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The Meaning and Use of the Area

under a Receiver Operating

Characteristic (ROC) Curve1

A representation and interpretation of
the area under a receiver operating char-
acteristic (ROC) curve obtained by the
“rating” method, or by mathematical pre-
dictions based on patient characteristics,
is presented. It is shown that in such a
setting the area represents the probability
that a randomly chosen diseased subject
is (correctly) rated or ranked with greater
suspicion than a randomly chosen non-
diseased subject. Moreover, this probabil-
ity of a correct ranking is the same quan-
tity that is estimated by the already well-
studied nonparametric Wilcoxon statistic.
These two relationships are exploited to
(a) provide rapid closed-form expressions
for the approximate magnitude of the
sampling variability, i.e., standard error
that one uses to accompany the area
under a smoothed ROC curve, (b) guide
in determining the size of the sample re-
quired to provide a sufficiently reliable
estimate of this area, and (c) determine
how large sample sizes should be to en-
sure that one can statistically detect dif-
ferences in the accuracy of diagnostic
techniques.

Index terms: Receiver operating characteristic curve

(ROC)
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R ECEIVER operating characteristic (ROC) curves (1-3) have become
increasingly popular over the past few years as the radiologic

community has become concerned with the measurement of the in-

formation content of a variety of imaging systems (4, 5). In addition,
ROC curves are being used to judge the discrimination ability of
various statistical methods that combine various clues, test results,
etc. for predictive purposes (e.g., to determine whether a patient will
need hospitalization or will benefit from treatment). In most cases,
however, ROC curves have been plotted and evaluated qualitatively
with relatively little attention paid to their statistical characteristics.
This has occurred for a number of reasons.

First, the most common quantitative index describing an ROC curve
is the area under it, and there has not been a full description in the

radiologic literature of an intuitive meaning of this area. Second, most
quantitative measures used to describe an ROC curve are derived
assuming that the varying degrees of normality/abnormality seen

in the images can be represented by two separate but usually over-

lapping Gaussian distributions, one for the diseased group and one
for the nondiseased group. This has led a number of investigators to
question the validity of the ROC approach altogether. Third, iterative
numerical methods rather than closed-form expressions are required
to estimate the standard error of these quantitative indices; opera-

tionally, these methods are cumbersome and require a specialized
computer program. Fourth, there has been no method shown to date
to indicate the sample size necessary to ensure a specified degree of

statistical precision for a particular quantitative index.
In this paper, we will elaborate on the meaning of the area under

an ROC curve and, using the links between it and other, better known

statistical concepts, we will develop analytic techniques for eliciting

its statistical properties.

METHODS

Indices Used to Summarize ROC Curves

A large number of theoretically based measures has been pro-
posed to reduce an entire ROC curve to a single quantitative index

of diagnostic accuracy; all of these measures have been rooted in the

assumption that the functional form of the ROC curve is the same as
that implied by supposing that the underlying distributions for

normal and abnormal groups are Gaussian (4). When an ROC curve,
plotted on double probability paper, is fitted by eye to a straight line
or when the ROC points are submitted to an iterative maximum
likelihood estimation program, two parameters, one a difference of
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TABLE I: Rating of 109 CT Images

True
Disease

Status

Rating

Definitely
Normal

(1)

Probably
Normal

(2)

Question-
able

(3)

Probably
Abnormal

(4)

Definitely
Abnormal

(5) Total

Normal 33 6 6 1 1 2 nN 58
Abnormal 3 2 2 11 33 �A 51

Totals 36 8 8 22 35 109

the Wilcoxon statistic or by the trape-
zoidal rule will be virtually identical to
any smoothed area.) Second, and more

important, we show how the statistical

properties of the Wilcoxon statistic can

be used to predict the statistical prop-
erties of the area under an ROC
curve.

RESULTS

means and the other a ratio of van-
ances, are obtained. From these, a
number of indices can be calculated,
the most popular being an estimate of
the area under the fitted smooth curve
(4). This index, denoted A(z) to sym-
bolize its Gaussian underpinnings,
varies from 0.5 (no apparent accuracy)
to 1 .0 (perfect accuracy) as the ROC
curve moves towards the left and top
boundaries of the ROC graph.2 When
one fits the two parameters by maxi-
mum likelihood rather than by eye,
one also obtains their standard errors,
thereby allowing the area derived from
the two parameters to be also accom-
panied by a standard error. This can be
used to construct confidence intervals
and to perform statistical tests of sig-
nificance.

