograms.2,3

The spiral phase transform is closely connected with
the 2-D Riesz transform, which is well-known in an area
of pure mathematics called harmonic analysis, although
little known in physics and engineering. Many papers
have been written on the existence and convergence prop-
erties of singular integrals such as the Riesz transform,
but I have been unable to find any studies that investi-
gate applications in multidimensional demodulation.
Furthermore, the inherent deviations from exact quadra-
ture (necessary for exact demodulation) seem to have
been overlooked. This paper is an attempt to clarify the
approximate quadrature properties of the spiral phase (or
vortex) transform by using asymptotic methods.

The initial approach does not directly evaluate the spi-
ral phase transform, because that approach has so far re-
sisted analysis and remains intractable. The analysis
has, instead, worked from the other direction by evalua-
tion of (the transform of) the fringe pattern multiplied by
an orientational phase factor. The objective then is to
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show that such a transform asymptotically approaches
the fringe transform multiplied by a spiral phase. The
one-to-one relation4,5 of a function and its Fourier trans-
form (FT) then ensures that the direct and indirect ap-
proaches are equally valid. This paper is organized as
follows. In Section 2 we consider the definition of a 2-D
fringe pattern and some methods available for demodula-
tion. In Section 3 we use the method of stationary phase
to estimate the FT of a complex fringe pattern and then
derive the spiral phase factor. In Section 4 we show that
a real fringe pattern can be constructed from two
complex-conjugate patterns and (the main result of this
paper) that a quadrature relation can be established by
using the spiral phase factor. Section 5 reviews the heu-
ristic development of the spiral phase quadrature trans-
form. Section 6 considers an alternative stationary
phase expansion that indicates how the spiral phase
quadrature relation deviates from the ideal. Section 7
concludes the paper. An appendix on the practical as-
pects of fringe orientation estimation is included for com-
pleteness.

2. TWO-DIMENSIONAL FRINGE PATTERNS
For simplicity, we shall consider a fringe pattern (also
known as an amplitude- and frequency-modulated func-
tion, or AM–FM function) f(x, y) of the form

f~x, y ! 5 b~x, y !cos@c~x, y !# 5
b~x, y !

2
$exp@ic~x, y !#

1 exp@2ic~x, y !#%, (1)

where the offset (or ‘‘dc’’) term of a more general fringe
pattern intensity has been removed, also for simplicity.6

The objective of fringe pattern analysis is to extract both
the amplitude and phase modulation terms, b(x, y) and
2001 Optical Society of America
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f(x, y), respectively. The amplitude term b(x, y) is
more commonly known as the modulation in optical fringe
analysis, but to avoid confusion with phase or frequency
modulation, it will not be used here. The analysis pro-
cess is better described in general as 2-D demodulation.
One way to demodulate is by estimation of the fringe
quadrature component f̂(x, y):

f̂~x, y ! 5 2b~x, y !sin@c~x, y !# 5 2
b~x, y !

2i
$exp@ic~x, y !#

2 exp@2ic~x, y !#%. (2)

In one dimension it is well-known that this quadrature
process can be approximated by the HT (the error in the
approximation is related to how well the function fits cer-
tain band-limit constraints7). A significant body of de-
tailed work exists on this subject, and it is covered in a
number of standard texts as well as being the basis of the
Fourier transform method in fringe analysis.8 In two (or
more) dimensions, the problem requires the definition of a
HT analogous to that in the one-dimensional (1-D) case.9

In most cases this has led to simple extensions based
upon separable products of the 1-D HT. Readers inter-
ested in previous attempts to extend the HT beyond one
dimension are advised to consult Paper I.1 We shall take
as our starting point the idea of a 2-D HT based upon a
spiral phase signum function. It is worth noting at this
point that iterative methods for 2-D demodulation can
give excellent results,10 although the computational re-
quirements are significant. From the image processing
perspective, it is often preferable to have an algorithm
that computes the results efficiently through a direct
method, if such a method exists. The spiral phase
quadrature transform is one such direct method.

3. STATIONARY PHASE EXPANSION OF A
COMPLEX PATTERN p(x, y)
It is not the objective to give a formal justification of the
method of stationary phase. A number of clear, detailed,
and rigorous accounts are available. A book by Bleistein
and Handelsman contains details of a stationary phase
method for multidimensional integrals of Fourier type.11

Following their approach, we shall initially consider an
integral with a complex exponential kernel p(x, y) (analo-
gous to the analytic signal in one dimension12,13) and then
later separate the real and imaginary parts correspond-
ing to the two quadrature functions:

p~x, y ! 5 f~x, y ! 2 i f̂~x, y ! 5 b~x, y !exp@ic~x, y !#.
(3)

The 2-D FT is defined as follows:

P~u, v ! 5 E
2`

1`E
2`

1`

p~x, y !exp@22pi~ux 1 vy !#dxdy.

