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Maximizing the area under the ROC curve by pairwise feature combination
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Abstract

The majority of the available classification systems focus on the minimization of the classification error rate. This is not always a suitable
metric specially when dealing with two-class problems with skewed classes and cost distributions. In this case, an effective criterion to
measure the quality of a decision rule is the area under the Receiver Operating Characteristic curve (AUC) that is also useful to measure the
ranking quality of a classifier as required in many real applications. In this paper we propose a nonparametric linear classifier based on the
maximization of AUC. The approach lies on the analysis of the Wilcoxon–Mann–Whitney statistic of each single feature and on an iterative
pairwise coupling of the features for the optimization of the ranking of the combined feature. By the pairwise feature evaluation the proposed
procedure is essentially different from other classifiers using AUC as a criterion. Experiments performed on synthetic and real data sets and
comparisons with previous approaches confirm the effectiveness of the proposed method.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In many complex classification problems highly discriminant
classifiers are needed especially when dealing with dichoto-
mous decisions that required to choose between two possible
alternative classes. Applications such as automated cancer di-
agnosis, currency verification or fraud detection fall in this cat-
egory. Since in such cases a classification error could frequently
have serious consequences, the employed classifiers should en-
sure a high reliability to avoid erroneous decisions. Anyway,
the mainstream classifiers are usually designed to minimize the
classification error and this has been shown not to be a reliable
metric when the two-class problems have skewed class or cost
distributions.

Under these conditions it is better to refer to the receiver
operating characteristic (ROC) curve. ROC curves were origi-
nally introduced in signal detection theory and the main reason
they became an useful performance evaluation tool is the fact
that the produced curve is independent of class distribution and
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underlying misclassification costs [1]. A ROC curve is the plot
of true positive rate (TPR) versus false positive rate (FPR) by
varying the threshold, which is simply a score produced by a
decision function, usually the probability of membership to a
class or a distance to a decision surface. Moreover, as well de-
scribed in many papers [1–4] the geometrical properties of the
ROC curve can be profitably used to optimize the performance
of a dichotomizer with reference to various metrics and classi-
fication requirements.

However, if we are faced with different classifiers, it is often
preferable for their comparison to employ a single scalar value
such as the area under the ROC curve (AUC) [5,6]. Larger
AUC values indicate on average better classifier performance,
even though it is possible that a classifier with high AUC can
be outperformed by a lower AUC classifier at some region of
the ROC space. Recently, some studies on the relationships
between AUC and accuracy have been performed; in Refs.
[7,8] it has been established that AUC is a statistically consis-
tent and more discriminating value than accuracy (i.e. of error
rate). Moreover, AUC is also a suitable measure to evaluate the
classifier’s ability to rank instances in two-class classification
problems. In particular, it is the probability that a randomly
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chosen positive example has a higher decision function value
than a random negative example.

Ranking is a popular topic in the machine learning field and
on these bases several learning algorithms have been proposed
in the recent literature. In Ref. [9] an algorithm to combine
rankings based on the boosting approach has been introduced
and in Ref. [10] a variation to this algorithm is proposed. The
maximization of AUC has been applied also in decision trees
[11] and logistic regression [12]. Recently, rank optimizing sup-
port vector machines (SVM) have came into focus. In Ref. [13]
rank optimizing kernels have been investigated while Ref. [14]
introduces a similar kernel formulation which led to a better
ranking performance compared to the previous work. A linear
programming approach similar to l1-norm SVM has been de-
veloped in Ref. [15] while in Ref. [16] a similar linear weight-
ing of features has been successfully applied to the detection
of the interstitial lung disease. Also combinations of rules have
been analyzed to directly maximize AUC of the combiner and
a method to evaluate the weight of the linear combination of
two classifier has been proposed in Ref. [17].

In this paper we propose a nonparametric linear classifier
able to maximize AUC. The procedure is based on an iterative
pairwise coupling of the features suitable to create a ranker in
feature space (i.e. a classifier after an opportune thresholding).
The coupling is performed finding weights of the linear com-
bination of two features for the maximization of AUC evalu-
ated through the Wilcoxon–Mann–Whitney (WMW) statistic.
Experiments performed on synthetic and real data sets and a
comparison with previous approaches have confirmed the ef-
fectiveness of the proposed method.

The rest of the paper is organized as follows: in the next
section a short description of the ROC curve and of AUC mea-
sure is presented for a linear discriminant function. Section 3
describes the proposed approach for two features while in Sec-
tion 4 this method is extended to N features with a greedy
approach. Then, experiments performed are reported and dis-
cussed in Section 5 while in the last section some conclusions
and possible future developments are proposed.

2. Linear discriminant functions and the ROC curve

In two-class classification problems, the goal is to build a
classifier f that assigns a sample x (say Q-dimensional) repre-
sented in an instance space X to one of two mutually exclusive
classes that can be generally called Positive (P) and Negative
(N) class. Let us consider, without loss of generality, that a di-
chotomizer f provides a real output f (x) for each sample it rep-
resents a confidence degree that the sample belongs to one of
the two classes, e.g. P. A way to assess the quality of such rule
is to evaluate the performance obtained on each class varying
a suitable threshold.

Let us focus on linear classifiers. The linear discriminant
function can be written as

f (x)= wTx + w0 =
Q∑

i=1

wixi + w0,

where w is the weight vector and w0 the threshold weight. In
this way the sample x is assigned to the class P if f (x) > 0
and to the class N if f (x) < 0, i.e. x is assigned to P if wTx
exceeds the threshold −w0 and to N otherwise. The equation
f (x) = 0 defines the decision boundary � that separates the
two decisions regions. In our case the decision boundary is a
hyperplane. For a given threshold w0 = −t it is possible to
define a TPR and a FPR as

TPR(t)=
∫ +∞

t

fp(x) dx,

FPR(t)=
∫ +∞

t

fn(x) dx,

where fp(x) and fn(x) are the density functions of the classifier
output for the positive and negative class, respectively. Taking
into account samples with score less than the threshold it is
possible to define a true negative rate (TNR) and a false negative
rate (FNR) as

TNR(t)=
∫ t

−∞
fn(x) dx = 1− TPR, (1a)

FNR(t)=
∫ t

−∞
fp(x) dx = 1− FPR. (1b)

Eq. (1) demonstrates that the pair (FPR(t), TPR(t)) is sufficient
to completely characterize the performance of a decision rule
for a given threshold. Most importantly such indices are inde-
pendent of the a priori probability of the classes because they
are separately evaluated on the different classes.

The ROC curve details the TPR versus the FPR over the
range of all the possible threshold values, thus providing a de-
scription of the performance of the classifier at different oper-
ating points even when the prior distributions of the classes or
the cost distributions are not known [1,2]. The shape of the op-
timal ROC curve depends on how the classes are distributed:
qualitatively, the closer the curve to the upper left corner, the
more discriminable the two classes.