The Meaning of the Area under
an ROC Curve

A precise meaning of the area
under an ROC curve in terms of the
result of a signal detection experiment
employing the two-alternative forced
choice (2AFC) technique has been
known for some time. In this system,
Green and Swets (6) showed that the
area under the curve corresponds to the
probability of correctly identifying
which of the two stimuli is “noise” and
which is “signal plus noise.” In medical
imaging studies, the more economical
rating method is generally used: im-
ages from diseased and nondiseased
subjects are thoroughly mixed, then
presented in this random order to a

reader who is asked to rate each on a
discrete ordinal scale ranging from
definitely normal to definitely abnor-
mal. Very often a five-category scale is

2 An area can also be calculated by the trape-

zoidal rule; tho area obtained in this way has been
designated P(A). As is seen in Figure 1, P(A) is

smaller than the area under any smooth curve,
and is somewhat more sensitive to the location
and spread of the points defining the curve than
is the area A(z) calculated as the smooth Gaussian

estimate.

used. Although the points required to
produce the ROC curve are obtained in
a more indirect way, i.e. , by succes-

sively considering broader and broader
categories of abnormal (e.g. , category 5
alone, categories 5 plus 4, categories 5
plus 4 plus 3), the important point is

that on a conceptual level, and thus from
a statistical viewpoint, the area under
the curve obtained from a rating ex-
periment has the same meaning as it has
when it is derived from a 2AFC exper-
iment. As we will explain below, the
ROC area obtained from a rating ex-
periment can be viewed, at least con-
ceptually, in the same way as the area
obtained from a 2AFC experiment.
Basically, when an investigator calcu-
lates the area under the ROC curve di-
rectly from a rating experiment, he is

in fact, or at least in mathematical fact,
reconstructing random pairs of images,

one from a diseased subject and one
from a normal subject, and using the
reader’s separate ratings of these two
images to simulate what the reader
would have decided if these two im-
ages had in fact been presented together

as a pair in a 2AFC experiment. Indeed,
this mathematical equivalence (equiv-

alent in the sense that the two areas are
measuring the same quantity, even if the
two curves are constructed differently)
has also been verified empirically in a

recognition memory experiment by
Green and Moses (7).

More important, however, was the
more recent recognition by Bamber (8)
that this “probability of correctly
ranking a (normal, abnormal) pair” is
intimately connected with the quantity
calculated in the Wilcoxon or Mann-
Whitney statistical test. We now elab-

orate on this relationship in two ways.
First, we show empirically that if one
performs a Wilcoxon test on the ratings
given to the images from the normal
and diseased subjects, one obtains the
same quantity as that obtained by cal-

culating the area under the come-

sponding ROC curve using the trape-

zoidal rule. (If in fact the ratings are on
a continuous scale, the area obtained by

I. A Three-Way Equivalence

To amplify the three-way equiva-

lence between the area under an ROC
curve, the probability of a correct
ranking of a (normal, abnormal) pair,
and the Wilcoxon statistic, we present
it as two pairwise relationships:

A. The area under the ROC curve
measures the probability, denoted by
0, that in randomly paired normal and
abnormal images, the perceived ab-
normality of the two images will allow
them to be correctly identified.

B. The Wilcoxon statistic also
measures this probability 0 that ran-

domly chosen normal and abnormal
images will be correctly ranked.
We now deal with A and B in turn.

II. Mathematical Restatement
of Relationship A

We make an implicit assumption
that the sensory information conveyed
by a radiographic image can be quan-

tified by and ordered on a one-dimen-
sional scale represented by x, with low

values of x favoring the decision to call
the image normal and high values fa-
voring the decision to call it abnormal.
The distributions of x values for ran-
domly selected abnormal images, de-
noted by XA � and those for normal im-
ages, denoted by XN, will overlap; the
XA distribution will be centered to the

right of the XN one. In a rating experi-
ment, the degree of suspicion, x, will
actually be reported on an ordered
categorical scale. TABLE I presents il-

lustrative data showing how a single
reader rated the computed tomogma-
phic (CT) images obtained in a sample
of 109 patients with neurological
problems. As expected, the XA and XN

distributions overlap (i.e., some non-
diseased patients had abnormal read-

ings and some diseased patients had
normal readings). Thus, if the images

from a randomly chosen normal and a
randomly chosen abnormal case were

paired, there would be less than a 100%
probability that the sensory informa-
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TABL E II: Computation of W and It s Standar d Error