(4)

We can write this more compactly as

P~u, v ! 5 E
2`

1`E
2`

1`

b~x, y !exp@iC~u, v, x, y !#dxdy,

(5)
the total phase function being C(u, v, x, y) 5 c(x, y)
2 2p(ux 1 vy). We now parameterize the transform
with a factor k that represents a fringe pattern with in-
creasingly close fringes but unchanged envelope:

Pk~u, v ! 5 E
2`

1`E
2`

1`

b~x, y !exp@ikC~u, v, x, y !#dxdy.

(6)

If we fix on a particular location in frequency space (u, v),
then the above equation corresponds to the integral form
considered by Bleistein and Handelsman (Ref. 11, p. 340).
In this particular case we shall further restrict the func-
tions under consideration to allow us a simple derivation:

• b(x, y) is a real function, continuous, and infinitely
differentiable.

• C(x, y) is also a real function, continuous, and infi-
nitely differentiable.

In reality, not all fringe patterns satisfy these constraints.
One of the most common exceptions is the branch cut,
where the phase C(x, y) has a phase discontinuity but
the amplitude b(x, y) is zero. Although such nondiffer-
entiable features are of great practical interest, the sta-
tionary phase analysis is less straightforward and is not
investigated here. According to Bleistein and Handels-
man (Ref. 11, pp. 341 and 380), discontinuities give rise to
asymptotic expansions that decay at a slower rate. Fig-
ure 1(a) shows an example of a fringe pattern that satis-
fies the above restrictions. The underlying phase func-
tion c(x, y) for the depicted fringe pattern is shown in
Fig. 1(b). The above restrictions allow us to ignore criti-
cal points of the second and third kinds, which would oth-
erwise occur at the edges and the corners of the support
boundary. Now we can apply the method of stationary
phase directly to Eq. (6), and we find—following Stamnes
(Ref. 14, p. 138)—that the result is the sum of contribu-
tions from all the critical points:

Pk~us , vs! ;
2p

k (
n51

N
s~xn , yn!

uH~xn , yn!u1/2 exp@ikC~xn , yn!#

3 Fb~xn , yn! 1
i

k
Q2~xn , yn!G , (7)

where the critical points are defined in two dimensions by
the phase gradient zeros:

¹C~x, y ! 5 0 ⇒ C1,0~x, y ! 5 C0,1~x, y ! 5 0

at x 5 xn , y 5 yn . (8)

There is a magnitude term related to the Hessian15 H of
the phase at each critical point, where

H~xn , yn! 5 C2,0~xn , yn!C0,2~xn , yn! 2 C1,1
2 ~xn , yn!,

(9)

and the partial derivative of the phase is

C l,m 5
] l1mC

]xl]xm . (10)

The factor s is controlled by the shape of the stationary
point:
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s 5 H 1 if H , 0

i if H . 0, C2,0 . 0

2i if H . 0, C2,0 , 0
. (11)

Stamnes includes a second-order term Q2 related to prod-
ucts of various partial derivatives (a1 , a2 , a3) and the re-
ciprocal of the Hessian:

Q2 5
a1

H~xn , yn!
1

a2

H2~xn , yn!
1

a3

H3~xn , yn!
. (12)

Fig. 1. (a) Typical fringe pattern with smooth and differentiable
amplitude and phase. (b) Underlying phase function of the
fringe pattern in (a). The gray-scale representation has black
for 0 rad and white for 70 rad.
Our first-order analysis will ignore this term. We have
assumed here that the stationary points (xn , yn) are all of
lowest order. Higher-order stationarity can be defined,
although the expressions become rather complex unless
described recursively. Mathematically, this assumption
is expressed as

H~xn , yn! Þ 0. (13)

In the case where the stationary points are not isolated,
the coefficients will be modified (Papoulis16 provides a
nice example, where a line of points gives a k21/2 rather
than a k21 asymptotic coefficient). Again, we shall ig-
nore such complications in the present analysis.

The actual locations of the (isolated) stationary points
are related to particular frequencies:

c1,0~xn , yn! 5 2pus , c0,1~xn , yn! 5 2pvs . (14)

We have implicitly considered a Taylor-series expansion
around each stationary point:

c~xn 1 s, yn 1 t ! 5 c0,0~xn , yn! 1 c1,0~xn , yn!s

1 c0,1~xn , yn!t 1
c2,0~xn , yn!s2

2

1
c0,2~xn , yn!t2

2
1 ¯ , (15)

so that

C~xn 1 s, yn 1 t ! 5 c0,0~xn , yn! 1
c2,0~xn , yn!s2

2

1
c0,2~xn , yn!t2

2
1

c1,1~xn , yn!st

1

1 ¯ . (16)

The contribution to the Fourier integral from any one sta-
tionary point (xn , yn) is

@Pk~us , vs!#n ;
2p

k

s~xn , yn!

uH~xn , yn!u1/2

3 exp@ikc~xn , yn!#b~xn , yn!. (17)

