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Discrete Integral Operators on Graphs and Multiscale Transforms on Simplicial Complexes

Abstract

As network analysis tools have become more powerful over the last decade, the need has arisen

for new multiscale signal processing tools, both for robust understanding of the intrinsic geometry

underlying data, and for higher-order signals, incorporating not only data which lives on the vertices

of a graph, but perhaps on its edges, or the faces of a triangular mesh of a manifold. In this disserta-

tion, first we develop a discrete integral operator suitable for spectral embedding and partitioning of

graphs, by carefully studying the development of graph Laplacian techniques from their continuous

analogues on domains, and applying those developments to integral operators which commute with

the continuous Laplacian. We demonstrate the operator’s effectiveness at distinguishing underly-

ing geometry in scattered data, and efficient sparse techniques for performing partitioning using it.

Next, we present extensions of two powerful multiscale graph signal transforms for analyzing signals

defined on the κ-dimensional simplices of a simplicial complex. The previous Hierarchical Graph

Laplacian Eigen Transform (HGLET) generalizes the block DCT to the graph setting, and our

Hierarchical κ-Laplacian Eigen Transform (κ-HGLET) generalizes further to the simplicial complex

setting. Likewise, for the previous Generalized Haar-Walsh Transform (GHWT) which generalizes

the Haar-Walsh wavelet packet transform, we propose the κ-Generalized Haar-Walsh Transform

(κ-GHWT). The key idea is to use the Hodge Laplacians and their variants for hierarchical bipar-

titioning of the κ-dimensional simplices in a given simplicial complex, and then building localized

basis functions on these partitioned subsets. We demonstrate the usefulness of the κ-HGLET and

κ-GHWT on both illustrative synthetic examples and real-world simplicial complexes generated

from a co-authorship/citation dataset.
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CHAPTER 1

Introduction

We live in a fast-paced, tightly networked world, which continues to demand faster, greater-

scale, more multi-faceted analysis of the data that drive it. For conventional digital signals and

images sampled on regular lattices, multiscale basis dictionaries, i.e., wavelet packet dictionaries

including wavelet bases, local cosine dictionaries, and their variants (see, e.g., [99, Chap. 4, 7], [52,

Chap. 6, 7], [67, Chap. 8]), have a proven track record of success: JPEG 2000 Image Compression

Standard [81, Sec. 15.9]; Modified Discrete Cosine Transform (MDCT) in MP3 [81, Sec. 16.3];

discriminant feature extraction for signal classification [76,77,78], just to name a few. Considering

the abundance of data measured on graphs and networks and the increasing importance to analyze

such data (see, e.g., [15,29,66,68,88]), it is quite natural to lift/generalize these dictionaries to the

graph setting. From the perspective of harmonic analysis, those tools have evolved to become more

flexible and precise in response, both in development of localized overcomplete dictionaries, and in

techniques for searching, optimizing, and applying them. Our contribution builds on a series of

developments in Prof. Saito’s lab started in [47,48,49,51], and continued in many other directions,

which use hierarchical bipartition trees to structure graphs into the analogue of spatial regions at

multiple scales, upon which well-localized orthogonal bases and overcomplete dictionaries can be

constructed, and used to analyze signals on the vertices of the graph. We focus on two distinct

areas: primarily, to extend these constructions to oriented simplicial complexes, especially with

the difficulties introduced by orientation, and multi-way relationships, and secondarily, to further

develop the theory of discrete integral operators towards bipartitioning methods more sensitive to

latent geometry, and more suitable for directed graphs.

Graph-based methods for analyzing data have been widely adopted in many domains; see, e.g.,

[11,28,69]. Often, these graphs are fully defined by data (such as a graph of social media “friends"),

but they can also be induced through the persistence homology of generic point clouds [13]. In

either case, the vast majority of these analytical techniques deal with signals which are defined on
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the vertices of a given graph. More recently, there has been a surge in interest in studying signals

defined on edges, triangles, and higher-dimensional substructures within the graph [7,13,14,35]. A

fundamental tool employed for analyzing these signals, the Hodge Laplacian, has been studied in the

context of differential geometry for over half a century but has only recently entered the toolbox of

applied mathematics. Spectral analysis of signals on simplicial complexes using the Hodge Laplacian

is a rapidly developing field, and recent work includes fundamental research into the behavior of

random walks analogous to the establishment of PageRank [82]. This rise in popularity is largely due

to the adaptation of discrete differential geometry [23] in applications in computer vision [65,73],

statistics [53], topological data analysis [14,84], and network analysis [82,83].

One of the key challenges to applying wavelets and similar constructions to vertex-based graph

signals is that graphs lack a natural translation operator, which prevents the construction of convolu-

tional operators and traditional Littlewood-Paley theory [49,60,85]. This challenge is also present,

and magnified, for general κ-dimensional simplices. One method for overcoming this difficulty is to

perform convolution solely in the “frequency” domain and define wavelet-like bases entirely in the

coefficient space of the Laplacian (or in this case Hodge Laplacian) transform. Following this line

of research, there have been several approaches to defining wavelets [72] and convolutional neural

networks [30] in which the input signal is transformed in a series of coefficients in the eigenspace

of the Hodge Laplacian. Unfortunately, the atoms (or basis vectors) generated by these methods

are not always locally supported, and it can be difficult to interpret their role in analyzing a given

graph signal.

An alternative path to the creation of wavelet-like dictionaries and transforms is to first develop

a hierarchical block decomposition of the domain and then use this to develop multiscale trans-

forms [47,48,80]. These techniques rely on recursively computing bipartitions of the domain and

then generating localized bases on the subsets of the domain. In this dissertation, we propose a

simplicial analog to the Fielder vector [31,41] to solve a relaxed version of a variety of cut-problems

for κ-simplices directly analogous to Ratio Cut [38] and Normalized Cut [87], which we can ap-

ply iteratively to develop a hierarchical bipartition of the κ-dimensional simplices in a simplicial

complex. From here, we are able to apply the general scheme of [48] and [47] to develop the Hier-

archical κ-Laplacian Eigen Transform and the κ-Generalized Haar-Walsh Transform, respectively,
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for a given collection of simplices of an arbitrarily high order. As a result, we can also generate or-

thonormal Haar bases, orthonormal Walsh bases, as well as data-adaptive orthonormal bases using

the best-basis selection method [20].

1.1. Organization and Contributions

This dissertation is organized as follows. In Chapter 2, we review the foundational concepts

required for multiscale transforms, including wavelet packets, recursive graph partitioning, and the

fundamentals of simplicial complexes. In Chapter 3, we describe the setting of commuting integral

and differential operators which provides the continuous backdrop over much of the discrete spectral

theory used throughout, and construct a new bipartitioning method for graphs through a new in-

terpretation of a discrete integral operator. Chapters 4-6 are based on the preprint [79] co-authored

with Prof. Naoki Saito and Prof. Stefan Schonsheck, and much of that material is developed simi-

larly here. In Chapter 4, we define the Fiedler vector for several variations of the Hodge Laplacian,

and extend the recursive bipartitioning scheme to the κ-simplicial setting. In Chapter 5, we define

and describe the properties of the κ-GHWT and κ-HGLET multiscale transforms. In Chapter 6, we

perform several numerical experiments in approximation and classification, demonstrating the per-

formance of our multiscale transforms on real and synthetic datasets, and compare them to existing

ones. Finally, we conclude with Chapter 7 discussing our potential future work.

Several of the new contributions in this dissertation were developed with the authors of [79]

in the preparation of our preprint, including the construction of the κ-Haar basis, and κ-GHWT

and κ-HGLET dictionaries, employing these dictionaries in best-basis search, and a number of

experiments. My own contributions include:

• A novel perspective on simplex orientation vis a vis natural orientation, which leads directly

to the construction of the Fiedler vector for κ-Laplacians in Chapter 4;

• An approximation scheme for hierarchical partitioning called submatrix partitioning, in-

troduced in Section 2.3, which yields significant efficiency and stability in the simplicial

complex setting in Section 5.3;

• A rigorous justification for the usage of the graph distance matrix in constructing discrete

integral operators for spectral embedding and partitioning of graphs in Chapter 3;
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• A demonstration of sparse algorithms, regularization properties, and spectral geometry

applications which make the discrete integral operator comparable to the usual Laplacian,

in Section 3.3.

1.2. Notation

Notation Description

κ the order or dimensionality of a simplex

Cκ a κ-region, or the set of all κ-simplices in a complex

j the scale/resolution index

k the location/κ-subregion index

l the frequency/sequency index

n the number of κ-simplices in Cκ

σ, τ a κ-simplex in a complex

α the (κ− 1)-simplex face of a κ-simplex in a complex

β the (κ+ 1)-simplex hull of a κ-simplex in a complex

L,Lsym, Lrw the (normalized) graph Laplacian

Lκ, L
sym
κ , Lrw

κ the (normalized) Hodge κ-Laplacian

P discrete orthogonal projection against the constant vector

B the reciprocal-weight graph distance matrix

K,Ksym the (normalized) harmonic kernel

H,Hsym the (normalized) discrete integral operator

L the continuous Laplacian on some Rd

K the continuous integral operator against the harmonic kernel

P continuous orthogonal projection against the constant function

Gjk the subgraph of G of scale j at location k

V j
k the vertices of Gjk
Cjk the κ-subregion of Cκ of scale j at location k

1,1S constant vector, indicator function for a set S

ϕi an eigenvector, usually of some Laplacian variant

ϕjk,l a κ-HGLET basis vector

ψjk,l a κ-GHWT basis vector

4



The production of this dissertation involves a ton of notation, between wavelet indices, simplices

of various order, and a variety of continuous and discrete, differential and integral operators. Vectors

are always written in bold, like x. Matrix and vector indexing is always written with square brackets,

like [M ]ij or [x]i. Some notation which is used consistently is collected in the above table.

Many of the figures and tables in this dissertation can be generated using the accompanying

Julia package MultiscaleSimplexSignalTransforms, which we have released via the UC

Davis TRIPODS Github organization at

https://github.com/UCD4IDS/MultiscaleSimplexSignalTransforms.jl.

We list these figures and tables below.

1.3. List of Figures and Tables

Figures

2.1 The Haar-Walsh wavelet packets ψlj,k for a dyadic discrete signal on R8. Each row is at

constant scale j, and displayed in blocks of constant l, and varying time position k. The

scaling functions (l = 0) are in black, wavelet functions (l = 1) are in red, and wavelet

packet functions (l ≥ 2) are in blue. The bottom row consists of the Walsh functions.

Figure design is a recreation of [45, Figure 2.4]. 15

2.2 On the left, a simple example of a signed graph, with vertices in grey, positive edges in

green, and negative edges in orange. On the right, a bipartition of the same signed graph,

where the edges which contribute to the SignedCut objective are highlighted in red. 20

2.3 A hierarchical partition tree, for the 6 vertices of a simple example graph. In the tree

above, the root is V 0
0 , containing all the vertices, and each next level of the tree contains

subsets at common scale. The leaves of the tree are singleton subsets. In the graphs below,

the regions Gjk induced by the corresponding vertex subsets V j
k are demonstrated. 21

2.4 An example of a hierarchical partitioning of a graph, using a Minnesota road network [36].

Each plot, from left to right, top to bottom, includes one further level of the partition.

Vertices which share the same color, belong to the same level of the partition, and vertices
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nearer in color to each other have a nearer common ancestor in the hierarchical partition

tree. 23

2.5 Several instances of an L-based hierarchical partitioning of a Minnesota road network [36],

with the results of usual full partitioning on the left in each pair, and those of submatrix

partitioning on the right. The blue and red-colored vertices in each graph are the support

of that region. The two indices in each label are the scale (j) and location (k) parameters,

and the two uniformly colored subregions indicate the next partition for that region. Notice

how the regions identified by both methods are similar, and that at later scale parameters,

the much smaller supports vary more between the two methods. 25

2.6 In this small 2-complex C, e1 ∼ e4 because they share the face v2, and e1 ∼ e2 because they

share the face v1. Further e1 ≃ e2 because their hull t1 ∈ C, but e1 ≃/ e4, so that e1 ∼
1
e4.

We have t1 ∼ t2 because they share the face e3, and also t1 ∼
2
t2. 27

2.7 The simplex tree representation for a simplicial complex whose maximal simplices have

labels {1, 2, 3, 5} and {4, 5, 6}. Each vertex represents a simplex in the complex, and

if the length of the path to the root labeled ∅ is ℓ, then it is an ℓ-simplex. The labels

for the vertices in the simplex are obtained by accumulating the labels on the path

to that simplex from the root. So for example, the 3-simplices in this complex are

{1, 2, 3}, {1, 2, 5}, {1, 3, 5}, {2, 3, 5}, and {4, 5, 6} 31

3.1 Diagram showing the relationship between the various kinds of operators whose

eigenfunctions may be used for analysis of the underlying domains, with particular

instances. 35

3.2 A demonstration of the similar basic capabilities of the Laplacian and discrete integral

operator-based spectral embeddings. On the left is noisy samples of a manifold, and on

the right, two-dimensional spectral embeddings utilizing appropriate eigenvectors of the

Laplacian and discrete integral operator, respectively. 52

3.3 The embedding example from Figure 3.2, using the symmetric and random-walk

normalization for each of the Laplacian-based and discrete integral operator-based spectral
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embeddings. In both cases, the data and technique are identical, only with L replaced by

Lsym, Lrw and H replaced by Hsym, Hrw. 57

3.4 Results of an unsupervised classification experiment, with the goal of separating the two

spirals pictured at right. The histogram at top-left illustrates the distribution of distance

values contained in B. The classification is performed 12 times, once with the Laplacian,

and 11 times with the censored distance matrix, and each grey dashed line in the histogram

indicates the censorship threshold for a trial. The bottom-left chart shows the fraction of

shortest paths whose length is below each threshold. Each classification is illustrated in

the spirals on the right, first by the Laplacian, and then by the censored discrete integral

operator, in order of decreasing threshold. 62

4.1 Pairs of κ-simplices demonstrating consistency at their boundary face, for κ = 1, 2. The

mixed-color pairs are consistent, and the same-color pairs are inconsistent. 64

4.2 A naturally-oriented 2-simplex s, with naturally-oriented 1-faces e, f, g. 66

4.3 The complex from Figure 2.6 on the left, with natural orientation displayed as directed

edges, together with its weighted, unnormalized signed adjacency matrix Swt
1 , with D2 = I.

Notice that weights differ depending on consistency and presence or lack of hull, and that

the presence of a hull can switch the expected sign. 71

4.4 A visualization of the first fifteen eigenvectors of Lκ = L2 for P ↓
50,2. On the left, orientations

have been chosen for the triangles such that ϕ0 has consistent sign, while on the right, the

triangles have been left in natural orientation. Yellow indicates positive values, and purple

indicates negative values. Notice how ϕ1 for the re-oriented complex behaves precisely as

one expects here for a Fiedler vector. 75

4.5 On the left, a visualization of the first fifteen eigenvectors of Lκ = L1 for P50,1. In this

case, the natural orientations are already such that ϕ0 has constant sign. There are two

types of oscillations, analogous to the L0-eigenvectors of a ladder graph, or a narrow grid

graph. Eigenvectors 0− 6 oscillate along the length of the path in the expected way, then

7 − 10 include a vertical oscillation which assigns opposite sign to the two outer 0-paths.

Higher eigenvectors continue adding either vertical or horizontal oscillations. On the right,
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different oscillation types are illustrated, for eigenvectors 1 − 3, 4 − 6, and 7 − 9. The

sub-oscillations are a result of the edge indexing, because there are three types of edges

interspersed with each other: those on one of the two outer 0-paths, and those on the inner

0-path. 76

4.6 Various edge eigenvectors of L1, for the clique complex constructed from the Minnesota

road network. Here b1 = 610, so the 0-eigenspace is highly degenerate, as the road network

contains many cycles, but few triangles. More red indicates more positive, and more blue

indicates more negative values. The top left is the standard Fiedler vector ϕ1, in an

orientation that makes ϕ0 non-negative. This harmonic vector yields no clear partition or

structure of the graph. The other three are in an orientation that makes ϕ611 non-negative,

and from left to right, top to bottom, are eigenvectors ϕ613,ϕ614,ϕ615. The progression

clearly demonstrates meaningful partitions on the 1-region, with increasing oscillation. 77

4.7 One possible hierarchical bipartitioning of a simple 2-complex, from j = 0 with no partition

on the left, to j = 5 on the right, where each of the 21 triangles form their own subregion.

Colors indicate distinct subregions. 79

4.8 The 2-Haar basis vectors on the same simple 2-complex shown in Figure 4.7. The yellow,

dark green, violet regions in each vector indicate its positive, zero, and negative components. 81

5.1 2-HGLET dictionary on the 2-complex shown in Figure 4.7. Here, the color scale

is consistent across each row (which corresponds to the level) to better visualize the

smoothness of the elements 83

5.2 Coarse-to-Fine (C2F) 2-GHWT dictionary. The yellow, dark green, and violet regions in

each vector indicate its positive, zero, and negative components, respectively. 84

5.3 Comparison of submatrix partitioning with full partitioning, for a 2-region forming a closed

triangular mesh. The dog toy mesh is from a Google Research dataset [37]. Each plot

depicts a κ-GHWT basis vector, computed by either the full partitioning method (above)

or the submatrix partitioning method (below). The (j, k, l) tags are indicated in the plot

titles. In the colormap viridis, yellow indicates large positive values, purple large

negative values, and green small-magnitude values. 87
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5.4 Fine-to-Coarse (F2C) 2-GHWT dictionary. Note that this dictionary is not generated by

simply reversing the row indices of the C2F dictionary, but instead by arranging each level

(row) by “sequency”. 88

6.1 The construction of simplicial signals from an image. On the left is the greyscale image

we start with. Next, the pixels are sampled, resulting in the second image. Then on the

right are a 1-signal (on the edges) and 2-signal (on the triangles) on the simplicial complex

formed by the Delaunay triangluation of these points. 89

6.2 Nonlinear approximation of an image-derived simplicial signal for κ = 1. 91

6.3 Nonlinear approximation of an image-derived simplicial signal for κ = 2. 92

6.4 Nonlinear approximation errors for the image-derived simplicial signal, with L2 error on

the left, and log(L2) error for up to half of terms retained on the right. The top diagrams

show κ = 1, and the bottom κ = 2. 93

6.5 Approximation of the Citation Complex for κ = 0, . . . , 5. 93

6.6 Top: Approximation of the Citation Complex for κ = 0, . . . , 5. Bottom: Log of the error

for up to 50% of the terms retained. 94

6.7 An example of graph orientation, performed on a dendritic tree. On the left, we show the

natural orientation of the edges in the graph. We plot a smooth gradient on each segment

of the tree, such that increasing vertex index is mapped to the change from purple to

yellow in the usual viridis colormap. In the middle is the sign of ϕ1(L1), plotted on the

edges. On the right are the orientations given by flipping edges where ϕ1(L1) is negative

(so, purple in the middle plot). 96

Tables

6.1 The number of element in the κ-simplices in the coauthorship complex for κ = 0, 1, . . . , 5 92

6.2 Test Accuracy for SVMs trained on transforms of MNIST signals interpolated to a random

triangulation. 95
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CHAPTER 2

Background

2.1. Wavelets and Wavelet Packets

A building block of real harmonic analysis is the Fourier transform, traditionally defined for a

function f ∈ L1(R) via [89]

Ff(ξ) := f̂(ξ) :=

∫
R
f(t)e−2πiξt dt .

Considering f as a function over time, this transform allows us to analyze f in the frequency domain.

When additionally f̂ ∈ L1(R), then the inverse Fourier transform F−1 : L1(R) 7→ L1(R) recovers f ,

via a synthesis of the transform values [89]:

(
F−1f̂

)
(t) :=

∫
R
f̂(ξ)e2πiξt dξ = f(t) .

A density argument via compactly supported smooth functions is sufficient to extend the Fourier

transform and inversion formula to L2(R) [67].

Intuitively, f being sufficiently smooth means it must vary slowly, which is equivalent to the

transform values for higher frequencies being small; this is a very desirable property. For example,

if f ∈ Cp(R) and f, ∂f, . . . , ∂pf ∈ L1(R), then f̂(ξ) ∈ O(ξ−p). Conversely, if f̂ ∈ O(ξ−(p+1+ϵ)) for

some ϵ > 0, then f ∈ Cp(R) [89].1

let 1S denote the indicator function for the set S. Notice that
(
F(e−|t|)

)
(ξ) ∈ O(ξ−2), and(

F(1[−1,1])
)
(ξ) ∈ O(ξ−1); these examples illustrate the typical phenomenon that the decay of f̂ is

globally sensitive to the smoothness of f in time, so that a single discontinuity in f or a derivative

of f affects the decay of the entire transform, which, e.g., increases the number of coefficients that

may be needed to represent f to a given accuracy by discrete means [56].

1These are loose bounds to illustrate the connection.
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Multiscale transforms aim to address this weakness by constructing transform values which are

sensitive only locally in changes to smoothness, at different scales in both time and frequency, and

exhibit decay properties appropriate to those local and transient phenomena. The wavelet transform

is such an example, constructed from a family of translations and dilations of appropriate differencing

(wavelet) and averaging (scaling) functions.

A wavelet, or mother wavelet ψ ∈ L2(R) must satisfy ∥ψ∥2 = 1, and∫
R
ψ(t) dt = ψ̂(0) = 0 ,

so that fundamentally, it oscillates. A scaling function ϕ, also known as a father wavelet, must

satisfy ∥ϕ∥2 = 1 [67]. With the translation operator defined as

Tuf(t) := f(t− u) ,

and dilation operator defined for s > 0 as

Dsf(t) :=
1√
s
f

(
t

s

)
,

the wavelet family is constructed from applications of dyadic dilation and translations to ψ, with

scales s = 2j and time positions u = 2jk for j, k ∈ Z. We define [56]

ϕj,k(t) := T2jkD2jϕ(t) =
1√
2j
ϕ

(
t− 2jk

2j

)
,(2.1)

ψj,k(t) := T2jkD2jψ(t) =
1√
2j
ψ

(
t− 2jk

2j

)
,(2.2)

and the continuous wavelet transform of a function f ∈ L2(R) at scale s = 2j and time position

u = 2jk as [67]

Wf(j, k) := ⟨f, ψj,k⟩ =
∫
R
f(t)

1√
2j
ψ

(
t− 2jk

2j

)
dt .(2.3)

Suppose the wavelets {ψj,k}j,k∈Z form a frame, so that ∃A,B > 0 with A ≤ B, such that

A∥f∥22 ≤
∑
j,k

|⟨f, ψj,k⟩|2 ≤ B∥f∥22 for f ∈ L2(R) .2

2When A = B, the wavelets form a tight frame.
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Then there exist dual wavelets ψ̃j,k and dual scaling functions ϕ̃j,k, with which we can reconstruct

f in the sense of L2 [56]:

f(t) =
∑
k∈Z

⟨f, ϕjmax,k⟩ ϕ̃jmax,k(t) +
∑
k∈Z

jmax∑
j=−∞

⟨f, ψj,k⟩ ψ̃j,k(t) .(2.4)

These dual functions satisfy biorthogonality relations with the original ones [67]:

(2.5)

〈
ψj,k, ψ̃j′,k′

〉
= δ(j − j′)δ(k − k′) for j, j′, k, k′ ∈ Z ,〈

ϕj,k, ϕ̃j,k′
〉
= δ(k − k′) for j, k, k′ ∈ Z ,〈

ϕj,k, ψ̃j,k′
〉
=
〈
ψj,k, ϕ̃j,k′

〉
= 0 for j, k, k′ ∈ Z ,

where δ is the usual Kronecker delta. We assume that ψ, ϕ satisfy both the frame condition, and

further that each ψ̃j,k = ψj,k, and ϕ̃j,k = ϕj,k, so that ψ, ϕ form orthogonal wavelets. This allows for

efficient implementation of both analysis and synthesis with the continuous wavelet transform, and

for discrete-time signals. Define the spaces

Vj := span ({ϕj,k}k∈Z) ,

Wj := span ({ψj,k}k∈Z) .

