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Abstract

Nowadays the area under the receiver operating characteristics (ROC) curve, which corresponds to the Wilcoxon–Mann–Whitney test
statistic, is increasingly used as a performance measure for binary classification systems. In this article we present a natural generalization
of this concept for more than two ordered categories, a setting known as ordinal regression. Our extension of the Wilcoxon–Mann–Whit-
ney statistic now corresponds to the volume under an r-dimensional surface (VUS) for r ordered categories and differs from extensions
recently proposed for multi-class classification. VUS rather evaluates the ranking returned by an ordinal regression model instead of
measuring the error rate, a way of thinking which has especially advantages with skew class or cost distributions. We give theoretical
and experimental evidence of the advantages and different behavior of VUS compared to error rate, mean absolute error and other rank-
ing-based performance measures for ordinal regression. The results demonstrate that the models produced by ordinal regression algo-
rithms minimizing the error rate or a preference learning based loss, not necessarily impose a good ranking on the data.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In multi-class classification, labels are picked from a
finite set of unordered categories. In metric regression,
labels might take an infinite number of continuous values.
Ordinal regression can be located in between these learning
problems because here labels are chosen from a finite set of
ordered categories. Applications of ordinal regression fre-
quently arise in domains where humans participate in the
data generation process. Humans prefer to choose a label
from a (usually) small set of alternatives when they assess
objects for their beauty, quality, suitability or any other
characteristic. In essence, they prefer to quantify objects
with ordinal labels instead of continuous scores, although
often an underlying and unobserved continuous variable
is assumed. This kind of data is for example found in infor-
mation retrieval, when users of recommender systems
0167-8655/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.patrec.2007.07.019

* Corresponding author. Tel.: +32 9 2645586; fax: +32 9 2645839.
E-mail address: Willem.Waegeman@UGent.be (W. Waegeman).
express on a scale from one to five stars to what extent they
like items like movies or songs. Machine learning tech-
niques are then applied to predict the ratings of new users
on these items or to recommend new items to existing users
of the system. Another application is quality control, where
human experts frequently evaluate products with linguistic
terms, varying from ‘very bad’ to ‘very good’ for example.
Also in medicine and social sciences, where many data sets
originate by interaction with humans, ordinal regression
models can be employed.

In these applications of ordinal regression one is often pri-
marily interested in a subset of the classes. In many cases
these classes of interest are the ‘extreme’ categories, such
as the documents with the highest relevance to the query
or the products with the lowest quality and, consequently,
we would like to associate a higher misclassification cost
with these objects. Moreover, there is often an unequal num-
ber of training objects for the different categories in real-
world ordinal regression problems. In other words, we are
often dealing with a skew class and/or cost distribution.
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Table 1
Confusion matrix for a two class classification problem of size n with y the
true labels and by the predicted labelsby ¼ �1 by ¼ 1

y = �1 TN FP n�
y = 1 FN TP n+

NP PP n
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The overall classification rate or mean absolute error, which
are commonly used for evaluating ordinal regression mod-
els, do not fully represent the desired performance of our sys-
tem. In these situations, we are more interested in criteria
that quantify the ranking on the data imposed by the classi-
fier. We will directly explain how this relates to ROC
analysis.

This article aims to discuss possible extensions of ROC
analysis for ordinal regression. It is organized as follows. In
Section 2 we briefly describe the main concepts of binary
and multi-class ROC analysis in the framework of machine
learning. This gives us the opportunity to define an exten-
sion of the Wilcoxon–Mann–Whitney statistic and its geo-
metrical interpretation in Section 3 and, subsequently, the
properties of this performance estimator and related mea-
sures are compared. In Section 4 all measures are empiri-
cally analyzed on synthetic and real-world data. Finally,
in Section 5 we formulate a conclusion and present some
ideas for future work.
1 The value of the indicator function I will be one when its argument,
written as subscript, is true and zero otherwise.
2. Overview of existing work

In machine learning one often assumes that examples
are identically and independently drawn according to an
unknown distribution D over X�Y with X the object
space and Y the set of labels. In binary classification two
types of objects are observed and Y ¼ f�y�; �yþg. This
extends to Y ¼ f�y1; . . . ; �yrg when more than two types of
objects have to be distinguished (for r categories). In the
case of ordinal regression there is a linear order relation
6Y defined on the elements of Y. When the order relation
is absent, one speaks of multi-class classification. Further-
more, we define a data set of size n as D = ((x1,y1), . . . ,
(xn,yn)), so D � X�Y. Sometimes we will also need the
conditional distribution of a data object from X given that
it belongs to category �yk, which will be denoted by Dk, and
the marginal distribution on X will be referred to as DX.
The number of data objects in the data set D with label
�yk will be denoted by nk. In the binary case (when r = 2)
we will use the notations D�;Dþ; n� and n+.