Row Contents

Col umn (Rating)

Total Remarksx 1 x 2 x 3 x 4 x 5

1 Number of normals rated x 33 6 6 1 1 2 58 �N Obtained from TABLE I

2 Number of abnormals rated >x 48 46 44 33 0 Obtained from 3 by successive sub-
stractions from 71A = 51

3 Number of abnormals rated x 3 2 2 1 1 33 51 = �A Obtained from TABLE I

4 Number of normals rated <x 0 33 39 45 56 Obtained from 1 by successive addi-
tions to 0

5 (1) X (2) + ‘/2 X (1) X (3) 1,633’/2 282 270 423’/2 33 2,642 W = Total (5) #{247}(nN #{149}flA) = 0.893

6 (3) X [(4)2 + (4) X (1) + ‘/� X (1)2] 1,089 2,598 3,534 28,163�/3 107,228 142,612�/3 Q2 Total (6) 1- (flA #{149}n�) = 0.8313

7 (1) X [(2)2 + (2) X (3) + ‘/� X (3)2] 80,883 13,256 12,152 16,415�/3 726 123,432�/3 Qi = Total (7) + (nN #{149}n�) = 0.8182

w = � = total(5) -5 (oN � �) 2,642 �- (58 . 51) 0.893 89.3%

SE(O) = �/&�i _ 0) + (nA 1)(Q� - �2) + (nN -1)(Q2 02) VT#{212}.099551 + 0.037764 + 1.926686_______________________________________ __________________________ = 0.032 = 3.2%
51 . 590A �

tion or, for want of a more precise term,

the degree of suspicion, XA � which one
obtains from the abnormal image

would in fact be greater than the cor-
responding XN obtained from the nor-

mal image. As a statistical shorthand,

we refer to this probability as 0

Prob(xA > XN). Then Green and Swets’

result says that if we assume for the

moment that we have an infinite sam-

ple of patients and that a reader is ca-

pable of reporting using the entire x

continuum rather than only a finite

number of category ratings, the area

under the curve and the probability of
a correct ranking are equal, or

“True” area under ROC curve 0

= Prob(xA > XN)

From our viewpoint, the most im-

portant feature of the proof, which

depends on integral calculus, is that it

makes no assumptions about the form of

the XA and XN distrzl’utions. Thus, the area

under the curve can be thought of

simply as measuring the probability of

a correct ranking of a (normal, abnor-

mal) pair; neither the nature (sym-

metric vs. right tailed vs. left tailed) nor

the exact distributional form (Gaussian

vs. negative exponential vs. gamma)

need be explicitly quantified. How-
ever, there are practical reasons for the
use of distributional assumptions: (a)

the maximum of five or six rating

categories a reader is capable of using
means that the trapezoidal rule will
tend to underestimate the area under
what is in reality a smooth ROC curve;
(b) the criteria for fitting a smooth

curve are more easily agreed upon; and

(c) the investigator is often interested
in other aspects of the ROC curve, such

as the trade-offs between sensitivity

and specificity. Moreover, the exten-

sive data from psychophysical and
medical imaging studies tend to agree
reasonably well with the ROC curve

form implied by two Gaussian distri-

butions.

For investigators interested in using
ROC curves to describe the discrimi-
nation achieved with scores or proba-
bilities constructed on a continuous

scale from regression-type equations
based on a patient’s presenting symp-
tomatology, the distributions of these
scores or probabilities will not neces-

sarily conform to Gaussian distribu-

tions. However, in this situation, the

more continuous nature of the score or

probability scale means that the em-

pirical ROC curve will also be much

smoother, and complex curve fitting

will probably not be necessary.

III. Relationship B: The
Wilcoxon Statistic and the
Probability of Correct Pairwise
Rankings

The Wilcoxon statistic, W, is usual-

ly computed to test whether the levels

of some quantitative variable x in one

population (A) tend to be greater than
in a second population (N), without

actually assuming how the x’s are dis-

tributed in the two populations. The
null hypothesis is that x is not a useful

discriminator, i.e. , that an x value from

an individual from A is just as likely to
be smaller than an x value from an in-
dividual from N as it is to be greater

than or that 0 Prob(xA > XN) 0.5.
For x to be a good discriminator, this
probability has to be much closer to