Then the biorthogonality relations (2.5) yield the orthogonal relations

Wj ⊥ Wj′ for j ̸= j′ ,

Vj ⊥ Wj ,

and the spaces {Vj}j∈Z form a multiresolution approximation, described by the relations [67], [25]

f ∈ Vj ⇐⇒ D2f ∈ Vj+1 ,

Vj ⊃ Vj+1 ,

{0} =
⋂
j∈Z

Vj ,

L2(R) =
⋃
j∈Z

Vj .
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Finally, because Vj = Vj+1 ⊕Wj+1, we can construct wavelets ϕj,k, ψj,k as linear combinations

of finer-scale scaling functions:

(2.6)

ϕj,k(t) =
∑
k′∈Z

h(k′ − 2k)︸ ︷︷ ︸
=⟨ϕj,k,ϕj−1,k′⟩

ϕj−1,k′(t) ,

ψj,k(t) =
∑
k′∈Z

g(k′ − 2k)︸ ︷︷ ︸
=⟨ψj,k,ϕj−1,k′⟩

ϕj−1,k′(t) ,

where h, g are called low-pass and high-pass filters respectively [67], and are critically independent

of j, allowing construction of the wavelet transform purely from repeated application of the filter

relations (2.6), rather than explicitly constructing the wavelet family, and inner products against

each function in it. Explicitly, the synthesis formula (2.4) becomes

(2.7) f(t) =
∑
k∈Z

cjmax(k)ϕjmax,k(t) +
∑
k∈Z

jmax∑
j=−∞

dj(k)ψj,k(t) ,

where

(2.8)

cj(k) := ⟨f, ϕj,k⟩ =
∑
k′∈Z

h(k′ − 2k)cj−1(k
′) ,

dj(k) := ⟨f, ψj,k⟩ =
∑
k′∈Z

g(k′ − 2k)cj−1(k
′) .

The cj ’s and dj ’s are called the scaling coefficients and wavelet coefficients, respectively.

Now we move to building the discrete wavelet transform, and consider a dyadic discrete signal

f ∈ RN , where N = 2n0 , n0 ∈ Z≥0. Taking j = 0 to be the finest level, and j = jmax to be the

coarsest with jmax ≤ n0, we define the finest scaling coefficients to be just the signal itself, so that

c0(k) := [f ]k, k = 1, . . . , N . Using (2.6), we can then obtain the cj , dj coefficients for j > 0; because

of the finite number of scales j and time positions k, the formula simplifies to

(2.9) [f ]n =

2n0−jmax−1∑
k=0

cjmax(k)ϕjmax,k(n) +

2n0−j−1∑
k=0

jmax∑
j=1

dj(k)ψj,k(n) .

The recursive structure of the coefficient calculation lends itself to a Fast Wavelet Transform analo-

gous to the Fast Fourier Transform (FFT), only with a faster time cost of O(N) operations, rather

than O(N logN) [21].
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The wavelet transform succeeds at identifying features of signals at various time-scales; however,

the resolution of the transform is limited, in that there is an explicit inverse relationship between

the time-localization and frequency of the corresponding wavelet functions. For example, wavelet

transforms provide poor representations for high-frequency components, which an ordinary or win-

dowed Fourier transform might capture well. This is due to the construction, in which filters are

successively applied only to scaling coefficients.

The wavelet packets of Coifman, Meyer, and Wickerhauser [19] address the resolution limitations

by applying low- and high-pass filters to the finer-scale (i.e., higher-frequency) wavelet functions

as well. Following the notation in [95], the level parameter l is introduced alongside scale j and

time position k. The scaling functions occupy l = 0, the wavelet functions occupy l = 1, and

higher-level wavelet packets for a given j, k are higher-frequency oscillations over the same region.

The orthogonal wavelet packet functions are initialized with w0
j,k(t) := ϕj,k(t) and w1

j,k(t) = ψj,k(t),

and then further generated according to

(2.10)

w2l
j,k :=

∑
k′

h(k′ − 2k)wlj−1,k′(t) ,

w2l+1
j,k :=

∑
k′

g(k′ − 2k)wlj−1,k′(t) .

Wavelet packet coefficients are initialized with d0j (k) := cj(k) and d1j (k) := dj(k), and then further

generated via

(2.11)

d2lj (k) :=
〈
f, w2l

j,k

〉
=
∑
k′

h(k′ − 2k)dlj−1(k
′) ,

d2l+1
j (k) :=

〈
f, w2l+1

j,k

〉
=
∑
k′

g(k′ − 2k)dlj−1(k
′) .

Returning to the discrete setting, with f ∈ RN and h, g as before, the wavelet packet coefficients

can still be generated via (2.11), and thus produce an N × (n0+1) matrix of transform coefficients;

N coefficients for each of the n0 scales j > 0, and the N original function values. The associated

time cost for the discrete transform is also N logN = Nn0.
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Figure 2.1. The Haar-Walsh wavelet packets ψlj,k for a dyadic discrete signal on
R8. Each row is at constant scale j, and displayed in blocks of constant l, and varying
time position k. The scaling functions (l = 0) are in black, wavelet functions (l = 1)
are in red, and wavelet packet functions (l ≥ 2) are in blue. The bottom row consists
of the Walsh functions. Figure design is a recreation of [45, Figure 2.4].

The Haar-Walsh wavelet packets are a classical example [18], which this dissertation revisits in

the context of simplicial complexes. These packets are piecewise-constant, with mother wavelet

ψ(t) = 1[0, 12)
− 1[− 1

2
,0) ,

and scaling function

ϕ(t) = 1[− 1
2
, 1
2)
.

Figure 2.1 displays each of the Haar-Walsh wavelet packet functions for N = 8. The Haar

scaling family (l = 0) consists of local bumps, the Haar wavelet family (l = 1) consists of single
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local oscillations, and the higher-order Haar-Walsh wavelet packets consist of multiple oscillations,

at possibly varying scales. The global oscillations in the bottom row of Figure 2.1 are known as

the Walsh functions, and take only the values {±N−1/2}. Rescaled to instead take values in {±1},

the Walsh function gathered as column vectors form the N × N Hadamard matrix HN , with the

property that both its rows and columns are orthogonal, satisfying HNH
T
N = HT

NHN = NIN , with

IN the N ×N identity matrix [2].

2.2. Graph Theory

Now, we establish the standard setting for spectral graph theory, and introduce the notation we

will use.

Let G = (V,E) be an undirected connected graph. V = V (G) = {v1, . . . , vN} is the vertex set

of the graph, where |V (G)| = N . E = E(G) = {e1, . . . , eM} is the edge set of the graph, where

|E(G)| = M . Each edge el = {vil , vjl} is a set of two vertices, indicating vil , vjl are connected in

the graph. We only consider simple graphs, which have no loops or multiple-edges, so that the two

vertices making up each edge are distinct, and each edge appears in E at most once. For simplicity,

when it is clear from context, we will write vi as i. In a directed graph Γ, each edge e is instead a

tuple (vil , vjl) ̸= (vjl , vil); the first vertex is the tail, and the second is the head.3 A graph signal

on G is a function f : V 7→ R, which we generally write with the same notation as a vector in RN ,

so that [f ]i = f(vi). Let 1S be the indicator function for a set S ⊂ V , so [1S ]i = δ(vi ∈ S), and

1 := 1V .

The structure of a graph G is captured by its adjacency matrix W (G) ∈ RN×N , satisfying

[W ]ij = δ({vi, vj} ∈ E), so two vertices are adjacent when an edge connects them. A weighted

graph more generally has edge weight [W ]ij > 0 for each adjacent pair i, j of vertices, which

indicate the affinity of those vertices, or the strength of the relationship between them. When G is

undirected, W is a symmetric matrix. Generally, from now on we assume the underlying graph G

is undirected, and otherwise will refer to the directed graph Γ.

As an aside, when constructing a graph from scattered data, edge weights between data must

meaningfully capture their affinity. For example, if the vertices represents discrete samples of a

3In Section 2.4, we will re-interpret a directed edge instead as an oriented simplex.
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manifold, then the weight between samples could depend inversely on the geodesic distance between

them. In [8], the celebrated correspondence between the eigenfunctions of the Laplace-Beltrami

operator of a manifold, and the eigenvectors of Lrw for a specially-constructed graph on points

sampled from that manifold, can be established by choosing the edge weights between adjacent

points xi, xj ∈ Rd, d ∈ Z>0 as exp(−∥xi − xj∥2/t) for some scale parameter t > 0.

Returning to G, let the degree of vi be [d]i :=
∑

j [W ]ij , and define the degree matrix

D(G) := diag(d) .

The key operator we will examine is the combinatorial Laplacian matrix, together with its most

common variations, the random-walk normalized Laplacian and symmetric normalized Laplacian,

defined respectively as

L(G) := D(G)−W (G) ,

Lrw(G) := D(G)−1L(G) ,

Lsym(G) := D(G)−1/2L(G)D(G)−1/2 .

For any of these Laplacian variations, 0 = λ0 ≤ λ1 ≤ . . . λN−1 will refer to the sorted Laplacian

eigenvalues, and ϕ0,ϕ1, . . . ,ϕN−1 will refer to the corresponding Laplacian eigenvectors. If the

context is unclear, superscripts (e.g., ϕrw
1 ) or explicit reference (e.g., ϕ1(L

rw)) will indicate the

referred Laplacian variation.

The spectral properties of the Laplacians are well-studied and celebrated, and we’ll describe

just those that best develop spectral clustering and partitioning; for the rest see [16,96]. First, the

quadratic forms associated with L and Lsym are

fTLf =
1

2

∑
ij

[W ]ij ([f ]i − [f ]j)
2 ,(2.12)

fTLsymf =
1

2

∑
ij

[W ]ij

(
[f ]i√
[d]i

− [f ]j√
[d]j

)2

.(2.13)

Hence the bottom eigenpairs (λ0,ϕ0) of the symmetric matrices L, Lsym are (0,1), (0, D1/21)

respectively, so L,Lsym are positive semidefinite, and the rest of the eigenvalues are positive in
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both cases exactly when G is connected. Next, Lrw and Lsym have the same eigenvalues, and their

eigenvectors are related by

(2.14) ϕrw
i = D−1/2ϕsym

i .

As Lrw is not symmetric, its eigenvectors need not be orthonormal; instead they are orthonormal

in the degree-weighted inner product:

(2.15) (ϕrw
i )TDϕrw

j = δij .

Finally, Discrete Nodal Domain Theorems [26] demonstrate that the sign of ϕk partitions V such

that the resulting induced subgraphs are connected, with higher eigenvalue index tending towards

more of and finer such subgraphs. In particular, Fiedler made the foundational discovery that

an eigenvector corresponding to the first nonzero eigenvalue of L bipartitions V such that the

two induced subgraphs are connected [31]. For a connected graph, ϕ1 is famously called the

Fiedler vector, and in many analogous settings, when the assignment of a bipartition of some set is

derived from top or bottom eigenvectors of an operator on that set, it is common to refer to that

assignment (and/or a relevant eigenvector) as a Fiedler vector. We will continue this tradition. In

this dissertation, we focus on hierarchical bipartitioning, but we will mention that the methods used

to derive the Fiedler vector for bipartitioning with Laplacian variations generally extend to k-way

clustering by treating ϕ1, . . . ,ϕk as a k-dimensional embedding of the N vertices, and then using a

standard technique in Rk, such as k-means or some variation of it [27,96]. We will briefly revisit

embeddings in Chapter 3.

Both facts (2.14, 2.15) are central in justifying the use of the eigenvectors of Lsym to parti-

tion graphs, as shown in [87,96]. The vertex partition induced by the sign of the Fiedler vector

derived from each Laplacian variation solves a relaxed version of an NP-hard combinatorial optimiza-

tion graph-cut problem. For each of L,Lrw, Lsym, that optimization objective is minS Cut(S, S
c),
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minS RatioCut(S, S
c), and minS NormalizedCut(S, Sc) respectively, each defined by

Cut(A,B) :=
∑

i∈A,j∈B
[W ]ij ,

Vol(A) := Cut(A,A) ,

RatioCut(A,B) := Cut(A,B)

(
1

|A|
+

1

|B|

)
,

NormalizedCut(A,B) := Cut(A,B)

(
1

Vol(A)
+

1

Vol(B)

)
.

(2.16)

Observe that ∑
ij

[W ]ij = Vol(S) + Vol(Sc) + 2Cut(S, Sc) ,

and is independent of S, so the goal of bipartition can be thought of equivalently as either finding a

bipartition which minimizes edge weight crossing between partitions, or finding one which maximizes

volume contained on each side of the partition, in both subject to some normalization; |S| in the

case of Ratio Cut, and Vol(S) in the case of Normalized Cut.

Now, one of the fundamental differences when we consider simplicial complexes will be ori-

entation, naturally leading to the consideration of signed graphs. A signed graph has the form

G = (V,E±), where [W (G)]ij > 0 when {i, j} ∈ E+, and [W (G)]ij < 0 when {i, j} ∈ E− (and neces-

sarily, E+∩E− = ∅). While L(G) may then no longer be positive semidefinite, some work has shown

that eigenvectors corresponding to negative eigenvalues of L may still be used for clustering [58].

However, critically, the nodal domain theorem may not hold, so more advanced interpretation is

required.

The signed Laplacian framework [62] instead recovers desirable properties of L for signed graphs,

by using the absolute weights
[
W (G)

]
ij
= |[W (G)]ij | and absolute degrees

[d]i :=
∑
j

[
W (G)

]
ij

, D(G) := diag(d) ,

to construct the signed Laplacian L(G) := D(G)−W (G). The variants Lsym
, L

rw are constructed

identically, using D in place of D. Key for our purposes, from [62] we know that analogous to
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Figure 2.2. On the left, a simple example of a signed graph, with vertices in grey,
positive edges in green, and negative edges in orange. On the right, a bipartition of
the same signed graph, where the edges which contribute to the SignedCut objective
are highlighted in red.

equations (2.12, 2.13), we have

fTLf =
1

2

∑
ij

[W ]ij ([f ]i − sgn([W ]ij)[f ]j)
2 ≥ 0 , and(2.17)

fTL
sym
f =

1

2

∑
ij

[W ]ij

 [f ]i√
[d]i

− sgn([W ]ij)
[f ]j√
[d]j

2

≥ 0 .(2.18)

For each of L,Lrw
, L

sym, the vertex partition induced by the sign of the corresponding Fiedler

vectors ϕ1(L),ϕ1(L
rw
),ϕ1(L

sym
) solve a relaxed version of the combinatorial optimizations

minS SignedCut(S, S
c), minS SignedRatioCut(S, S

c), minS SignedNormalizedCut(S, Sc),

respectively, each defined by

Cut±(A,B) :=
∑

i∈A,j∈B
max(0,±[W ]ij) ,

Vol±(A) := Cut±(A,A) , AbsVol(A) := Vol+(A) + Vol−(A) ,

SignedCut(A,B) := 2Cut+(A,B) + Vol−(A) + Vol−(B) ,

SignedRatioCut(A,B) := SignedCut(A,B)

(
1

|A|
+

1

|B|

)
,

SignedNormalizedCut(A,B) := SignedCut(A,B)

(
1

AbsVol(A)
+

1

AbsVol(B)

)
.

The goal of this bipartition is to simultaneously minimize positive edge weight crossing between

partitions and negative edge weight contained within either side of the partition, such as those of
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Figure 2.3. A hierarchical partition tree, for the 6 vertices of a simple example
graph. In the tree above, the root is V 0

0 , containing all the vertices, and each next
level of the tree contains subsets at common scale. The leaves of the tree are singleton
subsets. In the graphs below, the regions Gjk induced by the corresponding vertex
subsets V j

k are demonstrated.

the red edges in Figure 2.2. Equivalently, we seek to simultaneously maximize positive edge weight

contained within either side of the partition and negative edge weight crossing between partitions,

so that as much as possible, positive edges indicate affinity, and negative edges indicate repulsion.

Spectral clustering of signed networks remains an active field of research, and the discovery

of new methods such as the Signed Positive Over Negative Generalized Eigenproblem (SPONGE)

algorithm [24] has shown rigorous guarantees for identifying planted clusters in signed stochastic

block models (SSBMs) for the Signed Laplacian, and additionally that SPONGE clustering enjoys

such guarantees under a greater variety of conditions.

2.3. Recursive Graph Partitioning

The foundation on which the multiscale transforms studied in this dissertation are constructed

is hierarchical bipartition trees or binary partition trees of the underlying sets.
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Such a tree organizes subsets of the underlying set into clusters at various scales, an example of

which can be seen in Figure 2.3. In the case of a graph G = (V,E), the underlying set is V , and we

denote the subsets by V j
k ⊆ V =: V 0

0 , with j denoting the scale index, and k denoting a position

index, indexing the sets at a given scale. Increasing j goes from coarse scale to fine scale, with j = 0

containing only V , and j = jmax containing singleton {vi}’s. We define Gjk as the subgraph of G

induced by restricting it to the vertices in V j
k . The relationship between Gjk and V j

k is illustrated

in Figure 2.3. Each such subgraph Gjk will be referred to as a region, as an analogy to the localized

regions on which wavelets concentrate. When a region is contained in another region, we may refer

to it as a subregion. Given a graph, we will typically form a hierarchical partition tree top-down,

using the information in each region Gjk to bipartition the vertices V j
k into nonempty, disjoint child

subsets V j+1
k′ , V j+1

k′+1, forming the subregions Gj+1
k′ , Gj+1

k′+1. Our standard method will be to use the

sign of the Fielder vector for an appropriate Laplacian variant to perform the bipartition at each

stage; the critical property is that the vector oscillates, so that neither partition is empty. A bonus

property is that |V j+1
k′ |, |V j+1

k′+1| should be close in size, which, e.g., Lrw-based partitions satisfy due

to their proximity to NormalizedCut optimizers. In general however, any bipartitioning method

which generates nonempty disjoint partitions may be used to construct a top-down hierarchical

partition tree. An example of the partitions formed for a synthetic graph is provided in Figure 2.4.

In previous work involving Lrw-based hierarchical partitioning (e.g., [47,48]), the matrices Lsym

are explicitly re-computed4 for each Gjk, and the relevant Fiedler vectors then calculated. In this

dissertation, we will also examine a second approach to hierarchical partitioning we call submatrix

partitioning, which takes advantage of the fact that the Laplacian for Gjk has a close relationship

with the submatrix of the Laplacian for G0
0, induced by V j

k . Simply, instead of re-computing Lsym

at each stage of the hierarchical partition, we approximate it using the appropriate submatrix of

the original Laplacian. We pursue this approximation for two reasons. First, while the submatrix

relationship is straightforward for hierarchical partitioning of vertices in a graph, as we will introduce

next in Section 2.4 and then explain in detail in Chapter 4, performing hierarchical partitions over

the analogous higher-dimensional structures (e.g., κ-regions consisting of κ-simplices, with κ ≥ 1)

poses new difficulties worth studying, that can be overcome through approximation. Second, when

4Even when we desire the eigenvectors of Lrw, typically we take advantage of symmetric eigenvector methods using
Lsym, and then transform the results as needed.
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Figure 2.4. An example of a hierarchical partitioning of a graph, using a Minnesota
road network [36]. Each plot, from left to right, top to bottom, includes one further
level of the partition. Vertices which share the same color, belong to the same level
of the partition, and vertices nearer in color to each other have a nearer common
ancestor in the hierarchical partition tree.

the approximation is justified, the computation of a hierarchical partition can be dramatically sped

up, and be made more stable, by either avoiding the re-computation of Laplacians altogether, or

developing data structures which minimize the need for re-computation.

Unless stated otherwise, going forward, submatrix partitioning is the method we use for experi-

ments and calculations when performing hierarchical partitioning via Fiedler vectors, whether of L

or Lsym.

Now, we first analyze the symmetric normalization. Let Wsub denote the |V j
k | × |V j

k | matrix

obtained by restricting the rows and columns of W (G0
0) to indices in V j

k . Similarly, use the same

subscript to denote all of the analogous |V j
k | × |V j

k | submatrix quantities Dsub, W
sym
sub , Lsub, L

sym
sub .

Let Wjk denote the usual |V j
k | × |V j

k | adjacency matrix W (Gjk), and use the same subscript to
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denote the analogous quantities Djk, W
sym
jk , Ljk, L

sym
jk . Let’s consider a vertex vi ∈ V j

k . Notice that

[Dsub]ii ≥ [Djk]ii, because Gjk is a subgraph of G0
0. Let [f ]i := ([Dsub]ii − [Djk]ii)/[Djk]ii) be the

relative difference in degrees, satisfying [f ]i ≥ 0, and let F = diag(f). As [Lsym
sub ]ii = [Lsym

jk ]ii = 1,

the diagonals are equal. Further, because we have Wsub =Wjk,

Lsym
sub = I −W sym

sub = I − (Djk + (Dsub −Djk))
− 1

2 (Wjk)(Djk + (Dsub −Djk))
− 1

2

= I − (I + F )−
1
2W sym

jk (I + F )−
1
2

= (I + F )−
1
2

(
Lsym
jk + F

)
(I + F )−

1
2 .

Thus, the restricted Lsym
sub , acting as a perturbation of Lsym

jk , is simply a more diagonally dominant

version of Lsym
jk . To get a feeling for the extreme scenarios, when F = ϵI, then Lsym

sub = Lsym
jk +

ϵ
1+ϵW

sym
jk , and when F = (ϵ−1 − 1)I, then Lsym

sub = I − ϵW sym
jk . Now, recall that each successive

partition of G solves a relaxed graph cut problem; that means we should expect F to increase slowly,

on average, for each bipartition.

