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Abstract. A problem of recent interest is the identification of buried unexploded ordnance
(including mines). This paper reviews recent progress in the use of the singularity expansion
method for electromagnetic and acoustic/elastodynamic scattering for discriminating the various
types (specific models with prescribed shapes and materials). Each type having an aspect-
independent set of natural frequencies, these can be used as a set of target signatures in a
library. Three different types of such natural frequencies (and associated pole residues) are
discussed.

1. Introduction

A problem of significant current interest concerns the detection and identification of
unexploded ordnance (UXO), whether mines or dud rounds [35]. These exist on many
old battlefields around the world, and on many military bases (including those being
converted to civilian use). While some UXOs may lie on the surface and are comparatively
easy to identify (and remove or destroy), others may be buried out of sight under the
ground or under water at various depths. This latter case presents a much more difficult
problem.

A commonly used technique for detecting such buried UXOs is the measurement of the
distortion of the earth’s magnetic field by sensitive magnetometers (including gradiometers).
However, this applies only to ferrous targets. Inductive metal detectors (continuous wave
(CW) at some frequency, or pulsed) are also used and are sensitive to metal targets in
general. As one can see, this generally leaves out plastic mines. Furthermore, detection
is not the limiting problem. The above (and other) techniques primarily only detect the
presence (and to some degree, location) of some ‘targets’ without indicating whether or not
these are of significance for removal. In other words, the false-alarm rate is high, and this
has important economic consequences for site clean-up (mitigation). What is needed is a
technique for discriminating UXOs from other ‘targets’ such as shrapnel, pipes, rocks, tree
roots, and other junk in general, before one digs up the object that has put some blip on
our ‘radar screen’.

One can consider this target-identification problem as a general problem in inverse
scattering, but such a completely general approach is extremely difficult in the context of
real-world soil and water. A related simpler approach relies on target signatures in which we
have some finite library of such signatures for specific models of mortar shells, mines, etc
[11, 14, 31, 32]. A signature is here meant as a set of parameters (not too large in number)
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in a mathematical scattering model. There are various models of interest, for example,
for identifying various types of aircraft via a transient (or multi-frequency) radar, different
models being appropriate for various regimes of time and frequency.

For the buried UXO problem, we concentrate on the singularity expansion method
(SEM) with its aspect-independent natural frequencies (pole locations) in the complex
frequency plane. This is divided into three general types for present discussion.
Electromagnetic singularity identification (EMSI) is concerned with metal and dielectric
targets with wavelengths of the order of the target dimension in the surrounding medium
(soil or water). This is appropriate for a special kind of ground-penetrating radar (GPR)
operating in the general range of frequencies from approximately 100 MHz to 1 GHz.
Magnetic singularity identification (MSI) is concerned with metal targets with diffusion
depths in the metal of the order of the target dimensions (and is insensitive to a non-ferrous
external medium). This is appropriate for a special kind of metal detector using coils
for transmission and reception, but designed to analyse waveforms for natural frequencies
corresponding to pure exponential decays withµs to ms time scales. Acoustic singularity
identification (ASI) is like EMSI except that sound waves are employed with important
frequencies now in the kHz range. Each of these has its own advantages and disadvantages,
and are thus complementary. These are all discussed in detail in [17, 21–25].

1p  incident
polarization

1i direction

of incidence

target
(scatterer)

1o direction
to observer

1m   direction
of measurement

Figure 1. Scattering of an incident wave by a target.
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2. The singularity expansion method

As indicated in figure 1, let there be an incident plane wave of the form

Ẽ(inc)(r, s) = E0f̃ (s)1pe−γ̃ (s)1ir

H̃ (inc)(r, s) = E0

Z̃(s)
f̃ (s)1pe−γ̃ (s)1ir

(2.1)

where

1i ≡ direction of incidence 1p ≡ polarization

˜≡ Laplace transform (two-sided) over timet

s ≡ �+ jω ≡ Laplace− transform variable or complex frequency

γ̃ (s) ≡ [sµ0(σ + sε)]1/2 ≡ propagation constant

Z̃(s) ≡ [
sµ0

σ + sε ]1/2 ≡ wave impedance

µ0 ≡ permeability (free space)

ε ≡ permittivity

σ ≡ conductivity

f (t) ≡ incident waveform.

In free space, or in a lossless dispersionless dielectric, the incident wave takes the
simple form f (t − 1i · r[µ0ε]1/2), but the above form allows for propagation in more
general dispersive and lossy media where the constitutive parameters can even be allowed
to be frequency dependent.

