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Estimating  the  Parameters of Exponentially  Damped 
Sinusoids an.d Pole'-Zero Modeling in Noise 

RAMDAS KUMARESAN AND DONALD W. TUFTS, FELLOW, IEEE 

ARtract-We have presented  techniques [ 11 - [ 6 ]  based on linear pre- 
diction (LP) and singular value decomposition (SVD) for  accurate esti- 
mation of closely  spaced  frequencies of sinusoidal signals in noise. In 
this  note we extend  these  techniques to estimate  the  parameters  of 
exponentially  damped  sinusoidal signals in noise. The  estimation  pro- 
cedure  presented  here  makes use  of "backward  prediction"  in  addition 
to SVD. 

First,  the  method is applied to  data consisting of one  and  two  ex- 
ponentially  damped sinusoids. The  choice of one  and  two signal com- 
ponents  facilitates  the  comparison  of  estimation  error  in  pole  damping 
factors  and  pole  frequencies to  the appropriate Cramer-eo (CR) 
bounds  and to  traditional  methods  of  linear  prediction.  Second,  our 
method  is  applied to an  example  due to Steiglitz [8] in which the  data 
consists of noisy values of the  impulse  response samples  (composed of 
many  exponentially  damped sinusoids) of a linear system Raving both 
poles  and zeros. The  poles  of  the  system  are  accurately  determined  by 
our  method  and  the  zeros  are  obtained  subsequently, Using Shanks' 
method. 

I .  INTRODUCTION 
E have presented  techniques [ 11 - [6] based on linear 
prediction  and singular value decomposition  for accu- 

rate  estimation  of closely spaced  sinusoidal signals in noise. 
These techniques improved the least-squares linear prediction 
methods  proposed by  Ulrych and  Clayton  [9] and Nuttall [ 101 
which  in turn were improvements  of Prony's original method 
[ 111 . We were able to improve the  performance of these tech- 
niques  considerably with  two  interrelated  modifications.  First, 
we applied singular value decomposition (SVD) to  the linear 
prediction  equations (2) and (3) and (5)-(7) to alleviate severe 
ill-conditioning. Second, we used large values of  the predic- 
tion filter order L (a large fraction  of N ,  the  number of data 
samples). The  number of sinusoidal  signalsM,  whose frequen- 
cies are to be estimated was small compared  to L .  In  this paper 
our  purpose is to apply these techniques  to  estimate  the  pa- 
rameters of exponentially  damped sinusoidal signals in noise. 
Henderson's  paper [ 121 is related  to  the work reported  here. 

In  the  next  section we outline  theoretical results  which pro- 
vide a rationale  for  our  method, which  includes the use of 
backward prediction.  In  Section 111 we  compare  the results 
obtained  by  our  method to  traditional  methods using noisy 
exponentially  damped sinusoids which represent  pitch  syn- 
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chronous simulated voiced speech. The sample  variance of  the 
parameter  estimates are also compared to  the  Cramer-Rao (CR) 
bounds  for  the pole  damping factors  and  the  pale  frequencies. 
We also apply  our  method  to  the noisy values of the impulse 
response of a  linear  system with  both poles and zeros. The 
poles are  accurately  found by our  method  and  the  zeros of 
the system are  then  obtained by using Shanks'  method [ 131 . 

11. MAIN RESULTS 
Suppose  that  the N samples of the observed data sequence 

y(n)  consists of samples of M exponentially  damped signals in 
complex valued white Gaussian noise w(n) .  

M 
v ( n ) = x  a k e S k n + W ( n )   n = O , l , ' . ' , N - 1  (1) 

k = l  

where s = - @k + j h f k ,  k = 1 , 2 ,  . . . , M are complex  numbers 
(ak is positive) and ak,  k = 1,  2, . . , M are the  complex  ampli- 
tudes. @k's are the pole  damping factors  andfk's  are  the  pole 
frequencies, We shall set up  the following  linear prediction 
equations using complex  conjugate  data in the backward 
direction. 

i,"(N:L - 1J 

Ab = -h  

where b is the vector of backward prediction coefficients. "*" 
denotes  complex conjugate. We can  write the above equa- 
tion  in  augmented  form as A'b' = 0 where A' = (h  $4) and b' = 
(1, br)T. "T" denotes  matrix  transpose. b' is the vector of 
prediction error  filter  coefficients. If the  data is noiseless, 
since b' lies in the null space of A ' ,  it is easy to show that [ 141 
the  prediction-error  filter  polynomial 