unity. With a sample of size 71A from A

and nN from N, the procedure, at least

conceptually, consists of making all nA

. nN possible comparisons between the

�A sample XA’5 and the nN sample XN’5,

scoring each comparison according to
the rule

1 if XA > XN

1/ �#{128} - (discrete
/2 11 XA XN

S(xA,xN)= . dataonly)
OlfxA <XN

and averaging the S’s over the nA #{149}nN

comparisons, i.e.,

1 finw= �>�S(XA,XN)
nA #{149}�N 1 1

In practice, the computation can be
performed by a much faster method to
be described below in section IV. Also,
since the test is based on yes/no corn-

parisons, W does not depend on the
actual values of the x’s but only on

their rankings.
Relationship B should now be ob-

vious from the very formulation of W,

since it actually makes the kind of

comparisons mentioned when de-
scribing 0 = Prob(xA > XN). Since each

comparison is scored as 1, 1/2, or 0, the

average score W lies between 0 and 1

and reflects, as it should, what pro-

portion of the XA 5 are greater than

what proportion of the XN’s. Obviously

not all nA #{149}nN comparisons are inde-

pendent; including them all is merely
a convenience, and the standard error
of W takes these interrelated compari-
sons into account.

Although� as stated above, W is

usually used to test the (null) hypoth-



32 April 1982 Volume 143, Number 1 Hanley and McNeil

esis that variable x cannot be used to
discriminate between A and N (i.e., that
0 equals 0.5), its behavior when 0 ex-
ceeds 0.5 (i.e., when x is actually of
discriminatory value) is also well es-

tablished. In that regard, for our pur-
poses, the most important characteristic
is its standard error, since our main

interest is in quantifying how variable
w (or its new alias, the area under the
ROC curve) will be in different simi-
lam-sized samples. When 0 > 0.5, W is

no longer nonparametric; its standard
error, SE(W), depends on two distri-
bution-specific quantities, Qi and Q2,

which have the following interpreta-
tion:

Q i = Prob (two randomly chosen
abnormal images will both be ranked
with greater suspicion than a randomly
chosen normal image)

Q 2 Prob (one randomly chosen
abnormal image will be ranked with
greater suspicion than two randomly
chosen normal images)
If we assume for the moment (as Green
and Swets do in their proof regarding
0 and the area under the ROC curve)
that the ratings are on a scale that is
sufficiently continuous that it does not
produce “ties,” then SE(W), or equiv-
alently SE(area underneath empirical
ROC curve), can be shown (8) to be

SE(W) =

/0(1 -0)+(nA - 1)(Q�-02)

‘V +(nN-1)(Q2-02)nA nN

(1)

The quantity W can be thought of as an
estimate of 0, the “true” area under the
curve, i.e., the area one would obtain
with an infinite sample and a contin-
uous rating scale. In the rating category
situation, of course, W will tend to
underestimate 0, but Formula 1 will be

useful nevertheless.
We now go on in the following sec-

tion to calculate the Wilcoxon statistic
for the data in TABLE I and to show that
it does indeed correspond to an area
under the ROC curve, albeit the area
found by the trapezoidal rule. We also
carry out the computations required to
estimate directly from the data (i.e.,

without any distributional assump-
tions) the two quantities Qi and Q2.

With these, and using W as an estimate

of 0, we then use Formula 1 to estimate
a standard error for what is in this case
a somewhat biased area under the
curve. As will become evident in sub-
sequent sections, there is a second
method, requiring fewer computations,

for estimating Qi and Q2 for use in

Formula 1. We give both methods for
the sake of completeness.

IV. W and SE( W) - Calculated
without Distributional
Assumptions

We illustrate the calculations using
the data from TABLE I. Since the Wil-
coxon statistic is based on pairwise
comparisons, the specific values 1
through 5 that we have applied to the
five rating categories are to be thought
of simply as rankings. The computa-
tions can be conveniently carried out

according to the scheme shown in
TABLE II.� Rows 3 and 1 are taken di-
rectly from TABLE I, while rows 2 and
4 are derived from 3 and 1 by succes-
sive deletion and cumulation respec-

tively. The quantity W can be comput-
ed in row 5 by using the entries in rows
1, 2, and 3; the SE requires calculation
of the two intermediate probabilities

Q i and Q2 (see rows 6 and 7 for details),
which are then used to compute an es-
timate of SE(W) from Formula 1.