The main concept of binary ROC analysis says that one
can consider two kinds of errors when two types of objects
have to be distinguished. Since long the method is widely
applied in medicine when diseased subjects have to be sep-
arated from healthy cases. Quite recently ROC analysis has
been introduced in the machine learning domain where the
area under the ROC curve is increasingly used as a perfor-
mance measure for classification systems.

A ROC curve is created by plotting the true positive rate

(TPR) versus the false positive rate (FPR). The TPR (or
sensitivity) and the FPR (also known as 1 – specificity)
are computed from the confusion matrix or contingency
table (shown in Table 1). Sensitivity is defined as the num-
ber of positive predicted examples from the positive class
TP divided by the number of positive examples n+ and
specificity is defined as the number of negative predicted
examples TN from the negative class divided by the num-
ber of negative examples n�:

Sens ¼ TPR ¼ TP

TPþ FN
ð1Þ

Spec ¼ TNR ¼ 1� FPR ¼ TN

TNþ FP
ð2Þ

With a classifier that estimates a continuous function
f : X! R, the class prediction h : X! Y for an object x

is obtained by the following rule:

hðxÞ ¼ sgnðf ðxÞ þ bÞ ð3Þ

with b a real number. The points defining the ROC curve
can then be computed by varying the threshold b from
the most negative to the most positive function value and
the area under the ROC curve (AUC) gives an impression
of the quality of the classifier. It has been shown (Cortes
and Mohri, 2003; Yan et al., 2003) that the AUC is equiv-
alent to the Wilcoxon–Mann–Whitney statistic:

AUC ¼ bAðf ;DÞ ¼ 1

n�nþ

X
yi<yj

I f ðxiÞ<f ðxjÞ ð4Þ

with I the indicator function.1

As evaluation criterion, the area under the ROC curve
offers advantages over accuracy when the class distribu-
tions are unbalanced or when different misclassification
costs can be assigned to the different classes. The impact
of the skewness of the class or cost distributions can be effi-
ciently analyzed with ROC curves (Flach, 2003). Cortes
and Mohri (2003) studied in detail the relationship between
accuracy and the AUC and concluded that both measures
will reveal separate characteristics of a classifier. In partic-
ular, they derived an exact expression for the expected
value and the variance of the AUC for a fixed error rate
and showed that classifiers with the same (low) error rate
can exhibit noticeably different AUC values.

Another difference is that the mean zero-one error (1 –
accuracy) directly evaluates the performance of the deci-
sion function h, while the AUC quantifies the ranking
imposed by the function f on the data without taking the
predicted labels into account. Therefore, f will be further
referred to as a ranking function. Agarwal et al. (2005)
define in this context the term expected ranking accuracy.
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Definition 1. Let f : X! R be a ranking function on X,
then the expected ranking accuracy, denoted by A(f), is
defined as

Aðf Þ ¼ P X��D� ;Xþ�Dþff ðX�Þ < f ðXþÞg: ð5Þ

The expected ranking accuracy thus stands for the prob-
ability that an object randomly drawn from the negative
class is assigned a smaller value by the ranking function than
an object randomly drawn from the positive class. The
choice of notation is guided by the property that (4) is an
unbiased nonparametric estimator of (5) on a data set
D 2 ðX�YÞn, which can be easily seen from the formulas.

3. ROC measures for ordinal regression

Recently, different approaches have been proposed to
extend ROC analysis for multi-class classification, see e.g.
Hand and Till (2001), Ferri et al. (2003), Flach (2004), Field-
send and Everson (2006). In the most general case, the vol-
ume under the ROC surface (VUS) has to be maximized in
multi-class classification. The ROC surface can be seen as a
Pareto front, where each objective corresponds to one
dimension. In case there are more than two classes (say r),
then the number of objectives depends on the multi-class
method that is used:

– For a one-versus-all method, r functions fk are estimated
that try to separate objects of class �yk from the other
classes. As a consequence misclassification costs for each
class are fixed and the corresponding ROC surface will
have r dimensions representing the true positive rates
TPRk for each class (Flach, 2004). The true positive rate
of class �yk is defined as the fraction of the instances clas-
sified as class �yk that really belong to class k, divided by
the number of data objects of class �yk. ROC points are
here obtained by varying the thresholds bk in the predic-
tion rule hðxÞ ¼ argmax�yk

fkðxÞ þ bk.
– For a one-versus-one method, a function fkl is estimated

for each pair of classes, which allows to specify the cost
for a misclassification of an object of class �yk predicted
as class �yl. The corresponding ROC space is in this case
spanned by rðr�1Þ

2
objectives (Hand and Till, 2001; Ferri

et al., 2003). A prediction for new instances is done by
majority voting over all rðr�1Þ

2
classifiers based on the out-

comes sgn(fkl(x) + bkl).

In ordinal regression the picture is slightly different. The
vast majority of existing ordinal regression models, like tra-
ditional statistical models (Agresti, 2002), kernel methods
(Shashua and Levin, 2003; Chu and Keerthi, 2005), percep-
tron based algorithms (Crammer and Singer, 2001), ordinal
regression trees (Kramer et al., 2000) and bayesian
approaches (Chu and Ghahramani, 2005), can be repre-
sented in the following general form:

hðxÞ ¼
�y1; if f ðxÞ < b1

�yk; if bk�1 < f ðxÞ 6 bk; k ¼ 2; . . . ; r � 1
�yr; if f ðxÞ > br�1

(
ð6Þ
with b1 < � � � < br�1 free parameters and f : X! R a con-
tinuous (ranking) function.

As mentioned before, in multi-class classification more
than one ranking function is used to derive a classification
rule h. Because we are dealing here with a single ranking
function, the model is more restricted. The following defi-
nition extends (5) to more than two classes.

Definition 2. Let f : X! R be the ranking function of an
ordinal regression model of the form (6), then the expected
ranking accuracy, denoted by U(f), is defined as

Uðf Þ ¼ P X k�Dkff ðX 1Þ < � � � < f ðX rÞg: ð7Þ
Now the expected ranking accuracy measures the prob-

ability that a random sequence of one data object of each
category is correctly ranked by the ranking function f. It
is estimated from a finite data set D by counting the num-
ber of sequences of r objects, one of each class, that are cor-
rectly ranked by the ranking function, i.e.

bU ðf ;DÞ ¼ 1Qr
k¼1nk

X
yj1

<���<yjr

I f ðxj1
Þ<���<f ðxjr Þ: ð8Þ

It is easy to see that bU ðf ;DÞ is an unbiased estimator of
U(f). Furthermore, bU ðf ;DÞ has a geometrical interpreta-
tion, which can be summarized in the following theorem.

Theorem 3.1. Given a ranking function f : X! R that

imposes a ranking over a data set D 2 ðX�YÞn, thenbU ðf ;DÞ corresponds to the volume under the r-dimensional

ROC surface (VUS) spanned by the true positive rates of

each class.

Proof. For a given ranking function f, the true positive rate
of each class only depends on the threshold vector
b = (b0, . . . ,br) as defined in (6) with b0 = �1 and br =
+1, i.e.

TPRkðbÞ ¼
1

nk

X
yi¼�yk

Ibk�1<f ðxiÞ6bk : ð9Þ

The ROC surface represents all optimal models for differ-
ent cost distributions and each model corresponds to a un-
ique vector of true positive rates. We can collect all possible
values for the true positive rates by linking a particular ele-
ment of the data set with each threshold, i.e.

bk ¼ f ðxjk
Þ; ð10Þ

with k = 1, . . . , r � 1 and jk = 1, . . . ,n. Let us therefore con-
sider the set B containing all such vectors b that uniquely
define a point on the convex hull of the ROC surface, then
without loss of generality the volume under the ROC sur-
face can be written as:

VUS ¼ 1

jBj
X
b2B

TPRrðbÞ: ð11Þ

We will now write out this set B by looking at all possible
vectors b that lead to different points on the convex hull. By