B(z) = 1 + b(1) z-1 t b(2) z-2 + . . . t b(L) z - L  (3) 

will have zeros  at e-", k = 1 , 2 ,  . . . , M if L is chosen to sat- 
isfy the  inequality M < L < N - M .  From these  zeros one can 
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find the eSk’s by  reflecting them inside the  unit circle. These 
zeros, called signal zeros, fall outside  the  unit circle because of 
the way ( 2 )  is written using the data  in reversed time  direction. 
If L > M, clearly, B(z)  has L - M  other zeros called extraneous 
zeros.  Also, if L > M,  (2)  has  more  than  one  solution (assum- 
ing that  the  data  are noiseless) because the  rank of A (or A ’ )  is 
M (a). However, if we find  the  unique  minimum  norm solu- 
tionto(2)(whichminimizesIlb/12=Ib(1)12+Ib(2)12-(-...+ 
Ib(L) 1 2 )  then  it can be shown [ 141 that  the L - M extraneous 
zeros will always fall with in the  unit circle. The significance of 
this  fact  should become  clearer  in the sequel. An outline  of  the 
proof is as follows. We can factor B(z) as B(z)  = B l ( z ) B 2 ( z )  
where B(z) is an Mth degree polynomial  with  M signal *zeros. 
Such  a  factor does  exist because B(z) has  zeros  at e-%, k = 
1, 2,  - . . , M. B,(z) has the L - M  extraneous  zeros, in  whose 
locations we are interested. Minimizing the  norm of b in (2) 
is same as  minimizing J-”, IB(eiW)I2 dm since the first co- 
efficient of B(z) is unity. Since B,(z)  is fixed, minimizing 

IB(eiW)12 d o  is equivalent t o  solving the  standard “linear 
prediction”  problem  (autocorrelation  method [ 151 ) where 
B2(z) is the  “prediction  error filter” andBl(z)  corresponds  to 
the 2 transform  of  the  “data  sequence”and B(z)  is the 2 trans- 
form  of  the “error  sequence.” See [I41  for  more details. We 
then  know  from well known results [ 151 that B2(z) ,  the 
“prediction error filter” is minimum phase. In  summary,$he A4 
signal zeros  of B(z)  fall outside  the  unit circle at e-sk, k = 
1 , 2 ,  . . . , M  whereas the L - M extraneous zeros fall inside 
the  unit circle. This fact facilitates the  identification of the M 
signal zeros from  the L - M extraneous zeros of B(z). This is 
the primary  reason for using the  data  in  the backward  direc- 
tion in (2). The reason for using a  polynomial of degree L >M 
in the first place, is to increase the accuracy of  the pole  loca- 
tion  estimates, i.e., estimates of e’k’s, as we shall see in the 
next section.  Although the above  results are only true  for 
the ideal situation of noiseless data, as we shall show experi- 
mentally,  they  turn  out to be valid for  moderately noisy data 
as well. But the coefficients of B(z) have to be accurately 
determined using the  truncated SVD [ 161 as explained  below. 

In the presence of noise in  the data if we attempt  to solve 
( 2 )  in the least  square sense as is done in covariance method 
1151 there are  considerable perturbations  introduced in the 
b vector.  The reason for  this is that  for L > M, L - M  columns 
of A tend  to be closely dependent, causing a very unstable 
least  square  problem. See [ 5 ]  -[7] for  more  explanations. 
But moderately large values of L are  essential in improving the 
accuracy of the pole location  estimates as we shall see in the 
next section. Therefore, to  alleviate this ill-conditioning  prob- 
lem we make use of the SVD of A .  We compute  the  SVD of 
A ,  but  instead of finding the least  square solution, we find  a 
truncated SVD solution [I61 by setting the smaller singular 
values of A to zero. That is we compute b as follows: 