TABLE II shows the detailed calcula-
tiojl of W and its standard error. The W

= 0 = 0.893 = 89.3% derived in this way

agrees exactly with the area under the
ROC curve calculated by the trapezoi-

dal rate. By way of comparison, the area
under the smooth Gaussian-based ROC
curve fitted by the maximum likeli-
hood technique of Dorfman and Alf (9)
is 0.911 or 91.1%; the area under the

smooth ROC curve derived from the

parameters of a straight-line fit to the
ROC plotted on double probability
paper (see Swets [4], pp. 114-115) is

0.905 or 90.5%. The slightly lower es-

timate provided by W, or equivalently

by the trapezoidal rule, merely reflects

the fact that the rating scale does not

have infinitely fine “grain.” In another
context, where the ratings might have

been expressed on a more continuous

scale (i.e. , without ties), the two would

agree even better. What is more im-

portant is that TABLE II, using 89.3% as
its estimate of 0, produces a standard

error of 3.2%, compared with the SE of
2.96% predicted by the maximum

likelihood parametric technique. Al-

though this 3.2% appears to be a little

high, it is not greatly so; moreover it is

on the conservative side, and guards

against the possibility that the distri-

butional assumptions that produced

3 The rationale for this scheme is conceptually

simple but lengthy. Details can be obtained from

the authors.

the SE of 2.96% are not entirely justi-
fied.

The Wilcoxon statistic now provides

a useful tool for the researcher who

does not have access to the computer

program described above, but who still

wishes to use as an index of discrimi-

nation the area under a smooth ROC

curve and to accompany it by an ap-
proximate standard error. He can use
the parameters of the straight-line fit

to produce the smooth ROC curve and

the area under it and he can use SE(W)

as a slightly conservative estimate of

the SE of this smoothed area. In our

example, simply by plotting the data
on double probability paper, estimat-

ing a slope and intercept from a

straight line fit, calculating from these

a quantity that Swets (4) calls z(A), and
looking z(A) up in Gaussian probabil-

ity tables, one obtains a smoothed area

of 90.5%, which is only 0.6% (in abso-

lute terms) or 0.66% (in relative terms)

different from the 91.1% obtained by a

full maximum likelihood fit. By an
equally straightforward approach, one

can use the calculations in TABLE II to
come reasonably close (3.2% compared
with 2.96%) to the standard error pro-

duced by the maximum likelihood ap-
proach. As we will see later in section
V, we will be able to improve even

further on predicting the SE produced

by this method.
All of the discussion thus far has

centered on computing an area and its

SE from observed data; we now turn to

the commonly asked question, “How
big a sample do I need?”

V. Planning Sample Sizes

Perhaps the more important use of

the three-way equivalence between the

area under the curve, the probability of

a correct ranking, and the Wilcoxon

statistic is in pre-experiment calcula-

tions. At this stage, one is often asked:
“We wish to use 0, the area under the

ROC curve, to describe the perfor-
mance of an imaging system, and we
would like to have this index accom-
panied by a measure of its uncertainty,

i.e., of the fluctuations in the index

caused by the random sampling of

cases. How many cases must be studied
to ensure an acceptable level of preci-

sion?” This is equivalent to asking how

large fl� and nN must be so that the me-

sulting SE is of a reasonably small

magnitude, and the resulting confi-

dence interval is correspondingly
narrow.

In addition to the quantities Fin and
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nN, Formula 1 contains three other

parameters-0, Qi� and Q2. While one

can use anticipated values of the true

area 0, the quantities Qi and Q2 are

complex functions of the underlying

distributions for XA and XN. Fortu-

nately, for any specified pair of distri-

butions Formula 1 is almost entirely

determined by 0, and only very slightly

influenced by any further parameters

of the distributions. As an example,

Figure 2 shows how� little the rela-

tionship between SE(0) and 0 changes

as one postulates underlying Gaussian,

gamma, or negative exponential dis-
tributions. Moreover, it seems that in

the range of interest (areas of 80% or
more), the negative exponential model
yields SE’s that are slightly more con-

servative than the other models con-

sidered. This is especially fortunate

since under this model, the quantities

Qi and Q2 can be expressed as simple

functions of 0, i.e.,

Q1 = 0 #{247}(2 - 0)

Q2 202 #{247}(1 + 0)

When these expressions are substi-

tuted into Formula 1, we obtain the SE

to be expected4 at any anticipated level

of performance 0, and can vary the n’s

4 This distribution-based approach can be used

not only to project a future SE but also, as men-
tioned at the end of section III, to provide a sec-
ond method of calculating an SE for obserz’ed data.
For example, the data discussed in section IV
produced an area of 0.905 or 90.5%. Using this for
0 in Equation 2, we obtain Q’ = 0.8265 and Q2 =