To demonstrate the relation between the discriminant linear
function and the ROC curve let us focus on a two-dimensional
problem. In this case the decision function simplifies to:

f (x)= w1x1 + w2x2 + w0 (2)

and the sample x will be assigned to P if w1x1+w2x2+w0 > 0
and to N otherwise. In this case the hyperplane collapses in a
straight line with slope equal to −w1/w2. When we fix the two
weights w1 and w2 we are defining the slope of the decision
boundary while a change of the value −w0 corresponds to a
translation of the decision boundary in feature space. Once
a particular value for the slope has been chosen, varying the
value w0 produces a family of lines (decision boundaries) with
the same slope. Each of them defines a particular classifier
which produces a certain pair (TPR, FPR) corresponding to a
particular point on the ROC curve. When the value of w0 is
varied (and thus the decision boundary is translated) the whole
ROC curve is drawn. In summary, each value for the slope
produces a particular ROC curve where each point is associated
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Fig. 1. Example of a two-dimensional problem with two overlapping classes.
Fig. (a) shows the ROC curve for a linear classifier with three different
operating points corresponding to the three straight lines shown in fig. (b).

to one of the parallel lines with that slope in feature space. Fig.
1 shows an example of a two-dimensional problem with two
overlapping classes. Fig. 1(a) shows the ROC curve for a linear
classifier with three different operating points corresponding to
three different straight lines in the feature space represented in
Fig. 1(b). Each point (TPR, FPR) on the curve corresponds to a
particular (operating point for the) classifier, i.e. to a particular
value for the threshold −w0 and, consequently, to one of the
parallel lines defined by the chosen slope.

Although the ROC curve provides a comprehensive evalua-
tion of the performance of the decision rule, a scalar measure,
the AUC, can be used to give an estimate of the quality of the
dichotomizer (AUC=0.5 for a nondiscriminating rule, AUC=1
for a perfectly discriminating rule). AUC has been recently pro-
posed in many papers as an alternative measure to the accu-
racy (i.e. to the classification error) due to its independence of
the decision threshold and the prior class and cost distributions
[5,8]. Moreover AUC has an important statistical property, i.e.
it is an estimator of the probability of correct pairwise rank-
ing [18,6] that is the probability that a sample belonging to the
positive class P has a confidence degree higher than a sample

belonging to the class N. Such probability can also be estimated
by means of the WMW statistic [19]; let us consider lN sam-
ples belonging to the class N and lP belonging to the class P,
and say f (pi) and f (nj) the output of a classifier on the ith
positive sample pi and on the jth negative sample nj, we have

R =
∑lP

i=1

∑lN
j=1I (f (pi), f (nj))

lP lN
, (3)

where I (a, b) is an indicator function defined as

I (a, b)=
{1 if a > b,

0.5 if a = b,

0 if a < b.

In this way, it is possible to evaluate AUC of f directly through
Eq. (3) without explicitly plotting the ROC curve and estimating
the area with a numerical integration. Several papers try to
maximize AUC suggesting an approximation approach to the
WMW statistic. For example in Refs. [20,12] a continuous
function is used so that it is possible to use the gradient methods
to solve the optimization problem.

Hence AUC also represents a measure of the quality of the
ranking. It is worth noting that when we evaluate the rank-
ing we do not need to evaluate a threshold. In fact, to have
f (pi) > f (nj) with pi = (p1

i p2
i ) and nj = (n1

j n2
j ), it is suffi-

cient that w1p
1
i +w2p

2
i > w1n

1
j+w2n

2
j . As a result, the WMW

statistic (and thus AUC) is independent of the value of the
threshold.

Let us now consider the decision function in Eq. (2) and the
decision boundary �. Given two points in feature space p =
(p1, p2) and n= (n1, n2) drawn, respectively, from class P and
N their signed Euclidean distance from the decision boundary
are

d(p, �)= w1p1 + w2p2 + w0√
w2

1 + w2
2

,

d(n, �)= w1n1 + w2n2 + w0√
w2

1 + w2
2

.

A correct ranking for the pair p and n thus means that the
signed distance of the positive point is higher than the signed
distance of the negative point; in other words, the positive point
follows the negative point on the line orthogonal to the decision
boundary. As a consequence, the classification cannot be wrong
for both samples: in the worst case, if the threshold is not
adequately chosen, both points lie on the same side of the
decision boundary. However, a suitable shifting of the decision
boundary allows the two points to be correctly classified. Hence,
if w1p1+w2p2 > w1n1+w2n2, we can choose a threshold w∗0
such as

− (w1p1 + w2p2)�w∗0 � − (w1n1 + w2n2)

⇓
w1p1 + w2p2 + w∗0 �0 and w1n1 + w2n2 + w∗0 �0.

On the other hand, if the pairs p and n are not correctly ranked,
there is no value for the threshold w0 which can correctly clas-
sify both of the points. In summary, the slope maximizing AUC
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Fig. 2. Two-dimensional problem with five positive samples (asterisks) and
five negative samples (plus signs). The decision boundary (dotted line) leading
to a correct ranking, i.e. maximum AUC, is shown in (a) while in (b) an
imperfect ranking that means that no suitable threshold can be chosen to
linearly separate the two classes is reported.

is the slope for which there is the maximum number of pairs
correctly ranked, i.e. of the pairs that could be correctly clas-
sified with a suitable choice of the threshold.

A two-dimensional example is shown in Fig. 2. Five sam-
ples for the positive class and five for the negative class, i.e.
twenty-five possible pairs, are plotted. In Fig. 2(a) the decision
boundary � is shown with a slope that maximizes the AUC. As
an evidence, we consider the perpendicular to � and project all
the samples on that line; fixing a way to move along the line,
it is possible to obtain a correct ranking among all the possi-
ble pairs (AUC= 1). If we choose a threshold on this line it is
possible to build a linear classifier that is able to assign all the
samples to the correct class. In Fig. 2(b) we have a similar sit-
uation but in this case the slope of the decision boundary does
not lead to a perfect ranking (AUC = 22

25 ) and this reflects in
errors in the class assignment.

3. AUC maximization in two-dimensional feature space

In the previous section we discussed the suitability of AUC
for a linear classifier. Let us now focus on an approach to

combine features in a linear way, so as to maximize AUC of
the resulting linear classifier. To this aim, we first consider
how to find a suitable slope for the linear combination of two
features that maximizes the WMW statistic. Let X be the set
of samples as defined before and let us consider two generic
features xh and xk . Let us consider the values of the hth and
kth features on the ith positive sample pi and the jth negative
sample nj : ph

i nh
j pk

i nk
j and the relative ranking measure for

the two features measured by

Rh =
∑lP

i=1

∑lN
j=1I (ph

i , nh
j )

lP lN
,

Rk =
∑lP

i=1

∑lN
j=1I (pk

i , n
k
j )

lP lN
.