M 
b = - 0;’ [Uih] Uk (4) 

k =  1 

where ok,  k = 1 , 2 ,  . . . , L or N - L (depending  on  the  rank  of 
A )  are the singular values of A .  u k ,  k = 1 ,  2 ,  . . . , L and U k ,  

k = 1 , 2 , .  . . , N - L are the eigenvectors of AtA and AA’, 

respectively. ‘‘t” stands  for  matrix  complex conjugate trans- 
pose. The  effect of using a  truncated  SVD is to increases the 
SNR in the  data prior to obtaining the  solution vector b. See 
[ 2 ] ,  [4] for more details. In  the above we have assumed that 
the value of M is known. Otherwise, it can be estim’ated from 
the size of the singular values of A .  In  the case of noiseless 
data, since the  rank of A is only  M,  only ol , u2, . . . , oM will 
be nonzero  and b in (4) will be the  minimum  norm  solution 
as desired. In (4), we have made use of  only  the M principal 
eigenvectors of AtA and AAi which are  more  robust  to  the 
noise perturbations in the  data.  The result is that  the L - M 
extraneous zeros of B(z) also tend to be less perturbed.  Note 
that  the least squares solution  to (2) can be written in the 
same way as in (4) but it would include all the  nonzero singu- 
lar values of A and  the  corresponding eigenvectors of A t A  and 
A A t .  Thus the  stability  in  the coefficient  vector b is achieved 
by  dropping  from  the least  square solution to ( 2 )  the less 
robust eigenvectors of AtA and AAt . 

111. EXPERIMENTAL RESULTS 
Three  simulation  experiments are used  in  this  section to 

point  out  the  superiority of the  SVD  method described  above 
and  the advantage of using backward prediction. 

Experim en t 1 
The  simulated  data are given by the  formula 

y ( n ) = a , e s 1 n + a 2 e s 2 n + w ( n )  n = 0 , 1 ; . . , 2 4  (5) 

where s 1  = - a1 t j 2 n f 1  = - 0.1 +j2n(0.52),  s2 = - a2 + j 2n f2  = 
- 0.2 +j2n(0.42),  a l  = 1, a2 = 1. M =  2. The sequence w ( n )  
is white,  and  complex Gaussian, with variance 202 .  SNR is 
10 log (l/2a2). SNR = 20 dB. Note  that  this is peak  SNR. Fig. 
l(a)-(i)  show the  zeros of the polynomial B(z)  calculated by 
different  methods.  Forty  independent trials using different 
w(n)  sequences are performed  in each case. The zeros of B(z) 
obtained in each  trial are superposed with respect to the  unit 
circle. First, we applied the  traditional  Prony  method [ I  11 , 
where B(z) had  two (L  = M  = 2) unknown coefficients b(1) 
and b(2). They were found by  minimizing the error 

Fig. l(a) shows the  zeros of B(z) for the  forty trials. The  true 
pole locations e s1 and e s2 are shown by cross marks. Fig. I(b) 
and  l(c) show the results obtained by the  standard covariance 
[ 153 . The  polynomial B(z) is allowed to have L = 4  and L = 8 
unknown coefficients. That is the error 

is minimized  by  choosing b(k)’s. Clearly the accuracy of  the 
zero clusters around  the  true pole locations improves  with 
increase  in L .  But the  polynomial B(z) has L - M  extraneous 
zeros (2 for L = 4 and 6 for L = 8) which  can not be identified 
from  the  two signal zeros without prior information or the use 
of  many 25 sample  blocks of data. As L is increased, although 
the accuracy of the signal zeros  clusters  increases, the ill- 



KUMARESAN AND  TUFTS: EXPONENTIALLY  DAMPED SINUSOIDS AND POLE-ZERO  MODELING 835 

Fig. 1. The zeros of B(z) obtained in forty  independent trials  are  superposed  with  respect to  the  unit circle. The intersect- 
ing radial lines and  arcs  show the  true  locations of the  two zeros.  If the intersecting lines are inside the  unit circle they 
correspond to e s1 and e sz and if they are  outside  they correspond to e-': and e-":. (a)  Prony  method, L = A4 = 2. (b) 
Covariance method, L = 4. (c)  Covariance method, L = 8. (d)  Autocorrelation  method, L = 4. (e) Autocorrelation 
method, L = 8. (f) Backward  covariance method, L = 8. 

conditioning  in  the  normal  equations shows up as wild fluctu- 
ations in the  locations of extraneous zeros. Fig. l(d)-(e) show 
the  results  obtained  by using the  autocorrelation  method of 
linear prediction [ 151. This method  is  computationally simple 
and all the  zeros  are  guaranteed  to be inside the  unit circle. 

But the accuracy in  the  pole  estimates is very poor primarily 
due to the large bias. This  method will not give correct  results 
even in the absence of noise for  short  data records. 