Fig. 1. A synthetic data set with three bivariate Gaussian clusters
representing three ordered classes with respective means (10,10), (20,10)
and (20,20). The standard deviation was set to (5,5) for the first two
clusters and to (7,7) for the last cluster, while q was fixed to 0.
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definition, the cardinality of B is upper bounded by nr�1

because only b1, . . . ,br�1 can vary.
Nevertheless, the cardinality will be smaller because the

ordering of the thresholds enforces an additional constraint
on b:

f ðxj1
Þ 6 � � � 6 f ðxjr

Þ ð12Þ

Now suppose that the data set was sorted according to f. We
will count all elements of B starting with all thresholds at the
first element of the data set: b1 = � � � = br�1 = f(x1), so all in-
stances are then classified into the last category and hence
TPRr = 1. This value will gradually decrease when the
thresholds are shifted to the end of the ranking. We will first
count all contributions while the last threshold is moved up.
When the position jr�1 increases one step to the next element
in the ordered data set, the true positive rates TPRr�1 and
TPRr can change. There are three possibilities:

– yjr�1
¼ �yr�1: TPRr�1 will increase, leading to a new ele-

ment of B (we shift in a horizontal direction to a new
point on the ROC-surface).

– yjr�1
¼ �yr: TPRr will decrease, but this setting for br�1

does not correspond to a new point on the surface (we
shift in a vertical direction to a new point lying beneath
the convex hull of all ROC points).

– yjr�1
62 f�yr�1; �yrg: there is no contribution to the sum

because TPRr and TPRr�1 remain unchanged (we stay
at the same point on the ROC surface).

As a consequence, the sum over all values for br�1

reduces to a sum over all elements of class �yr�1 and
recursively the same reasoning holds for each bk. Thus, B
contains

Qr�1
k¼1nk elements and

VUS ¼ 1Qr�1
k¼1nk

X
bk¼f ðxjk Þ

yj1
<...<yjr�1

TPRrðbÞ ð13Þ

For all positions (j1, . . . , jr�1) of the thresholds the true po-
sitive rate of class �yr can be seen as

TPRrðbÞ ¼
1

nr

X
yjr
¼�yr

If ðxjr�1
Þ<f ðxjr Þ ð14Þ

This value is counted over all objects of the other r � 1
classes. Combining (13) and (14) and moving constraint
(12) from the sum to the indicator function leads to expres-
sion (8). h

In statistics there has been some related work on this
topic. Dreiseitl et al. (2000) derive formulas for the vari-
ance of bU ðf ;DÞ and the covariance between two volumes
in the three-class case. This work has been extended to
the general r-class case by Nakas and Yiannoutsos
(2004). They conclude that bootstrapping is preferred over
U-statistics2 to compare more than two diagnostic tests
2 A U-statistic is a class of nonparametric statistics. See for example
Lehmann (1975) for more information.
because the computation of the exact variance and covari-
ance estimators become intractable for large values of n

and r. In this article we focus more on the use of bU ðf ;DÞ
as performance measure for ordinal regression problems.

For three ordered classes the ROC surface can be visu-
alized. We have constructed this ROC surface for a syn-
thetic data set. We sampled 3 * 100 instances from 3
bivariate Gaussian clusters representing consecutive clas-
ses. The mean of the clusters was set to (10, 10), (20,10)
and (20,20) respectively, r1 and r2 were set to 5 for the first
two clusters and were set to 7 for the last cluster. q was
fixed to 0. This data set is visualized in Fig. 1. We used
the support vector ordinal regression algorithm of Chu
and Keerthi (2005) to estimate the ranking function f, with-
out looking at the thresholds. The obtained ROC surface is
shown in Fig. 2.
Fig. 2. The ROC surface obtained for the synthetic data set of Fig. 1 and
the ranking returned by a support vector ordinal regression algorithm.
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Let us now associate a cost function c : Y! R with
each category of Y. In other words, cð�ykÞ defines the pen-
alty of misclassifying an object of class �yk. As in the binary
case, the convex hull of the r-dimensional ROC surface
represents the set of optimal classifiers for any particular
choice of cost. With known costs and a predefined loss
function l we can search for a classifier which minimizesXn

i¼1

cðyiÞlðhðxiÞ; yiÞ ð15Þ

on a training data set when the costs are provided before
training. However, the costs will in many cases still vary
after training and then the optimal classifier can be selected
from the ROC surface.

The volume under the ROC surface gives us the opportu-
nity to compare the quality of two different ROC surfaces
for varying costs. Because bU ðf ;DÞ is a nonparametric esti-
mator of the expected ranking accuracy, it quantifies the
ranking imposed by an ordinal regression model. We will
now discuss how bU ðf ;DÞ relates to previous work on ordi-
nal regression and multi-class classification.