If ∥I + F∥2 =
∑

i([f ]i + 1)2 is sufficiently small, because we are dealing with real symmetric

positive semidefinite matrices, and the perturbation is a diagonal matrix, we obtain the strong

result that the submatrix Fiedler vector is itself a perturbation of the full-partition Fiedler vec-

tor [43]. Under these assumptions, the regions constructed by the submatrix partition will start

identical at top level (i.e., the first bipartition), remain nearly identical so long as the successive

partitions remove a small fraction of the total within-partition edges, and then degrade to more

random partitions as region size shrinks to individual vertices, and the embedding becomes noisy

eigenvectors of a perturbation of I. By a nearly identical argument to that of Lsym, we make the

same conclusion for L. Figure 2.5 demonstrates this graceful decay of the faithfulness of the regions

when so approximated.

2.4. Simplicial Complexes

In this section we review concepts from algebraic topology to formally define simplicial complexes

and lift relevant notions from graph theory like adjacency to them. Our goal when we introduce new

or non-standard language or notation (like natural parity below) is to be more precise and careful

where we have found standard materials less intuitive. For a more thorough review see [13,35].
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Figure 2.5. Several instances of an L-based hierarchical partitioning of a Minnesota
road network [36], with the results of usual full partitioning on the left in each pair,
and those of submatrix partitioning on the right. The blue and red-colored vertices
in each graph are the support of that region. The two indices in each label are
the scale (j) and location (k) parameters, and the two uniformly colored subregions
indicate the next partition for that region. Notice how the regions identified by both
methods are similar, and that at later scale parameters, the much smaller supports
vary more between the two methods.
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Given a vertex set V = {v1, . . . , vn}, a κ-simplex σ is a (κ + 1)-subset of V . As we will also

later define oriented simplices, for clarity let V (σ) denote the vertices in any simplex σ. A face of

σ is a κ-subset of σ, and so σ has κ + 1 faces. A co-face of σ is a (κ + 1)-simplex, of which σ is a

face.

Suppose σ = {vi1 , . . . , viκ+1}, i1 < · · · < iκ+1, and α ⊂ σ is its face. Then, |σ \ α| = 1. Let

ι(σ \ α) refer to the position of this single vertex in σ, such that

(2.19) σ \ α =
{
viι(σ\α)

}
.

Define the natural parity of σ with respect to its face α as

(2.20) nat(σ, α) := (−1)ι(σ\α)+1 .

When α is not a face of σ, nat(σ, α) = 0. The natural parity of κ-simplices with respect to their

faces generalizes the idea of a directed edge having a head vertex and a tail vertex, and is “natural”

because it disallows situations analogous to a directed edge with two heads or two tails. In existing

literature, this choice of parity is often taken as an assumption, or developed as a consequence of

defining orientation or boundary maps with respect to permutation parity, as in [14, Appendix C].

Consider the case κ = 1. A 1-simplex e = {vi, vj}, i < j, is equivalent to a directed edge

from vi to vj . The two faces of e are the singletons {vi} and {vj}, and notice nat(e, {vi}) = −1,

and nat(e, {vj}) = 1. Usually vj is called the head of the directed edge, and vi the tail. For a

κ-simplex σ, let σnh := {α is a face of σ | nat(σ, α) > 0} be the natural heads of σ, and likewise let

σnt := {α is a face of σ | nat(σ, α) < 0} be the natural tails of σ. Then, {vj} is the natural head of

e, and {vi} is the natural tail of e.

From the definition of natural parity, it is clear that for any κ-simplex σ, as σ has κ+ 1 faces,

if κ is odd, then |σnh| = |σnt| = κ+1
2 , and if κ is even, then

∣∣|σnh| − |σnt|
∣∣ = 1. In other words, the

faces of σ are as evenly as possible partitioned between the natural heads and natural tails; we say

the natural head and natural tail sets are balanced.

A simplicial complex C is a collection of simplices closed under subsets, where if σ ∈ C,

then α ⊂ σ =⇒ α ∈ C. In particular, if σ ∈ C, so does each face of σ. Let κmax(C) :=

max {κ |σ ∈ C is a κ-simplex}, and let Cκ denote the set of κ-simplices in C for each κ = 0, . . . , κmax.

26



Figure 2.6. In this small 2-complex C, e1 ∼ e4 because they share the face v2, and
e1 ∼ e2 because they share the face v1. Further e1 ≃ e2 because their hull t1 ∈ C,
but e1 ≃/ e4, so that e1 ∼

1
e4. We have t1 ∼ t2 because they share the face e3, and

also t1 ∼
2
t2.

When κ > κmax, Cκ = ∅. We also refer to C as a κ-complex to note that κmax(C) = κ. Let a

κ-region of C refer to any non-empty subset of Cκ, and let a κ-subregion refer to any subset of a

κ-region.

Let C be a simplicial complex, and σ, τ ∈ Cκ, for some κ > 0. When σ, τ share a face, they

are weakly adjacent, denoted by σ ∼ τ . Their shared boundary face is denoted bd(σ, τ). If σ ∼ τ ,

and in addition, they both share a co-face, this co-face is called their hull, denoted by hl(σ, τ). If

σ, τ ∈ C, σ ∼ τ , and hl(σ, τ) ∈ C, then σ, τ are strongly adjacent, denoted by σ ≃ τ . If σ ∼ τ , but

σ ≃/ τ in C, then σ, τ are κ-adjacent, denoted σ ∼κ τ .

An oriented simplex σ further has an orientation pσ ∈ {±1}, which indicates whether its parity

with its faces is the same as, or opposite to, its natural parity. When pσ = +1, we say σ is in natural

orientation. For example, a directed edge e = (vi, vj) for i < j is in natural orientation, while if

i > j, pe = −1. An oriented simplicial complex is a simplicial complex whose members are oriented.

An oriented complex C contains at most one orientation for any given simplex, in the sense that

σ, σ′ ∈ C, V (σ) = V (σ′) =⇒ pσ = pσ′ .

Natural orientation does not account for simplex orientation. “Flipping” the directed edge e

corresponds to switching the sign of pe on the one hand, and to switching the head and tail vertices

of e on the other. Analogously, the head set σh and tail set σt of an oriented simplex σ consist

of those faces α satisfying pα nat(σ, α) > 0 and pα nat(σ, α) < 0, respectively. These sets are also

balanced, as with the natural heads/tails. Finally, by introducing face orientations as well, we

consider the relative orientation of an oriented simplex σ with respect to its oriented face α, as
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simply

rel(σ, α) := pσpα nat(σ, α) .

Let G = (V,E) be a simple directed graph. We may always associate an oriented simplicial 1-

complex G̃ with G, as follows. Enumerate V = {v1, . . . , vn}. For each vi ∈ V , we have ({vi},+1) ∈

G̃, and for each (vi, vj) ∈ E, we have ({vi, vj}, sgn(j−i)) ∈ G̃. With this convention, the orientation

of the 1-simplex corresponds to the agreement of the edge direction with the global ordering of the

vertices.

Further, there are many possible ways to construct higher-order complexes that represent higher-

order structure of the graph G. For example, we may construct the κ-clique complex Kκ(G) for

each κ ∈ N, where κmax(Kκ(G)) ≤ κ, as follows. For each fully-connected subgraph of G on vertices

vℓ1 , . . . , vℓκ′ for κ′ ≤ κ+ 1, we have{vℓ1 , . . . , vℓκ′},
∏

1≤i<j≤κ′
sgn(ℓj − ℓi)

 ∈ Kκ(G) .

Notice that G̃ = K1(G); additionally, we will abuse notation and refer to both G and G̃ as G when

the usage is clear from context. While there are many simplicial complexes that represent a graph

which are not κ-clique complexes, because simplicial complexes are closed under taking subsets of

the underlying unoriented simplices, whenever δ ∈ C, the complete subgraph on the vertices in δ is

a subgraph of G.

LetXκ be the space of real-valued functions on Cκ for each κ ∈ {0, 1, . . . , κmax(C)}. If we wished

to lift the non-degeneracy condition on C, we could instead restrict each Xκ to the set of alternating

functions on Cκ, such that for f ∈ Xκ and σ, τ ∈ C, we have V (σ) = V (τ) =⇒ pσf(σ) = pτf(τ). In

the case of graphs, X0 consists of functions taking values on vertices, or graph signals. X1 consists

of functions on edges, or edge flows. A function in X1 is positive when the corresponding flow

direction agrees with the edge orientation, and negative when the flow disagrees. An alternating

function f ∈ X1 would satisfy f(ẽ) = −f(e), for e a directed edge and ẽ the flipped edge. X2

consists of functions on oriented triangles.

Given an oriented simplicial complex C, for each κ ∈ {0, 1, . . . , κmax}, the boundary operator

is a linear operator Bκ : Xκ+1 7→ Xκ, where for σ ∈ Cκ+1, α ∈ Cκ, the corresponding matrix
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entries are [Bκ]ασ = rel(σ, α). Likewise, the coboundary operator for each κ ∈ {0, 1, . . . , κmax} is

just BκT : Xκ → Xκ+1, the adjoint to Bκ. The expression of the entries of Bκ as the relative

orientation between simplex and face suggests that these are a natural way to construct functions

taking local signed averages, according to adjacency in the simplicial complex.

In discrete differential geometry, BκT corresponds to the discrete exterior derivative, is inter-

preted as the discrete differential [65], and acts as a first-order difference operator of the graph

signal. Particularly, for a graph signal f , and a directed edge e = (u, v) with eh = {v}, et = {u},

(2.21) [BT
0 f ]e = pv[f ]v − pu[f ]u .

In the standard graph setting, pu = pv = 1, and so [BT
0 f ]e = [f ]v − [f ]u, and the resulting

edge-valued function acts as the discrete gradient. Likewise, Bκ can be interpreted as the discrete

codifferential. Analogously, for an edge flow F , and a vertex v,

(2.22) [B0F ]v = pv

 ∑
e:eh={v}

−
∑

e:et={v}

 [F ]e ,

and taking pv = 1, [B0F ]v =
(∑

e:eh={v}−
∑

e:et={v}

)
[F ]e. The resulting graph signal acts as the

discrete divergence of the edge flow.

For the next calculation only, given a directed edge e, let u+ refer to its head, and u− refer to

its tail. Combining Eqs. (2.21, 2.22),

[B0B
T
0 f ]v = pv

 ∑
e:eh={v}

−
∑

e:et={v}

 [BT
0 f ]e

= pv

 ∑
e:eh={v}

−
∑

e:et={v}

(pu+ [f ]u+ − pu− [f ]u−
)

= pv

 ∑
e:eh={v} or et={v}

pv[f ]v −
∑

u:e=(u,v) or e=(v,u)

pu[f ]u

(2.23)

= [d]v[f ]v −
∑
u∼v

pupv[f ]u .
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In Eq. (2.23), we see that each sum simply yields a sum over vertices adjacent to v, and that the first

just counts them, yielding the usual degree vector, whose entries we denote [d]v. Taking pu = 1 for

all vertices, we retrieve the usual graph Laplacian, and recover both the standard incidence matrix

identity B0B
T
0 = L0, and the standard differential geometry identity div grad = ∆. Conversely,

in general, we foreshadow a phenomenon underlying much of the simplicial setting: while edge

orientation in the incidence matrix does not affect the resulting Laplacian, this is only the case for

natural orientations of edges with respect to vertices, and further re-orienting vertices may yield a

different Laplacian.

Signal processing on simplicial complexes arises as a natural problem in the setting where richer

structure is incorporated in data, than just scalar functions and pairwise relationships [83]. Given

a discrete domain, data may include higher-order interactions between vertices, and so naturally

be represented as functions or signals on a hypergraph [9]. In [50], matrix data is represented as

signals on a bipartite graph indexed by the matrix’s dimension labels. Similarly, κ-tensor data can be

represented as signals on a κ-uniform, κ-partite hypergraph indexed by the tensor’s dimension labels.

One may always associate a κ-simplex with a hyperedge of cardinality κ+1 in a hypergraph; when

orientations are additionally part of the data or have a natural interpretation, and when data can

be naturally interpreted on sub- or supersets of the vertices in a hyperedge, then it becomes useful

to frame the relevant data processing as a problem of signal processing on an oriented simplicial

complex.

Higher-order analysis is also possible with spatial data, scattered data, and point clouds. A

simplicial complex may be efficiently constructed on a metric space, for example, as in the Vietoris-

Rips complex [102], where for a fixed distance d, a simplex σ is present in the complex whenever

the diameter of σ does not exceed d. Efficient algorithms exist for constructing various simplicial

complexes from graph data, such as clique, Vietoris-Rips, and witness complexes, and for performing

common operations on simplicial complexes, such as the simplex tree data structure [10], a simplified

version of which we use to represent simplicial complexes. The tree represents every simplex in the

complex as one vertex, and is rooted, with the root representing the empty set. Each facet (i.e.,

maximal simplex) is represented by a leaf of the tree, and each vertex is labeled with the maximum

vertex index not yet labeled by any of its ancestor vertices. In Figure 2.7, the tree structure and
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Figure 2.7. The simplex tree representation for a simplicial complex whose maxi-
mal simplices have labels {1, 2, 3, 5} and {4, 5, 6}. Each vertex represents a simplex
in the complex, and if the length of the path to the root labeled ∅ is ℓ, then it is an
ℓ-simplex. The labels for the vertices in the simplex are obtained by accumulating
the labels on the path to that simplex from the root. So for example, the 3-simplices
in this complex are {1, 2, 3}, {1, 2, 5}, {1, 3, 5}, {2, 3, 5}, and {4, 5, 6}

labels are demonstrated for a simplicial complex whose maximal simplices have labels {1, 2, 3, 5}

and {4, 5, 6}. Because for a (κ + 1)-simplex σ with face α, [Bκ]ασ = pσpα nat(σ, α), for a given

complex the elements of this sparse matrix can be efficiently computed by traversing the complex’s

simplex tree while observing the orientation of each simplex encountered.

While in the κ = 0 case, the spectral analysis pipeline generally involves nothing more com-

plicated than performing linear algebra on easy-to-assemble adjacency matrices, naive operations

with κ-regions and adjacencies risk blowing up in cost, polynomially as a function of κ, both in

memory and time, and so require more care. Once a simplicial complex is either given or computed

as above, in simplex tree form, the next step is to represent the κ-adjacency data, degrees, and pos-

sibly weights, in a sparse fashion, i.e., iterating over O(|Cκ+1|) hulls instead of O
(
|Cκ|2

)
simplex

pairs, most of which are likely not adjacent. The data structure KRegion we use to represent these
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adjacencies is, for several reasons we will go into in Chapter 4, the most complicated we needed to

develop.
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CHAPTER 3

Discrete Integral Operators

In this chapter, before diving into the dissertation’s primary focus on functions living on κ-

regions of simplicial complexes, we first develop a theory of spectral partitioning for functions on

graphs via discrete integral operators as an appealing alternative to the usual Laplacian-based spec-

tral theory. This work is part of an ongoing, yet unfinished project, to unify the construction of

multiscale transforms on κ-regions, with the capabilities of discrete integral operator-based spec-

tral embeddings and partitioning. That project spans exterior algebra, discrete and continuous

differential geometry, discrete and continuous Hodge theory, harmonic analysis, potential theory,

and spectral geometry, which we turn towards the usual problems of discrete signal processing.

In this dissertation, we establish the first concrete step, by clearly justifying, constructing, and

demonstrating discrete integral operators suitable for performing spectral embedding and graph

partitioning.

3.1. Overview

Fourier analysis entails using an orthonormal basis for representation of data or functions on

domains with some regularity, in the sense that they may be periodically extended; tensor prod-

ucts of intervals and lattices are typical domains. The perspective from harmonic analysis is to

generalize this representation by relaxing the conditions we place on the domain, usually by using

the eigenfunctions of an appropriate linear operator as the basis. For instance, for an open, con-

nected set Ω ⊂ Rd with a sufficiently smooth boundary ∂Ω, we may take the Laplace operator (or

Laplacian) ∆ :=
∑

i ∂
2
xi acting on C2(Ω) functions satisfying self-adjoint boundary conditions on

∂Ω. Alternatively, we can consider the corresponding integral operator against a Green’s function

of this Laplacian. Because these operators invert each other, they commute, and so we obtain the

same eigenbasis.
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In the case of graphs more general than lattices, a canonical choice of operator is the graph

Laplacian matrix L := D −W , or its normalized form Lsym := D− 1
2LD− 1

2 , where W is the (pos-

sibly weighted) adjacency matrix of the graph, and D = diag(W1). As reviewed in Section 2.2,

a fundamental principle of spectral graph theory is that the eigenvalues of L and Lsym yield in-

formation on the structure of the graph. For example, the second-smallest eigenvalue of Lsym is a

measure of the connectivity of a graph, and if we partition the vertices according to the sign of the

corresponding eigenvector, we obtain approximately equally-sized subsets with few edges between

them, ideal for image segmentation or clustering applications [16,87,96].

Using the continuous Laplacian in computational applications requires performing some dis-

cretization, followed by application of the ideas from the graph case. For example, the matrix

formed by applying finite difference approximation to the continuous Laplacian is precisely the

graph Laplacian, when Neumann boundary conditions are imposed. In general however, numeri-

cal differentiation is well-known to be ill-conditioned, so another option is to discretize an integral

operator via a quadrature formula. In one dimension (without loss of generality, on (0, 1)), given

quadrature node and weight vectors x and w respectively, and an integral operator G with kernel

G, we can approximate1 via

Gf([x]i) =
∫ 1

0
G([x]i, y)f(y) dy ≈

∑
j

G([x]i, [x]j)f([x]j)[w]j .

Adopting notation we will repeatedly use, a scalar function of one variable given a vector argument

x, like f(x), will refer to the vector of element-wise evaluations. Similarly, for vector x and scalar y,

the expression G(x, y) refers to the vector [G(x, y)]i = G([x]i, y), and G(x,x) refers to the matrix

[G(x,x)]ij = G([x]i, [x]j). So, we may write

Gf(x) =
∫ 1

0
G(x, y)f(y) dy ≈ G(x,x) diag(w)f(x) .

In particular, for each quadrature formula on k nodes, we can construct a linear operator (here,

the matrix G(x,x) diag(w)) on Rk which represents the integral operator G on (0, 1); these are

examples of discrete integral operators. For example, consider the kernel G(x, y) = |x − y|, for

x, y ∈ (0, 1). For a quadrature formula with uniform weights, the entries of the corresponding

1The meaning of ‘≈‘ here depends on the accuracy of the quadrature formula used.
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Figure 3.1. Diagram showing the relationship between the various kinds of opera-
tors whose eigenfunctions may be used for analysis of the underlying domains, with
particular instances.

discrete integral operator are each Euclidean distances between the quadrature nodes, and so we

obtain the shortest-path distance matrix of the graph created (in this case, a path graph).

The distance matrix demonstrates typical properties of discrete integral operators – they con-

tain global information about a graph, as opposed to the local adjacency information in a graph

Laplacian. In the case of directed graphs, this discrepancy is exaggerated, as adjacency is no longer

a local property of the graph, and is best represented by the existence of a shortest directed path.

To concretely illustrate the main ideas at play, we will demonstrate all four cases of the oper-

ators mentioned, along with their respective orthonormal eigenbases. Figure 3.1 summarizes the

relationships among operators considered.

3.2. Potential Theory

3.2.1. One-dimensional continuous and path-graph Laplacians.

The classic Fourier basis may be expressed as the family of functions en(x) := exp(2πinx) on

[0, 1] ⊂ R, for n ∈ Z. It is well known that {en}n∈Z forms a complete orthonormal basis for

L2([0, 1]); these are the Laplacian eigenfunctions on [0, 1] satisfying the periodic boundary conditions

f(0) = f(1), f ′(0) = f ′(1). Likewise, enforcing the Dirichlet boundary conditions f(0) = f(1) = 0
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yields the basis sn(x) :=
√
2 sinnπx for n ∈ N, and enforcing the Neumann boundary conditions

f ′(0) = f ′(1) = 0 yields the basis cn(x) :=
√
2 cosnπx for n ∈ N and c0(x) ≡ 1.

In each case, via integration by parts we can find an integral operator which inverts L1 := −∆,

the one-dimensional (negative) Laplacian, on the class of functions on [0, 1] satisfying the boundary

conditions:

(3.1)


Dirichlet: GD(x, y) = min{x, y} − xy = −1

2 |x− y|+ x+y
2 − xy

Neumann: GN (x, y) = −1
2 |x− y|+ 1

2(x− 1
2)

2 + 1
2(y −

1
2)

2 + 1
12

Periodic: Gper(x, y) = −1
2 |x− y|+ (x−y)2

2 + 1
12 .

Now, let n ∈ N. We can use the n midpoint nodes [x]k = 2k−1
2n for k = 1 : n, to construct a

path graph Pn which will represent the discrete version of the interval. Recall that 1 is the constant

vector, with [1]i = 1. The path-graph Laplacian has the usual form

L =



1 −1 0 0 · · · 0

−1 2 −1 0 · · · 0

...
. . . . . . . . . . . .

...

0 · · · 0 −1 2 −1

0 · · · 0 0 −1 1



,

which matches the finite difference approximation of L1, assuming Neumann boundary conditions.

The Laplacian eigenvectors of Pn are precisely the discrete cosine transform (DCT-II) vectors, taking

the form vk ∝ cos kπx for k = 0 : n − 1 [91]. These eigenvectors vk, when scaled appropriately,

interpolate the eigenfunctions ck of the continuous Neumann Laplacian at x, for k = 0 : n − 1. If

we assume different boundary conditions, only the first and last rows and columns of the resulting

matrix change. In the Dirichlet case, the eigenvectors are precisely the discrete sine transform

(DST-II) vectors, and interpolate the eigenfunctions sk at x, for k = 1 : n. In the periodic case,

the eigenvectors are the discrete Fourier transform (DFT) vectors, and can be scaled to interpolate

the eigenfunctions ek at either the midpoints (x) or the gridpoints (x − 1
2n1). In summary, in
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this special one-dimensional case, the vectors formed by evaluating orthogonal eigenfunctions at

midpoint nodes are themselves (discretely) orthogonal.

Alternatively, we can use the midpoint quadrature, with nodes x (the midpoints as above), and

weights w = 1
n1, to discretize the Green’s functions in (3.1). We would like to determine the rela-

tionship between the path-graph Laplacian above, and the discrete integral operator corresponding

to the Neumann Green’s function. Given an integral operator G with kernel G, the eigen-pairs of

the matrix G(x,x) can be used to approximate those of G, in the sense that

Gf = λf and Gf(x) ≈ 1

n
G(x,x)f(x) =⇒ G(x,x)f(x) ≈ nλf(x) .

However, by itself this offers no guarantee that f(x) is an approximate eigenvector of G(x,x), a

significant drawback. Further, for the term in common to each Green’s function in (3.1), highlighted

in red, we can identify its matrix of discrete values as a distance matrix for the path graph Pn, but

the other terms are more difficult to analyze. This term is the fundamental solution of the Laplacian;

we can use this observation to overcome both difficulties, by analyzing the corresponding integral

operator instead. To see how, we will move to the general case.