Now let us consider another stationary phase expan-
sion of the original fringe pattern, but this time with a
slowly varying phase factor exp@ib (x, y)# applied to the
amplitude modulation term b(x, y). If the phase factor
is suitably slowly varying and differentiable, we can jus-
tify this (below we shall consider the alternative of apply-
ing it to the phase modulation term). Of particular inter-
est is a phase factor that corresponds to the fringe
orientation angle (orientation of steepest phase gradient):

tan@ b~x, y !# 5
c0,1~x, y !

c1,0~x, y !
, 0 < b , 2p. (18)

Figure 2(a) shows the general definition of orientation
angle from the phase gradient. Figure 2(b) shows the
corresponding case for a real fringe pattern. An orienta-
tion defined by Eq. (18) is unambiguous in the range 0–2p
rad, unlike the orientation of real fringe patterns, where
it is not possible to distinguish a fringe from a similar
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fringe rotated p (in other words, the estimation is mod p).
Figure 3(a) shows a gray-scale plot of the orientational
phase (mod p) for the fringe pattern in Fig. 1(a). Figure
3(b) shows a gray-scale plot of the orientational phase
(mod 2p) for the phase function shown in Fig. 1(b).
Readers interested in implementation details are referred
to Appendix A, where certain practical aspects of estimat-
ing the fringe orientation angle are discussed.

The FT of the fringe pattern modified by exp@ib(x, y)#
becomes

P̃k~u, v ! 5 E
2`

1`E
2`

1`

b̃~x, y !exp@ikC~u, v, x, y !#dxdy,

(19)

where the new amplitude b̃ is given by

b̃~xn , yn! 5 b~xn , yn!exp@ib~xn , yn!#

5 b~xn , yn!
c1,0~xn , yn! 1 ic0,1~xn , yn!

@c1,0
2 ~xn , yn! 1 c0,1

2 ~xn , yn!#1/2
.

(20)

But, as we have already seen in Eqs. (14), the first-order
phase derivatives at isolated stationary points correspond
directly to a specific frequency (us , vs); therefore

b̃~xn , yn! 5 b~xn , yn!
us 1 ivs

Aus
2 1 vs

2
. (21)

We can define polar frequency coordinates (q, f) by

Fig. 2. (a) Definition of orientation angle from the phase gradi-
ent. (b) Definition of orientation angle from the fringe angle.
u 5 q cos~f!, v 5 q sin~f!,

us 5 qs cos~fs!, vs 5 qs sin~fs!; (22)

hence

Fig. 3. (a) Simple square root of orientation phase map (mod p).
Gray-scale encoding means that black represents 2p/2 and white
represents 1p/2. The singularity occurs at the center of curva-
ture of the closed fringes, where the orientation is undefined.
(b) Unwrapped orientation phase map (mod 2p). Gray-scale en-
coding means that black represents 2p and white represents
1p. Again, the singularity occurs at the center of curvature of
the closed fringes, where the orientation is undefined. Note that
the branch cut is not a real (or an imaginary) discontinuity.
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b̃~xn , yn! 5 b~xn , yn!
us 1 ivs

qs
5 b~xn , yn!exp~ifs!.

(23)

The resulting asymptotic approximation is

@P̃k~us , vs!#n ;
2p

k

s~xn , yn!

uH~xn , yn!u1/2 exp@ikc~xn , yn!#

3 b~xn , yn!exp~if!. (24)

In other words, multiplying a complex exponential pat-
tern p(x, y) in the space domain by an orientational
phase factor exp@ib(x, y)# results in a FT that is unaltered
except for a spiral phase factor exp(if) over all frequency
space [which has the particular value exp(ifs) at coordi-
nate (us , vs)]. Relation (24) is a key result of this paper
and is a specific instance of the more general result that
we wish to demonstrate. The result also applies directly
to the complex-conjugate pattern p* (x, y), which has a
reversed orientational phase factor exp@2ib(x, y)# but
yields the same Fourier phase factor exp(if) because the
corresponding frequency components rotate 180°. We ac-
tually wish to know the result for the complex-conjugate
pattern with the original orientational phase factor
exp@ib(x, y)#:

g~x, y ! 5 p* ~x, y ! 5 b~x, y !exp@2ic~x, y !#. (25)

The rotated components are

@Gk~2us , 2vs!#n ;
2p

k

s~xn , yn!

uH~xn , yn!u1/2

3 exp@2ikc~xn , yn!#b~xn , yn!.

(26)

Modifying the conjugate pattern by the orientational
phase factor yields

g̃~x, y ! 5 p* ~x, y !exp@ib~x, y !#. (27)

Finally, its Fourier components are

@G̃k~2us , 2vs!#n ;
2p

k

s~xn , yn!

uH~xn , yn!u1/2 exp@2ikc~xn , yn!#

3 b~xn , yn!S us 1 ivs

Aus
2 1 vs

2D . (28)

This can be rewritten with the local spiral phase factor
and a sign reversal, the significance of which will become
apparent in Section 4:

@G̃k~2us ,2vs!#n ; 2
2p

k

s~xn , yn!

uH~xn , yn!u1/2

3 exp@2ikc~xn , yn!#

3 b~xn , yn!exp@if~2us , 2vs!#.