Herbrich et al. (2000) propose a ranking-based frame-
work for ordinal regression based on structural risk mini-
mization. Guided by preference learning, their algorithm
optimizes the number of correctly ranked object pairs, i.e.

bU pairsðf ;DÞ ¼
1P

�yk<�yl

nknl

X
yi<yj

I f ðxiÞ<f ðxjÞ ð16Þ

together with a regularization term in the form of a convex
quadratic program.

As stressed out at the beginning of this section, ROC
analysis for ordinal outcomes can be seen as a simplified
version of multi-class ROC analysis since we are dealing
with a single ranking function. Nevertheless, the approxi-
mation presented by Hand and Till (2001) for one-versus-
one multi-class classification could easily be modified for
our purpose, i.e.

bU ovoðf ;DÞ ¼
2

rðr � 1Þ
X
k<l

bAklðf ;DÞ

bAklðf ;DÞ ¼
1

nknl

X
yi¼�yk

X
yj¼�yl

I f ðxiÞ<f ðxjÞ

ð17Þ

They construct a two-dimensional ROC curve for each pair
of classes f�yk; �ylg, in which only the objects of these classes
are taken into account. Instead of multi-classification, we
use the same ranking function for each two-dimensional
ROC curve and take the sum of the areas under these
curves as a measure for the quality of the ranking. In non-
parametric statistics bU ovoðf ;DÞ is known as the Jonckhe-

ere–Terpstra test, a more powerful alternative to the
Kruskal–Wallis test for simultaneously testing whether
more than two ordered populations significantly differ
(Higgins, 2004).

Another approximation bU consðf ;DÞ is directly deduced
from (6). With a function f and r � 1 thresholds one could
envisage threshold bk as providing the separation between
the consecutive ranks �yk and �ykþ1. Varying this threshold
will change the proportion between objects predicted lower
than or equal to class k and objects predicted higher than
class k. This corresponds to measuring the non-weighted
sum of r � 1 two-dimensional ROC curves representing
the trade-off between consecutive classes:

bU consðf ;DÞ ¼
1

r � 1

Xr�1

k¼1

bAkðf ;DÞ

bAkðf ;DÞ ¼
1Pk

i¼1ni
Pn

j¼kþ1nj

X
yi6�yk

X
yj>�yk

If ðxiÞ<f ðxjÞ

ð18Þ

bU pairsðf ;DÞ, bU ovoðf ;DÞ and bU consðf ;DÞ all compare pairs
of objects instead of sequences of r objects as in VUS.
These measures can be seen as unbiased estimators of prob-
abilities, other than the expected ranking accuracy. This is
summarized in the following theorem.

Theorem 3.2. Let Dk;l be the conditional distribution of an

object of X given that its label lies between categories �yk and
�yl (inclusive) and let

U pairsðf Þ ¼ P X 1;X 2�DX
ff ðX 1Þ < f ðX 2Þg

U ovoðf Þ ¼
2

rðr � 1Þ
X
k<l

P X 1�Dk ;X 2�Dlff ðX 1Þ < f ðX 2Þg

U consðf Þ ¼
1

r � 1

Xr�1

k¼1

P X 1�D1;k ;X 2�Dkþ1;rff ðX 1Þ < f ðX 2Þg

then

E½ bU pairsðf ;DÞ� ¼ Upairsðf Þ
E½ bU ovoðf ;DÞ� ¼ Uovoðf Þ
E½ bU consðf ;DÞ� ¼ U consðf Þ:

The proof directly follows from the definitions. bU pairsðf ;
DÞ, bU ovoðf ;DÞ and bU consðf ;DÞ assess the ranking of an
ordinal regression model in another way than VUS. They
can be considered as approximations of VUS because they
only count object pairs instead of sequences, which is com-
putationally more efficient. However, they also turn out to
behave differently than VUS.

Lemma 3.3. Let fR be a random ranking function of an

ordinal regression model with r classes, thus fR randomly

assigns continuous outputs to data objects, then

(i) UðfRÞ ¼ 1
r!
.

(ii) U pairsðfRÞ ¼ UovoðfRÞ ¼ U consðfRÞ ¼ 1
2
.

Proof. (i) There are r! different ways of ordering a
sequence of r objects and fR randomly picks one of these
rankings. (ii) The other measures only compare object
pairs. h

One must be careful in interpreting the values of differ-
ent measures for a model. With a relatively high number of
categories (say r > 4), a value of 0.5 for the volume under



Fig. 3. Relationship between bU ðf ;DÞ and bU consðf ;DÞ for r = 2, . . . , 5 and
d = 0, . . . ,5 with step size 0.25. The values are averaged over 20 runs.