0.8599. Substituting these three values into
Equation 1 gives an SE of 0.0307 or 3.07%, even
closer to the 2.96% produced by maximum like-
lihood estimation.

until SE(O) is sufficiently small. For

example, consider an experiment

where the diagnostic accuracy is ex-

pected to be in the neighborhood of 0
= 85%. Then Qi 0.85 + 1.15 0.7391

and Q2 2(0.85)2 #{247}1.85 = 0.7811. Then

with nA �N = 40, Formula 1 predicts

an SE of 4.37%, while �A = 71N = 60 will

reduce the SE to 3.56%. Figure 3 gives

SE(0) for various sample sizes and var-
ious anticipated 0’s. A number of points

should be noted:

1. As one expects with SE’s, they

vary inversely with � so that, for

�2’ example, one must quadruple the

‘ 1 sample size to halve the SE.

2. The SE’s are smallest for very

high 0’s, i.e., those close to 1.

3. The SE’s are slightly more con-

servative than those obtained under

the Gaussian model (Fig. 2).

4. One must resort to Formulas 1

and 2 to calculate SE’s when the num-

ber of normal cases 1ZN does not equal
the number of abnormal cases nA.

In pa�sing, it is of interest to compare

the SE(0) of approximately 3% obtained

from our previously mentioned rating

experiment example with what would

have been obtained from an actual

2AFC experiment. In the latter, one

would estimate 0 simply by calculating

Standard error (SE) for estimated area under

ROC curve (0) in relation to sample size (nA

number of abnormal cases) and true area

under ROC curve (0). Calculations assume an

equal number (1lf�) of normal cases.

the fraction 0 of m pairs of images

where the normal and abnormal image

were correctly identified, and one

would accompany this estimate of 0
with a standard error, baked � the bi-

nomial distribution, of �J0(1 - 0)/rn. To

achieve a standard error of 0.03 or 3%,

and assuming that in fact 0 in the 2AFC

experiment turned out to be 0.9 or 90%,

one would need �ti 100 pairs of (nor-

mal, abnormal) images, a considerably

greater number of images (2m or 200)

than the �1N + ?lfl = 109 used in the

rating experiment. For purposes of

precision (low SE) in measuring 0, we

can think of the 2iii images (in pairs) as

the statistical equivalent of our 109.

Thus, even if one were interested only

in estimating the overall percentage of

patients that would be correctly clas-

sified by a medical imaging system, the

rating method would be the method of

choice. In addition to being more eco-

nomical (i.e., requiring fewer patients),

it yields valuable data on the two sep-

arate components of diagnostic accu-

racy, namely, sensitivity and speci-

ficity.

For these and other reasons, the

2AFC method is not a serious compet-

itor to the rating method in medical

imaging experiments. However, the

formal statistical ties between the two

metho�1s do help in seeing how to use

an SE(0) derived from a rating experi-



TABLE III: Number of Normal and Abnormal Subjects Required to Provide a Probability of 80%, 90%, or 95% of Detecting

Various Differences between the Areas 0� and 02 under Two ROC Curves (Using a One-Sided Test of

Significance with p = 0.05)

0.775
286
392
493

610
839

I 057

02
0.850

68
92

115

0.875
49
66
82

0.900
37
49
61

0.925
28
38
46

01 0.750
0.700 652

897
1131

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.800 0.825 0.950 0.975
158 100 22 18
216 135 29 23
271 169 36 29

267 148 93 63 45 34 26 20
366 201 126 85 61 45 34 27
459 252 157 106 75 55 42 33

565 246 136 85 58 41 31 23

776 337 185 115 77 55 41 31
976 423 231 143 96 68 50 38

516 224 123 77 52 37 27
707 306 167 104 69 49 36
889 383 209 129 86 60 44

463 201 110 68 46 33
634 273 149 92 61 43
797 342 185 113 75 53

408 176 96 59 40
557 239 129 79 52

699 298 160 97 64

350 150 81 50

477 203 108 66

597 252 134 81

290 123 66
393 165 87

491 205 107

960 228 96
1314 308 127

1648 383 156

710 165
966 220

1209 272
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80% probability = top number; 90% probability = middle number; 95% probability = bottom number.