(29)
4. STATIONARY PHASE EXPANSION OF A
FRINGE PATTERN f(x, y)
Having derived a result for the complex fringe pattern, we
now consider the original real fringe pattern. The cosine
term consists of positive and negative phase components.
We can use the general relation between the FT of a func-
tion and the FT of the complex conjugate of a function,
where we denote the FT relation by the symbol
, so that

p~x, y ! 
 P~u, v ! ⇒ p* ~x, y ! 
 P* ~2u, 2v !.
(30)

Clearly, the FT of the fringe pattern F(u, v) is Hermitian
because the fringe pattern f(x, y) is real, and

F~u, v ! 5
P~u, v ! 1 P* ~2u, 2v !

2
5 F* ~2u, 2v !.

(31)

So the complete FT is composed of two parts, the second of
which is obtained by rotating the first by 180° and then
conjugating it. In terms of our original stationary phase
approximation to P(u, v), we can see that each critical
point (xn , yn) contributes a component at frequency
(us , vs) and a complex-conjugated component at fre-
quency (2us , 2vs). In general, the function P(u, v)
may occupy a large region of the frequency domain, and
hence P* (2u, 2v) is likely to overlap P(u, v) signifi-
cantly. This overlap is the source of the difficulty that
Fourier-based methods have in analyzing closed fringe
patterns. Masks simply cannot separate overlapping
components in the Fourier domain. Something more
subtle than masking is required.

We now consider the real fringe pattern modified by the
orientational phase factor

f̃~x, y ! 5 b̃~x, y !cos@c~x, y !#

5
b~x, y !

2
exp@ib~x, y !#

3 $exp@ic~x, y !# 1 exp@2ic~x, y !#%. (32)

The orientational phase factor here is the mod 2p form
(see Appendix A) simultaneously applied to both positive
and negative exponential components of the fringe pat-
tern. Applying the FT and considering only those com-
ponents at the two diametrical frequencies (us , vs) and
(2us , 2vs) that are due to the stationary phase critical
points at (xn , yn) previously defined in Section 3 [rela-
tions (24) and (29)], we find that

2F̃s,n~u, v ! ' @P̃k~us , vs!#nd~u 2 us , v 2 vs!

1 @P̃k~2us , 2vs!#nd~u 1 us , v 1 vs!.

(33)

Expanding the terms gives
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2F̃s,n~u, v ! ;
2p

k

s~xn , yn!

uH~xn , yn!u1/2 b~xn , yn!exp@if~us , vs!#

3 $exp@ikc~xn , yn!#d~u 2 us , v 2 vs!

2 exp@2ikc~xn , yn!#d~u 1 us , v 1 vs!%.

(34)

The above equation is recognizable as the FT of a quadra-
ture fringe pattern (that is to say, a sine pattern rather
than a cosine pattern) multiplied by a spiral phase factor.
In particular, if we have a real fringe pattern w(x, y) de-
fined by

w~x, y ! 5 b~x, y !sin@c~x, y !#, (35)

then we can easily show, by using the preceding methods,
that the FT components that are due to the stationary
point (xn , yn) are

2iWs,n~u, v ! ;
2p

k

s~xn , yn!

uH~xn , yn!u1/2 b~xn , yn!

3 $exp@ikc~xn , yn!#d~u 2 us , v 2 vs!

2 exp@2ikc~xn , yn!#d~u 1 us , v

1 vs!%. (36)

Combining relations (34) and (36), we find that

2F̃s,n~u, v ! 5 2iWs,n~u, v !exp@if~us , vs!#. (37)

In other words, applying the orientational phase function
to the real fringe pattern f corresponds to a multiplication
by a spiral function in the Fourier domain. The Fourier
multiplication applies to the FT of the fringe quadrature
function. Without loss of generality, the spiral phase can
be considered to apply over the full Fourier plane, not just
at the two diametrical frequencies. The complete FT ex-
pression is to be formed by summing (integrating) the
contributions from all critical points because the process
is additive (all points with the same b result in Fourier
components at the same polar angle f).

The overall process in Eq. (37) can be summarized in
operator notation, with F$ % and F21$ % representing the
forward and inverse FT operators, respectively:

F $exp~2ib!b cos~c!% ; exp~if!F $ib sin~c!%. (38)

The spiral phase transform proposed here can be suc-
cinctly expressed by the inverse FT of relation (38).

F 21
ˆexp~if!F $b sin~c!%‰ ; 2i exp~ib!b cos~c!.