3.2.2. Boundary conditions for the integral operator with harmonic kernel.

Let us consider the formal differential operator L := −∆ operating over a sufficiently smooth

bounded domain Ω ⊂ Rd for some d ≥ 1. Let Bϵ(x) refer to the open ball of radius ϵ centered at

x in Rd. Recall the Cauchy principal value p.v., defined for an integral operator G with kernel G,

where G(x, y) is singular when x = y, by

p.v.Gf(x) := lim
ϵ→0

∫
Rd\Bϵ(x)

G(x, y)f(y) dy .

Let ∂ν refer to the outward normal derivative on ∂Ω, and let y 7→ σ(y) be the surface measure

on ∂Ω. A relation sometimes called Poisson’s integral formula [54, Ch. 4 Eq. 3.7] states that for

f ∈ C1(Ω), we have LKf = f , where K is the integral operator

Kf(x) :=
∫
Ω
K(x, y)f(y) dy ,
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against the harmonic kernel

K(x, y) =


−1

2 |x− y| d = 1

− 1
2π ln |x− y| d = 2

− 1
(2−d)ωd

|x− y|2−d d ≥ 3 .

Here ωd := 2πd/2

Γ(d/2) is the surface area of the unit ball in Rd and | · | is the Euclidean norm. Further,

for f ∈ C2(Ω) ∩ C1(Ω), we can use Green’s identities [54, Ch. 4 Eq. (1.2)] to find that

p.v.KLf(x) = p.v.

∫
Ω
K(x, y)Lf(y) dy = f(x)−

∫
∂Ω

[
K(x, y)∂ν(y)f(y)− f(y)∂ν(y)K(x, y)

]
dσ(y) .

Because K is weakly singular, K is compact, and so the function on the LHS exists and the principal

value is unnecessary [61, Theorem 2.29]. In [74], it is observed that the functions f for which

KLf = LKf = f , satisfy the non-local boundary conditions (NLBC):

(3.2)
∫
∂Ω
K(x, y)∂ν(y)f(y) dσ(y) = −1

2
f(x) + p.v.

∫
∂Ω
f(y)∂ν(y)K(x, y) dσ(y) for each x ∈ ∂Ω .

How restrictive of a set of boundary conditions are the NLBC? Is L equipped with the NLBCs

essentially self-adjoint? The answer is known to be affirmative for d = 1, 2, and we suspect it to be

true in general, which we formalize in a conjecture; we will assume this conjecture is true for the

remainder of the chapter.

Conjecture 3.2.1. Let S := C2(Ω)∩C1(Ω) consist of sufficiently smooth functions on Ω ⊂ Rd,

a sufficiently smooth domain; say, ∂Ω ∈ C2, using the notation of [61]. Let L1 := (D,L) denote

the unbounded differential operator acting on the domain D := {f ∈ S | f satisfies NLBC }. Then

L1 is essentially self-adjoint, has a complete set of eigenfunctions with nonzero eigenvalue, and has

K as its inverse.

Remarks. The critical assumptions which Conjecture 3.2.1 rely on are sufficient smoothness

of the eigenfunctions of K, and the empty null space of L1, and so of K. In the cases d = 1, 2,

it is known that K has a trivial null space [40,94]. For d ≥ 3, a literature search did not return

a clear positive result, but [61, Theorem 4.20] is suggestive. Since K is compact and self-adjoint,

we may find an orthonormal basis of L2(Ω) consisting of its eigenfunctions, and the only potential
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non-eigenvalue in the spectrum is λ = 0; hence the importance of the null space. Kress, in turn

citing Hähner, explains a framework where for integral operators with a weakly singular kernel,

of which K is a principal example, the Fredholm alternative can be used to lift the eigenfunctions

from just L2 to C0; i.e., continuity. [61, Theorems 7.5, 7.6] also develop Hölder continuity C1,α

of the single- and double-layer potentials defined on ∂Ω in Eq. (3.2). The smoothness class S is

chosen such that the Poisson and Green’s identities hold, such that f ∈ S =⇒ LKf = f , and the

punchline is that if the eigenfunctions of K are known to be in S, then when (λ, f) is an eigenpair of

K, Kf = 0 =⇒ LKf = f = 0, and so λ ̸= 0. If we assume the lifting strategy can be extended to

S, or otherwise that the eigenfunctions of K are in S, and so the null space of K is trivial for d ≥ 3,

then most of the conjecture follows through a straightforward application of the spectral theorem.

We stop short of proving essential self-adjointness, though it seems quite likely.

Proposition 3.2.1. Let S,L1 be as in Conjecture 3.2.1, and suppose that the eigenfunctions of

K are in S. Then L1 is symmetric, has a complete set of eigenfunctions with nonzero eigenvalue,

and has K as its inverse.

Proof. The notation here is the same as in Conjecture 3.2.1. As K is compact and self-adjoint,

the eigenvalues of K have 0 as a limit point, and 0 is not in the spectrum, as Kf = 0 =⇒

LKf = f = 0. Hence K has a complete set of eigenpairs {(fi, λi)}i, and so L has a complete set

of eigenpairs {(fi, 1/λi)}i. Because L and K commute for each fi, they satisfy the NLBC (3.2),

and so the fi form an orthonormal basis for D. Hence, the formal operator L1 is symmetric, as

f, g ∈ D =⇒ ⟨Lf, g⟩ = ⟨f,Lg⟩, with Lg ∈ C0(Ω). ⋄

Regarding essential self-adjointness, we know that C0(Ω) is dense in L2(Ω), and that the precise

domain of g that satisfy Lg ∈ L2(Ω) is the Sobolev space H2(Ω) [1]. In principle, passing from

functions to distributions, and from ordinary to weak derivatives, an analogous argument to the

proof of Proposition 3.2.1 goes through, from which we could conclude that L1 is essentially self-

adjoint. We stop short of this claim because we do not know whether g ∈ H2(Ω) guarantees the

rest of the assumptions, that g satisfies the NLBC.

The NLBC has the desirable property that the functional form of K is independent of the domain

Ω. In order to find an integral operator which commutes with functions satisfying the Neumann
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condition ∂νf ≡ 0 on ∂Ω, naturally we cannot hope for such a happy coincidence. One consequence

of this is that no ‘interesting’ functions satisfy both the Neumann conditions and the NLBC, in the

sense that all such functions satisfy both the Neumann and Dirichlet conditions.

Proposition 3.2.2. Consider the following three subspaces of C2(Ω) ∩ C1(Ω) functions:

N := {f
∣∣ ∂νf ≡ 0 on ∂Ω} , B := {f

∣∣ f satisfies NLBC } , and D := {f
∣∣ f ≡ 0 on ∂Ω} .

Then we have that B ∩N ⊂ D and B ∩D ⊂ N .

Proof. First, let us define operators R, T : C1(∂Ω) 7→ C1(∂Ω), such that

Rf(x) =

∫
∂Ω
f(y)K(x, y) dσ(y) and Tf(x) = p.v.

∫
∂Ω
f(y)∂ν(y)K(x, y) dσ(y) .

These are similar to single/double layer potentials, but defined on the boundary. Note the sign

difference between corresponding operators in [32]. Now, suppose f ∈ B ∩N . Then, we must have

that

0 = −1

2
f(x) + p.v.

∫
∂Ω
f(y)∂ν(y)K(x, y) dσ(y) = −

(
1

2
I − T

)
f(x) for x ∈ ∂Ω.

It is well-known that the double-layer potential on Ω generated by a boundary function g extends

continuously to the boundary with the value (12I − T )g [32, Theorem 3.22]. This potential solves

the Dirichlet boundary value problem, of finding a function harmonic on Ω whose boundary values

coincide with a given function on ∂Ω. Because this solution is unique, the map (12I−T ) is invertible

[32, Theorem 3.40a]. Hence, we conclude that f ≡ 0 on ∂Ω, so that f ∈ D.

Instead, suppose f ∈ B ∩ D. Then analogously, we find that we require R(∂νf) ≡ 0 on ∂Ω.

It is well-known that the single-layer potential on Ω generated by a boundary function g extends

continuously to the boundary with the value Rg [32, Theorem 3.25]. Hence ∂νf uniquely solves the

Dirichlet problem for vanishing boundary data, and itself vanishes on ∂Ω. Thus f ∈ N . ⋄

In light of this, we will compromise by seeking out an operator which commutes with some of

the Neumann functions, and so obtain a weak dependence on the domain. Recall that for functions

satisfying the Neumann boundary conditions, thanks to Green’s identity, the range of L is orthogonal
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to constant functions:

⟨Lf,1Ω⟩ =
∫
Ω
Lf =

∫
∂Ω
∂νf = 0 .

Now, let P be the orthogonal projection onto the orthogonal complement of the indicator function

1Ω; that is, Pf(x) := f(x)− 1
|Ω|
∫
Ω f(y) dy. Then if f satisfies the Neumann boundary conditions,

we have PLf = Lf .

Further, because the solution of the Neumann boundary value problem is unique up to a constant

[32, Theorem 3.40c], the only harmonic functions that satisfy the Neumann boundary conditions

are the constant functions. Hence, we should include the condition
∫
Ω f = 0, or Pf = f in our

definition of the Neumann class, with respect to finding a commuting integral operator. Essentially,

we are taking a quotient by the 1D subspace of constant functions, since whenever PLf = Lf , f

differs by a constant from a function g for which PLg = Lg and Pg = g. Given an orthonormal

basis for these functions, we may then later complete it by including 1Ω as a basis vector.

The invariance of the Neumann functions under P described above suggests that the operator

GH := PKP may commute with some of them.2 It is instructive to see that GH is also a self-adjoint

integral operator, and to know its kernel. To wit, we compute

PKf(x) = Kf(x)− 1

|Ω|

∫
Ω
Kf(z) dz =

∫
Ω
K(x, y)f(y) dy − 1

|Ω|

∫
Ω

∫
Ω
K(z, y)f(y) dy dz

=

∫
Ω

[
K(x, y)− 1

|Ω|

∫
Ω
K(z, y) dz

]
f(y) dy

(Note the use of K(z, y) = K(y, z)) =

∫
Ω

[
K(x, y)− 1

|Ω|
K1Ω(y)

]
f(y) dy .

Let F (y) := 1
|Ω|K1Ω(y), and h := 1

|Ω|
∫
Ω F (y) dy. Because P and K are self-adjoint, we expect that

KPf(x) =
∫
Ω[K(x, y)− F (x)]f(y) dy; calculating explicitly, we find

KPf(x) =
∫
Ω
K(x, y)

(
f(y)− 1

|Ω|

∫
Ω
f(z) dz

)
dy

=

∫
Ω
K(x, y)f(y) dy −

∫
Ω
F (x)f(z) dz

=

∫
Ω
[K(x, y)− F (x)] f(y) dy .

2Here, H refers to the harmonic kernel.
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as desired. Thus,

GHf(x) =
∫
Ω
[K(x, y)− F (x)]f(y) dy − 1

|Ω|

∫
Ω

∫
Ω
[K(z, y)− F (z)]f(y) dy dz

=

∫
Ω
[K(x, y)− F (x)− F (y) + h] f(y) dy =:

∫
Ω
GH(x, y)f(y) dy .

In one dimension, it turns out that we recover the usual Neumann Green’s function this way. For

this special case, there is the important property that every connected open set is an open ball;

hence without loss of generality we may take Ω = (a, b).

Proposition 3.2.3. Let Ω = (a, b). Then,

GH(x, y) = K(x, y) +
1

2(b− a)

((
x− a+ b

2

)2

+

(
y − a+ b

2

)2
)

+
b− a

12
.

Proof. We can explicitly compute F and h. This yields

F (y) =
1

b− a

∫ b

a
−1

2
|z − y|dz = − 1

4(b− a)

(
(b− y)2 + (y − a)2

)
= − 1

2(b− a)

(
y − a+ b

2

)2

− b− a

8
,

and

h = −b− a

8
− 1

2(b− a)2

∫ b

a

(
y − a+ b

2

)2

dy = −b− a

8
− 2

6(b− a)2

(
b− a

2

)3

= −b− a

6
.

Because 2/8− 1/6 = 1/12, the constant term is correct and we have the result. ⋄

For (0, 1), this reduces precisely to GN from (3.1). This means we may represent GN entirely

in terms of K, which is the key to obtaining the right discrete integral operator by quadrature.

We have just seen that we may write the one-dimensional Neumann Green’s function as

GN (x, y) =

∫ 1

0

∫ 1

0

(
K(x, y)−K(z, y)−K(x,w) +K(z, w)

)
dz dw .
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We can approximate GN with another kernel, formed by using midpoint quadrature on the double

integral:

MGN (x, y) :=
1

n2

n∑
ℓ=1

n∑
m=1

(
K(x, y)−K([x]ℓ, y)−K(x, [x]m) +K([x]ℓ, [x]m)

)
≈ GN (x, y) .

Let P denote the orthogonal projection onto the orthogonal complement of 1, given explicitly by

P := I− 1
n11

T. We will abuse notation here and later, and use K to denote the matrix of evaluations

of the harmonic kernel, so that [K]ij := K([x]i, [x]j) = −1
2 |[x]i− [x]j |. Then for each i ∈ 1 : n, and

f arbitrary, the integral operator against MGN is∫ 1

0
MGN ([x]i, y)f(y) dy

= GHf([x]i)−
1

n

∑
ℓ

GHf([x]ℓ)−
1

n

(∫ 1

0
f(y) dy

)(∑
m

[K]im − 1

n

∑
ℓ

∑
m

[K]ℓm

)

= [P (GHf(x))]i −
1

n

(∫ 1

0
f(y) dy

)∑
m

[PK]im

= [P (GHf(x))]i −
(∫ 1

0
f(y) dy

)
1

n
[PK1]i .

Applying one last midpoint quadrature, and collecting the result into a vector, yields the approxi-

mation: ∫ 1

0
MGN (x, y)f(y) dy ≈ M

(
PGHf(x)−

(∫ 1

0
f(y) dy

)
1

n
PK1

)
= PM

∫ 1

0

(
K(x, y)− 1

n
K1

)
f(y) dy

=
1

n
P
∑
ℓ

(
K◦ℓ −

1

n
K1

)
f([x]ℓ)

=
1

n
P

(
Kf(x)− 1

n
K11Tf(x)

)
=

1

n
PKPf(x) =:

1

n
Hf(x) .

The punchline will be that the eigenvectors of H are precisely those of the path-graph Laplacian,

which we demonstrate in Section 3.3, and so this calculation shows that MGN is the correct kernel
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from which to construct the Neumann discrete integral operator for the path graph. The proof of

this fact depends crucially on K being proportional to the path graph distance matrix.

3.2.3. Projecting on K in higher dimensions.

In higher dimensions, it turns out that GH does not commute with all of the Neumann eigenfunctions

– instead, we obtain precisely those Neumann functions which are constant on the boundary. Herein,

for a set of functions A and a formal unbounded operator T , let (A, T ) denote T equipped with

domain A.

Proposition 3.2.4. Let S = {f ∈ C2(Ω) ∩ C1(Ω)
∣∣ ∂νf ≡ 0 on S and Pf = f}, and let

Sc = {f ∈ S
∣∣ f ≡ c on ∂Ω for some c ∈ R}. Then GH commutes with the Neumann Laplacian

LN := (S,L) for d = 1, while for d > 1, instead GH commutes with the operator Lc := (Sc,L).

Proof. First, suppose f ∈ S, and let’s consider LGHf . We find that LGHf = LPKPf =

LKf = f . Note that in general, LPg = Lg, since Pg differs from g by a constant. Now, let’s

consider GHLf . We compute

GHLf(x) = PKPLf(x) = PKLf(x) = P
[
f(x)−

∫
∂Ω

[
K(x, y)∂νf(y)− f(y)∂ν(y)K(x, y)

]
dσ(y)

]
= f(x) + P

[∫
∂Ω
f(y)∂ν(y)K(x, y) dσ(y)

]
.(3.3)

The single-layer potential vanished because ∂νf ≡ 0 on ∂Ω. Let us consider the double-layer

potential u(f ;x) :=
∫
∂Ω ∂ν(y)K(x, y)f(y) dσ(y). In order for the extraneous term Pu(f ;x) to vanish,

u(f ;x) must be killed by the projection, and so must be a constant (possibly dependent on f).

In the case of d = 1, we may take Ω = (a, b) for some a, b ∈ R. We have K(x, y) = −1
2 |x − y|,

and so ∇yK(x, y) = −1
2 sgn(y − x). Then for any x ∈ (a, b),

u(f ;x) = −1

2
(sgn(b− x)f(b)− sgn(a− x)f(a)) = −1

2
(f(a) + f(b)) ,

a constant independent of x. This confirms the desired result for d = 1.

Now, suppose d ≥ 2. As in the proof of Proposition 3.2.2, we know that u(f ;x) extends

continuously to the function (12I − T )f(x) on ∂Ω. Because T1∂Ω ≡ −1
2 [32, Proposition 3.19],

if f ≡ c on ∂Ω, then u ≡ c on Ω. Conversely, if u ≡ c on Ω, then u is harmonic, and extends
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continuously to the constant function c on Ω. In particular, because the solution to the Dirichlet

problem is unique, f ≡ c is the only solution. Thus the extraneous term in (3.3) vanishes precisely

when f is constant on ∂Ω, establishing that GH commutes with Lc on Sc as desired. ⋄

Thus while for d = 1, we can obtain the continuous Neumann Laplacian and corresponding

discrete graph Laplacian from the harmonic kernel by projection alone, without considering bound-

ary conditions, this negative result guides us away from attempting this for more general domains.

Instead, we will approach from the discrete side, via the graph distance matrix.

3.3. Distance Matrices

Returning to the concrete goal of constructing discrete integral operators, we begin by slightly

restating a result of Bapat et al. from 2005. Given a matrix M , let M−◦ refer to the modified

Hadamard reciprocal with [M−◦]ij = 1/[M ]ij when Mij ̸= 0, and 0 otherwise. Let M◦r refer to the

usual Hadamard power with [M◦r]ij = [M ]rij .

Theorem 3.3.1 (Theorem 2.1 (Bapat et al. [5])). Let G be a weighted tree on n vertices

v1, . . . , vn, and G̃ be the same tree with reciprocal weights, such that W (G̃) = W (G)−◦. Let B

be the distance matrix of G, K := −1
2B, and L be the graph Laplacian of G̃. Define [δ]i := 2− [d]i,

with [d]i the unweighted degree of vi, w1, . . . , wn−1 as the edge weights of G, and σk :=
∑k

j=1wj.

Then

K−1 = L− 1

σn−1
δδT .

BecauseG is a tree on n vertices, it has n−1 edges, and so
∑

i[d]i = 2n−2, meaning δT1 = 2 ̸= 0.

So, because L1 = 0, multiplying the theorem statement on the right by 1, we find that K−11 ∝ δ,

so that Kδ ∝ 1. If we instead multiply by K, thanks to the symmetry of K, we find that

I = LK + cδ1T for some scalar c, so that P = LKP .

Because L1 = 0, LP = L, and so P = LPKP . From an easy check of the definitions, it then follows

that PKP = L†, the Moore-Penrose pseudoinverse of L [43]. As a corollary, taking G = χn, we

find that H = PKP shares the eigenvectors of L, reproducing the DCT.
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3.3.1. Extension to Cartesian products of graphs.

Extending the complete result H = L† from paths (or trees) to more general graphs is clearly not

possible. For example, the graph distance matrix may be singular. However, obtaining the pseu-

doinverse of the Laplacian is not necessary – the appropriate discrete integral operator needs only

to commute with the Laplacian, so as to have the same eigenvectors. The DCT, for example, is

extended to higher dimensions via a tensor product construction, whose domain naturally corre-

sponds to a Cartesian product of paths, which forms a grid, or lattice. In this setting, we can obtain

a positive result.

First, an aside: from now on, whenever we refer to H or B for a weighted graph G, we always

consider the shortest-path distances as computed on the graph G̃ with the same edges as G, but

whose edge weights are replaced by their reciprocals. Given that edge weights generally refer to

affinity between vertices, these reciprocal weights instead look like a repulsion between vertices.

When it is appropriate to think of the vertices as embedded in a metric space, edge weights must

be a decreasing function of metric, while of course the reciprocal edge weights are an increasing

function.

Proposition 3.3.1. Let G1, G2 be graphs with Laplacians L1, L2, and distance matrices B1, B2

respectively. Let L× and B× denote the graph Laplacian and distance matrix of the Cartesian

product G1 × G2. Define Hi := PiBiPi for i ∈ {1, 2,×}, where Pi is the orthogonal projection on

the orthogonal complement of 1 in the appropriate dimension. Then if H1 commutes with L1 and

H2 commutes with L2, H× commutes with L×.

Proof. The Laplacian of a Cartesian product of graphs may be written using the Kronecker

sum/product as L× = L1 ⊕ L2 = L1 ⊗ I2 + I1 ⊗ L2, where Ii (i ∈ {1, 2}) is the identity matrix

of the appropriate size. The distance matrix of a Cartesian product of graphs may be written

as B× = B1 ⊞ B2 := B1 ⊗ J2 + J1 ⊗ B2, where Ji (i ∈ {1, 2}) is the rank-one matrix 11T of the

appropriate size. The Kronecker product obeys the distributive rule (A⊗B)(C⊗D) = (AC)⊗(BD),

whenever each product is defined. Some algebra reveals that then H× = H1 ⊞ H2. Hence, since
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L1J1 = L2J2 = O,

L×H× = (L1 ⊗ I2 + I1 ⊗ L2)(H1 ⊗ J2 + J1 ⊗H2)

= L1H1 ⊗ J2 + J1 ⊗ L2H2

= L1H1 ⊞ L2H2

= H1L1 ⊞H2L2

= H×L× ,

as desired. ⋄

This means that H reproduces the Laplacian eigenvectors of Cartesian products of weighted

trees, and in particular for grid graphs, which makes these eigenvectors a candidate for extending

the DCT to graphs. Particularly, the pseudo-inversion relationship for trees suggests that the

appropriate analogue for the Fiedler vector ϕ1(L) of a general graph is then ϕn−1(H); that is,

the eigenvector corresponding to the top, or largest eigenvalue of H. First, recall L is positive

semidefinite, so λi(L) ≥ 0, i = 0, . . . , n − 1. Now, the positive values λi(L), have their order

reversed after pseudoinversion, so the smallest positive value λ1(L) corresponds to the maximum

value λn−1(L
†) = 1/λ1(L). As one of the properties of the pseudoinverse L† is that LL† is the

orthogonal projection against the kernel of LT, and L is symmetric, then from the property L†LL† =

L† we conclude that Lx = 0 =⇒ L†x = 0, and so the eigenvalue λ0(L) = 0 is reproduced, with

λ0(L
†) = 0 as well. It is straightforward to show that this property holds for the Cartesian products

in Propositions 3.3.1; while the order of the eigenvectors will vary in general, the extremal ones we

use to partition do not.

Proposition 3.3.2. Let Gi, Li, Hi be as in Proposition 3.3.1. Suppose that ϕ1(L1) = ϕn−1(H1)

and ϕ1(L2) = ϕn−1(L2). Then, the eigenspace of λ1(L×) is the same as the eigenspace of λn−1(H×).