Fig. 4. Relationship between bU ðf ;DÞ and bU ovoðf ;DÞ for r = 2, . . . , 5 and
d = 0, . . . ,5 with step size 0.25. The values are averaged over 20 runs.
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the ROC surface indicates that the ordinal regression
model is able to rank the data well. Conversely, for few
classes and especially in the binary classification case, a
value of 0.5 for VUS alludes to absolutely no discrimina-
tive power for the ranking function. bU pairsðf ;DÞ,bU ovoðf ;DÞ and bU consðf ;DÞ all follow the behavior of the
latter case and, hence, for poor ranking models and r rela-
tively high, noticeably different values will be found in
practice between VUS and its approximations (see also
the following section). Additionally, the following relation-
ship is observed between bU pairsðf ;DÞ and bU ovoðf ;DÞ:

bU pairsðf ;DÞ ¼
1P

�yk<�yl
nknl

X
k<l

nknl
bAklðf ;DÞ ð19Þ

As a result, both estimators are equal for balanced data
sets. In the following section we will demonstrate that they
can significantly differ for unbalanced data sets.

4. Experiments

Three kinds of experiments were set up to reveal the
characteristics of bU ðf ;DÞ and to make a comparison with
the approximations and the standard measures ‘mean zero-
one error’ and ‘mean absolute error’. First we show by
means of simulations on synthetic ranking functions that

the relationship between bU ðf ;DÞ and its approximations
appears to be non-linear. In a second simulation experi-
ment we prove that in general there will be no monotone

relationship between bU ðf ;DÞ and other ranking-based

measures. We also investigate the distribution of bU ðf ;DÞ.
In a last experiment we use real-world data to demonstrate
that ranking optimization and error rate minimization are
conflicting objectives for a classifier system when the data
set is unbalanced. Therefore, all measures serve as fitness
scores in a multi-objective stochastic search procedure con-
centrating on the region of the search space that represents
good classifiers.

4.1. Simulations

In the first experiment we wanted to find out which val-
ues are obtained for different levels of separability and for
an increasing number of classes. Therefore we assume that
the function values of the model f can be represented by a
distribution with cdf F(x), in which the function values for
the objects of class �yk are distributed with cdf Fk(x) =
F(x � kd). Furthermore, we sample from a Gaussian distri-
bution with standard deviation r = 1. So the function val-
ues conditioned on the labels are normally distributed with
equidistant ordered means. Repeatedly 100 data points
were sampled from each class while we increased the dis-
tance d between the means of consecutive clusters. We
started at d = 0 (random classifier) and stopped at d = 5
(as good as perfect separation) with step size 0.25.

The results obtained for bU ðf ;DÞ, bU consðf ;DÞ andbU ovoðf ;DÞ are graphically compared. In this simulation
all classes have the same prior of occurring, so bU ovoðf ;DÞ
and bU pairsðf ;DÞ will always have the same value due to
(19). Hence, the results for bU pairsðf ;DÞ are omitted. The
relationship between bU ðf ;DÞ and bU consðf ;DÞ on the one
hand and between bU ðf ;DÞ and bU ovoðf ;DÞ on the other
hand are respectively shown in Figs. 3 and 4. One can see
that, as expected, these relationships are without doubt
non-linear. As discussed at the end of the previous section,
the average value of bU ðf ;DÞ heavily depends on the num-
ber of classes, while this is not the case for the approxima-
tions. The approximations all take an average over a set of
two-dimensional ROC-curves, so their average value is
never lower than a half, irrespective of the number of clas-
ses. Nevertheless, one can also see that bU ðf ;DÞ converges
rapidly to one when the distance between the subsequent
means increases. In addition, bU consðf ;DÞ and bU ovoðf ;DÞ
behave quite similarly in this simulation. This is also shown
in Fig. 5. Their observed values become more dissimilar
when the number of classes increases.