Since we want to maximize AUC we are independent of the
threshold. Hence, let us consider a linear combination of the
two features

xlc = �xh + (1− �)xk ,

where �/(1 − �) is the relative weight of the features xk with
respect to xh. The value of xlc on the positive and negative
sample will be:

plc
i = �ph

i + (1− �)pk
i ,

nlc
j = �nh

j + (1− �)nk
j .

According to the WMW statistic the quality of the ranking of
xlc can be measured by

Rlc =
∑lP

i=1

∑lN
j=1I (plc

i , nlc
j )

lP lN
(4)

and depends on the value of the weight �. We want to maxi-
mize AUC relative to the pair of features; to do that we have
to analyze the term I (plc

i , nlc
j ) that depends on the value of

I (ph
i , nh

j ) and I (pk
i , n

k
j ). We can distinguish three different im-

portant cases1:

• I (ph
i , nh

j )=1 and I (pk
i , n

k
j )=1 means that according to both

features the two samples are correctly ranked, i.e. ph
i > nh

j

and pk
i > nk

j and therefore plc
i > nlc

j ⇒ I (plc
i , nlc

j ) = 1
whichever is the value of �.
• I (ph

i , nh
j )= 0 and I (pk

i , n
k
j )= 0 means that neither feature

correctly ranks the two samples i.e. ph
i < nh

j and pk
i < nk

j and

therefore plc
i < nlc

j ⇒ I (plc
i , nlc

j )= 0 independently of �.

• I (ph
i , nh

j ) = 1 and I (pk
i , n

k
j ) = 0 or I (ph

i , nh
j ) = 0 and

I (pk
i , n

k
j )=1 means that only one feature correctly ranks the

two samples and the value of I (plc
i , nlc

j ) is dependent on �.

1 It is worth noting that a tie is only possible for discrete features and
therefore we assume I (a, b)=0 when a=b as well. This implies a negligible
underestimate of the ranking, but it sensibly simplifies the following analysis.
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According to these cases we can subdivide the set of samples
in four different subsets defined as

Xmn = {(i, j)|I (ph
i , nh

j )=m and I (pk
i , n

k
j )= n}.

As a consequence the expression of the ranking of the combined
features will be

Rlc = 1

lP lN

⎡
⎣ ∑

(i,j)∈X00

I (plc
i , nlc

j )+
∑

(i,j)∈X11

I (plc
i , nlc

j )

+
∑

(i,j)∈X10∪X01

I (plc
i , nlc

j )

⎤
⎦ ,

where
∑

(i,j)∈X00
I (plc

i , nlc
j ) is equal to zero and

∑
(i,j)∈X11

I (plc
i , nlc

j ) is the cardinality of the set X11. Moreover, if we

define as �(�) the quantity
∑

(i,j)∈X10∪X01
I (plc

i , nlc
j ) that is

dependent on the weight, we have

Rlc = 1

lP lN
[card(X11)+ �(�)].

So we have to focus on the pairs on which the features are
differently ranked, i.e. on the sets X10 and X01. In order to find
the value of � that maximizes the ranking we have to study the
term

∑
(i,j)∈X10∪X01

I (�i , �j ) looking at the weight for which
I (�i , �j )= 1⇒ �i > �j , i.e.:

�ph
i + (1− �)pk

i > �nh
j + (1− �)nk

j

⇓
��h

ij + (1− �)�k
ij > 0, (5)

where �h
ij = ph

i − nh
j and �k

ij = pk
i − nk

j . From Eq. (5) we can
obtain two different constraints on � for the two sets we are
considering; we have

� <
�k

ij

�k
ij − �h

ij

if (i, j) ∈ X10, (6a)

� >
�k

ij

�k
ij − �h

ij

if (i, j) ∈ X01. (6b)

If Eq. (6) is verified for each pair (i, j) ∈ X10 ∪ X01, it is
possible to obtain the maximum value for the function �(�),
i.e. the cardinality of X10 ∪ X01. In this case, we can find an
optimum �:

max
(i,j)∈X01

�k
ij

�k
ij − �h

ij

< �opt < min
(i,j)∈X10

�k
ij

�k
ij − �h

ij

. (7)

This condition is verified only if the two sets are completely
disjoint, i.e. if the two features are highly complementary in the
ranking evaluation. So when the two sets are not separated we

Fig. 3. Histograms of the occurrences of the ratio �k
ij /(�k

ij −�h
ij ) evaluated

on the sets X10 (a) and X01 (b).

have to evaluate the weight � using the cumulative distributions

F10(�)= card

(
(i, j) ∈ X10

∣∣∣∣∣
�k

ij

�k
ij − �h

ij

> �

)
,

F01(�)= card

(
(i, j) ∈ X01

∣∣∣∣∣
�k

ij

�k
ij − �h

ij

< �

)
.

Hence, the function that has to be maximized is

�(�)= F10(�)+ F10(�)

and the optimal value of � can be found by means of a sequential
search.

An example of the real distributions of the ratios �k
ij /(�

k
ij −

�h
ij ) in the two sets X10 and X01 is shown in Fig. 3 while the

function �(�) obtained by these two distributions is plotted in
Fig. 4.
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Fig. 4. The trend of the function �(�) obtained by the two distributions shown
in Fig. 3.

4. AUC maximization in multidimensional feature space

The next step of our method consists in extending the pro-
cedure described in the previous section to a higher number of
features. To this aim, let us consider Q features x1 . . . xQ and
their linear combination:

xlc = �1x1 + · · · + �QxQ =
Q∑

i=1

�ixi = �Tx.

The goal is to find the weight vector

�opt = (�1 . . . �Q),

maximizing the WMW statistic associated with the ranker de-
scribed by xlc. However, it is not possible to extend our ap-
proach to this case since the direct optimization of the function
in Eq. (4) is intractable due to the computational problem con-
nected to the evaluation of Eq. (5).

Therefore, a suboptimal algorithm that approximates the
solution using a greedy approach has been adopted. Greedy
methods build solutions piece by piece. Each step increases the
size of the partial solution and is based on local optimization:
the selected choice is the one that produces the largest immedi-
ate gain, i.e. the best ranking, maintaining the feasibility of the
problem. In our case, instead of finding a weight vector in one
step we iteratively find the optimal weight of the linear combi-
nation of two features (as described in the previous section) so
as to evaluate all the combination weights in at most Q−1 steps.

In this context an important role is played by the order of
combination, i.e. which pair of features should be combined
at first, to avoid considering every possible combination. From
Eq. (7) we know that the more separated the two distributions
are relative to the sets X10 and X01 the greater is the improve-
ment to the ranking of the combined features. Therefore, it is
possible to combine the features choosing the pair that exhibits
the maximum diversity in the ranking, i.e. the minimum rank
correlation coefficient between features [21]. To this aim, we
choose Spearman’s rank correlation coefficient, a nonparamet-

ric measure of correlation that assesses how well an arbitrary
monotonic function could describe the relationship between two
features without making any assumptions about the frequency
distribution [22]. It is defined as

�hk = 1− 6

∑L
i=1(r

h
i − rk

i )2

L(L2 − 1)
,

where rh
i and rk

i are the rankings on the two considered features
h and k and L= lP + lN .