Proof. First, given a matrix X, let X̂ denote the vectorization of X, a vector formed from

the concatenation of the columns of X. Then for an n × n matrix A, an m × m matrix B, and

m × n matrix X, we can concisely write matrix-vector multiplication for Kronecker products via

(A⊗B)X̂ = B̂XAT [42]. This fact, with the form of L×, immediately recovers the well-known fact
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that the eigenvalues of L× are sums of the eigenvalues of L1, L2, and the eigenvectors of the former

are Cartesian products of the latter. Setting Xij = ϕi(L2)ϕj(L1)
T, we see that

L×X̂ij = X̂ijL1 + L̂2Xij = λi(L1)X̂ij + λj(L2)X̂ij = (λi(L1) + λj(L2))X̂ij .

There are nm such eigenvectors, providing a complete set. When the eigenvalues are unequal, they

are orthogonal:

X̂ij
T
X̂kl = tr(ϕj(L1)ϕi(L2)

Tϕk(L2)ϕl(L1)
T) = δikδjl .

It must be that λ0(L×) = 0, and ϕ0(L×) = 1. Now, from Proposition 3.3.1, we know H× shares

these eigenvectors. However, noting that for each i > 0, ϕi(L1)
T1 = ϕi(L2)

T1 = 0,

H×X̂ij = ̂JXijH1 + Ĥ2XijJ = (δi0λj(H1) + δj0λi(H2))X̂ij .

This means that the only eigenvalues of H× which aren’t zero, are those for which exactly one of

(i, j) in Xij is 0. In other words, all mixed oscillations on the product graph have H-eigenvalue 0.

Now, first suppose λ1(L1) ̸= λ1(L2). Then λ1(L×) = min(λ1(L1), λ1(L2)) and ϕ1(L×) is either

X̂1 0 or X̂0 1 accordingly. In either case, then we have by assumption that ϕn−1(H×) = ϕ1(L×) as

desired.

If λ1(L1) = λ1(L2), then the eigenspace for λ1(L×) is degenerate, including one oscillation in

each direction of the product graph, and it is spanned by X̂1 0 and X̂0 1. Again, by assumption, we

have that these vectors are both the eigenvectors of H× corresponding to eigenvalue λn−1(H×). ⋄

We learn two things from the Cartesian case: we should expect the top eigenvectors of the discrete

integral operator to be very informative of the graph, and that the bottom eigenvectors may be totally

uninformative. The Cartesian case is extreme, where (m−1)(n−1)+1 out of mn total eigenvalues

are all 0, leading to an extremely degenerate eigenspace.

3.3.2. Partitioning and embedding via discrete integral operators.

As a first trivial example, consider the case of Gc with uniform weights, so W = J − I. Then

L = nI − J = nP , and the Fiedler vector is degenerate over all oscillatory vectors; as one would

expect, any partition is equivalent on this highly-symmetric graph. Because the shortest path

between any pair of vertices is the existing edge, then B =W = J−I, so H = −1
2P (J−I)P = 1

2P .
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The Fiedler vector of H, its top eigenvector, is again degenerate over all oscillatory vectors, agreeing

with that of L.

In the general case of Gc with arbitrary weights, B =W−◦ and H = −1
2PW

−◦P . For example,

in the Laplacian Eigenmaps algorithm [8], a graph is constructed from samples of a manifold using a

Gaussian kernel, where if the Euclidean distance between samples i, j is d(xi, xj), their edge weight,

when the edge is present, is wij = exp(−d(xi, xj)2/σ) for some scale parameter σ > 0. In that case,

we would have [B]ij = exp(d(xi, xj)
2/σ).

In order to build intuition, we want to emphasize that the matrix B is the graph distance

matrix with respect to the weights W−◦, not W itself, and except in the case of uniform weights,

is thus not finding shortest paths according to number of edges in the path, or minimizing the

sum of weights. Suppose w1, . . . , wk are the weights of some edges forming a path between vi, vj .

The harmonic sum of these weights is defined by h(w1, . . . , wk) :=
(∑

iw
−1
i

)−1. Then, the ob-

jective of the optimization in B is to maximize the harmonic sum of weights among possible

paths, since [B]ij = minh(w1, . . . , wk)
−1 = (maxh(w1, . . . , wk))

−1, where the optimization is over

paths connecting vi, vj . The harmonic sum is known to be dominated by its minimum input. Let

wm = miniwi, and notice that
1

wm
≤
∑
i

1

wi
≤ n

wm
,

so that the distance for a potential shortest path will be dominated by the contribution of its

smallest weight. Hence the calculation of B avoids edges with small weights, and when forced to

use them, assigns large distances to the resulting paths.

Now, we’ll study some relevant properties of H. First, it is clear that ϕn−1(H) corresponds to

a positive eigenvalue, because trH > 0, as follows. For any M satisfying [M ]ij ≥ 0, [M ]ii = 0 for

each i, j, we have that

∑
i

[PMP ]ii =
∑
ijk

[P ]ij [M ]jk[P ]ki =
∑
jk

[
P 2
]
jk
[M ]jk =

∑
jk

[P ]jk[M ]jk = − 1

n

∑
j ̸=k

[M ]jk < 0 .

As this condition is satisfied by B, we have trH > 0. If we had that every eigenvalue of H were

non-negative, then this turns out to be equivalent to W−◦ being a Euclidean distance matrix [6].

As an aside, because L† is positive semidefinite with L†1 = 0, it has the form −PCP , with C a
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Euclidean distance matrix called the commute time distance matrix, which expresses for vertices

u, v the expected time for a random walk starting at u to reach v, then u again. In [97], it is

shown that under mild assumptions, for many classes of graphs, the commute time distance for a

large graph reflects mainly local degree information, rather than connectivity, and so is not suitable

for use in machine learning problems. While for trees, commute time distance and shortest-path

distance are identical, the similarities end there, and the discrete integral operator shouldn’t suffer

these shortcomings.

Now, with the additional assumption that G is connected, B is irreducible3, and so the Perron-

Frobenius theorem holds [6], and ϕn−1(B) is all positive. Further, we can show that this is not

the case for H; ϕn−1(H) makes an excellent Fiedler vector in part because it must be oscillatory.

Let θ > maxij [B]ij , and notice that H = −1
2PBP = 1

2P (θJ − B)P , so that contrary to initial

appearance, the projections sandwich a matrix with positive entries. Let A := θJ − B be that

matrix, and consider R(x) := xTPAPx = (Px)TA(Px). Suppose x = argmax{x′:∥x′∥=1}R(x
′).

But then consider

R

(
Px

∥Px∥

)
=

1

∥Px∥2
R(x) =

(
1− (1Tx)2

n

)− 1
2

R(x) .

If x ̸= Px such that 1Tx ̸= 0, then R
(

Px
∥Px∥

)
> R(x), a contradiction. Hence ϕn−1(H) must be

oscillatory, and take on both positive and negative values.

In the spirit of Ratio Cut (2.16), what combinatorial problem does this Fiedler vector provide

a relaxed solution for? Using the usual Rayleigh criterion and the above, we know that

ϕn−1(H) = argmin
∥x∥=1

xTPBPx = argmin
∥x∥=1,x⊥1

xTBx .

Let S denote a subset of V (G), and S its complement in V . Let Bvol(S) :=
∑

i,j∈S [B]ij denote the

B-volume of S, or the sum of all distances between vertices in S. Define the Distance Ratio Cut as

(3.4) Bcut(S) :=
1

|S|
Bvol(S) +

1

|S|
Bvol(S) .

3If G is not connected, in fact B contains infinite values! This is addressed shortly in Subsection 3.3.4.
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Then, a straightforward argument in the spirit of [38] shows that if xS is piecewise-constant on S

and S, and satisfies ∥x∥ = 1,x ⊥ 1, then xT
SBxS = Bcut(S) + c, with c a constant independent of

S. Hence, the combinatorial problem of selecting S to minimize Bcut(S) relaxes to computing the

sign of the Fiedler vector ϕn−1(H). We expand on this form of argument in detail in the proof of

Proposition 3.3.5.

What kind of partition minimizes Bcut? There is a simultaneous optimization for balancing

the sizes of the two halves of the partition, and for as much B-volume of the graph as possible to

be outside of either partition; i.e., to arrange so vertices with a large distance between them are in

opposite halves of the partition. If the graph is weighted, from the earlier discussion, this means

vertices whose shortest path contains an edge with small weight are discouraged from being on the

same side of the partition.

Recent work [90] suggests that, except for relatively rare examples, whose characterization is yet-

unknown, a graph distance matrixB will tend to have nearly-constant top eigenvector ϕn−1(B), with

all other eigenvalues λi(B) < 0, i < n; we will call such graph distance matrices generic. Reversing

the order of these for −B, we see that for such graphs, the nearly-constant bottom eigenvector

ϕ0(−B) with λ0(−B) < 0 serves as the usual DC component ϕ0(L) ∝ 1. Putting these together,

a generic graph distance matrix B is then additionally a Euclidean distance matrix precisely when

1 ∈ span{ϕ0(−B),ϕ1(−B), . . . ,ϕk(−B)}, where k is the multiplicity of the eigenvalue 0. As an

intuition, the reason we use the top eigenvector ϕn−1(H) instead of the second-smallest eigenvector

ϕ1(H) is that the underlying distance matrix uses the reciprocal weights, which is critical. Finally,

it is useful to notice that the conceptual mapping between Euclidean (i.e., continuous) distance and

graph distance involves a numerically and computationally small, but analytically nebulous and

difficult leap, just as occurred when applying midpoint quadrature to obtain the discrete integral

operators from the continuous analogue.

In order to construct a spectral embedding with H, continuing this reasoning, the d coordinates

of vertex i are ([ϕn−1(H)]i, ..., [ϕn−d(H)]i), the top eigenvectors of H. When the embedding is

one-dimensional, this reverts to the value of the Fiedler vector, and when our goal is to bipartition

the data, we further revert to using only the sign of the Fiedler vector.
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Figure 3.2. A demonstration of the similar basic capabilities of the Laplacian and
discrete integral operator-based spectral embeddings. On the left is noisy samples
of a manifold, and on the right, two-dimensional spectral embeddings utilizing ap-
propriate eigenvectors of the Laplacian and discrete integral operator, respectively.

Figure 3.2 demonstrates the similar basic capabilities of the Laplacian and discrete integral

operator-based spectral embeddings. On the left is a scatterplot of 2000 noisy samples from a

closed one-dimensional manifold given by the curve y2 = (x2+0.1)(4−x2). The standard Gaussian

kernel technique is used to generate an adjacency matrix from this scattered data [8]. Next are

spectral embeddings, using two eigenvectors of each respective matrix. For the Laplacian, ϕ1(L)

and ϕ2(L) are plotted – beginning with the Fiedler vector and in order of increasing eigenvalue. For

the discrete integral operatorH, ϕn−1(H) and ϕn−2(H) are used – beginning with the Fiedler vector

and in order of decreasing eigenvalue. The marker colors are given by the polar angle of the original

samples, and show that both embeddings have learned a smooth representation of the angle, and in

fact, the distance-embedding appears higher quality. More advanced techniques (e.g., [55,59]) can

capture finer details of the manifold, but higher-quality baselines suggest better performance with

those techniques as well.

3.3.3. Normalized discrete integral operator. What is the equivalent, for a discrete inte-

gral operator, to the symmetric normalization often applied to the Laplacian to achieve improved

embedding, partitioning, and other desirable spectral properties? For inspiration, we can return to

Theorem 3.3.1, and the conclusion H = L†, to understand (Lsym)† in the case of trees. For any

nonzero, non-orthogonal vectors u,v, let Pu = I − 1

uTu
uuT be the orthogonal projection against

u, and let Puv = I − 1

uTv
uvT be the oblique projection against u, along v.

Proposition 3.3.3. Let G be a tree, W (G) its weighted adjacency matrix, and let Lsym be the

symmetrically-normalized Laplacian of G. To avoid ambiguity with the usual degree vector d and
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reduce clutter from powers, let ω := (W1)◦
1
2 = d◦

1
2 , and Ω := diag(ω). Let Ksym := −1

2ΩBΩ =

ΩKΩ be the symmetrically-normalized harmonic kernel matrix, as usual calculated using the weights

in W−◦. Let Hsym := PωK
symPω be the symmetrically-normalized discrete integral operator. Then,

Hsym = Lsym†.

Proof. We begin with what we know: K−1 = L − cδδT for a scalar c. As Lsym = Ω−1LΩ−1,

multiplying on both sides by Ω−1 will introduce the relevant terms, and we find

(Ksym)−1 = Lsym − c(Ω−1δ)(Ω−1δ)T .

Proceeding as before, notice that

KsymΩ−1δ = ΩKδ = c′Ω1 = c′ω ,

for another scalar c′, and so multiplying on the left by Ksym yields I = KsymLsym − cc′ω(Ω−1δ)T.

Multiplying on the left by Pω will kill the rank-one term, and notice that PωL
sym = Lsym =

LsymPω. The same arguments apply for multiplying on the right, and we obtain PωK
symPωL

sym =

HsymLsym = Pω = LsymHsym, yielding Hsym = Lsym† as desired. ⋄

We can also represent Hsym explicitly as a normalized version of H, using the oblique projection

Pd1 := I − 1

dT1
d1T, by observing:

ΩPω = Ω− 1

dT1
dωT = Pd1Ω ,

and that PPd1 = Pd1. Hence, applying the identity twice,

Hsym = ΩPT
d1KPd1Ω = ΩPT

d1(PKP )Pd1Ω = ΩPT
d1HPd1Ω = PωΩHΩPω .

In other words, the same “sandwich” used to form Hsym from B is the one used to form Hsym from

H, in analogy with Lsym, W , and L respectively.

Unsurprisingly, by analogous arguments we can form Hrw := PKDPd, find that it satisfies

Hrw = (Lrw)† for trees, and find that Hrw = HDPd. Further, the relationship between the

eigenvectors of Hsym and Hrw continues the metaphor with L.
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Proposition 3.3.4. (λ,ϕ) is an eigenpair of Hrw if and only if (λ,Ωϕ) is an eigenpair of Hsym.

Proof. We know (0,d) is an eigenpair for Hrw, and otherwise, ϕ(Hrw) ⊥ d. Similarly, we

know (0,ω) is an eigenpair for Hsym, and otherwise, ϕ(Hsym) ⊥ ω. Critically, this means that

P1dH
rw = Hrw. To see this, let Φ denote the n × (n − 1) matrix with ϕ1(H

rw), . . . ,ϕn−1(H
rw)

as columns, taking ϕ0(H
rw) = d and Λ the (n − 1) × (n − 1) diagonal matrix of corresponding

eigenvalues λ1(Hrw), . . . , λn−1(H
rw), for this proposition only, not necessarily in non-decreasing

order. Then the spectral theorem yields

P1dH
rw = P1d

[
d Φ

][0 0

0 Λ

][
d Φ

]−1

= P1d

[
0 Φ

][0 0

0 Λ

][
d Φ

]−1

=
[
0 Φ

][0 0

0 Λ

][
d Φ

]−1
= Hrw .

Notice that, ϕ0(H
rw) = d = Ωω = Ωϕ0(H

sym). Now, suppose (λ,ϕ) is any other eigenpair of Hrw.

Then

HDPdϕ = HDϕ = λϕ , and so ΩHΩ(Ωϕ) = λ(Ωϕ) .

Let ψ = Ωϕ, and notice ψ ⊥ ω. Then ΩHΩψ = ΩHΩPωψ, and because this is itself proportional

to ψ,

λψ = PωΩHΩPωψ = Hsymψ .

Each step is reversible, yielding the other direction as well. ⋄

Figure 3.3 repeats the embedding example from Figure 3.2, using the symmetric and random-

walk normalization for each of the Laplacian-based and discrete integral operator-based spectral

embeddings. In both cases, the data and technique are identical, only with L replaced by Lsym,

Lrw and H replaced by Hsym, Hrw. Notice that they all do a more precise job of characterizing the

underlying data, in different ways. The L-based embeddings produce more orthogonal embedding

coordinates, and privilege a small slice of the total polar angle parameter space with the variance

in ϕ2. The H-based embeddings begin to correctly reproduce the geometry of the manifold, in

addition to correctly reproducing the distribution of polar angles. A theme which we have noticed
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repeating is the relative fragility of the Laplacian-based embedding to noise and local changes in

sampling density; distance-based embedding tends to identify underlying structure more robustly.

Finally, we define the Distance Normalized Cut BNcut(S) for S ⊂ V . Let dS :=
∑

i∈S [d]i. Then

(3.5) BNcut(S) :=
Bcut(S)− 1

|V | Bvol(V )

1− 1

|V |∥d∥2

(√
|S|
|S|

dS −
√

|S|
|S|

dS

)2 .

Notice that minimizing BNcut(S), with the constraint that neither S, S is empty, attempts to

simultaneously minimize Bcut(S), and minimize
(√

|S|
|S|dS −

√
|S|
|S|dS

)2

, which is achieved when

possible by matching the ratios of degrees to cardinalities, such that dS
dS

= |S|
|S| . This second influence

acts as a regularizer, and punishes Bcut optimizers which choose extreme solutions, like isolating a

few high-degree vertices into a partition.

Fulfilling the metaphor with L, the sign of the Fiedler vector of Hrw solves a relaxed version of

the problem min∅⊊S⊊V BNcut(S).

Proposition 3.3.5. First,

ϕn−1(H
rw) = argmin

ϕ: ∥Pdϕ∥=1,ϕT1=0

ϕTBϕ .

Next, for S ⊂ V , let xS be piecewise constant on S, S, satisfying ∥PdxS∥ = 1,xT
S1 = 0. Then

xT
SBxS = BNcut(S) .

Proof. Let x = ϕn−1(H
rw), λ = λn−1(H

rw). Then PKDPdx = λx, and so

PdDPKDPdx = λPdDx .

Because the projections satisfy PdDP = PdD, the matrix on the left is symmetric, and so

x = argmax
ϕ: ∥PdDϕ∥=1,ϕTd=0

ϕTPdDKDPdϕ = argmax
ϕ: ∥PdDϕ∥=1,ϕTd=0

ϕTDKDϕ .
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Replacing ϕ with D−1ϕ, and noting B = −2K,

x = argmin
ϕ: ∥Pdϕ∥=1,ϕT1=0

ϕTBϕ ,

as desired. Next, let ∅ ⊊ S ⊊ V , and let [xS ]i = aδi∈S + bδi∈S . Then

xT
SBxS = (a2 − ab) Bvol(S) + (b2 − ab) Bvol(S) + abBvol(V ) .

The values of a, b are determined by the constraints on xS . From xT
S1 = 0, we find b = − |S|

|S|a.

Next,

∥PdxS∥2 = xT
SPdxS = ∥xS∥2 −

(xT
Sd)

2

∥d∥2

= a2|S|+ b2|S| −
(adS + bdS)

2

∥d∥2

= a2
|S||V |
|S|

1− 1

|V |∥d∥2

√ |S|
|S|

dS −

√
|S|
|S|

dS

2
=: a2

|S||V |
|S|FS

.

The large bracketed expression is denoted F−1
S in the last line. Now, the condition ∥PdxS∥ = 1

yields

a2 =
|S|FS
|S||V |

, b2 =
|S|FS
|S||V |

, ab = −FS
|V |

,

and so

xT
SBxS = FS

(
Bvol(S)

|S|
+

Bvol(S)

|S|
− Bvol(V )

|V |

)
= FS

(
Bcut(S)− 1

|V |
Bvol(V )

)
= BNcut(S) ,

as desired. Hence, if we restrict the optimization problem for computing ϕn−1(H
rw) to only

piecewise-constant vectors on a bipartition, we exactly optimize BNcut. Equivalently, optimizing

BNcut relaxes to computing the sign of the Fiedler vector. ⋄
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Figure 3.3. The embedding example from Figure 3.2, using the symmetric and
random-walk normalization for each of the Laplacian-based and discrete integral
operator-based spectral embeddings. In both cases, the data and technique are
identical, only with L replaced by Lsym, Lrw and H replaced by Hsym, Hrw.

3.3.4. Censoring the distance matrix. While the embedding examples in Figures 3.2, 3.3

suggest the utility of the discrete integral operator in representing spectral geometry, there are two

key problems that arise in its use:

• The Laplacian of a graph G is sparse, with only O(|V (G)| + |E(G)|) entries and so com-

puting its Fiedler vectors is generally fast. The distance matrix of a connected graph is

dense, requiring an expensive operation to compute it, dramatically more storage, and a

lengthier Fiedler vector computation on the resulting discrete integral operator.

• If G is disconnected, worse yet, the distance matrix is populated with infinities between

any two vertices for which there is no shortest path, and no Fiedler vector can be computed

at all.

Regarding the first problem, the Fast Multipole Method can be used to accelerate the com-

putation of the eigenvectors of the distance matrix, as was explored in the context of computing
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the Laplacian eigenvectors of general shape Euclidean domains in [101]. While this is an attrac-

tive avenue to incorporate for future work, we instead address these problems theoretically and

pragmatically by censoring large values of the distance matrix. Given a graph distance matrix B

and m ∈ R>0, let [Bm]ij := min([B]ij ,m). Likewise, define Km,K
sym
m , Hm, H

sym
m as the respective

counterpart dependent on Bm.

Implementing this one idea of censoring has many consequences:

• A finite threshold removes all infinities from a distance matrix, re-enabling eigenvector

calculation for disconnected graphs.

• Distances attaining the constant finite threshold need not be stored, recovering sparsity of

the distance matrix dependent on the size of the threshold.

• Large distances (relative to others in the graph) are intuitively less meaningful for measur-

ing structure of the graph, and as our experiments suggest, may even sometimes introduce

undesired noise into geometry represented by a spectral embedding. Thus, censoring can

act as a form of regularization.

• Algorithmically, it is possible to accelerate the computation of the distance matrix dra-

matically, as a sparse matrix, by making the threshold value known prior to computation.

• Even though H is generally dense, when Bm is sparse, we can use the fact that H is a low-

rank perturbation of −1
2Bm to compute the embedding for our discrete integral operator

with only a little more difficulty and expense than doing so for Bm.

Explicitly, we proceed in several steps to efficiently construct a discrete integral operator-based

spectral embedding for a graph G from a censored distance matrix. First, given the adjacency

matrix W for G, we construct the reciprocal weights W−◦, and define a censorship threshold m.

Next, for each vertex in G, we run a modified version of Dijkstra’s algorithm4 [22], in order to obtain

for each other vertex, either the length of the shortest path to that vertex in W−◦-weights, if it

doesn’t exceed m, or else m, yielding [Bm]ij for each vertex pair (vi, vj). Critically, our modification

does not require storing any values at or exceeding the threshold while computing the shortest path

lengths, and does not require searching on paths whose length would exceed the threshold.

4We perform these runs sequentially, but runs of Dijkstra’s algorithm initialized at distinct vertices are trivially
parallelizable, so parallel runs here offer a trade-off of greater memory footprint for faster execution.