Fig. l(f) shows the results when  the backward covariance 
method is used. That is, ( 2 )  is solved in the least square sense 
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Fig. 1. (Continued.) (g) Backward covariance method using SVD, L = 8. (h) Backward covariance method using SVD, L = 
18. (i) Covariance method using SVD, L = 8. 

to find  the coefficients of B(z). The  error minimized is 

E = y*(pl) - b(k)y*(n -t k )  . 
24-L 1 k = l  

L 

n=O l 2  
f 

Clearly, the signal zeros fall close to e-%, k = 1, 2, but  ex- 
traneous zeros  occasionally fall outside  the  unit circle. Fig. 
l(g)-(h) show the case when  our SVD method is used to  com- 
pute  the  backward-prediction  coefficients  of B(z) for  two dif- 
ferent values of L .  Clearly the  reduction in the ill-conditioning 
or the  improvement in the SNR of the  data  matrix,hasresulted 
in better  approximation to  the noiseless case, and  the  ex- 
traneous  zeros are much less perturbed  from  their noiseless 
locations [ 141. Therefore  they are less likely to fall outside 
the  unit circle for  moderate SNR values. Fig. l(i) shows the 
SVD method  but  with  the  data used in the  forward  direction 
[unlike ( 2 ) ] .  This should  be compared  with Fig. l(c)  to  ap- 
preciate the  reduction in perturbations achieved by SVD. 

Experiment 2 
In this experiment we compute  the  estimate>of  the pole 

damping factors (Gk’s) and pole  frequencies (fk’s) for 500 
independent trials at different SNR values using N = 25  data 
samples in  each case. Both cases of one ( M =  1) and  two 

(M = 2) exponentially  damped signals are used. The SNR 
is defined  the same way as in experiment  1. We emphasize that 
it is the  SNR  at  the peak value of one signal component.  The 
sample variances of the  estimates were calculated and  the re- 
sults are plotted in Fig. 2(a)-(d). For each trial,  the  poly- 
nomial B(z)  was found using the SVD method, (4), and  the M 
zeros  outside  the  unit circle were used to find  the  estimate 
of the  parameters by reflecting them inside the circle. If 
more  than M zeros  occurred  outside  the circle, which  hap- 
pens usually at low SNR,  it generally  results  in large estima- 
tion  error,  and  a  threshold is said to  occur. Fig. 2(a)-(d) also 
shows the  appropriate CR bounds which are  calculated using 
formulas derived in the  Appendix.  The sample variance 
of the  estimates in all cases had  a  broad minimum  some 
where  in between L = 10  and 20. The bias in the  frequency 
parameters was always small in comparison  to  the  standard 
deviation above the  threshold  SNR. But the bias in the  damp- 
ing factors were significant at  low SNR values (<20 dB) 
especially when the damping factor is large (a l  = 0.2). A rela- 
tively large value of L equal to 18 was chosen to keep  this 
bias small. Fig. 3(a) shows a case where the bias in the  damp- 
ing factor estimates is conspicuous.  This type of radial bias 
is common  in LP methods [ 171 and is due to  the noise vari- 
ance contributing significantly to  the singular value a, (or  the 
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2. (a) The,sample variance  of  estimate_s_of al and f1 are  compared to the  appropriate Cramer-Rao bounds. The  data 
were generated using the  formulay(n) = e"" + w(n) ,  n = 0, 1, * * * , 24. s1 = -0.1 + i2n(0.52). 500 trials  were  performed. 
The  threshold occurred at  about 8 dB. L was chosen 18. (b) The details  are same as  in (a) except S I =  -0.2 + j2n(0.52). 
The  threshold  now  occurred at  about 15 dB. (c) The sample variance of &I, 22 compared to  the appropriate CR bounds. 
The  data (same as in Fig. 1) were generated using the formula y(n)  = esIn + earn + w(n),  n = 0, 1, . * . , 24. sl = -0.1 + 
j 2 d 0 . 5 2 )  and s2 = -0.2 +j2n(0.42). 500 trials  were  performed. L = 18, M =  2. The  threshold  occurred at  about 11 dB. 
The bias was  significant in estimates of below 20 dB SNR. (d) The sample variance of  the  estimates  of f l  and fi are 
compared  to  the CR bounds. The details  are the same as in (c). 