457
615
765

ment to construct a confidence interval

on 0. As one might expect, and indeed

as we have found by repeatedly simu-

lating data from two overlapping

Gaussian distributions, constructing ai�

ROC curve, and deriving the area 0
under the curve, the distribution of the

0’s we obtained is not entirely sym-

metric, but is instead somewhat

skewed towards 0 = 0.5. This skewness

is more marked as the “true” 0 ap-

proaches 1, and as the expected number

of “misclassified pairs” [m(1 - 0)] falls

below 5; this is identical to what occurs

with the binomial distribution and a

success probability close to unity. In

such cases, one usually resorts to an

exact (asymmetric) confidence interval
for 0, rather than using the appro�i-

mate (symmetric) one of ±1.645 SE(0),

1 .96 SE(0), . . . , provided by the normal

distribution. In the example here tii(1

- 0) = 10 is considerably greater than

the rule of thumb of 5; thus, the sym-

metric 95% confidence interval of

90.5% ± 1 .96(3.07) or (84.5%, 96.5%) will

be reasonably correct, compared with

the exact, slightly asymmetric interval

of (82.4%, 95.1%) obtained by consult-

ing charted confidence limi�ts for bi-

nomial sampling (10) with 0 = 0.905

and in = 100.

Finally, we consider the question of

obtaining sufficiently large sample

ranges when one wishes to examine

the difference between two areas, so

that if an important difference in perfor-
inance exists, it will be unlikely to go

undetected in a test of significance.

VI. Detecting Differences
between Areas under Two ROC
Curves

Again, knowing in advance the ap-

proximate SE’s that are likely to ac-

company an estimate of 0, we can cal-

culate how many cases must be studied

so that a comparison of two imaging

systems will have any given degree of

statistical power. This power or “sta-

tistical sensitivity” depends on how

small the probabilities a and /3 of

committing a type I or type II error are.

Typically, one seeks a power (100 - /3)
of 85% or 90% so that if a specified dif-

ference exists, it is 85% or 90% certain to

be reflected in samples that will be

declared “statistically different.” Tra-

ditionally, one uses a type I error

probability or a of 0.05 (5%) as the cmi-

tenon for a significant difference.

TABLE III gives the numbers of nor-
mal and abnormal cases required for

each ROC curve to have an 80%, 90%, or

95% assurance that various real differ-

ences t5 between two areas, 0� and 02,
will indeed result in sample curves

showing a statistically significant dif-
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ference (p < 0.05, one-sided). The cal-

culations are based on an adaptation of

the sample size formula given by Col-

ton (11), namely,

= Z,, \/�V� + Z1� �/V1 + V2 2

ii

(3)

where in our case

Zn = 1 .645, for a 5% one-sided test of

significance

zl� = 0.84, 1 .28, or 1.645 for 80%, 90%,

or 95% power

6 = 02
V1 = Qi + Q2 20� (Q� and Q2 ob-

tamed using 01 in Equation 2)

V2 = QI + Q2 20� (Q� and Q2 ob-

tamed using 02 in Equation 2)

As an example, it shows that if indeed

the “true” areas (i.e., those that would

be achieved with infinite populations)
were 82.5% and 90.0%, one would need
to plan on a sample of 176 normal

subjects and 176 abnormal subjects for

each curve to have a high assurance
(i.e., an 80% probability) that the test of

significance on the samples would

yield a statistically significant differ-

ence. Larger sample sizes allow one to
detect smaller differences or have a

greater assurance of detecting the same

size difference, while smaller ones give
less statistical power.

These considerations are not neces-

sarily binding; after all, they are de-

signed with the pessimistic attitude

that the sampling will be “unkind” and

apt to mask important differences.

However, they do show that if a small
study failed to show a statistically sig-

nificant difference, there is a real pos-

sibility of a type II error.5 On the other
hand, if the “no difference” persists in

spite of adequate sample sizes such as

those shown in TABLE III, one can rea-
sonably conclude that the stated dif-

ferences do not in fact exist. Finally,

TABLE III shows that a difference of 10%
is more easily detected if it is a differ-

ence between 80% and 90% than if it is

a difference between 70% and 80%.

DISCUSSION

The advent of new competitive
imaging modalities (CT, ultrasound,

nuclear medicine) for the same diag-

nostic problem has led to the perfor-

mance of many studies involving

comparisons of the information ob-

5 In fact, knowing the n’s that were studied, one
can solve Equation 3 for � to find out how high

the probability /1 of a type II error really was.

tamed from these imaging techniques.