Algorithm 1 (The Maximum AUC Linear Classifier
(MALC)).

Input: A L-dimensional matrix representing the training set
with Q features x1, . . . , xQ; lP > 0 and lN > 0, the number
of positive and negative samples with L= lP + lN .
Output: �, the weight vector of the linear combination of
features.
1: for h= 1 to Q do
2: r

(0)
h ← x

(0)
h sorted by decreasing values and ranked

3: end for
4: for h= 1 to Q− 1 do
5: for k = h+ 1 to Q do
6: /*evaluate the rank coefficient matrix at step 0*/
7: �(0)

h,k = 1− 6
L(L2−1)

∑L
i=1(r

h
i − rk

i )2

8: end for
9: end for
10: for m= 1 to Q− 1 do
11: /*find the pair of classifiers with the minimum rank

coefficient */
12: (	, 
)← argminh,k�

(m−1)

13: for i = 1 to lP do
14: for j = 1 to lN do
15: Xrs←{(i, j)|I (p	

i , n	
j )=randI (p


i , n


j )=s} with r, s=0,1

16: �	
i,j = p	

i − n	
j

17: �

i,j = p


i − n

j

18: end for
19: end for
20: evaluate F 	


10 and F 	

01

21: �(�)← F 	

10 + F 	


01
22: �opt ← max��(�)

23: update the combination tree
24: r

(m)
	+
 ← �x	 + (1− �)x
 sorted by decreasing values

and ranked
25: if m < Q− 1 then
26: for n= 2 to Q−m do
27: �(m)

	+
,n = 1− 6
L(L2−1)

∑L
i=1(r

	+

i − rn

i )2

28: end for
29: end if
30: end for
31: /*update the rank correlation matrix*/
32: �(m) ← �(m−1) eliminating �(m−1)

	 and �(m−1)

 and

adding �(m)
	+


33: evaluate � by multiplying the values on the edges of
the tree
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Fig. 5. Example of the tree used to rebuild the weight vector. Traversing the tree from each leave to the root and multiplying the values on the edges it is
possible to recover the weight associated to each feature.

Once the procedure has been repeated until a single feature
is obtained (i.e. Q − 1 times), it is necessary to recover the
weight for each of the features to be combined. To this aim,
a combination tree is built during the evaluation of the weight
vector. The original features are the leaves of the tree and a
parent node is added when a pair of features is combined. The
edges are labelled with the weights assigned to each feature in
each step. Multiplying the values found on the edges by travers-
ing the tree (from the leaves down to the root) it is possible to
recover the weight for each single feature.

Fig. 5 shows an example of such a tree for a classification
problems with five features. In the first step the pair (x1, x2)

is combined obtaining a new feature xlc1 = �1x1 + (1− �1)x2;
in the second step x3 and x4 are combined and so on until we
obtain a single feature xlc4 . To recover the weights associated
to x1 . . . x5, we multiply the weights on the edges that we en-
counter on the path from the single features to xlc4 . As an ex-
ample, moving from the feature x3 towards xlc4 we encounter
the weights �3, 1− �2 and �4 and so the weight relative to x3
is �3(1− �2)�4.

A pseudo code of the whole algorithm is reported in Algo-
rithm 1. Hereafter, we will refer to our approach as Maximum
AUC Linear Classifier (MALC).

5. Experiments

In this section some experiments are reported to assess the
quality of the proposed method. To this aim, a comparison with
other classifiers that work on ranking has been conducted. In

particular, three classifiers (described in Section 5.1) have been
used: SVM [23], RankBoost [9] and AUC–LPC [16]. All the
classifiers have been implemented by means of PRTools [24]
toolbox.

To evaluate the performance of our approach experiments
on both artificial and real data sets have been performed. The
former approach (reported in Section 5.2) has been used to
show the behavior of the MALC on known data distributions
while experiments on real data (see Section 5.3) have been
accomplished to verify the utility of our method even when
dealing with real problems. In particular, the admissibility of
MALC on some data sets has been proved in a statistical way
with respect to the employed methods.

To avoid any bias in the comparison a 10-fold cross validation
procedure has been performed on all data sets. In each run
9 folds have been used as training set to train the classifiers
and the remaining fold as test set to evaluate the classifiers
performance.

It is worth recalling that the comparison has been computed
in terms of AUC since we are aiming at the maximization of
the ranking quality of the classifier and not at the evaluation
of the error rate (or other measures depending on a threshold
value). Hence, in our experiments only the value of AUC has
been evaluated using the WMW statistic according to Eq. (3).

5.1. Learning algorithms based on ranking

AUC has become a very important topic in the recent litera-
ture and therefore several learning algorithms based on ranking
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maximization have been proposed. In our experiments a com-
parison with RankBoost and SV-based rankers has been per-
formed.

5.1.1. RankBoost
A well-performing learning algorithm is proposed in Ref. [9]

where a method to combine rankings based on the boosting ap-
proach has been introduced. Boosting is a method to produce
highly accurate prediction rules by combining many weak rules
which may be only moderately accurate [25]. Like all boosting
algorithms, RankBoost operates in rounds assuming access to
a separate procedure called weak learner that, on each round,
is used to produce a weak ranking. Intuitively, RankBoost as-
signs different weights to different parts of the training data. A
high weight assigned to a pair of samples indicates a great im-
portance that the weak learner orders that pair correctly. Weak
rankings are usually based on the given ranking features. In
particular, in Ref. [9] a weak ranking from the ranking of the
feature xi is derived by comparing the score of xi on a given in-
stance to a threshold and assigning a default score to instances
not correctly ranked by xi . Then, the weak rankings are used in
the boosting algorithm to update the weight distribution con-
centrating on the pairs whose relative ranking is hardest to de-
termine. The final ranking H is a weighted sum of the weak
rankings h:

H(x)=
T∑


=1

�
h
(x),

where T is the number of rounds.
Even though RankBoost is a multistage non-linear approach

a comparison with this ranker is performed as it is one of the
best performing methods in the literature. In our experiments
a binary version has been used, where the weak learners only
threshold a single feature. In total, 10 weak classifiers are em-
ployed.

5.1.2. SVM and SV-based rankers
SVM is a well-known classifier not directly built to maxi-

mize the ranking performance, but to minimize the error rate;
nevertheless, in literature it is considered to be a good ranker
among classifiers methods. In our experiments a linear kernel
has been considered due to the linear behavior of the proposed
approach.

Recently, rank optimizing classifiers based on SVMs have
came into focus. In Ref. [13] a minimization of the l2-norm
of the weight vector � with constraints on the ordering of the
objects. The optimization problem is defined as follows:

min ‖�2‖ + C

mP∑
i=1

mN∑
j=1

�ij

s.t. ∀i, j : f (pi )− f (nj )�1− �ij , �ij �0,

where C is a trade off parameter between the two parts of the
objective and the slack variables �ij are used to approximate
the indicator function in the WMW statistic. By introducing

a kernel, thanks to the self duality of the l2-norm, the above
formulation remains valid for nonlinear SVM.