Fig. 3. (a) Examples of radial bias in the signal zero cluster. Data: y(n) = eSln  + w(n),  SI = -0.2 +j2n(0.52), N = 25, 
L = 18, SNR = 15 dB. The zeros of  the prediction-error  filter B(z)  for 40 independent  data  blocks  are  superimposed. 
(b) The  reduction  in bias is achieved by using a  noise  compensation  procedure.  From  the largest  singular value u l ,  the 
number (u2 + 03 + u4 + u5 + 06 + a7)/6 is subtracted  before  computing b in (4). The same data sets as  in (a) are used. 
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largest eigenvalue of A?A.) This can be compensated  for  by 
subtracting i :om the M (equal to  one in this case) largest singu- 
lar values t . ) i '  .4, a  positive number  equal to  the average of  the 
rest of the ;ingular values uM+ 1,  0 M + 2 ,  . - , ~ N - L .  Fig. 3(b) 
shows the  situation  when  the bias compensation is applied. 
In Table  I the bias in  the  estimates of a1 before and  after  this 
modification is computed  and  tabulated  for  different  SNR 
values. Similar  results  are true  for  the  two signal case as well. 

It is seen from Fig. 2(a)-(d), that  the sample variance of the 
parameter estimates is quite close to  the  appropriate  CR 
bounds.  Interestingly, the larger the damping factor  the closer 
is the sample variance to  the  CR  bound. However, the  thresh- 
old SNR is larger for  the signal with larger damping factor as 
can be expected.  The  threshold occurs,  generally, at a SNR 
below  which  a sudden change  in the size of the singular values 
OM and UM+~ is not obvious. For  quantitative  interpretation 
of the results  in this  experiment,  it is important to recall that 
the  SNR is the peak SNR of one of the signal components,  and 
not  an average SNR over the  data interval. 

Experiment 3 
In this experiment  the noise corrupted samples of an impulse 

response of a  filter having poles and zeros  are  used  as the  data. 
This  example is drawn from [ 8 ] .  

The pole-zero  filter  has  a transfer  function H(z) whose mag- 
nitude is shown in Fig. 4. 

D(z) = 1 + d ( k ) z - k  
10 

(6) 
k =  1 

where  n(1) = -1.414, n(2) = 1.0, and d(1) to  d(10) are equal 

5.774, - 2.477,  0.735, respectively. The filter has  two  zeros 
on the  unit circle. First,  forty real valued samples of  the  im- 
pulse response in additive real valued white Gaussian noise are 
observed. The  SNR is defined as 

to  -3.301,  7.226,  -11.637,  14.728,  -15.636,  13.588,-9.938, 

where 0' is the variance of a  noise  sample and h(n) is the 
noiseless impulse  response  sequence. The  procedure  outlined 
in Section I1 is applied to these 40 ( = N )  samples. L is chosen 
20 and M is, of course 10. The twenty zeros of B(z) [whose 
coefficients are found as in (4)] for 20 independent trials are 
plotted in Fig. 5. The  estimates of the pole locations of H(z) ,  
egk ,  k = 1 , 2 ,  * . . ,M  are obtained  from  the  ten  zeros of B(z)  
that fall outside  the circle. The  estimate of the  denominator 
polynomial is 

62) = n (1 - 2-1 e$k). 
10 

k=l  

TABLE I 
THE BIAS IN ESTIMATES OF (Y I ,  BEFORE Ah?) AFTER THE NOISE COMPENSATION 

SHOWN IN FIG. 3@) Is CALCULATED AND TABULATED 
FOR DIFFERENT SNR VALUES 

SNR Bias (or1 - 2,) 
dB 

Bias (al - S1) 
Unmodified Modified 

30 0.3574 X 0.3538 X low3 
25  0.3059 X IO-' 0.6849 X 

15 0.3124 X 10-1 0.1 I32 X lo-' 
20 0.9733 X 0.1279 X 10" 

Fig. 4. Magnitude of the transfer  function of  the  fiiter H(z)  defined 
in (6). 

f-\ EXTRANEOUS ZEROS 

Fig. 5. The  zeros of B(z) obtained  in  twenty  independent  trials  are su- 
perimposed. L = 20, M = 10. The first forty samples of the noise cor- 
rupted  impulse  response ofH(z) are used as  the data. SNR = 25 dB. 