(39)

The result is to be considered asymptotically correct in
the sense of a first-order stationary phase expansion of a
function containing only critical points of the first kind.
If instead we had started with a quadrature fringe pat-
tern, then we would have obtained the following relations
(by setting c 5 c8 1 p/2):

F 21$exp~if!F $b cos~c8!%% ; 1i exp~ib!b sin~c8!.
(40)

Finally, we have arrived at the result called here the ‘‘spi-
ral phase quadrature transform’’ or vortex transform,
V$ %, for short:
b sin~c! ; 2i exp~2ib!F 21
ˆexp~if!F$b cos~c!%‰

5 V $b cos~c!%. (41)

Relation (41) is the main result of this paper. Relation
(41) represents a direct and efficient method for estimat-
ing the quadrature component of a quite general 2-D
fringe pattern and is therefore a natural method of 2-D
demodulation. The transform can be performed optically
with just two phase-only holograms, in a manner reminis-
cent of a general coordinate transformation using mul-
tiple holographic elements.3 There are indications that
the second-order term appearing in Eq. (12) is also consis-
tent with the spiral phase result in relation (41), but the
analysis is not pursued here. Interestingly, relation (41)
can be extended to higher- (integer-) order spirals, where
only the odd orders have the quadrature property.

5. HEURISTIC DEVELOPMENT OF THE
SPIRAL PHASE QUADRATURE TRANSFORM
The preceding derivations have been, by necessity, rather
circuitous and nonintuitive. Our stationary phase theory
was developed quite some time after we had discovered
the vortex transform experimentally. In turn, the ex-
perimental discovery was prompted by a number of heu-
ristic arguments for the essential features of a 2-D
quadrature transform outlined in our initial expository
work.1

The essential heuristic reasoning follows. We can see
from Fig. 2(b) that each region in the interferogram has a
well-defined fringe orientation (b0) and spacing. The
stationary phase method allows us to consider compo-
nents that contribute to the FT from each such region (at
a pair of diametrically opposed frequencies). If we mul-
tiply the FT by a pure spiral phase factor, then the polar-
ity of these components at opposite frequencies is flipped
(because the phase spiral is an odd function) while each
maintains the fixed phase factor exp(ib0). Calculating
the inverse FT now gives a quadrature function with an
orientational phase factor exp(ib0), which can be neutral-
ized if we know (or can estimate) the local fringe orienta-
tion. Note that the orientation should be mod 2p be-
cause we originally assume it to be defined by the
gradient of the phase derivative without any sign-related
ambiguities. In essence, the stationary phase method al-
lows us to consider a small region of the complex ‘‘ana-
lytic’’ image12 underlying the interferogram and then let
the number of fringes in that region tend to infinity.
This results in the relative curvature of the fringes dimin-
ishing (here the relative curvature is defined as the fringe
spacing divided by the radius of curvature), so that the
fringes are effectively straight and contribute only to a
single frequency component determined by the phase gra-
dient.

6. ERROR ANALYSIS FOR THE
STATIONARY PHASE EXPANSION OF A
COMPLEX PATTERN p(x,y)
In Section 3 we considered the stationary phase expan-
sion of an integral with an orientational phase factor
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exp(ib) applied to the amplitude function. The justifica-
tion for this is that the factor is slowly varying. If, how-
ever, we consider the factor to be of significant variation,
then we should really include it in the rapidly varying
phase part. This approach is appropriate for patterns
with widely spaced fringes or tightly curved fringes. In
this section we will discover the implications of modifica-
tions to the phase part.

The integral that we shall consider is similar to that in
Section 3, Eq. (6):

P̆k~u,v ! 5 E
2`

1`E
2`

1`

b~x,y !exp$k@iC~u,v,x,y !

2 ib~x,y !#%dxdy. (42)

The diacritic in the function P̆k is used to indicate that an
alternative stationary phase expansion has been used. It
is worth considering what this integral means physically
as the parameter k tends to infinity. In Section 3 the ori-
entational phase is independent of k, and the limit repre-
sents a single spiral acting on a fringe pattern with very
finely spaced fringes. In this section we have the orien-
tational phase increasing as the fringe spacing decreases.
This means that the orientational phase component
maintains the same strength relative to the fringe pat-
tern phase, so that relative error effects are maintained
as k tends to infinity. The stationary phase expansion is

@P̆k~ ŭs , v̆s!#n ;
2p

k

s̆~ x̆n , y̆n!

uH̆~ x̆n , y̆n!u1/2

3 exp@ikC̆~ x̆n , y̆n!#b~ x̆n , y̆n!. (43)

Again the ˘ mark above the symbols is used to indicate
that the alternative expansion maps (modified) critical
point contributions at ( x̆n , y̆n) to modified frequency coor-
dinates (ŭs , v̆s). The essential change occurs in the sta-
tionary point conditions because the orientational phase
has a nonzero gradient, which induces a shift in the over-
all phase gradient. The overall phase function is

C̆~u, v, x, y ! 5 c~x, y ! 2 2p~ux 1 vy ! 2 b~x, y !.
(44)

The stationary point conditions are determined by the
null gradient

¹C̆~ ŭs , v̆s , x̆n , y̆n! 5 0. (45)