A similar linear weighting of features has been devel-
oped in Ref. [16] (called AUC linear programming classifier
(AUC–LPC)) and successfully applied to the interstitial lung
disease. In this case the optimization problem for a linear
classifier can be written as

min ‖�1‖ + C

mP∑
i=1

mN∑
j=1

�ij

s.t. ∀i, j : �T(pi − nj )�1− �ij , �ij �0.

Following Ref. [16], this can be rewritten in a linear program-
ming formulation as

min
∑
h

(uh + vh)+ C

mP∑
i=1

mN∑
j=1

�ij

s.t. ∀i, j : (uT − vT)(pi − nj )�1− �ij , �ij �0,

∀h : uh �0, vh �0.

Since using the slack variables �ij to approximate the indicator
function in the WMW statistic has serious drawback (the num-
ber of constraints is quadratic in the number of the objects),
a strategy to speed up the algorithm is also used based on a
randomly sub-sample of the constraints.

The choice of these classifiers for the comparison has been
made for different reasons. We used SVMs since as we said
before they are the basis for several recent approaches for AUC
maximization procedures. Moreover, we employed AUC–LPC
since it represents a simplified version of the rank optimizing
SVM [13] approach with lower computational complexity; we
did not compare with rank SVM since its computational com-
plexity is too high. Since SVM and AUC–LPC are parametric
classifiers, different architectures of these algorithms have been
employed. In particular, we have varied the C parameter for
both SVM and AUC–LPC between 0.1 and 1000. For the sake
of readability, in the following tables we only report the best
results obtained for these classifiers on each of the employed
data sets.

5.2. The artificial data

The first part of our experiments focuses on synthetic data:
in particular, some data sets have been built to analyze the
characteristics of the classifier. To this aim, a Gaussian distri-
bution for both classes has been used to generate 500 samples
varying the number of features Q to show the behavior of the
greedy approach for high dimensionality problems. A first set
consists of two Gaussian spherical distributed data classes with
equal identity covariance matrices and difference �� between
the means of the two classes distributions chosen equal to 0.3
and 1. The second set is a correlated Gaussian data set consist-
ing of two classes with equal covariances matrices. The mean
of the first class is equal to zero for all features. The mean of
the second class has been chosen equal to 1 and 3 for the first
feature and equal to 0 for all the other features. The two co-



C. Marrocco et al. / Pattern Recognition 41 (2008) 1961–1974 1969

−15 −10 −5 0 5 10 15 20

−15

−10

−5

0

5

10

15

20

x1

x
2

−4 −2 0 2 4

−4

−2

0

2

4

x1

x
2

Fig. 6. Scatter plot of the first two features for the 10-dimensional Gaussian
uncorrelated data (a) with �� = 1 and correlated data (b) with �� = 3.

variance matrices are equal diagonal matrices with a variance
of 40 for the second feature and a unit variance for all the other
features. The data set is rotated in the subspace spanned by the
first two features of 45◦ to construct a strong correlation. A plot
of a two-dimensional projection of the first two features is pre-
sented in Fig. 6, respectively, for uncorrelated and correlated
data.

The results of the comparison of the four employed classifiers
are presented in Tables 1 and 2 for uncorrelated data and in
Tables 3 and 4 for correlated class distributions. Each cell of
the tables contains a value corresponding to the mean (and
the standard deviation in parentheses) of AUC relative to the
performance of each classifier on each data set for the relative
number of features.

Table 1
Results on the test set for a Gaussian data set with uncorrelated class distri-
butions, �� equal to 0.3 and variable number of features

Feature size Classifiers

MALC SVM AUC–LPC RankBoost

5 0.621 (0.073) 0.615 (0.074) 0.615 (0.073) 0.620 (0.068)
10 0.595 (0.054) 0.552 (0.045) 0.562 (0.060) 0.591 (0.027)
30 0.584 (0.095) 0.559 (0.082) 0.570 (0.110) 0.580 (0.047)
50 0.555 (0.067) 0.550 (0.072) 0.548 (0.048) 0.596 (0.061)
75 0.540 (0.042) 0.538 (0.068) 0.522 (0.071) 0.589 (0.064)

100 0.533 (0.044) 0.528 (0.068) 0.512 (0.047) 0.567 (0.043)

Table 2
Results on the test set for a Gaussian data set with uncorrelated class distri-
butions, �� equal to 1 and variable number of features

Feature size Classifiers

MALC SVM AUC–LPC RankBoost

5 0.939 (0.019) 0.937 (0.023) 0.936 (0.022) 0.931 (0.022)
10 0.920 (0.047) 0.914 (0.047) 0.910 (0.049) 0.913 (0.047)
30 0.929 (0.032) 0.921 (0.038) 0.918 (0.037) 0.931 (0.025)
50 0.915 (0.028) 0.880 (0.038) 0.888 (0.024) 0.916 (0.027)
75 0.741 (0.059) 0.726 (0.079) 0.701 (0.074) 0.800 (0.048)

100 0.886 (0.037) 0.843 (0.058) 0.841 (0.051) 0.908 (0.022)

Table 3
Results on the test set for a Gaussian data set with correlated class distribu-
tions, �� equal to 1 and variable number of features

Feature size Classifiers

MALC SVM AUC–LPC RankBoost

5 0.809 (0.055) 0.771 (0.052) 0.767 (0.053) 0.717 (0.070)
10 0.796 (0.015) 0.773 (0.077) 0.771 (0.069) 0.708 (0.026)
30 0.756 (0.041) 0.740 (0.052) 0.733 (0.054) 0.667 (0.065)
50 0.655 (0.501) 0.707 (0.065) 0.726 (0.061) 0.603 (0.090)
75 0.634 (0.080) 0.686 (0.067) 0.666 (0.057) 0.589 (0.068)

100 0.632 (0.076) 0.633 (0.060) 0.641 (0.064) 0.565 (0.042)

Table 4
Results on the test set for a Gaussian data set with correlated class distribu-
tions, �� equal to 3 and variable number of features

Feature size Classifiers

MALC SVM AUC–LPC RankBoost

5 0.980 (0.024) 0.979 (0.023) 0.979 (0.023) 0.843 (0.047)
10 0.985 (0.011) 0.984 (0.015) 0.985 (0.014) 0.862 (0.034)
30 0.975 (0.014) 0.975 (0.018) 0.971 (0.018) 0.835 (0.053)
50 0.972 (0.011) 0.969 (0.021) 0.972 (0.016) 0.844 (0.042)
75 0.979 (0.015) 0.968 (0.019) 0.970 (0.021) 0.825 (0.069)

100 0.970 (0.055) 0.963 (0.022) 0.977 (0.019) 0.847 (0.061)

Firstly, let us analyze the results obtained on uncorrelated
data. In this case, it is possible to highlight the good behavior
of MALC when the dimensionality of the feature space is not
high. In fact, MALC gives the highest mean value among the
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four classifiers on all the employed data sets until the value of Q
is lower than 50. When Q becomes greater than 50 RankBoost
exhibits the best performance but MALC is still better than
SVM and AUC–LPC. The reason for the good performance of
RankBoost in high dimension space can be found in its char-
acteristics since it is a multistage approach that trains different
classifiers on different samples in each round of its procedure.
On the contrary, the three linear classifiers have a different be-
havior on this data: if we look at Tables 1 and 2, we, we can ob-
serve that MALC loses at least 5% in AUC when passing from
30 to 100 features and a similar behavior is shown by SVM
and AUC–LPC that, as reported by the same authors [23,16],
suffer the high dimensionality of data. Also in our approach,
some problems can occur when dealing with high number of
features since we are using a greedy approach based on an it-
erative pairwise coupling that do not recover errors that could
be generated in each step of the algorithm.