Subsequently,  the  numerator  polynomial  estimate $(z) is ob- 
tained  by using Shanks' method [ 131 , [ 181 . Shanks' method 
is as follows. A sequence f ( n )  is generated,  the 2 transform 
of which is F(z )  

Then  the  numerator polynomial estimate $z)  is found  by 
minimizing the  error 

by  finding n^(k), k = 0, 1,  2. This is a  linear  least  square prob- 
lem. Fig. 6  shows the m%gnitudz of t,he transfer function of 
the  reconstructed filter H(z )  = N(z ) /D(z )  for  two  different 
SNR values. It is  interesting  to  note  that  in Fig. 6(b), the  5th 
(highest frequency)  formant  exhibits sharper  peaks compared 
to Fig. 4. This formant  corresponds  to  the largest pole damp- 
ing factor.  The sharper  peaks are caused by  the radial bias in 
the  corresponding zeros of B(z) similar to  that in Fig. 3(a). 
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(b) 
Fig. 6 .  The  magnitude of the transfer function  of the  reconstructed 

filter H(z) .  The  zeros of the  filter were determined using Shank's 
method.  (a) SNR = 40 dB. (b) SNR = 25 dB. 

This contrasts  with  the  traditional LP methods  where additive 
noise always produces  flatter spectral  peaks [ 171 . 

IV. CONCLUSIONS 
A method of estimating the ,parameters of exponentially 

damped signals in  noise  based on singular value decomposition 
and backward  linear prediction is described. The  method is 
shown to give more  accurate  estimates  of  the  parameters  than 
traditional  methods.  Further  comparisons are given in [ 2 1 ] .  

APPENDIX 
In this appendix we shall describe an  outline  of  the calcula- 

tion of the  CR  bounds  for  the  parameters of one (M = 1)  and 
two ( M =  2) exponentially  damped signals in  white Gaussian 
noise. At high SNR values our  parameter  estimates  are essen- 
tially  unbiased. The  CR  bounds, in that case, provide  a  lower 
bound  on  the variance of  the  parameter estimates. The  data 
samples ~ ( n )  are.given  by the  formula 

n = 0 , 1 ,  , N -  1 (A1 1 
where w(n) is a white Gaussian sequence.  Sampling  interval 
is assumed one  second. Each real and imaginary part  of w(n) 
has a variance u 2 .  Comparing ( 1 )  with  the above formula, we 

For convenience we shall relabel the 4M parameters as follows: 
See that ak=Ckeiek and S k = - C l k + j 2 ? T f k ,  k = l , 2 , * * . , M .  

The  probability  density  function  for  the  data vector condi- 
tioned on the  unknown  parameter vector can be written as 

:he CR  bound  states [ 191 that for any  unbiased  estimate  of 
Pi of Pi. 

var  [J-' (011 ii (-46) 

where J(P)  is the (4M X 4M) Fisher information  matrix  with 
elements [ 191 

We shall consider the cases M =  1 and 2. The  derivation  fol- 
lows that  of  Rife  and  Boorstyn [20] who derived similar ex- 
pressions for  the case of sinusoidal signals. 

Case l : M = l  
Using formula (A7) above we can write  down  the Fisher  ma- 

trix  for  this case as  follows: 

PiZPiz  0 CiZPil 0 1 
J = Jii = 

where 

n=O 

Inverting J analytically, we find  the diagonal terms of J whch  
provide the  bounds  on  the variance for the  parameters fl  and 
cyl as follows: 

A U 2  P 10 Var (fl) > - 
4n2ct P f O P 1 2  - P t l  

Var (a1) > - U2 P 10 

c'4 PlOP12 - P'41' 

Case 2: M = 2. 
In  this case J is an (8 X 8) matrix. We partition J as  follows: 

= ["'i J123 

JT2r J22 

where the  matrices J l l  and J22 are given by (A8) and (A9) 
with i = 1 and i = 2, respectively. J12 'is a matrix  exhibiting 
the  interaction  between  the  parameters  of  the  two signals. 

C l C Z Y 2  c lq l  C l C 2 Y l  

-c241 Yo -czqo - C 2 Y 1  
Ji2 = ('413) 

C i C z Y i  e140 C i c 2 Y o  

c1c2q2 -c lYl  c1c2q1 
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where 

e 
N - l  -(.,+a!,),, j n sin A,, 
n=O 

A n = 2 . r r ( f z - f l ) n + 8 z - 8 1  

The  matrix J was inverted using a machine to  compute  the 
CR bounds of the parameters fi  , fz, el, and ez which  are 
used in Fig. 2(c) and (d). Interestingly, due to the special 
structure of JI2, it turns  out  that  the diagonal elements of 
J - l  are  independent of O 2  - e l .  
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