The shift in the frequencies is more explicitly shown by

c1,0~ x̆n , y̆n! 2 b1,0~ x̆n , y̆n! 5 2pŭs 5 2p~us 2 Dus!,

c0,1~ x̆n , y̆n! 2 b0,1~ x̆n , y̆n! 5 2p v̆s 5 2p~vs 2 Dvs!.
(46)

Using the original definition of the fringe orientation as
the direction of the initial phase gradient, we find that

2pDus 5 b1,0 5
c1,0c1,1 2 c0,1c2,0

c1,0
2 1 c0,1

2

5
usc1,1 2 vsc2,0

2pqs
2 ,
2pDvs 5 b0,1 5
c1,0c0,2 2 c0,1c1,1

c1,0
2 1 c0,1

2

5
usc0,2 2 vsc1,1

2pqs
2 . (47)

This means that the frequency shift that is due to the ori-
entational phase factor is exactly zero if and only if b0,1
5 b1,0 5 0. This can occur only if the Gaussian curva-
ture or the Hessian H of the underlying phase function is
zero:

c2,0c0,2 2 c1,1
2 5 0. (48)

This is then a necessary, but not a sufficient,17 condition.
In effect, this means that frequency shifts that are due to
the orientational phase will not occur in regions where
the fringes are locally straight (i.e., not changing orienta-
tion with position). Earlier, we excluded such (straight)
regions from the patterns considered in our analysis to
avoid higher-order evaluations of the parameter H. Re-
gions where the Hessian is zero are known to correspond
to catastrophes (or caustics) in the focusing of light. Fig-
ure 4 shows a gray-scale representation of the magnitude
of the Hessian of the phase function shown in Fig. 1(b).
A number of curves are visible with low values of uHu. In
the book by Nye,18 Eq. (2.10) corresponds directly with
our condition in Eq. (48) above. The main difficulty with
catastrophes is the singularity in the Fourier amplitude
so introduced. Incorporation of catastrophes (also
equivalent to the merging of multiple stationary points)
in our stationary phase analysis is possible but may be
expected to make many of the important derivations
lengthy and complicated. In this publication we shall
consider only fringe patterns with isolated (interior) sta-
tionary points. This then implies that there is always a

Fig. 4. Magnitude of the Hessian of the phase. Gray-scale en-
coding means that black represents zero and white represents
peak value. The magnitude has been set to zero in the outer re-
gion, where the fringe amplitude is insignificant.
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frequency shift (that is due to the orientation phase gra-
dient) for the patterns under consideration. The fre-
quency shift means that we now have a frequency compo-
nent at (us 2 Dus , vs 2 Dvs) with a phase k@c( x̆n , y̆n)

Fig. 5. (a) Sixth root of the magnitude of the relative curvature
of the phase. Gray-scale encoding means that black represents
zero and white represent peak value (152, dimensionless units).
The magnitude has been set to zero in the outer region, where
the fringe amplitude is insignificant. The sixth root is chosen to
emphasize certain features. Note that the rms value (excluding
the region within one fringe of the central discontinuity) is 0.029.
(b) Sixth root of the magnitude of actual error in the phase de-
rived by using the vortex operator on the fringe pattern of Fig. 1.
Gray-scale maximum (white) is 2.6 rad, and the minimum
(black) is 0.0 rad. Note that the rms phase value (excluding the
region within one fringe of the central discontinuity) is 0.017 rad.
2b(x̆n , y̆n)#. We expect that this frequency shift will in-
troduce a discrepancy between the ideal spiral Fourier
phase and the actual phase contribution through the sta-
tionary phase. Comparing this with a kth-order spiral
phase in the Fourier domain is possible if we estimate the
rotation Df caused by the frequency shift:

tan~f 1 Df! 5 tanS vs 2 Dvs

us 2 Dus
D . (49)

We can use the error propagation property of the
arctangent19 to find a small-angle error approximation

Df .
usDvs 2 vsDus

us
2 1 vs

2 , ~Dus!
2 ! us

2 1 vs
2,

~Dvs!
2 ! us

2 1 vs
2. (50)

Using the above values for these parameters, we obtain

Df .
c1,0

2 c0,2 1 c0,1
2 c2,0 2 2c1,0c0,1c1,1

~c1,0
2 1 c0,1

2 !2

5
c1,0

2 c0,2 1 c0,1
2 c2,0 2 2c1,0c0,1c1,1

~c1,0
2 1 c0,1

2 !3/2

1

~c1,0
2 1 c0,1

2 !1/2
.