58



In order to accomplish this in code, we need to understand the relationship between the below-

threshold and at-threshold entries of Bm. Let Tm := {(i, j) | 0 < [Bm]ij < m} be the non-threshold

support of Bm, and let [1Tm ]ij := δ(i,j)∈Tm be its indicator function. Let [B∗
m]ij := [1Tm ]ij [Bm]ij be

the restriction of Bm to that support, whose nonzero entries are the non-thresholded values in Bm.

B∗
m is precisely the matrix we will obtain the entries of by running the sparse dijkstra code from

Algorithm 1, and clearly we have Bm = B∗
m +m(J − I − 1Tm). Hence,

Hm = −1

2
PBmP = −1

2
P (B∗

m +m(J − I − 1Tm))P =
1

2
P (mI +m1Tm −B∗

m)P .

Examining each interior term, mI is diagonal, and the two other terms share the support of Tm,

sparse and purely off-diagonal, taking the combined positive values [m1Tm −B∗
m]ij = m− [B∗

m]ij >

0. We call this matrix [K∗
m]ij := 1

2(mδij + m − [B∗
m]ij) the censored harmonic kernel, and it is

exactly what we compute in order to obtain the discrete integral operator Hm = PKmP = PK∗
mP .

Likewise, easily following from the argument in Equation 3.3.3, let Ksym∗
m = ΩK∗

mΩ, and then

Hsym
m = PωK

sym
m Pω = PωK

sym∗
m Pω.

As an example, recall in Subsection 3.3.2, when we assumed each [B]ij < θ; then B∗
θ = B,

1Tθ = J − I, and in this case the censored harmonic kernel is K∗
θ = 1

2(θJ − B), and of course,

its entries are positive. This illustrates how the harmonic kernel should be seen fundamentally as

non-negative, because once the projections are applied in our calculation of H, we are always free

to add a constant to every entry of −B.

Next, consider censoring the distance matrix for the complete graph Gc at m = ϵ−1. Then

[K∗
m]ij =

1

2

(
1

ϵ
δij +

[
1

ϵ
− exp(d2ij)

]
+

)
=

1

2ϵ

(
δij + exp(d2ij)[exp(−d2ij)− ϵ]+

)
,

which means we are effectively performing soft thresholding on the weights, just as is typically

performed when constructing and sparsifying an adjacency matrix from scattered data5.

Returning to the sparse computation, finally, we do not explicitly form Hm or Hsym
m ; instead, as

typical with eigensolver libraries like ARPACK [64], we simply provide the mul! function ( in Julia

parlance) which performs in-place multiplication of Hm (or Hsym
m ) by a vector. As Ω is diagonal,

5In fact, the instructions in many prominent papers such as [8] recommend hard thresholding, likely for simplicity
rather than an opinion on soft vs. hard thresholding.
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[Ksym∗
m ]ij = [ω]i[ω]j [K

∗
m]ij has the same sparsity structure as K∗

m. Let k := K∗
m1 and ℓ := Ksym∗

m ω.

The necessary function can be easily determined by:

x 7→ Hmx = K∗
mx− 1

n

(
kTx− (1Tk) (1Tx)

n

)
1− 1Tx

n
k , and

x 7→ Hsym
m x = Ksym∗

m x− 1

ωTω

(
ℓTx− (ωTℓ) (ωTx)

ωTω

)
ω − ωTx

ωTg
ℓ .

With these steps in place, we are able to calculate discrete integral operator-based embeddings

with often only a small multiple in resource usage and execution time over an equivalent Laplacian

embedding, even though this embedding appears to capture far more structure of the graph. In

Algorithm 1, we detail the modified version of Dijkstra’s algorithm, with our explicit Julia code,

and include the distmat and censored_distmat sparse matrix constructors alongside it. In

Figure 3.4, we demonstrate the power of the new embeddings to solve a problem which is often

tricky, if not impossible, for the equivalent Laplacian implementation. The goal is to separate two

noisily-sampled, thick spiral bands of the form r = aθ+b, by constructing the usual Gaussian kernel

from Euclidean distance and partitioning the resulting graph. A bandwidth of π
a would cause the

spirals to merge into a single annular shape, and make classification impossible. A “difficult” regime

begins at 0.5πa , after which the Laplacian Fiedler vector will generally only recover the true classes

with significant fine-tuning of the kernel parameters, if at all. For this experiment, we generate 1500

points, with parameters a = 1
2π , b = 1, and bandwidth 0.6πa . The top-left spiral on the right is a

typical result of Laplacian classification, where blue and red indicate the classification (i.e., the sign

of the Fiedler vector). Conversely, we find that the integral operator-based classification is much

more robust, able to reliably reproduce the planted classification for a wide range of censorship

thresholds (and sometimes with no censorship required), far deeper into the difficult regime than

for the Laplacian. Here we performed 11 further classification attempts, using the Fiedler vector

of Hm, censored at the values in [400, 350, 300, 280, 250, 210, 170, 130, 90, 60,

30], which are chosen to span the notable features in the histogram at top-left. This histogram

illustrates the distribution of distance values contained in B, and the grey dashed lines, read right-to-

left, indicate successively smaller thresholds applied to H. The bottom-left chart shows the fraction

of shortest paths whose length is below each threshold, and so approximately gives the filling fraction
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for the corresponding sparse Bm. Each classification is then illustrated in the spirals on the right,

in descending threshold order, read left-to-right, top-to-bottom. Notice that leaving the extremely

long shortest-paths in the graph actually damages the classification, and here, a perfect result is

achieved between thresholds 130 and 300, covering approximately a third of the possible range of

thresholds, and resulting in distance matrices with filling factor ranging from 20-65%. The equivalent

Laplacian has a filling factor of about 5%, though it fails to achieve any meaningful classification.

Further reduction of the threshold effectively reduces the graph to mostly-disconnected “dust”, and

classification performance degrades.

Algorithm 1 Dijkstra’s Algorithm, Sparsified with Threshold (Julia)

� �
function dijkstra(g::AbstractGraph, src::Int; dmax = Inf)

dists = sparsevec([src], [0.0], nv(g))

H = PriorityQueue{Int,Float64}()
H[src] = 0.0

while !isempty(H)
u = dequeue!(H)
d = dists[u]
for v in outneighbors(g, u)

alt = min(d + weights(g)[u, v], dmax)
if alt < dmax && (v /∈ findnz(dists)[1] || alt < dists[v])

dists[v] = alt
H[v] = alt

end
end

end

dists
end

distmat(g::AbstractGraph; dmax=Inf) = reduce(
hcat,
(dijkstra(g, i; dmax) for i ∈ 1:nv(g))

)

censored_distmat(g::AbstractGraph, dmax::Real) = reduce(
hcat,
(

findnz(dists) |> nzds -> sparsevec(nzds[1], dmax .- nzds[2], nv(g))
for dists ∈ (dijkstra(g, i; dmax) for i ∈ 1:nv(g))

)
)� �
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Figure 3.4. Results of an unsupervised classification experiment, with the goal of
separating the two spirals pictured at right. The histogram at top-left illustrates
the distribution of distance values contained in B. The classification is performed
12 times, once with the Laplacian, and 11 times with the censored distance matrix,
and each grey dashed line in the histogram indicates the censorship threshold for
a trial. The bottom-left chart shows the fraction of shortest paths whose length is
below each threshold. Each classification is illustrated in the spirals on the right,
first by the Laplacian, and then by the censored discrete integral operator, in order
of decreasing threshold.
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CHAPTER 4

Recursive κ-Region Partitioning

Now, we turn to the key ingredients of this dissertation: developing a Fiedler vector suitable for

partitioning κ-regions, and multiscale transforms suitable for representing functions on κ-regions.

4.1. Simplex Consistency and the Hodge Laplacian

Recall the boundary operators [Bκ]ασ = rel(σ, α) introduced in Section 2.4. They represent

discrete differential operators encoding the structure of some part of a simplicial complex, and so

can be building blocks towards a spectral analysis of functions on that simplicial complex. For

analyzing functions on κ-simplices with κ > 0, we will construct operators based on the Hodge

Laplacian, or κ-Laplacian. Before considering weights, the combinatorial κ-Laplacian is defined for

κ-simplices as

Lκ := BT
κ−1Bκ−1 +BκB

T
κ .

We refer to the lower and upper κ-Laplacians as L∨
κ := BT

κ−1Bκ−1 and L∧
κ := BκB

T
κ , respectively.

For the rest of this section, let σ, τ be oriented κ-simplices. Recall our notation and definitions

from Section 2.4, where when σ ∼ τ , we denote the boundary bd(σ, τ) by α, and when σ ≃ τ , we

denote the hull hl(σ, τ) by β.

Now, suppose σ ∼ τ . Then define the consistency of σ, τ by

con(σ, τ) := −pσpτ nat(σ, α) nat(τ, α) = − rel(σ, α) rel(τ, α) .

When σ ≁ τ , we set con(σ, τ) = 0. We say σ, τ are consistent or have consistent orientation when

con(σ, τ) is positive, and inconsistent when the same is negative. Suppose, in addition, σ ≃ τ .

Then define the hull consistency of σ, τ by

hcon(σ, τ) := −pσpτ nat(β, σ) nat(β, τ) = − rel(β, σ) rel(β, τ) .
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Figure 4.1. Pairs of κ-simplices demonstrating consistency at their boundary face,
for κ = 1, 2. The mixed-color pairs are consistent, and the same-color pairs are
inconsistent.

Likewise, when σ ≃/ τ , hcon(σ, τ) = 0. We say σ, τ are hull-consistent when hcon(σ, τ) is positive,

and hull-inconsistent when the same is negative.

Notice that if σ, τ are consistent, then α ∈ σh ⇐⇒ α ∈ τ t, and vice versa. Likewise, if

σ, τ are inconsistent, then α ∈ σh ⇐⇒ α ∈ τh, and vice versa. Hence, consistent simplices use

their shared boundary face in opposite ways; one considering it a head face, and the other a tail

face. Inconsistent simplices use their shared boundary face identically; both considering it either

a head face or tail face. In the case of κ = 1, two directed edges are consistent when they flow

into each other at their boundary vertex, and are inconsistent when they collide at the boundary

vertex, either both pointing toward it, or both pointing away. Cases for κ = 1, 2 are demonstrated

in Figure 4.1

A key observation is that the notions of consistency and hull-consistency are exactly opposite;

consistency with respect to the shared boundary is inconsistency with respect to the shared hull,

and vice versa.

Lemma 4.1.1. Let κ > 0. For strongly adjacent oriented κ-simplices σ, τ , we have that

con(σ, τ) = −hcon(σ, τ) .

Proof. Let α = bd(σ, τ), and β = hl(σ, τ). Then let ℓ = ι(β \ σ) and m = ι(β \ τ) be the

positions in β given by (2.19).
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First, suppose ℓ < m. Then we must have that ι(σ \ α) = m− 1, and ι(τ \ α) = ℓ. Hence,

con(σ, τ) = −pσpτ nat(σ, α) nat(τ, α)

= −pσpτ (−1)m(−1)ℓ+1

= pσpτ nat(β, τ) nat(β, σ)

= −hcon(σ, τ) ,

as desired. If instead m < ℓ, then ι(σ \α) = m, and ι(τ \α) = ℓ− 1. From there the proof proceeds

identically as in the ℓ < m case. ⋄

To illustrate this result, consider a naturally-oriented 2-simplex s, as in Figure 4.2, with naturally-

oriented 1-faces e, f, g. Notice e, f ∈ sh, g ∈ st. Checking each pair, (e, f) are hull-inconsistent but

consistent, (e, g) are hull-consistent but inconsistent, and (f, g) are hull-consistent but inconsistent.

From the definition it is clear that flipping the orientation of s cannot change the hull-consistency;

here we see this is because the membership of sh, st themselves merely switch. Now, consider flip-

ping the orientation of some edge, without loss of generality e. This will have two effects: to flip

the sign of hcon(e, f) and hcon(e, g) directly, and to swap the membership of eh, et, which will flip

the sign of con(e, f) and con(e, g). To summarize, when edges flow into each other along their

boundary vertex, and so use that vertex in opposite ways, they are in turn used by the triangle to

whom they are faces in identical ways. Conversely, when edges conflict at their boundary vertex,

and so use that vertex in identical ways, they are in turn used by the triangle to whom they are

faces in opposite ways.

A corollary of Lemma 4.1.1 is the well-known fact that the discrete codifferential, as a cobound-

ary operator, satisfies Bκ−1Bκ = 0 [65]. In other words, “the boundary of a boundary is empty”.

Corollary 4.1.1. For any oriented simplicial complex C and κ > 0,

(4.1) Bκ−1Bκ = 0 .
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Figure 4.2. A naturally-oriented 2-simplex s, with naturally-oriented 1-faces e, f, g.

Proof. Let α ∈ Cκ−1, β ∈ Cκ+1. Then

[Bκ−1Bκ]αβ =
∑
σ∈Cκ

[Bκ−1]ασ [Bκ]σβ = pαpβ
∑
σ∈Cκ

nat(σ, α) nat(β, σ) .

The final sum vanishes for any σ that does not satisfy α ⊂ σ ⊂ β. If α ⊂/ β, no σ satisfies this

condition and the sum vanishes, yielding the desired result. Otherwise, there are precisely two

distinct κ-simplices σ1, σ2 satisfying this condition, and we have bd(σ1, σ2) = α, hl(σ1, σ2) = β. By

Lemma 4.1.1, and noting nat(·, ·) ∈ {±1},

0 = con(σ1, σ2) + hcon(σ1, σ2) = −pσpτ (nat(σ1, α) nat(σ2, α) + nat(β, σ1) nat(β, σ2))

= nat(σ1, α) nat(σ2, α) + nat(β, σ1) nat(β, σ2) .

Hence nat(σ2, α) = −nat(σ1, α) nat(β, σ1) nat(β, σ2), and we conclude that

[Bκ−1Bκ]αβ = pαpβ (nat(σ1, α) nat(β, σ1) + nat(σ2, α) nat(β, σ2))

= pαpβ
(
nat(σ1, α) nat(β, σ1)− nat(σ1, α) nat(β, σ1) nat(β, σ2)

2
)
= 0 ,

as desired. ⋄

By taking transposes, it is immediately clear that the same holds true for the discrete differential:

for each κ > 0, BT
κB

T
κ−1 = 0.
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This fact, which we’ll refer to as the homology property, is the starting point of discussing the

properties of Lκ in [65], including that L∧
κ and L∨

κ are orthogonal, and yields the well-known Hodge

decomposition:

(4.2) Rn = im(BT
κ−1)⊕ im(Bκ)⊕ ker(Lκ) .

One reason we emphasize this point is that for any choice of a∨, a∧ ∈ R, the eigenvectors of

a∨L∨
κ + a∧L∧

κ are identical to those of Lκ, and those with nonzero eigenvalue are either purely an

eigenvector of L∨
κ or L∧

κ ; the corresponding eigenvalues for the linear combination are simply scaled

by a∨ or a∧ respectively. In [14], a∨, a∧ are restricted to be positive, and used to weigh the relative

importance of the lower and upper κ-Laplacians in a spectral embedding using Lκ.

Another consequence of Lemma 4.1.1 is an explicit relationship between the off-diagonal elements

of L∧
κ and L∨

κ . Given a simplicial complex C and σ, τ ∈ Cκ, σ ̸= τ , let [U ]στ := 1σ≃τ be the κ-

hull matrix, and let [A]στ := 1σ∼τ be the κ-adjacency matrix. Set [A]σσ = [U ]σσ = 0. Let

[U ]στ := 1− [U ]στ be the indicator for the lack of a κ-hull. Notice that U = A⊙U , where ⊙ denotes

the Hadamard (i.e., element-wise) product.

Proposition 4.1.1. Let σ ̸= τ be κ-simplices. Then

[
L∨
κ

]
στ

= − con(σ, τ)[A]στ and
[
L∧
κ

]
στ

= −hcon(σ, τ)[U ]στ ,

so that

[Lκ]στ = − con(σ, τ)[A]στ [U ]στ .

Proof. On the one hand,

[
L∨
κ

]
στ

=
[
BT
κ−1Bκ−1

]
στ

=
∑

α∈Cκ−1

rel(σ, α) rel(τ, α) = pσpτ
∑

α∈Cκ−1

nat(σ, α) nat(τ, α) .

The term of the sum for a given α will vanish unless α is a face of both σ and τ ; in other words, it

vanishes unless σ ∼ τ , and only for the distinct term α∗ = bd(σ, τ). Hence,

[
BT
κ−1Bκ−1

]
στ

= − con(σ, τ)[A]στ .
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On the other hand,

[
BκB

T
κ

]
στ

=
∑

β∈Cκ+1

rel(β, σ) rel(β, τ) = pσpτ
∑

β∈Cκ+1

nat(β, σ) nat(β, τ) .

The term of the sum for a given β will vanish unless β has both σ and τ as faces; in other words,

it vanishes unless σ ≃ τ , and only for the distinct term β∗ = hl(σ, τ). Hence,

[
L∧
κ

]
στ

=
[
BκB

T
κ

]
στ

= −hcon(σ, τ)Uστ = con(σ, τ)[U ]στ ,

and so finally,

[Lκ]στ = − con(σ, τ) ([A]στ − [U ]στ ) = − con(σ, τ)[A]στ [U ]στ ,

as desired. ⋄

When constructing the graph Laplacian in the standard setting, the definition is usually given

as L0 = D −A for an appropriate diagonal matrix D representing vertex degrees, and a (generally

dense) matrix A representing adjacency. Now we can proceed in reverse, and infer the appropriate

notion of adjacency between two κ-simplices from the κ-Laplacian.

First, we compute the lower degrees and upper degrees, respectively, which together give the

diagonal degree matrix:

[
L∨
κ

]
σσ

=
∑

α∈Cκ−1

rel(σ, α)2 =
∑

α∈Cκ−1

1{α is a face of σ} = κ+ 1 ,

and [
L∧
κ

]
σσ

=
∑

β∈Cκ+1

rel(β, σ)2 =
∑

β∈Cκ+1

1{σ is a face of β} =
1

κ+ 1
[U1]σ .

Denote the corresponding diagonal matrix Dκ := diag((κ + 1)1 + 1
κ+1U1). Next, consider the off-

diagonal elements of Lκ. Notice that the non-negative component A⊙U is nonzero only for simplices

which are adjacent, but not strongly-adjacent, so precisely when they are κ-adjacent. Now, defining

the signed κ-adjacency matrix Sκ via

[Sκ]στ =


con(σ, τ) σ ∼κ τ

0 otherwise
,
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we conclude that Lκ = Dκ − Sκ. Hence, the combinatorial κ-Laplacian represents signed adjacency

between κ-adjacent simplices, via their consistency. In particular, this means that given a simplicial

complex C, Lκ can be computed from just natural orientations, which depend only on the simplex

vertices, and the orientations of each κ-simplex in Cκ.

Naively, constructing the boundary matrices Bκ−1, Bκ then requires superfluous sign information

– the orientation of each member of both Cκ−1 and Cκ+1. This situation exactly mirrors that of

the graph Laplacian L0. In order to construct L0 for an undirected graph from boundary matrices,

one must assign an arbitrary direction to each edge, and the resulting Laplacian is independent of

that choice of directions. In the language of κ-simplices, one must assign to each 1-hull an arbitrary

orientation consistent with the natural orientation, i.e., so that each resulting oriented 1-simplex has

one head and one tail, and the resulting κ-Laplacian is then independent of the choice of orientations.

This is clear from the relevant linear algebra as well; if s ∈ (±1)|V (G)|, and Σ = diag(s), then

ΣΣT = Σ2 = I, and the result of changing the orientations in G such that edge ei is flipped when

si < 0, is

B̃0 = B0Σ , such that L̃0 = B̃0B̃0
T = B0Σ

2BT
0 = B0B

T
0 = L0 .

Including these arbitrary orientations obscures the fact that the Laplacian doesn’t depend on them.

4.1.1. Weighted and normalized κ-Laplacians.

We will motivate the introduction of a weighted simplicial complex, by first considering the sym-

metrically normalized graph Laplacian

Lsym
0 := D

−1/2
0 B0D1B

T
0D

−1/2
0 =

(
D

−1/2
0 B0D

1/2
1

)(
D

−1/2
0 B0D

1/2
1

)T
,

where D0, D1 are diagonal matrices, whose diagonal contains the weights of vertices (C0) and edges

(C1) respectively. In this discussion only, when σ is a κ-simplex, we will abuse notation and use dσ

to refer to the appropriate entry in Dκ, and use σ ∼ α to refer to α being a face of σ. For each

vertex-edge pair (v, e) we can associate the weight rev :=
√
de/dv, and then when e = (u, v), the

weight of the vertex pair (u, v) is the product revreu. The diagonal of Lsym
0 has the form

[Lsym
0 ]uu =

∑
e∼u

r2eu ,
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and a standard consequence of normalizing the Laplacian is to take this sum to be 1 for each u,

which in turn forces du =
∑

e∼u de; i.e., the standard assumption that vertex weights are constrained

to be the sum of all adjacent edge weights. We can write this constraint as D0 = diag(|B0|D11), or

equivalently D01 = |B0|D11, with the absolute value taken element-wise.

Now, letting Dκ generally refer to a diagonal matrix containing κ-simplex weights, we proceed

as in [14] and define the symmetrically normalized κ-Laplacian as

Lsym
κ := BT

κ−1Bκ−1 +BκB
T
κ ,

where Bκ := D
−1/2
κ BκD

1/2
κ+1. The weight for a pair of simplices is now composed of both an upper

(hull) and lower (boundary) weight, and from Proposition 4.1.1, we know that the total weight is

the difference of these, even while their contribution to the diagonal degree term is the sum.

Notice that for the upper normalized Laplacian, the condition diag(BκB
T
κ ) = 1 is, just as in

the κ = 0 case, equivalent to the constraint

(4.3) Dκ1 = |Bκ|Dκ+11 ,

so that the simplex weights are just degrees of the hull weights. For the lower normalized Laplacian,

in [14], they constrain the (κ− 1)-simplex boundary weights in the analogous way, with Dκ−11 =

|Bκ−1|Dκ1, so that boundary weights are themselves degrees, summing the simplex degrees in turn.

A different principled choice is to observe that the lower Laplacian flips the roles of boundary and

hull, so that when we apply the condition diag(BT
κ−1Bκ−1) = 1, we find

[BT
κ−1Bκ−1]σσ = dσ

∑
α∼σ

d−1
α = 1 ,

so that dσ =
(∑

α∼σ d
−1
α

)−1
= h({dα | α ∼ σ}), the harmonic sum over the simplex degrees, instead

of directly taking their sum. Written in matrix form, this creates the constraint

(4.4) D−1
κ 1 = |Bκ−1|TD−1

κ−11 .