In a second simulation we wanted to investigate whether
all ranking-based performance measures are pairwisely



Fig. 5. Relationship between bU consðf ;DÞ and bU ovoðf ;DÞ for r = 2, . . . , 5
and d = 0, . . . , 5 with step size 0.25. The values are averaged over 20 runs.
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comonotone associated. A comonotone association between
two measures M1 and M2 means that for any two functions f

and f* part of a given hypothesis space F:

M1ðf Þ < M1ðf �Þ () M2ðf Þ < M2ðf �Þ ð20Þ
M1ðf Þ ¼ M1ðf �Þ () M2ðf Þ ¼ M2ðf �Þ: ð21Þ

To test whether this property holds for all four measures we
looked at a large number of rankings for a synthetic data
set. All measures only quantify the quality of the ordering
of a data set for a function f. For a data set of size n there
are n! possible rankings of the objects, so evaluating them
all is computationally intractable. Therefore, we sampled
randomly 1000 rankings from all possible orderings of the
data set. We assumed we had 50 samples per class with four
ordered classes, resulting in a sample size of 200 objects and
200! possible rankings. The results are given in Fig. 6, which
shows the distributions of all measures together with pair-
wise scatter plots. All classes again have the same prior of
occurring, so bU ovoðf ;DÞ and bU pairsðf ;DÞ have a perfect cor-
relation. This is however not true for the other measures.
Fig. 6. Histograms and pairwise scatter plots obtained for all ranking-
based measures by randomly sampling 1000 rankings of a synthetic
balanced four-class data set of size 200.
One can clearly see that for no other pair of measures con-
ditions (20) or (21) hold. Thus, for many types of ordinal
regression systems, two models can be found for which
the first model dominates the second model in terms of mea-
sure bU ðf ;DÞ, while the latter dominates the first one in
terms of another performance measure. As a result, the
question arises whether the same model will be obtained
when optimizing bU ðf ;DÞ or another ranking-based perfor-
mance measure. This question will be answered in the next
experiment (Section 4.2).

When observing the histograms, the skewness of the dis-
tribution of bU ðf ;DÞ also draws the attention. This phe-
nomenon does not occur for the other performance
measures, which raises the suspicion of non-normality of
the distribution of bU ðf ;DÞ. For completeness, the qq-plots
of the quantiles of the empirical distributions of all four
measures versus the quantiles of a normal distribution
are shown in Fig. 7. The figure clearly indicates that the
observed distribution of bU ðf ;DÞ differs from the normal
distribution. Notwithstanding the rather small sample size,
this finding was confirmed by a Kolmogorov–Smirnov test
(a = 0.05). On the other hand, the qq-plots for the other
three measures demonstrate the normality of their empiri-
cal distributions.

4.2. Multi-objective optimization

In this experiment we wanted to find out whether opti-
mizing the volume under the ROC surface will lead to dif-
ferent ordinal regression models compared to minimizing
the error rate or mean absolute error. Contrary to the pre-
vious simulations real data was analyzed this time. We
picked the Boston housing data set from the UCI Machine
learning repository. This data set consists of 506 instances
with 13 features and continuous labels. In previous studies
on ordinal regression (Frank and Hall, 2001; Chu and
Keerthi, 2005; Chu and Ghahramani, 2005) these continu-
ous labels were adjusted to an ordinal value by subdividing
the original data set into equal frequency bins after sorting.
This gave us the opportunity to control for the class fre-
quencies and precisely because we were interested in unrav-
eling the behavior of bU ðf ;DÞ and other measures for
unbalanced data, we chose a setting with five ordinal levels
and a skew class distribution: p1 = 0.3, p2 = 0.2, p3 = 0.1
and p4 = p5 = 0.05 with pk the prior probability of observ-
ing an object of class �yk. As ordinal regression model (6) a
simple linear model was considered, i.e. f(x) = w Æ x.
Together with four thresholds this resulted in a model with
17 free parameters. To discover the optimal values of
w1, . . . ,w13 and b1, . . . ,b4 for the various performance mea-
sures a simple multi-objective stochastic algorithm, namely
particle swarm optimization (MOPSO), was implemented.
MOPSO is a relatively new multi-objective optimization
technique inspired by the way large bird flocks navigate
through the air and searches for a set of non-dominated
solutions, the so-called Pareto front. The algorithm main-
tains a population of particles ~p ¼ ðw1; . . . ;w13; b1; . . . ; b4Þ



Fig. 7. The quantiles of the normal distribution (x-axis) plotted versus the quantiles of the empirical distribution observed by randomly sampling 1000
rankings from a synthetic balanced four-class data set of size 200 (y-axis).
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which will be adjusted in successive iterations according to
the following update rules:

~vj  x� q1

10

� �
~vj þ q2ð~pL

j �~pjÞ þ q3ð~pG
j �~pjÞ ð22Þ

~p ~pj þ truncð~vjÞ ð23Þ

The velocities ~v allow the particles to move to new posi-
tions in successive iterations and they are guided towards
the local best solution ~pL

j , which is one of the non-domi-
nated solutions found by particle ~pj so far, and towards
the global best solution ~pG

j , which is selected from the
repository of non-dominated solutions found so far by all
particles according to a selection scheme which assigns
solutions lying in little explored regions higher chances of
being selected. Besides, the function trunc truncates the
components of~v exceeding the interval [0,1], x is an inertia
weight (typically 0.4) and q1, . . . ,q3 represent random num-
bers selected from a uniform distribution on the interval
[0,1]. Nowadays many methods in machine learning and
Fig. 8. The set of non-dominated solutions aggregated from 20 runs of the MO
two-dimensional scatter plots showing the trade-off for each pair of objectives
statistics optimize a weighted sum of the loss function
and a regularization term to control the complexity of
the model and to prevent overfitting on training data.
For example in a linear support vector machine and in
ridge regression the norm of w serves as regularization term
(see for example Cristianini and Shawe-Taylor, 2000; Has-
tie et al., 2001; Schölkopf and Smola, 2002 for a detailed
discussion on this subject). Here the random number q1,
which is specific for our problem setting, acts as a regular-
ization term controlling the complexity of the fitted models
by pushing particles back towards the center of the search
space (corresponding to a null model).

Six different objectives were considered, namely accu-
racy (or equivalently ‘1 – mean zero-one error’), ‘1 – mean
absolute error’, bU ðf ;DÞ, bU consðf ;DÞ, bU ovoðf ;DÞ andbU pairsðf ;DÞ. The algorithm was executed 20 times for 100
iterations with a population of 500 particles and different
seeds for the random generator. In all runs the non-domi-
nating solutions found during the search were stored in a
PSO-algorithm. The six-dimensional Pareto front is plotted as a matrix of
.
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repository and afterwards the global non-dominated set of
these 20 repositories was computed. This set is visualized
by a matrix of two-dimensional Pareto fronts in Fig. 8.

One can easily see that none of the six measures mani-
fests a comonotone relationship with another. Accuracy
and mean absolute error on the one hand and the rank-
ing-based measures on the other hand exhibit a relatively
large trade-off, as almost all solutions lie on the two-dimen-
sional front. The ranking-based performance measures give
also rise to trade-offs, but here the monotonic association is
more prominent. The multi-class approaches bU consðf ;DÞ
and bU ovoðf ;DÞ turn out to approximate the behavior ofbU ðf ;DÞ better than simply counting all correctly ordered
pairs. Apparently, for bU pairsðf ;DÞ the optimal models are
biased towards correctly ranking the biggest classes (due
to the skew class distribution the data set contains only
640 object pairs of classes �y4 and �y5 compared to more than
15000 object pairs of the biggest classes �y1 and �y2). Meth-
ods minimizing the error rate or the number of incorrect
instance pairs hence will both overfit on the biggest classes.

5. Conclusion

In this article we analyzed ranking-based ordinal regres-
sion models. We argued that evaluating the ranking
returned by an ordinal regression model is often more
appropriate than looking at ‘mean zero-one error’ or ‘mean
absolute error’, especially with skew class or cost distribu-
tions. To that end, we extended the concept of expected
ranking accuracy for ordinal labeled data and showed that
a nonparametric unbiased estimator bU ðf ;DÞ of this quan-
tity corresponds to the volume under the ROC surface
spanned by the true positive rates of each class. Moreover,
we revealed the relationship between bU ðf ;DÞ and previous
ranking-based performance measures, which can be consid-
ered as approximations of this statistic. The volume under
the ROC surface and related measures do not manifest a
comonotone relationship and they also have a different dis-
tribution. Consequently, algorithms optimizing different
criteria will lead to different models.

These observations were confirmed with experiments on
synthetic and real data. In particular, a large trade-off was
discovered between ‘mean zero-one error’ and ‘mean abso-
lute error’ on the one hand and ranking-based measures on
the other hand. The latter mutually displayed smaller
trade-offs, but among them bU pairsðf ;DÞ turned out to con-
centrate too much on the biggest classes.

We conclude that all existing methods for ordinal regres-
sion, which typically minimize a loss based on error rate or
the number of incorrectly ranked object pairs, might not
construct appropriate models when the class or cost distri-
butions are skew. ROC analysis offers in this case a valu-
able alternative allowing to pick a classifier from the
surface for a specific setting of cost and the volume under
the ROC surface gives a good overall indication of the
quality of the model for different costs without favoring
the majority classes.
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