(51)

The above formula may be recognized as the curvature
of a 2-D function c [see Granlund and Knutsson (Ref. 20,
p. 361, for example)] divided by the magnitude of the gra-
dient. We have seen errors apparently following the
relative curvature in experimental testing of the spiral
phase algorithm. The above result indicates that the
proportionality constant is simply unity. In paper I [Ref.
1, relation (28)], we determined the second-order error in
the estimated phase that is due to an error in the orien-
tation phase e. In a similar manner we expect that the
error in the estimated phase dc can be determined from
df, the spiral phase error in relation (51). However, the
particulars of the error propagation (especially first- and
second-order error cancellation) are dependent upon the
detailed implementation of the vortex operator, including
the orientation estimator. Only the qualitative structure
of the curvature-induced error is considered here. Figure
5(a) shows a gray-scale representation of the relative cur-
vature function in relation (51). Figure 5(b) is a gray-
scale representation of the actual phase error arising
from vortex operator demodulation. Apart from the re-
sidual fringe structure in Fig. 5(b), the two figures are
broadly consistent, especially regarding the location of ex-
trema.

The frequency shifting gives rise to a phase error when
compared with the Fourier spiral phase. Another effect
is related to the amplitude change that is due to the Hes-
sian at the critical point, given by

H̆~ x̆n , y̆n! 5 C̆0,2~ x̆n , y̆n!C̆2,0~ x̆n , y̆n! 2 C̆1,1
2 ~ x̆n , y̆n!

5 ~c0,2 2 b0,2!~c2,0 2 b2,0! 2 ~c1,1 2 b1,1!2

5 H~ x̆n , y̆n! 1 ~b2,0b0,2 2 b1,1
2 ! 2 ~c0,2 2 b2,0

1 c2,0b0,2 2 2c1,1b1,1). (52)



Kieran G. Larkin Vol. 18, No. 8 /August 2001 /J. Opt. Soc. Am. A 1879
So, in general, we can say that the amplitude of

@P̆k(ŭs , v̆s)#n is different from our first stationary phase
expansion by an amount that depends upon the second-
order derivatives of both the underlying phase and the
orientational phase. This is broadly consistent with ini-
tial simulations of 2-D demodulation using the spiral
phase quadrature operator.1 The relative error in the lo-
cal Hessian is as follows:

DH

H

5
~b2,0b0,2 2 b1,1

2 ! 2 ~c0,2b2,0 1 c2,0b0,2 2 2c1,1b1,1!

c2,0c0,2 2 c1,1
2 .

(53)

There are a variety of situations where the relative er-
ror is zero, the simplest being when the orientation is lo-
cally linear (b2,0 5 b0,2 5 b1,1 5 0), corresponding to the
simple case of straight fringes. The detailed analysis of
the amplitude error propagation will not be pursued fur-
ther in this preliminary investigation. Figure 6 shows a
gray-scale representation of the actual amplitude error
calculated for the vortex operator demodulation. The
main errors are constrained to the center of the fringe
pattern. The center of the fringe pattern also corre-
sponds to a region where the orientation components [de-
fined in Eqs. (47)] are singular (c1,0

2 1 c0,1
2 5 0).

It is worth noting that, given sufficient a priori infor-
mation, it is conceivable that error-correcting schemes
could be devised utilizing the above error estimates.

7. CONCLUSION
The validity of the intuitively inspired spiral phase
quadrature transform has been confirmed by using the

Fig. 6. Relative magnitude of the vortex-operator-derived mag-
nitude. Gray-scale encoding means that black represents zero
and white represents peak value. Central region values vary
from 0.16 to 1.30, with most regions near the ideal value of 1.00.
method of stationary phase. We have shown, in the
asymptotic limit, that taking a quadrature fringe pattern
and multiplying it by an orientational phase pattern fol-
lowed by Fourier transformation gives the same result as
that of Fourier-transforming a fringe pattern and then
multiplying by a spiral phase factor. Using an alterna-
tive formulation of the stationary phase method, we have
shown how phase errors arise when the radius of curva-
ture of the fringe pattern is small (curvature large) com-
pared with the fringe spacing. Amplitude errors in the
spiral phase transform are related to more complicated
combinations of second- and higher-order derivatives of
the phase function underlying the fringe pattern. We
have established a theoretical basis for further develop-
ments in direct, two-dimensional fringe demodulation
and analysis.

APPENDIX A: PRACTICAL ASPECTS OF
THE FRINGE ORIENTATIONAL FACTOR
The correct functioning of the vortex transform depends
upon the correct definition and evaluation of the orienta-
tion angle b(x, y). For a complex function the definition
follows simply from the phase gradient. For real fringes
there is always an ambiguity that is due to a loss in some
sign information, as shown by

cos~c! 5 cos~2c!. (A1)

This sign ambiguity is well-known in interferometry (e.g.,
see Kreis21). There is a significant advantage that
emerges from the vortex transformation approach to
fringe demodulation. The advantage is that the ambigu-
ity resides purely in the choice of sign for the fringe ori-
entation because the fundamental quadrature operation
has been performed already by the spiral phase Fourier
multiplier. Now the underlying assumption in this work
is that we are dealing with (open or closed) fringe pat-
terns with smooth and infinitely differentiable amplitude
and phase parameters. This means that the fringe ori-
entation is everywhere smooth and differentiable, except
at special points, where the phase gradient is identically
zero and the orientation is undefined. Interestingly,
these points give rise to spiral phase singularities in the
orientation phase factor exp(2ib), evoking the concept of
ever-decreasing spirals. Singularities in the orientation
can occur only at points where ¹c 5 0, points that have a
stationary phase Fourier component at zero frequency
(us 5 vs 5 0), which is the one frequency where the spi-
ral phase factor is effectively undefined. (If we consider
its value as the average of its limiting value as we ap-
proach the origin from different directions, then the
modulus is zero and the phase is undefined.) In general,
these singular points of orientation will have problematic
expansions in terms of conventional power series.