For correlated data the situation is more complicated to an-
alyze since there is no clear dominance of one method above
the others. In this case, RankBoost does not exhibit good per-
formance in comparison with the other rankers probably due
to the correlation among the weak classifiers that are used to
perform the boosting approach. Moreover, for a low number of
features it is possible to show a better behavior of MALC with
respect to the other two linear rankers, at least until Q is lower
than 30. When we increase the number of features, MALC
exhibits a different behavior according to the overlapping of
the classes. If the two classes are well separated (see Table 4)
MALC is the best classifier except one case (Q = 100 where
AUC–LPC performs better). On the other hand, if the data are
almost completely overlapping (see Table 3) the performance
of MALC quickly decreases when the feature number grows
and even for Q= 50 it exhibits a lower AUC value than SVM
and AUC–LPC.

Another type of experiment has been performed to analyze
the robustness of our ranker with respect to a monotonic scal-
ing of the features of each data set. We scaled data both in a
linear and a nonlinear way. The first model has been used to
show the behavior of classifiers with respect to data normal-
ization even though a linear scaling can be undone by a sim-
ple pre-processing step. The nonlinear way, instead, cannot be
corrected in a pre-processing step (to do that we should know
the scaling model) and so it has been performed to study the
scale dependence of some classifiers. In summary, three differ-
ent types of scaling have been evaluated for each sample x: a
linear scaling ax + b with a and b randomly chosen, an ex-
ponential scaling exp(x) and a random exponential scaling ax

with a randomly chosen.
In Tables 5–8 we report the results relative to the employed

artificial data sets. Comparing these tables with the correspond-
ing results on unscaled data set we can conclude that SVM and
AUC–LPC are not entirely stable towards the considered scal-
ing while RankBoost is completely invariant. MALC shows
a very robust (almost invariant) behavior for a linear scaling
probably due to the linear approach employed for the combina-
tion weight search. However, our approach is not so stable for
other transformations even if it maintains good performance on

all the scaling transformations for a number of features lower
than 50.

In summary, the analysis of artificial data has shown that the
proposed method performs well for data with low dimensional-
ity (less than 50 features) both for correlated and uncorrelated
data distributions, i.e. our ranker is admissible in comparison
with well-known methods in literature. It has also been shown
that MALC seems to be robust towards scaling variations but
is not as robust as RankBoost.

5.3. Experiments on real data sets

In this section we propose another type of experiment based
on real data sets. Our goal here is to verify if MALC is an
admissible classifier, i.e. if there exist some real cases in which
no other classifier performs equal to or better than MALC.

To this aim, the proposed method has been tested on sev-
eral data sets publicly available at the UCI machine learning
repository [26]. All of them have two classes2 and a variable
number of numerical input features.

In order to have a statistical validation of the obtained re-
sults, some tests have been performed. Statistics offers power-
ful specialized procedures for testing the significance of differ-
ences between multiple means and, in this case, ANOVA [27]
is the typical choice. However, it is worth noting that ANOVA
is based on two assumptions, i.e. the samples are drawn from
normal distributions and the distributions have equal variance.
Since this is not assured in our experiments, we employed the
Friedman test [28], a nonparametric equivalent of the ANOVA
that results to be a more general test even if it is less powerful
than ANOVA when ANOVA’s assumptions are met [29]. In our
case, the null hypothesis for the Friedman test corresponds to
a no statistically significant difference between the mean AUC
of the employed methods. Therefore, when the null hypothesis
is rejected there is a statistical difference among the classifiers.

In this case, we can proceed with a post hoc test to find
out which classifiers exhibits a statistically different behavior.
Two different situations can be evaluated: to compare all the
classifiers between each other or to compare all classifiers with
a control method. Since the power of a post hoc test is much
greater in the second case when all classifiers are compared
with a single method and since we are testing if MALC gives
better performance than the existing methods, we focus on one
of this procedure: the Holm step-down test [29,30].

The results obtained for the four classifiers are reported in
Table 9 on 27 data sets, six of which (Breast, Monks1, Monks2,
Monks3, Votes and TicTacToe) contain only nominal features.
Each cell of the table contains a value corresponding to the
mean (and the standard deviation in parentheses) of AUC rel-
ative to the performance of each classifier on each data set. A
bold value in the table indicates that the corresponding method
on that data set has a statistically significant lower performance
than MALC according to the Holm procedure. If the value

2 Three multiclass data sets (Glass, Waveform and Wine) have also been
used. In this case, a One vs. All approach has been applied to select one of
the classes from the multiclass data set.
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Table 5
Results on the test set for a Gaussian data set with uncorrelated class distributions, �� equal to 0.3 and variable number of features for different scaling of
the features

Feature size MALC SVM AUC–LPC RankBoost

Linear scaling
5 0.621 (0.070) 0.616 (0.073) 0.614 (0.069) 0.620 (0.068)

10 0.594 (0.031) 0.564 (0.026) 0.575 (0.044) 0.591 (0.027)
30 0.583 (0.054) 0.596 (0.050) 0.615 (0.061) 0.580 (0.047)
50 0.560 (0.052) 0.579 (0.061) 0.562 (0.034) 0.596 (0.061)
75 0.552 (0.028) 0.555 (0.041) 0.551 (0.024) 0.589 (0.064)

100 0.540 (0.026) 0.560 (0.039) 0.545 (0.024) 0.567 (0.043)

Exponential scaling
5 0.624 (0.073) 0.624 (0.070) 0.609 (0.073) 0.620 (0.068)

10 0.616 (0.061) 0.595 (0.051) 0.596 (0.051) 0.591 (0.027)
30 0.606 (0.061) 0.591 (0.064) 0.595 (0.074) 0.580 (0.047)
50 0.572 (0.041) 0.565 (0.041) 0.558 (0.038) 0.595 (0.062)
75 0.565 (0.040) 0.558 (0.045) 0.581 (0.042) 0.589 (0.064)