Now, these two constraints on Dκ1 suggest two ways to proceed. First, we may assume that

Dκ is fixed by the upper Laplacian constraint, and then solve the lower Laplacian constraint, say
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Swt
1 = 1

4



0 2 −1 1 0

2 0 2 0 1

−2 2 0 2 −2

1 0 2 0 2

0 1 −2 2 0


Figure 4.3. The complex from Figure 2.6 on the left, with natural orientation dis-
played as directed edges, together with its weighted, unnormalized signed adjacency
matrix Swt

1 , with D2 = I. Notice that weights differ depending on consistency and
presence or lack of hull, and that the presence of a hull can switch the expected sign.

in a least-squares sense, to fix Dκ−1. This leaves the hull weights Dκ+1 free to vary, as input

data to constructing Lsym
κ . Alternatively, we can assume that Dκ is fixed by the lower Laplacian

constraint, and then solve the upper Laplacian constraint to fix Dκ+1. This provides a principled

way to construct the normalized, weighted κ-Laplacian when the weight data is supplied on the

boundaries, instead of on the hulls.

From Lsym
κ we may define the usual weighted un-normalized κ-Laplacian Lwt

κ , and the random-

walk normalized Lrw
κ , whose eigenvectors will be the basis for our bipartitioning:

Lwt
κ := D1/2

κ Lsym
κ D1/2

κ and Lrw
κ := D−1

κ Lwt
κ .

One reason we didn’t introduce Lwt
κ first is that it lacks many of the nice properties of Lκ. First,

from expanding the definition

Lwt
κ := D1/2

κ Lsym
κ D1/2

κ = DκB
T
κ−1D

−1
κ−1Bκ−1Dκ +BκDκ+1B

T
κ ,

it is clear that we cannot both recover the combinatorial Lκ, and satisfy either of the degree con-

straints (4.3), (4.4); we would need to have that Dk+1 = I, and that for each pair of adjacent

simplices σ, τ with boundary α, that dσdτ = dα. Also, Lwt
κ is the only κ-Laplacian variant discussed

so far which does not benefit from the homology property (4.1), since D−1/2
κ−1 Bκ−1DκBκD

1/2
κ+1 ̸= 0.

This means that the lower and upper un-normalized, weighted κ-Laplacians are not orthogonal,

linear combinations of them may not have the same eigenvectors, and the Lwt
κ -harmonic functions,
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those f satisfying Lwt
κ f = 0, are not simply characterized by the intersection of their null spaces.

For these reasons, we do not use Lwt
κ for analysis. Analogously, we also do not explore normal-

ized combinatorial k-Laplacians of the form DLκE for some diagonal matrices D,E, as such a

normalization will not generally have the homology property either.

This exploration shows that both choice of weight and degree conventions, and choice of normal-

ization have more degrees of freedom for simplicial complexes than for graphs, and that the kind to

use may depend on the problem, whether weights are relevant, and how they should be interpreted.

For example, if a simplicial complex is equipped with both (κ−1)-boundary weights and (κ+1)-hull

weights without a clear relationship between them, then we define the decoupled weighting of Lκ as

Ldc
κ = BT

κ−1Dκ−1Bκ−1 +BκDκ+1B
T
κ ,

so that the familiar “degree diagonal minus weights” formulation applies to both the upper and lower

κ-Laplacian separately. The decoupled κ-Laplacian satisfies the homology property, and while one

can construct a normalized version by normalizing the lower and upper κ-Laplacians separately,

there is then no simple relationship with the normalized and un-normalized version, and further,

the normalized version loses the homology property.

While in the combinatorial case, Lκ vanishes for pairs σ ≃ τ , each of the weighted Laplacians

Lwt
κ , L

rw
κ , L

sym
κ , Ldc

κ , and any linear combination of lower and upper Laplacian variant with coeffi-

cients a∨, a∧ unequal may be nonzero whenever σ ∼ τ . Finally, we define the weighted analogues

of the signed adjacency matrices, Swt
κ , Ssym

κ , Srw
κ , Sdc

κ , as the negatives of the off-diagonal parts of

their respective Laplacians.

4.2. κ-Fiedler Vector

Let C be a simplicial complex, such that G = (C0, C1) is a connected graph. For a given κ,

let p be a vector of orientations over Cκ, with each [p]σ ∈ {±1}, and let Σp = diag(p). Let Lwt
κ ,

L̃wt
κ denote the weighted κ-Laplacian of Cκ with natural orientations, and with orientations given

by p, respectively. Let λ0 ≤ · · · ≤ λn−1 be the eigenvalues of Lwt
κ and ϕ0,ϕ1, . . . ,ϕn−1 be the

corresponding eigenvectors where n = |C0|. Then, let (λ̃i, ϕ̃i) be the eigenpairs for L̃wt
κ . Because

L̃wt
κ = ΣpL

wt
κ Σp, then λ̃i = λi and ϕ̃i = Σpϕi for 0 ≤ i < n.
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For κ = 0, with the vertices of G in natural orientation, we have that λ0 = 0, λ1 > 0, ϕ0 = 1

and in particular is non-oscillatory, and that ϕ1 acts as a single global oscillation, appropriate to

bipartition the vertices of G with. Considering L̃wt
0 for nontrivial p /∈ {±1}, ϕ̃0 is oscillatory, and

ϕ̃1 is no longer appropriate for clustering; this is one reason that oriented 0-simplices are always

considered to be in natural orientation.

For κ > 0 however, it is no longer true that ϕ0 will be non-oscillatory. Let p∗ be a vector of

orientations such that where [ϕ0]σ ̸= 0, [p∗]σ = sgn([ϕ0]σ). Then the corresponding ϕ̃0 is non-

oscillatory, and acts as a DC component. This motivates taking sgn(ϕ0)⊙ϕ1 (element-wise) as the

Fiedler vector of Lwt
κ , with which to bipartition Cκ.

In order to build intuition for this choice of Fiedler vector, we consider some simple simplicial

complexes, the κ-paths. The 0-path graph Pn is a graph on n 0-simplices, with n−1 hulls connecting

each in order, and its Laplacian eigenvectors, as discussed in depth in Section 3.2, are a sequence

of uniform oscillations (i.e., DCT basis vectors), increasing in frequency with increasing eigenvalue,

whose signs therefore yield clear partitions of the path. Notice that the 0-path may also be considered

a 1-complex, whose 1-simplices are weakly adjacent along a sequence of vertices. We will call this

type of κ-path, connecting n κ-simplices along some mutual, unrepeated boundaries, and containing

no (κ + 1)-hulls, a lower simplex path, denoted P ↓
n,κ. The complex P ↓

n,κ consists of n + κ vertices,

and the n simplices are connected by a total of 1 + nκ boundary faces.

Then let Pn,κ refer to the simplex path, which consists of n connected (κ+1)-hulls, each adjacent

to a distinct pair of κ-simplices. P ↓
n,κ+1 has the same graph structure as Pn,κ; for the former, we

are interested in the (κ + 1)-simplices, and in the latter, the κ-simplices. For κ = 0, our notation

differs slightly from the graph setting in that Pn,0 = Pn+1. The complex Pn,κ consists of n+ κ+ 1

vertices, joining 1+n(κ+1) simplices. Successive sets of κ+1 simplices (each in Cκ) form the faces

of each of the n hulls (each in Cκ+1) of Pn,κ, and they are connected by a total of κ + 1 + n
(
κ+1
2

)
boundary faces (each in Cκ−1).

Figure 4.4 displays the bottom eigenvectors of Lκ for P ↓
50,2, and Figure 4.5 displays the same for

P50,1. In both cases, the similarity with the κ = 0 path case are clear, and ϕ1 behaves appropriately

as a Fiedler vector. The latter example especially illustrates that eigenvalue alone is a poor way

to organize the eigenvectors, because of their inherent higher-dimensional organization; in this case
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because the graph underlying the simplicial complex is a variant of a two-dimensional grid. Proper

organization of the eigenvectors and the pitfalls of using solely eigenvalue are explored in [17,75].

We also note that Lκ and either Lsym
κ or Lwt

κ may yield dramatically different results when

simplices in the κ-region have no adjacent hulls, and sometimes the latter matrix will have undefined

values, when a (κ−1)-boundary face is adjacent only to κ-simplices with no hulls. The lower simplex

path is an extreme example, with no hulls at all; equivalently, in the combinatorial case for these

complexes we analyze only the lower Laplacian. Practically, when computing weighted Laplacians

in our k_laplacian code, we include the option weakadjweight to add a uniform weight ϵ for

every weakly-adjacent pair, which prevents the appearance of zero degrees on either κ-simplices or

(κ− 1)-boundary faces. This modifies the simplex degree constraint to be

(4.5) Dκ1 =
(
|Bκ|Dκ+1 + ϵ|BT

κ−1|
)
1 .

In the κ = 0 case, this would be equivalent to adding a constant weight to every edge, with the

corresponding increase appearing in all vertex degrees.

Now, what if G is not connected? In the κ = 0 case, the behavior of eigenvectors with eigenvalue

λ0 = 0 is well understood, and in general, the Fiedler vector is not ϕ1, but ϕn+1, where n is the

nullity of L0. For general κ, the nullity of Lκ for a given simplicial complex is known to be the κth

Betti number bκ, which counts the number of “κ-dimensional holes” in the complex [33]. This is an

explicit generalization, as b0 = n. While we don’t dive into the topological properties of Lκ in this

dissertation, it is enough to notice that harmonic functions do not generally have global support,

and so make for poor DC components. In the simplex path examples, the relevant complexes all

have strictly positive definite Laplacians, and so no eigenvectors are harmonic. In Figure 4.6, we

demonstrate how blindly taking sgn(ϕ0) ⊙ ϕ1 fails to produce a meaningful partition for a less

structured complex, but that taking the first non-harmonic eigenvector as the DC component yields

clear oscillations. Hence, for general complexes, we will take sgn(ϕbκ+1) ⊙ ϕbκ+2 as the Fiedler

vector.

We will aim to bipartition κ-regions by following a standard strategy in spectral clustering, of

minimizing a relaxation of a combinatorial cut function over possible partitions. Just as a graph

cut is typically defined as the volume of edge weight which crosses a partition of the vertices, we
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Figure 4.4. A visualization of the first fifteen eigenvectors of Lκ = L2 for P ↓
50,2. On

the left, orientations have been chosen for the triangles such that ϕ0 has consistent
sign, while on the right, the triangles have been left in natural orientation. Yellow
indicates positive values, and purple indicates negative values. Notice how ϕ1 for
the re-oriented complex behaves precisely as one expects here for a Fiedler vector.

can define the positive and negative signed consistency cut of Cκ into subregions A,B as

Ccutκ
±(A,B) :=

∑
σ∈A,τ∈B
σ∼τ

[S±
κ ]στ ,

where [S±
κ ]στ = max(0,±[Swt

κ ]στ ) are indicator functions for consistent/inconsistent pairs, respec-

tively1. Because of the signs introduced by consistency, we consider Swt
κ as the signed, weighted adja-

cency matrix for a signed graph over Cκ, and so can utilize the framework of signed Laplacians [62].

1This argument also goes through identically with Swt
κ replaced by the combinatorial Sκ.
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Figure 4.5. On the left, a visualization of the first fifteen eigenvectors of Lκ = L1

for P50,1. In this case, the natural orientations are already such that ϕ0 has constant
sign. There are two types of oscillations, analogous to the L0-eigenvectors of a
ladder graph, or a narrow grid graph. Eigenvectors 0 − 6 oscillate along the length
of the path in the expected way, then 7 − 10 include a vertical oscillation which
assigns opposite sign to the two outer 0-paths. Higher eigenvectors continue adding
either vertical or horizontal oscillations. On the right, different oscillation types are
illustrated, for eigenvectors 1− 3, 4− 6, and 7− 9. The sub-oscillations are a result
of the edge indexing, because there are three types of edges interspersed with each
other: those on one of the two outer 0-paths, and those on the inner 0-path.

Define the consistency volume Cvolκ
±(A) := Ccutκ

±(A,A), Cvolκ(A) := Cvolκ
+(A) + Cvolκ

−(A),
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Figure 4.6. Various edge eigenvectors of L1, for the clique complex constructed
from the Minnesota road network. Here b1 = 610, so the 0-eigenspace is highly
degenerate, as the road network contains many cycles, but few triangles. More red
indicates more positive, and more blue indicates more negative values. The top left
is the standard Fiedler vector ϕ1, in an orientation that makes ϕ0 non-negative.
This harmonic vector yields no clear partition or structure of the graph. The other
three are in an orientation that makes ϕ611 non-negative, and from left to right, top
to bottom, are eigenvectors ϕ613,ϕ614,ϕ615. The progression clearly demonstrates
meaningful partitions on the 1-region, with increasing oscillation.

and the signed κ-cut

κCut(A,B) := 2Ccutκ
+(A,B) + Cvolκ

−(A) + Cvolκ
−(B) .

In the κ = 0 case, with all vertices in natural orientation, Swt
0 is just the usual adjacency matrix,

and so S−
0 = 0; hence κCut = 2Ccutκ, yielding the traditional cut objective. For κ > 0, κCut

increases with the number of consistent pairs of κ-adjacent simplices across the partition, and with

the number of inconsistent pairs within each κ-region. Equivalently, minimizing κCut requires

maximizing consistent pairs within each κ-region, and maximizing inconsistent pairs across the

partition.
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Let Lκ be the signed Laplacian with signed adjacency Swt
κ . Let A be a κ-region, define rA :=

1A − 1Cκ\A, and RA(L) := rTALrA. Then because Lκ differs from Lwt
κ only on the diagonal,

RA(Lκ) differs from RA(L
wt
κ ) by a constant independent of A. From [62], we know that RA(Lκ) ∝

κCut(A,Cκ \ A). Hence, minA⊂Cκ RA(L
wt
κ ) = minA⊂Cκ κCut(A,Cκ \ A), and we obtain ϕ0 as a

relaxed solution to signed κ-cut minimization.

Now, notice that if the orientations of Cκ were changed according to some p, this would be

equivalent to a different choice of A; namely, if [p]σ = −1, then σ moves to the other side of the

partition, either into or out of A. As all orientations are available to us, this includes one for which

ϕ̃0 is non-oscillatory, so that its sign does not partition Cκ. We then instead take ϕ̃1 as our relaxed

solution, which we may compute via sgn(ϕ0) · ϕ1.

Finally, we need to avoid circumstances where some or many entries of the Fiedler vector vanish,

because those entries provide no partitioning information (or in practice, random partitioning, from

noise in the eigenvector computation). In the κ = 0 case, this is handled by skipping the first n

eigenvectors, first to ensure orthogonality to 1, but also because the eigenspace of λ0 = 0 is spanned

by the indicator functions of connected components, which then vanish for the rest of the vertices

in the graph.

In [23, Ch. 8], it is shown that the eigenspace for Lκ of λ = 0 can be spanned by harmonic

components, which vanish except near a hole in the graph caused by a minimal cycle that is not a

triangle. Due to their sparsity, even if these eigenvectors optimize κCut, they do so trivially, so we

discard them, again arriving at the general relaxed solution sgn(ϕbκ+1)⊙ ϕbκ+2.

An improved cut objective is the signed Ratio Cut, which encourages more balanced partitions:

SignedRatioCut(A) :=

(
1

|A|
+

1

|Cκ \A|

)
κCut(A,Cκ \A) .

From [62], we know that with rA above scaled by a factor of cA :=
√
|A|/|Cκ \A|, the analogous

result holds, that the eigenvectors of Lκ yield a relaxed solution to minA⊂Cκ SignedRatioCut(A).

However, the new dependence on A means the resulting objective is slightly different for Lκ, so the

relaxation is only approximate.
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Figure 4.7. One possible hierarchical bipartitioning of a simple 2-complex, from
j = 0 with no partition on the left, to j = 5 on the right, where each of the 21
triangles form their own subregion. Colors indicate distinct subregions.

Finally, the signed Normalized Cut balances the partitions by degree rather than simplex count:

SignedNormalizedCut(A) :=

(
1

Cvolκ(A)
+

1

Cvolκ(Cκ \A)

)
κCut(A,Cκ \A).

Here, the eigenvectors of diag(Lκ)−1Lκ yield a relaxed solution to

minA⊂Cκ SignedNormalizedCut(A), and an approximate relaxed solution is given by the appropriate

eigenvectors of Lrw
κ , again sgn(ϕbκ+1)⊙ ϕbκ+2. In our numerical experiments, we use the random-

walk κ-Laplacian for bipartitioning simplicial complexes unless we say otherwise.

4.3. κ-Haar Basis

This section borrows from and builds on the corresponding section in our preprint [79].

With the κ-Fiedler vector in hand, we can proceed to recursively bipartition Cκ to form a

hierarchical bipartition tree. This bipartitioning operation ideally splits each κ-subregion into two

smaller κ-subregions that are roughly equal in size while keeping tightly-connected κ-simplices

grouped together. More specifically, let Cjk denote the kth κ-subregion on level j of the binary

partition tree of Cκ and njk :=
∣∣∣Cjk∣∣∣, where j, k ∈ Z≥0. Note C0

0 = Cκ, n00 = n, i.e., level j = 0

represents the root vertex of this tree. Then the two children of Cjk in the tree, Cj+1
k′ and Cj+1

k′+1,

are obtained through partitioning Cjk using the Fiedler vector of Lrw
κ

(
Cjk

)
. This partitioning is

recursively performed until each κ-subregion corresponding to the leaf contains only a simplex

singleton. Note that k′ = 2k if the resulting binary partition tree is a perfect binary tree. We

note that as before, even other (non-spectral) partitioning methods can be used to form the binary

partition tree, but here, we stick with the spectral clustering using the Fielder vectors. Figure 4.7

demonstrates such a hierarchical bipartition tree for a simple 2-complex consisting of triangles.

The usual definitions of Haar wavelets do not generalize to non-homogeneous domains due to

the lack of appropriate translation operators and dilation operators [85]. Instead, several methods
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have been proposed to generate similar bases, and overcomplete dictionaries, in order to build

them on more abstract domains such as graphs and discretized manifolds [47, 80, 86]. Here, we

describe a method to compute similar, piecewise-constant locally supported bases for κ-simplex

valued functional spaces, which we call the (orthonormal) κ-Haar bases.

Rather than basing our construction on some kind of translation or transportation schemes, we

instead employ the hierarchical bipartition, as we discussed in Section 2.3, to divide the domain,

i.e., the κ-simplices Cκ of a given simplicial complex C into appropriate locally-supported κ-regions.

For each κ-region in the bipartition tree, if that region has two children in the tree, then we create

a vector that is positive on one child, negative on the other, and zero elsewhere. To avoid sign

ambiguity, we dictate that the positive portion is on the region whose region index is smaller among

these two.

Several remarks on this basis are in order. First, since the division is not symmetrically dyadic,

we need to compute the scaling factor for each region separately. For each given basis vector ξ

except the scaling vector, we break it into positive and negative parts ξ+ and ξ− and ensure that∑
i([ξ

+]i+ [ξ−]i) = 0 and ∥ξ∥ = 1. If the members of the κ-region are weighted, then this sum and

norm can be computed with respect to those weights. Finally, we note that different hierarchical

bipartition schemes may arise from the different weighting of the κ-Laplacian, which will correspond

to bases with different supports. Figure 4.8 demonstrates the 2-Haar basis on the simple 2-complex

used in Figure 4.7, which has a hole in the center.
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Figure 4.8. The 2-Haar basis vectors on the same simple 2-complex shown in
Figure 4.7. The yellow, dark green, violet regions in each vector indicate its positive,
zero, and negative components.

81



CHAPTER 5

Multiscale κ-Region Transforms

Now, we introduce the two overcomplete dictionaries we will use for analyzing real-valued func-

tions defined on κ-simplices in a given simplicial complex: the κ-Hierarchical Laplacian Eigen Trans-

form (κ-HGLET), based on the Hierarchical Graph Laplacian Eigen Transform (HGLET) [48] and

the κ-Generalized Haar-Walsh Transform (κ-GHWT), based on the Generalized Haar-Walsh Trans-

form (GHWT) [47] for graph signals 1. This material was also developed in the preprint [79].

5.1. Hierarchical κ-Laplacian Eigen Transform (κ-HGLET)

The first overcomplete transform we describe can be viewed as a generalization of the Hierar-

chical Block Discrete Cosine Transform (HBDCT). The classical HBDCT is generated by creating a

hierarchical bipartition of the signal domain and computing the DCT of the local signal supported

on each subdomain. We note that a specific version of the HBDCT (i.e., a homogeneous split of an

input image into a set of blocks of size 8× 8 pixels) has been used in the JPEG image compression

standard [71]. This process was generalized to the graph case in [48], with the Hierarchical Graph

Laplacian Eigen Transform (HGLET), from which we base our algorithm and notation. The basis

given by the set {ϕjk,l} where j denotes the level of the partition (with j = 0 being the root), k in-

dicates the partition within the level, and l indexes the elements within each partition in increasing

frequency.

To compute the transform, we first compute the complete set of eigenvectors {ϕ0
0,l}l=1:n of the

κ-Laplacian for the entire κ-region Cκ of a given simplicial complex and order them as usual by

non-decreasing eigenvalue. We then partition Cκ into two disjoint κ-regions C1
0 and C1

1 as described

in Section 4.2. Next, we compute the complete set of eigenvectors of the κ-Laplacian on C1
0 and C1

1 .

We again order each set by non-decreasing eigenvalue and label these {ϕ1
0,l}l=1:n1

0
and {ϕ1

1,l}l=1:n1
1
.

1We use κ-HGLET instead of, e.g., κ-HLET in order to maintain naming consistency with the corresponding κ = 0
graph transformations.
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Figure 5.1. 2-HGLET dictionary on the 2-complex shown in Figure 4.7. Here, the
color scale is consistent across each row (which corresponds to the level) to better
visualize the smoothness of the elements

Note that n10+n11 = n00 = n, and that all of the elements in {ϕ1
0,l} are orthogonal to those in {ϕ1

1,l}

as they have disjoint support. Thus, the collection {ϕ1
0,l}l=1:n1

0
∪ {ϕ1

1,l}l=1:n1
1

forms an orthonormal

basis for Xκ. From here, we apply this process recursively, generating an orthonormal basis of

κ-Laplacian eigenvectors for each level in the given hierarchical bipartition tree.

We continue partitioning each κ-region until only singleton regions containing one κ-simplex

remain; at this final level, the κ-HGLET vectors are simply the standard basis of Rn. Each level of

the dictionary contains an orthonormal basis (ONB) whose vectors have the support of generally

half the size of the previous level, and the number of levels is generally logarithmic in n. There

are roughly (1.5)n possible ONBs formed by selecting different covering sets of regions from the

hierarchical bipartition tree; see, e.g., [80,93] for more about the number of possible ONBs in such

a hierarchical bipartition tree. Finally, we note that the computational cost of generating the entire

dictionary is O(n3) and that any valid hierarchical bipartition tree can be used to create a similar

dictionary. Figure 5.1 shows the 2-HGLET constructed on the same 2-complex shown in Figure 4.7.