Another problem with evaluation of the fringe orienta-
tion is the effect of amplitude modulation on the phase
gradient estimate. In general, the amplitude modulation
is unknown a priori, leading to a signal gradient ¹f that
deviates from the phase gradient ¹c:

¹f 5 ¹b@cos~c!# 2 ¹c@b sin~c!#. (A2)

The error in the estimated orientation is then e, where
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tan~best! 5 tan~b 1 e! 5
f0,1

f1,0

5
c0,1 b sin~c! 2 b0,1 cos~c!

c1,0b sin~c! 2 b1,0 cos~c!
. (A3)

And it can be shown that

tan~e!

5
~c0,1b1,0 2 c1,0b0,1!cos~c!

~c0,1
2 1 c1,0

2 !b sin~c! 2 ~c1,0b10 1 c0,1b0,1!cos~c!
,

(A4)
which means that the orientation error is always zero at
zero crossings of f [i.e., cos(c) 5 0] and at regions where
the amplitude gradient either is zero or is in the same di-
rection (mod p) as that of the phase gradient:

b0,1

b1,0
5

c0,1

c1,0
[ tan~b!. (A5)

In other situations the error is nonzero. In Paper I [Ref.
1, relations (28) and (30) and Eq. (31)], we showed that
errors in the estimated orientation produce second-order
errors in the vortex-operator-based phase demodulation.
In other words, the overall method is inherently robust to
small orientation errors.

Finally, a few observations will be made about practical
schemes for estimating the orientation mod 2p, as re-
quired by our spiral phase demodulation method. The
first point to note is that simple gradient-based schemes
suffer from sign flips that occur in every period of a real
fringe pattern. If we are given the complex fringe pat-
tern, then we can easily estimate the gradient:

¹$exp~ic!% 5 exp~ic!¹c. (A6)

If we are just given the cosine component, then

¹$cos~c!% 5 2sin~c!¹c. (A7)

We then estimate the actual angle from an arctangent of
the gradient components:

b 5 arctanF2c0,1 sin~c!

2c1,0 sin~c!
G . (A8)

The problem here is that the sine components do not sim-
ply cancel out, because the arctangent quadrants flip po-
larity in synchrony with the sine polarity. The same
problem arises if we use the spiral phase transform itself
to estimate the orientation:

i exp~ib!b sin~c! ; F 21$exp~if!F $b cos~c!%%, (A9)

arg$i exp~ib!b sin~c!% 5 arctanF cos~b!sin~c!

2sin~b!sin~c!
G ,

(A10)

where the sin(c) multiplier introduces an ambiguity in
the tangent quadrants again. There is also another (re-
lated) insidious problem with gradient-based orientation
estimation that occurs when the sine component ap-
proaches zero @sin(c) → 0 ⇔ cos(c) → extremum# and
the practical orientation estimate becomes noise sensi-
tive. Although we do not consider practical aspects of
noise analysis in this publication, it is clear that an ori-
entation estimate that is independent of the value of
sin(c) is desirable. We could use second derivatives of
the fringe pattern, which are related to the value of
cos(c). By combining both sin(c) and cos(c) factors, one
can obtain uniform (i.e., independent of c) estimates of
the orientation. No more of the details will be said
here—as the subject warrants a paper on its own—except
to say that methods based upon the energy operator22,23

or tensor analysis20 are recommended. In either case the
estimate of the orientation always occurs in a quadratic
form, i.e., exp(2ib). This is really just another incarna-
tion of the sign ambiguity:

@exp~ib!#est 5 6Aexp~2ib!. (A11)

Perhaps the easiest way (while not forgetting that there
are other methods) to obtain the final result that we re-
quire (orientation estimate mod 2p) is to unwrap 2b mod
4p and then halve it. Remember that the unwrapping is
relatively straightforward because the underlying as-
sumption is for a smoothly varying phase and hence a
smoothly varying orientation (except at the centers of
closed curves, as discussed above). Figure 3(a) shows an
orientation phase map (1Aexp(2ib)) that has not been un-
wrapped, while Fig. 3(b) shows a correctly unwrapped
@exp(ib)# map. Note that Fig. 3(a) still contains a second-
order spiral phase discontinuity, and Fig. 3(b) a first-order
spiral phase discontinuity. The discontinuities are
merely manifestations of the undefined orientation at the
center of curvature of a closed fringe pattern.
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