Many of these comparisons have used

ROC curves in their analysis. However,
it has become clear that an intuitive

understanding of the statistical tech-

niques proposed for comparing

modalities with ROC curves is lacking.

Also, there are special problems asso-

ciated with the application of these

techniques to medical problems and

their associated small and usually het-

erogeneous data bases. Thus, we un-

dertook this investigation, in part to aid

our intuition in this area but more im-

portantly to provide a firmer statistical

basis for work in this field.

The intuitive results that have been

shown in this paper are actually quite

helpful. Basically, the results show that

in the rating method, conventionally

employed for analyzing imaging

modalities using the ROC approach,

the area under the ROC curve repre-

sents the probability that a random pair

of normal and abnormal images will be

correctly ranked as to their disease

state. (We emphasize here that this

probability of a correct ranking only

conveys the intrinsic potential for

discrimination with sensitivity and

specificity weighted equally; other

external [decision] factors that influ-

ence diagnostic performance include

the real mixture [no longer 1:1] of dis-

eased and nondiseased patients and the

relative costs of the two types of diag-

nostic errors. However, as with other

psychophysical processes, it is impor-

tant to separate intrinsic discriminatory

qualities of the imaging modality as

much as possible from decision

issues.)

Second, the combination of a graphic

method for obtaining a smoothed area

and a computational formula for its

standard error now means that the in-

vestigator can obtain almost the full

benefit of a parametric maximum

likelihood without actual recourse to a

large computer. Admittedly, the stan-

dard error may be slightly inexact, but

it seems a small sacrifice.

Third, there is an increasing popu-

larity of medical predictions using

scores and probabilities derived from

techniques such as discriminant anal-

ysis and logistic regression. Although

these provide a scale that is much more

“continuous” than the rating categories

we have described above, the distri-

butions of these composite indices may

not be suitable for ROC analyses based

on the binormal assumptions. How-

ever, the Wilcoxon statistic will now be

a more bias-free method of estimating

the “true” area 0 under the ROC curve,

and its standard error will continue to

be valid, since it can be calculated di-

rectly from the data (as in TABLE II).

Moreover, our calculations shown in

Figure 2 suggest that it can largely be

predicted from 0 alone, even if the

underlying distributions differ con-

siderably from Gaussian.

Fourth and most important, the

major contribution of this paper is the

use of the Wilcoxon statistic for esti-

mation of sample sizes and power cal-

culations. Estimation of sample sizes is

critically important. Generally, when

a new imaging modality becomes

available, a pilot study will provide

some estimate of its approximate sen-

sitivity and specificity in relationship

to existing modalities. With some sim-

plifying assumptions, the areas shown

in TABLE III can be estimated. These
data make it possible to calculate the

approximate sample sizes necessary to

detect differences between two areas

(and hence their imaging modalities)

with specific degrees of certainty.

These numbers will let investigators

know whether one institution can
likely perform a research study alone,

whether multiple institutions are re-

quired, or whether in fact so many in-

stitutions are required that the cost of

obtaining the data is not worth the in-

formation obtained.

Two caveats are necessary in inter-

preting the results of this study. It

should be noted that the sample size

calculations in TABLE III are based on
selecting a separate set of normal and

abnormal subjects for each of the two

experimental conditions being com-
pared. These numbers are not suitable

for situations when the two modalities

are examining the same sets of cases or
when one reader is evaluating the same

set of cases under different conditions

(e.g. , with and without history, with

and without varying levels of contrast).

Methods to deal with this latter situa-

tion are the subject of a subsequent am-

tide (12). Basically, they are based on

the principle that when paired obser-

vations are available, the use of paired

statistical analyses provides a much

more powerful test than is obtained
when paired observations are treated
by statistical tests for independent

samples. The difference between

paired and unpaired t-tests is a familiar

example of this problem.

Second, as mentioned at the outset,

the area under an ROC curve is a pa-

rameter used to quantify in a single

numerical value the overall location of

an ROC curve relative to the (nonin-

formative) diagonal. If one wishes to
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test statistically whether two curves are

different (they could still subtend the

same area but cross each other), then
one must resort to a bivariate statistical

test (13). This test simultaneously

compares the two parameter values-a

the difference between the xA and xN
distributions and b the ratio of their

variances, which describe one ROC
curve with the corresponding values
for the second curve. The test requires
that one supply estimates of a and b, as

well as estimates of their variances and
covariance. These estimates are pro-
vided by the maximum likelihood es-
timation technique described by

Dorfman and Alf (9).
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