100 0.579 (0.054) 0.583 (0.050) 0.549 (0.038) 0.567 (0.043)

Random exponential scaling
5 0.632 (0.061) 0.577 (0.051) 0.578 (0.040) 0.620 (0.068)

10 0.600 (0.074) 0.578 (0.051) 0.603 (0.058) 0.591 (0.027)
30 0.603 (0.072) 0.591 (0.063) 0.606 (0.073) 0.580 (0.047)
50 0.580 (0.056) 0.560 (0.048) 0.575 (0.058) 0.595 (0.062)
75 0.556 (0.029) 0.574 (0.057) 0.576 (0.068) 0.589 (0.064)

100 0.564 (0.057) 0.533 (0.025) 0.545 (0.023) 0.567 (0.043)

Table 6
Results on the test set for a Gaussian data set with uncorrelated class distributions, �� equal to 1 and variable number of features for different scaling of the
features

Feature size MALC SVM AUC–LPC RankBoost

Linearscaling
5 0.939 (0.020) 0.937 (0.023) 0.939 (0.021) 0.931 (0.022)

10 0.919 (0.047) 0.915 (0.047) 0.909 (0.049) 0.913 (0.047)
30 0.932 (0.028) 0.922 (0.037) 0.905 (0.052) 0.931 (0.025)
50 0.919 (0.026) 0.882 (0.037) 0.873 (0.026) 0.916 (0.027)
75 0.732 (0.049) 0.724 (0.082) 0.702 (0.074) 0.800 (0.048)

100 0.888 (0.037) 0.835 (0.053) 0.828 (0.061) 0.908 (0.022)

Exponential scaling
5 0.939 (0.019) 0.938 (0.023) 0.936 (0.023) 0.931 (0.022)

10 0.922 (0.046) 0.914 (0.047) 0.911 (0.051) 0.913 (0.047)
30 0.934 (0.027) 0.918 (0.038) 0.913 (0.048) 0.931 (0.025)
50 0.924 (0.027) 0.866 (0.023) 0.869 (0.027) 0.916 (0.027)
75 0.783 (0.060) 0.735 (0.072) 0.697 (0.057) 0.800 (0.048)

100 0.897 (0.035) 0.828 (0.064) 0.827 (0.053) 0.908 (0.022)

Random exponential scaling
5 0.938 (0.019) 0.931 (0.022) 0.925 (0.029) 0.931 (0.022)

10 0.922 (0.047) 0.915 (0.048) 0.886 (0.059) 0.913 (0.047)
30 0.932 (0.028) 0.908 (0.049) 0.886 (0.048) 0.931 (0.025)
50 0.924 (0.025) 0.856 (0.046) 0.826 (0.036) 0.916 (0.027)
75 0.747 (0.068) 0.681 (0.069) 0.657 (0.081) 0.800 (0.048)

100 0.911 (0.034) 0.804 (0.076) 0.791 (0.067) 0.908 (0.022)

is underlined MALC exhibits lower performance compared to
that method while if the value is in normal style it means that
the corresponding method has undistinguishable performance
from MALC. When the values in a row of the table are signed
with an asterisk there is no statistical difference according to
the Friedman test (i.e. the null hypothesis cannot be rejected).

All the tests (both the Friedman and the Holm test) have been
performed with a level of significance equal to 0.05.

From these results we can see that there is a statistical dif-
ference among the employed methods according to the Fried-
man test in 18 of the 27 data sets. In two cases (i.e. Breast and
Monks2 data sets) the null hypothesis is rejected according to
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Table 7
Results on the test set for a Gaussian data set with correlated class distributions, �� equal to 1 and variable number of features for different scaling of the features

Feature size MALC SVM AUC–LPC RankBoost

Linear scaling
5 0.726 (0.080) 0.771 (0.052) 0.766 (0.053) 0.717 (0.070)

10 0.714 (0.129) 0.774 (0.075) 0.765 (0.072) 0.708 (0.026)
30 0.733 (0.043) 0.739 (0.050) 0.727 (0.052) 0.667 (0.065)
50 0.594 (0.061) 0.708 (0.063) 0.709 (0.064) 0.603 (0.090)
75 0.595 (0.052) 0.689 (0.065) 0.663 (0.066) 0.589 (0.068)

100 0.555 (0.066) 0.630 (0.068) 0.627 (0.045) 0.565 (0.042)

Exponential Scaling
5 0.721 (0.060) 0.627 (0.082) 0.701 (0.073) 0.717 (0.070)

10 0.695 (0.113) 0.580 (0.046) 0.666 (0.107) 0.708 (0.026)
30 0.726 (0.052) 0.564 (0.038) 0.667 (0.036) 0.667 (0.065)
50 0.596 (0.054) 0.568 (0.054) 0.630 (0.060) 0.603 (0.090)
75 0.559 (0.039) 0.561 (0.049) 0.615 (0.059) 0.589 (0.068)

100 0.559 (0.038) 0.553 (0.030) 0.605 (0.092) 0.565 (0.042)

Random exponential scaling
5 0.594 (0.058) 0.607 (0.059) 0.612 (0.069) 0.717 (0.070)

10 0.622 (0.098) 0.555 (0.035) 0.645 (0.102) 0.708 (0.026)
30 0.581 (0.051) 0.587 (0.059) 0.587 (0.055) 0.667 (0.065)
50 0.586 (0.068) 0.577 (0.057) 0.618 (0.075) 0.603 (0.090)
75 0.555 (0.051) 0.687 (0.070) 0.636 (0.050) 0.589 (0.068)

100 0.570 (0.048) 0.530 (0.043) 0.549 (0.067) 0.565 (0.042)

Table 8
Results on the test set for a Gaussian data set with correlated class distributions, �� equal to 3 and variable number of features for different scaling of the features

Feature size MALC SVM AUC–LPC RankBoost

Linear scaling
5 0.980 (0.023) 0.980 (0.023) 0.973 (0.026) 0.843 (0.047)

10 0.985 (0.011) 0.984 (0.014) 0.974 (0.020) 0.862 (0.034)
30 0.936 (0.136) 0.977 (0.017) 0.957 (0.024) 0.835 (0.053)
50 0.942 (0.106) 0.969 (0.021) 0.955 (0.033) 0.844 (0.042)
75 0.980 (0.015) 0.963 (0.018) 0.952 (0.033) 0.825 (0.069)

100 0.697 (0.057) 0.980 (0.021) 0.961 (0.024) 0.847 (0.061)

Exponential scaling
5 0.961 (0.035) 0.653 (0.046) 0.930 (0.044) 0.843 (0.047)

10 0.944 (0.043) 0.775 (0.036) 0.927 (0.028) 0.862 (0.034)
30 0.897 (0.124) 0.790 (0.068) 0.902 (0.050) 0.835 (0.053)
50 0.897 (0.082) 0.702 (0.086) 0.871 (0.040) 0.844 (0.042)
75 0.934 (0.032) 0.615 (0.076) 0.834 (0.057) 0.825 (0.069)