5.2. κ-Generalized Haar-Walsh Transform (κ-GHWT)

The second transform we present here is based on the Generalized Haar-Walsh Transform

(GHWT) [47], which can itself be viewed as a generalization of the Walsh-Hadamard transform.

This basis dictionary is formed by first generating a hierarchical bipartition tree of Cκ. We then

work in a bottom-up manner, beginning with the finest level in which each region only contains a
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Figure 5.2. Coarse-to-Fine (C2F) 2-GHWT dictionary. The yellow, dark green,
and violet regions in each vector indicate its positive, zero, and negative components,
respectively.

single element. We call these functions scaling vectors and label them {ψjmax

k,0 }k=0:n−1. For the next

level, we first assign a constant scaling vector for support on each region. Then, for each region

that contains two children in the partition tree, we form a Haar-like basis element by subtracting

the scaling function associated with the child element with a higher index from that child element

with a lower index. This procedure will form an ONB {ψjmax−1
k,l }k=0:k′−1,l=0:l(k)−1 where k′ is the

number of κ-subregions at level jmax − 1 and l(k) ∈ (1, 2) depends on the partition k. The vectors

of this basis have support of at most 2. For the next level, we begin by computing the scaling

and Haar-like vectors as before. Next, for any region that contains three or more elements, we

also compute Walsh-like vectors by adding and subtracting the Haar-like vectors in the children’s

regions. From here, we form the rest of the dictionary recursively. A full description of this algo-

rithm (for the κ = 0 case) is given in [48]. Figure 5.2 displays the 2-GHWT dictionary on the same

2-complex used in Figures 4.8 and 5.2. We make several observations about this dictionary. First,

like the κ-HGLET, each level of the dictionary forms an ONB, and at each level, basis vectors have

the support of roughly half the size of the previous level. These basis vectors also have the same

support as the κ-HGLET basis vectors (that is, supp(ϕjk,l) = supp(ψjk,l) for all j, k, l). However,

the computational cost of computing the κ-GHWT is only O(n log n) compared to the O(n3) of the

κ-HGLET.
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Finally, we note that at the coarsest level (j = 0) the κ-GHWT dictionary contains globally-

supported piecewise-constant basis vectors, which are ordered by increasing oscillation (or “se-

quency”). This forms an ONB analogous to the classical Walsh Basis, which we call the κ-Walsh

basis. This allows us to define an associated Walsh transform and conduct Walsh analysis on signals

defined on simplicial complexes.

5.3. Submatrix Partitioning

As mentioned in Section 2.3, we will use the submatrix method to hierarchically partition with

whichever variety of κ-Laplacian Fiedler vector, so we will analyze how this scheme varies from

rebuilding and partitioning with the restricted Laplacian on each subregion.

The analysis is most straightforward with the combinatorial Lκ. Let Lfull denote the κ-Laplacian

of the subregion Cjk, and let Lsub refer to the submatrix of the usual κ-Laplacian of Cκ, induced

by restricting the rows and columns to the simplex indices in Cjk. Define Ssub analogously. For the

lower Laplacian, notice that L∨
full is exactly equal to the corresponding submatrix of L∨

sub, so no

more work is necessary. Immediately, this means that if a κ-region contains no (κ + 1)-hulls, then

the hierarchical partitions by the two methods will be identical. For the upper Laplacian, if any

of the κ + 2 faces of a given hull do not end up on the same side of a partition, then that hull is

removed from both sides of the partition, changing both diagonal and non-diagonal entries of Lfull

relative to the corresponding submatrix of Lsub. If a subregion contains 0 < ℓ < κ+ 2 of the faces

of some hull in Cκ, then the submatrix partition will keep ℓ(ℓ−1) non-diagonal entries which would

have been removed by the full partition, and the same corresponding contribution to the diagonal

from the hull degrees. Explicitly, if σ1, . . . , σℓ are these adjacent simplices in the same subregion,

then for i, j = 1, . . . , ℓ,

[Lsub]σiσj = −[Ssub]σiσj + [Lfull]σiσj , and [Lsub]σiσi = 1 + [Lfull]σiσi .

While this is no longer only a diagonal perturbation, it is explicitly a rank-one perturbation (per

hull) which does not damage either the diagonal dominance of L∧
sub, or its positive-semidefiniteness.

Hence we expect the submatrix partitions to degrade in faithfulness to the full partitions at worst

in proportion to the number of hulls lost to division by the partitions – gracefully at first, and
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eventually completely. It is important to note that especially as κ increases, it becomes much more

likely that any particular hull will be split across a partition. However, when the faces of that hull

are split evenly across the partition, about half as many entries change for Lfull as would have in

an uneven split, and such even splits are expected; recall that Sκ is nonzero only for κ-adjacent

simplices, not strongly adjacent ones.

The situation is more complicated for weighted κ-Laplacian variants, because with full parti-

tioning, it may unexpectedly happen that because of the loss of a hull, then a simplex or boundary

weight may become zero, and the entire basis computation may grind to a halt. At minimum, to

prevent this situation, we must add weak adjacency weights, via the modified degree constraint

(4.5). In lieu of an explicit perturbation analysis of the Lsym
κ case, we provide a suggestive exper-

iment in Figure 5.3, depicting a series pairs of κ-GHWT basis vectors, where each pair contains a

vector with the same (j, k, l) tags, but with one computed by full partitioning, and the other by sub-

matrix partitioning. We use the naive Fiedler vector, instead of searching for a positive eigenvalue,

because there is not a direct correspondence for this method in submatrix partitioning. This leads

to lower quality partitions, but allows us to illustrate the properties of the submatrix partition. For

small l-values, notice the distinct similarity between the partition regions. For the large l value, and

higher level j, notice the graceful degradation to similarly sized and shaped, but different regions.

5.4. Basis Specification

For many downstream applications, it is important to organize the order of these bases. In

general, the κ-HGLET dictionary is naturally ordered in a Coarse-to-Fine (C2F) fashion. In each

region, the basis vectors are ordered by frequency (i.e., eigenvalue). Similarly, the GHWT dictio-

nary is also naturally ordered in a C2F fashion, with increasing “sequency” within each subgraph.

Another useful way to order the GHWT is in a Fine-to-Coarse (F2C) ordering, which approximates

“sequency” domain partitioning. See, e.g., Figure 5.4, which shows the F2C 2-GHWT dictionary on

the triangle graph. We also note that the F2C ordering is not possible for the κ-HGLET dictionary

because some parent subspaces and the direct sum of their children subspaces are not equivalent;

see, e.g., [45, Eq. (5.6)] for the details. Other relabeling schemes, such as those proposed in [80,86]

may also be useful but are not explored here.
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Figure 5.3. Comparison of submatrix partitioning with full partitioning, for a 2-
region forming a closed triangular mesh. The dog toy mesh is from a Google Research
dataset [37]. Each plot depicts a κ-GHWT basis vector, computed by either the full
partitioning method (above) or the submatrix partitioning method (below). The
(j, k, l) tags are indicated in the plot titles. In the colormap viridis, yellow indi-
cates large positive values, purple large negative values, and green small-magnitude
values.

Once we have established these arrangements of basis vectors, we can efficiently apply the best-

basis algorithm [20] to select an ONB that is optimal for a task at hand for a given input signal

or a class of input signals; see also related previous work of applying the best-basis algorithm for
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Figure 5.4. Fine-to-Coarse (F2C) 2-GHWT dictionary. Note that this dictionary is
not generated by simply reversing the row indices of the C2F dictionary, but instead
by arranging each level (row) by “sequency”.

hierarchical transforms in the graph setting [17,47,48,49,51,80,86]. Given some cost function

F and signal x (e.g., of coefficient values), we traverse the partition tree and select the basis that

minimizes F restricted to each region. For the C2F dictionary, we initialize the best basis as the

finest (j = jmax) level of the GHWT dictionary. We then proceed upward one level at a time and

compute the cost of each subspace at that level and compare it to the cost of the union of its children

subspaces. If the latter cost is lower, the basis is updated; if not, the children subspaces (and their

basis vectors) are propagated to the current level. This algorithm yields the C2F best basis. The

F2C best basis is performed similarly, i.e., we begin with the globally-supported basis (j = 0) at the

bottom of the rearranged tree and proceed in the same bottom-up direction. As for the HGLET

dictionary, it has only a C2F basis as we discussed earlier. These properties pass identically to the

κ-GHWT and κ-HGLET respectively.

In some contexts, it is not necessary to generate a complete ONB, but rather some sparse set of

vectors in the dictionary (also known as atoms) that most accurately approximate a given signal or

class of signals. In this case, we can directly apply the orthogonal matching pursuit of [12] to find

the best m-dimensional orthogonal subframe (m ≤ n) selected from the dictionary. Additionally,

for some downstream tasks, such as sparse approximation or sparse feature selection, generating

orthogonal sets of atoms is not critical. In these cases, we can employ a greedy algorithm to

generate efficient approximation. This algorithm simply selects the atoms in the dictionary with

the largest coefficient, removes it, then computes the transform of the residual and proceeds so

forth.
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CHAPTER 6

Applications

We briefly explore the broad space of possible simplicial signal processing applications, with

experiments using simulated and real-world data for approximation, compression, classification,

and graph orientation. The graph orientation exposition and experiments are new, and the rest of

the experiments either draw from or reproduce experiments from our preprint [79]. We will refer

to functions on a κ-region as κ-signals.

6.1. Approximation and Signal Compression

We begin with an illustrative example on a synthetic dataset, by triangulating a digital image.

We start with a 256×256 greyscale image of a woman from the USC-SIPI Image Database [98], and

map the pixel intensities of the image to a Cartesian grid on the unit square [0, 1]2. We then sample

2000 points uniformly at random in the unit square, and construct a 2-complex from the Delaunay

triangulation of these points. This simplicial complex contains 5955 edges and 3956 triangles. Next,

we form κ-signals on this complex via interpolation. The 0-signal f at each vertex has the same

value as the square of the Cartesian grid in which it is located. The 1-signal and 2-signal are each

computed at a simplex σ as the average of the values {f(v) | v ∈ V (σ)}. A typical result of this

process is illustrated in Figure 6.1.

Figure 6.1. The construction of simplicial signals from an image. On the left is
the greyscale image we start with. Next, the pixels are sampled, resulting in the
second image. Then on the right are a 1-signal (on the edges) and 2-signal (on the
triangles) on the simplicial complex formed by the Delaunay triangluation of these
points.
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Now, we construct sparse representations of these κ-signals using our multiscale bases. Fig-

ures 6.2 and 6.3 show the nonlinear approximation of the 1-signal and 2-signal, respectively, keep-

ing those expansion coefficients which are largest in magnitude, via several bases: the pixel basis,

the orthonormal κ-Walsh basis, the orthonormal κ-Haar basis, the κ-Fourier basis formed from the

eigenvectors of Lκ, the κ-GHWT C2F best basis, and the κ-HGLET best basis. Figure 6.4 shows

how the approximation error drops as the number of terms kept in each basis expansion grows.

A number of observations are in order. First, the multiscale dictionary-based methods consis-

tently outperformed the generic orthonormal bases. Overall the κ-GHWT-based method performed

best, which match visual intuition that the coarse-scale features of this signal are the most im-

portant, and there are compression gains from simplifying the monotone background and simple

geometric shapes. Similarly, the κ-Haar basis achieved much better results than the κ-Walsh basis,

again emphasizing the significance of the coarser features. The κ-HGLET only found slightly better

bases than the global Fourier basis in the κ = 1 case, suggesting that this signal was not generally

smooth on subregions of the complex.

Next, we apply our approach to real-world data for higher κ-signals with κ = 0, . . . , 5. The

coauthorship complex [30, 70] is a simplicial complex derived from a citation dataset [92], which

models the interactions between multiple authors of scientific papers. Each paper has a number

of citations, which are attributed to each of the paper’s authors as follows. We first build a graph

where each author is represented by a vertex, and an edge is present whenever two authors co-

authored one or more papers together. Next, we form the clique complex of this graph, which is

the domain on which we construct κ-signals. Then, for each κ, the citation κ-signal on a κ-simplex

σ is the sum of the citation numbers for every paper such that each of the authors v ∈ V (σ) are

co-authors. See [30] for a more thorough description of the construction of this complex. Table 6.1

reports some basic information about the number of simplices of different degrees in this citation

complex. Figure 6.5 shows the approximation of this signal (i.e., a vector of citation numbers) for

κ = 0, 1, . . . , 5 with the Delta, Fourier, κ-Haar, κ-HGLET, and κ-GHWT bases. Figure 6.6 shows

the log error. The κ-HGLET and κ-GHWT bases were selected with the best-basis algorithm using

the C2F ordering for the κ-GHWT dictionary.
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Figure 6.2. Nonlinear approximation of an image-derived simplicial signal for
κ = 1.

In these experiments, we observe that the best bases (κ-GHWT and κ-HGLET) outperformed

the canonical bases, with the κ-GHWT being the most efficient basis for each κ. Additionally,

for κ > 0, the orthonormal κ-Haar basis performed best in the semi-sparse regime (1 and 10% of

terms retrained). This suggests that the signals on each degree of the citation complex are similar

in that they are all close to being piecewise constant. However, when more terms are considered,

the κ-HGLET best basis achieved a lower approximation error than the orthonormal Haar basis

achieved.
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Figure 6.3. Nonlinear approximation of an image-derived simplicial signal for
κ = 2.

κ 0 1 2 3 4 5

# of elements 1126 5059 11840 18822 21472 17896

Table 6.1. The number of element in the κ-simplices in the coauthorship complex
for κ = 0, 1, . . . , 5

6.2. Signal Clustering and Classification

Since the basis (and dictionary) vectors we present are both multiscale and built from κ-

Laplacians that are aware of both topological and geometric properties of the domain [14], they can

function as very powerful feature extractors for general data science applications. In this section,

we present two basic classification experiments in the κ = 1 setting, in which we modify well-known
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Figure 6.4. Nonlinear approximation errors for the image-derived simplicial signal,
with L2 error on the left, and log(L2) error for up to half of terms retained on the
right. The top diagrams show κ = 1, and the bottom κ = 2.

Figure 6.5. Approximation of the Citation Complex for κ = 0, . . . , 5.

image datasets to create 1-simplicial signals, in order to demonstrate the effectiveness of our basis

dictionaries for representing these signals. As a baseline and sanity check, we compare our proposed

dictionaries with the Fourier basis {ϕl0,0}l composed of global Lκ-eigenvectors, and the Delta or

“pixel” basis {ψ0
jmax,k}k. Further, we compare our results with those achieved by the Joint and
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Figure 6.6. Top: Approximation of the Citation Complex for κ = 0, . . . , 5. Bot-
tom: Log of the error for up to 50% of the terms retained.

Separate Hodgelets proposed in [72], which are wavelet transforms on 1-simplices constructed from

the eigenvectors of L1, and separately from L∧
1 , L

∨
1 respectively.

For our first experiment, we construct a dataset of 1-signals using 1000 handwritten digits

from the MNIST dataset [63] by sampling 500 points in the unit square and following the image

interpolation method presented in Section 6.1. We then compute the features of these images

using the proposed orthogonal transforms and best bases from the overcomplete dictionaries. Next,

we train a support vector machine (SVM) [39] to classify the digits for each of the transformed

representations using the 1000 training examples. Finally, we test these SVMs on the rest of the

entire MNIST dataset.

We repeat this experiment for the FMNIST dataset [100], again using 1000 examples for train-

ing data. Results are presented in Table 6.2. We remark that these tests are not meant to achieve

state-of-the-art results for image classification but rather to showcase the effectiveness of these rep-

resentations for downstream tasks. Unsurprisingly, the dictionary methods outperformed the basis

methods. Again, the piecewise constant methods (κ-GHWT, κ-Haar) achieved better approxima-

tions than the smoother methods (Fourier, κ-HGLET, Joint, and Separate Hodgelets). This is likely

due to the near-binary nature of images in both datasets.
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Basis Methods Dictionary Methods

Delta Fourier κ-Haar κ-Walsh
κ-HGLET

(BB)

κ-GHWT

(BB C2F)

κ-GHWT

(BB F2C)
Joint Separate κ-HGLET κ-GHWT

# of terms 661 661 661 661 661 661 661 5288 5288 9254 9254

MNIST 68.675 77.053 75.388 77.011 77.991 78.779 77.156 79.202 80.038 80.001 81.089

FMNIST 64.370 76.753 76.779 75.230 76.117 76.991 76.121 78.761 78.738 79.739 80.789

Table 6.2. Test Accuracy for SVMs trained on transforms of MNIST signals inter-
polated to a random triangulation.

6.3. Graph Orientation

Considering our interpretation in Section 2.4 of oriented 1-simplices as directed edges, and the

invariance of the Fiedler vector for κ-regions to simplex orientation, it is clear that there is a close

relationship between the 1-Laplacian and directed structures on graphs. For example, in problems

of graph orientation, one wishes to convert a (possibly weighted) graph G into a directed graph Γ, by

adding a direction to each edge, in order to fulfill some structural objective, like minimizing the total

weighted in-degree of resulting sinks [4], or minimizing the maximum weighted out-degree among all

vertices [3]. Equivalently, we may ask, for each assignment of natural or reverse orientation to the

1-simplices of K1(G), which one best fulfills the objective? Recall that the eigenvectors of L1 are

affected in a simple way by changes in orientation to the underlying simplices: a flip in orientation to

some simplex yields a sign change of the corresponding eigenvector coordinate. This property makes

the eigenvectors of L1 an attractive target for solving relaxed versions of combinatorial optimization

problems over assignments of directions to the edges ofG. We will not prove a theorem, but illustrate

why ϕbκ+1(L1) appears to find good solutions to some graph optimization problems.

Recall the Hodge decomposition Eq. (4.2); utilizing the language of [65], for κ = 1 we can think

of B0 as the discrete divergence operator, and BT
1 as the discrete curl operator, so that ker(L∨

1 )

describes divergence-free 1-signals, and ker(L∧
1 ) describes curl-free 1-signals. For an eigenpair (λ,ϕ)

of L1 where λ > 0, exactly one of these will be the the case, so that the signal ϕ is either a pure

gradient, or pure co-curl. Figure 6.7 demonstrates the former case, as it depicts a graph G, in

particular a tree, with L∧
1 = 0, and in the middle plot the bottom eigenvector ϕ0 is depicted,

with λ0 > 0. This graph’s structure depicts the dendrites of a neuron. The left-hand plot is a

visualization of the vertex indexing used in constructing this graph, which demonstrates the key

95



Figure 6.7. An example of graph orientation, performed on a dendritic tree. On
the left, we show the natural orientation of the edges in the graph. We plot a smooth
gradient on each segment of the tree, such that increasing vertex index is mapped
to the change from purple to yellow in the usual viridis colormap. In the middle
is the sign of ϕ1(L1), plotted on the edges. On the right are the orientations given
by flipping edges where ϕ1(L1) is negative (so, purple in the middle plot).

fact that along each segment of the tree, the vertices are sequentially indexed, with the sequence

increasing away from a central vertex, so that the natural orientation of each edge is thus also away

from the central vertex. The middle plot then can be interpreted as an assignment of direction

to each edge of G, such that edges to the left of the central vertex remain in natural orientation

while the rest are flipped, or vice versa. This re-orientation, depicted in the plot on the right, is

then certainly an improved gradient flow, in the sense that a directed path can be followed from

any vertex to the right of the central vertex, to any vertex to the left of it, whereas in the natural

orientation, directed paths can only be followed away from the central vertex. Eigenvectors ϕi for

i > 0 with larger eigenvalue reproduce this effect, only less effectively, with fewer possible directed

paths.

Now, recall from Section 4.2 that the bottom non-harmonic eigenvector ϕbκ+1 of L1 acts as

a relaxed minimizer of κCut, one characterization of which is maximizing the number of pairs of

consistent adjacent simplices. Consider many edges meeting at a vertex. Under what kinds of

orientations are the consistency of these pairs of edges maximized? We must orient equally, or as

close to equally as possible, many edges adjacent to this vertex to treat it as a head, and as a tail;

in other words, to balance the vertex’s in-degree and out-degree. Finding an orientation for a graph

which minimizes the sum of differences between in-degree and out-degree across all vertices is known

to be NP-hard in general [57], and this eigenvector appears to provide a relaxed solution.
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CHAPTER 7

Conclusion

In this dissertation, we have presented two examples of multiscale transforms for analyzing

signals on κ-regions of simplicial complexes, that generalize multiscale transforms previously de-

fined only on graphs: the Hierarchical κ-Laplacian Eigen Transform (κ-HGLET) and κ-Generalized

Haar-Walsh Transform. These generalizations both provide on the one hand higher-order analysis

for signals, and of higher-order relationship, and on the other, analysis for signals with underlying

oriented structure, potentially providing new perspective and avenues for related areas, like directed

graphs, or non-alternating signals on oriented simplicial complexes. We have illustrated the paral-

lels between commuting discrete integral and differential operators, and their continuous analogs,

opening new directions into spectral geometry and clustering, and additional tools for partitioning

of graphs, in service of the multiscale transforms described. Working with data on simplicial com-

plexes induces combinatorial complexity, and requires a computationally efficient approach at scale,

so along with our numerical experiments, we carefully developed code backed by a novel interpreta-

tion of the κ-Laplacian to construct efficient data structures for computing and storing adjacency

and consistency information for κ-regions of simplicial complexes. The tree data structures involved

are analogous to those of the Multiscale Transforms for Signals on Graphs (MTSG) toolbox, intro-

duced in [44] and expanded in Julia in [46], and we use these Multiscale Transforms for Signals on

Simplices (MTSS) for efficient analysis and synthesis via the κ-signal transforms introduced.

Many further topics remain to explore. A critical but yet elusive topic is the unification of the

discrete integral operator perspective with the κ-simplex perspective: understanding the appropriate

notion of distance over κ-regions which acts to generalize the harmonic kernel, and from which

spectral analysis of simplicial complexes can yield new geometric and/or topological information.

We have begun developing an analogous theory of Green’s functions for the vector Poisson equation,

and the discretization of integral operators involving differential forms and their reduction to linear
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algebra over the k-simplices of an appropriate complex, which we hope to successfully relate to the

spectral theory of the Hodge Laplacian.

Then, there are more ingredients to add to the κ-simplex extensions of these multiscale trans-

forms, that have been well-developed for the graph setting. Entire families of such multiscale trans-

forms include the extended Generalized Haar-Walsh Transform(eGHWT) [86] and Natural Graph

Wavelet Packets (NGWPs) [17]. Further, we may explore different best-basis selection criteria tai-

lored for classification and regression problems such as the Local Discriminant Basis [76,78] and

the Local Regression Basis [77] on simplicial complexes. Finally, it appears fruitful to investigate

nonlinear feature extraction techniques such as the Geometric Scattering Transform [34] in the

simplicial setting.

There is an abundance of exciting applications that open up in the simplicial setting, and

especially for analysis of trajectories and directed graphs. These include data science problems in

computational chemistry, weather forecasting, genetic analysis, social network analysis, and financial

modeling, all of which have elements that are naturally modeled with simplicial complexes.
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