100 0.698 (0.075) 0.859 (0.043) 0.868 (0.043) 0.847 (0.061)

Random exponential scaling
5 0.955 (0.033) 0.686 (0.111) 0.882 (0.036) 0.843 (0.047)

10 0.772 (0.036) 0.727 (0.048) 0.748 (0.032) 0.862 (0.034)
30 0.857 (0.104) 0.719 (0.059) 0.797 (0.058) 0.835 (0.053)
50 0.724 (0.053) 0.577 (0.064) 0.610 (0.063) 0.844 (0.042)
75 0.700 (0.081) 0.694 (0.086) 0.709 (0.089) 0.825 (0.069)

100 0.638 (0.073) 0.957 (0.031) 0.842 (0.043) 0.847 (0.061)

the Friedman test but the post hoc test fails to detect which
classifiers are statistically different due to the lower power of
the post hoc test with respect to Friedman test (in such a case
the only thing that we can say is that some of the algorithms
differ but no other conclusion can be drawn). On the 18 data
sets for which a statistical difference is found according to
Friedman test we can consider that only in two cases (Glass2

and Thyroidsub) MALC is worse than one of the other meth-
ods (in these cases RankBoost) while the proposed method re-
sults in five cases better than SVM, in seven cases better than
AUC–LPC and in nine cases better than RankBoost.

In conclusion, we have shown that also on real data the
proposed approach can be profitably used to maximize AUC
on the analyzed problem. In fact, the reported results show the
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Table 9
Results in terms of AUC obtained in the experiments performed on real data set (see text for notation)

Data sets Classifiers

MALC SVM AUC–LPC RankBoost

Arrhythmia 0.783 (0.066) 0.720 (0.097) 0.765 (0.095) 0.736 (0.070)
Biomed 0.968 (0.044) 0.958 (0.041) 0.961 (0.040) 0.927 (0.069)
Breast 0.996 (0.005) 0.995* (0.006*) 0.994* (0.006*) 0.990* (0.008*)
Cancer_wpbc 0.762 (0.041) 0.780 (0.055) 0.762 (0.047) 0.741 (0.046)
Diabetes 0.811 (0.038) 0.826 (0.035) 0.821 (0.042) 0.834 (0.058)
Glass1 0.841 (0.084) 0.840 (0.093) 0.827 (0.095) 0.870 (0.056)
Glass2 0.660 (0.048) 0.627 (0.046) 0.714 (0.059) 0.748 (0.038)
Glass3 0.838 (0.045) 0.804 (0.054) 0.782 (0.082) 0.802 (0.031)
Glass4 0.943 (0.086) 0.940 (0.031) 0.925 (0.057) 0.937 (0.025)
Glass5 0.921 (0.029) 0.920 (0.033) 0.948 (0.023) 0.912 (0.058)
Heart 0.895 (0.057) 0.895 (0.057) 0.902 (0.060) 0.542 (0.058)
Hepatitis 0.855 (0.048) 0.784 (0.074) 0.802 (0.067) 0.790 (0.053)
Ionosphere 0.893 (0.087) 0.895 (0.056) 0.880 (0.070) 0.701 (0.120)
Liver 0.720 (0.069) 0.714 (0.044) 0.718 (0.063) 0.720 (0.085)
Monks1 0.612 (0.064) 0.612 (0.064) 0.611 (0.057) 0.545 (0.057)
Monks2 0.552 (0.046) 0.551* (0.036*) 0.555* (0.038*) 0.553* (0.053*)
Monks3 0.654 (0.057) 0.661 (0.044) 0.618 (0.068) 0.560 (0.062)
Sonar 0.821 (0.046) 0.845 (0.042) 0.85 (0.050) 0.830 (0.030)
TicTacToe 0.649 (0.063) 0.614 (0.048) 0.626 (0.049) 0.683 (0.050)
Thyroidsub 0.987 (0.013) 0.973 (0.017) 0.984 (0.014) 0.998 (0.001)
Votes 0.983 (0.012) 0.987 (0.012) 0.989 (0.012) 0.971 (0.032)
Waveform1 0.937 (0.029) 0.937 (0.027) 0.931 (0.030) 0.921 (0.027)
Waveform2 0.940 (0.037) 0.922 (0.027) 0.919 (0.030) 0.935 (0.031)
Waveform3 0.953 (0.036) 0.953 (0.037) 0.948 (0.036) 0.942 (0.033)
Wine1 0.996 (0.013) 1.000 (0.000) 0.971 (0.042) 0.999 (0.004)
Wine2 0.994 (0.014) 0.993 (0.014) 0.977 (0.037) 0.990 (0.017)
Wine3 0.999 (0.005) 0.999 (0.005) 0.980 (0.063) 0.995 (0.010)

admissibility of the classifier on some of the considered data
sets and therefore, our ranker is able to compete with other
well-known methods proposed in literature.

6. Conclusions

Since AUC is independent on priors and misclassification
costs it is often a more suitable measure than the classification
error when dealing with problems where imbalanced class pri-
ors or misclassification costs are often present. Moreover, there
are real situations in which the ordering is more important than
classification. In these situations classifiers directly built to op-
timize measures related to the error rate such as accuracy or
RMSE are not advantageous. In Ref. [7] it has been proved that
algorithms designed to minimize the error rate may not lead to
the best possible AUC thus motivating the use of algorithms
and combiners directly optimizing AUC.

As no trick is known for directly optimizing AUC, the ap-
proaches proposed in literature are based on the optimization of
a related measure (as SVM does) or the application of heuris-
tics to reduce the dependence on the number of samples. For
example, AUC–LPC reduces the complexity by randomly sub-
sampling the constraints of the minimization problem while
RankBoost uses a multistage approach applying several times
a weak ranker on a part of the original problem and combining
the results obtained by each weak ranker.

The approach proposed in this paper, instead, after an analy-
sis of the linear discriminant functions in the light of the ROC

analysis, we have proposed a nonparametric classifier that per-
forms a linear combination of features directly maximizing
AUC. The approach relies on the Wilcoxon–Mann–Whitney
statistic and the pairwise feature evaluation provides a new pro-
cedure essentially different from other techniques performing
AUC optimization. The greedy approach let us reduce the com-
putational complexity of the algorithm that results in a faster
implementation than AUC–LPC (and thus than all the other
methods based on SVMs). With respect to RankBoost, MALC
has comparable processing times, but our model is easily in-
terpretable in feature space since at each step it can be seen as
the weighted projection of samples from a plane to a straight
line. This could allow the use of kernel functions to generalize
the approach in the case of data that cannot be linearly ordered,
which will be enhanced in a future research work.

The extensive experiments confirmed that the proposed rule
exhibits good performance in comparison to the other well-
known methods from the literature using both artificial and
real data sets. In particular, it seems to be advantageous when
analyzing data with a low number of features and, even if it is
not as robust against scaling variations as RankBoost, it gives
very good classifiers in real world problems.
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