As a step in calculating the scattered field, one can calculate the current on a target via
an integral equation of the general form

〈↔̃Zt(rs , r′s; s); J̃s(r′s , s)〉 = Ẽ(inc)(rs , s). (2.2)

The particular form here is that of the tangential field components (subscriptt) on the
perfectly conducting body with surfaceS (the domain of integration overr′s in the symmetric
product (no conjugation)). The kernel here is an impedance operator, simply related to the
dyadic Green’s function for the surrounding medium. The above form is generalizable
to various other situations with volume current density (with integration over the volume
V ). Also note that, assuming reciprocity for the target, the kernel is symmetric (equals its
transpose).

The details of SEM are found in many references [1–20] summarized here. The natural
frequencies satisfy

〈↔̃Zt(rs , r′s; s); j̃sα (r′s)〉 = 0

(Z̃tn,m(sα))(jsn)α = (0n)
det(Z̃tn,m(sα)) = 0

}
numerical (matricized) form as in the moment method

(2.3)

where

sα ≡ natural frequency

jsα ≡ natural mode.

In the numerical/matrix form we have a way of computing natural frequencies and
modes. From the above we have immediately thatsα and jsα have no dependence on
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incident-field parameters. This aspect independence of thesα is of great advantage in
identifying that the target is of a particular type. Constructing the complete response
(current) gives

j̃s(rs , s) = E0

∑
α

f̃ (sα)nα(1i , 1p)jsα (rs)[s − sα]−1e−(s−sα)t0

+singularities off̃ (s)+ possible entire function

+branch cuts (in dispersive external medium) (2.4)

where only first-order poles have been included, but poles of higher order are possible in
special circumstances. In time domain, the poles are replaced by esαtu(t − t0). Note the
inclusion of a turn-on timet0 which can be chosen for convenience (say the time the wave
first touches the target). The coupling coefficient is

ηα(1i , 1p) = 1i〈e−γα1irs ; jsα (r′s)〉〈
jsα (rs); ∂∂s

↔̃
Zt(rs , r′s; s)

∣∣∣
s=sα
; js(r′s)

〉
γα ≡ γ̃ (sα)

(2.5)

and here is where information concerning the incident wave is contained. The entire function
(singularity ats = ∞) is basically an early-time contribution in time domain. It is the late-
time portions of the scattered fields in which the natural frequencies are most clearly visible.
An important result for finite-size targets in free space (or similar dispersionless media) is
the absence of branch-cut singularities. For lossy earth, however, such a term is present.
Note that all the above terms occur in conjugate symmetric pairs (except for singularities on
the reals axis where they are real) corresponding to the Laplace transform of real-valued
temporal quantities.

Our concern is with the scattered field for which we have the far field

Ẽf (r, s) = e−γ̃ (s)r

4πr

↔̃
3(1o, 1i; s)Ẽ(inc)(0, s)

r ≡ |r|
(2.6)

where

↔̃
3(1o, 1i; s) =

↔̃
3

T

(−1i ,−1o; s) (reciprocity)

≡ scattering dyadic

1o ≡ direction to observer.

For backscattering (monostatic) this reduces to

1o = −1i
↔̃
3b(1i , s) ≡

↔̃
3(−1i , 1i; s) =

↔̃
3

T

(1i; s) (symmetric). (2.7)

Applying this to the SEM form gives

↔̃
3(1o, 1i; s) =

∑
α

cα(−1o)cα(1i )+ entire function

+ possible branch cuts

cα(1i ) = wα〈
↔
1ie
−γα1ir′s ; jsα (r′s)〉 ≡ normalized coupling vector

w2
α = −sαµ0

〈
jsα (rs);

∂

∂s

↔̃
Zt(rs , r

′
s; s)

∣∣∣∣
s=sα
; jsα (r′s)

〉−1

(2.8)
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where
↔
1i≡

↔
1 −1i1i

↔
1≡ 1x1x ≡ 1y1y ≡ 1z1z ≡ identity.

So, in addition to the natural frequencies, these coupling vectors can give some additional
information about the target, specifically about its orientation (polarization). Note that there
can be degeneracies in the case of symmetry, in which there are more than onecα with the
samesα.

The above gives the basic form for SEM as appropriate to EMSI (used with a GPR)
discussed in the next two sections. Later, when discussing acoustics/elastodynamics, a
very similar form is obtained for ASI. For MSI, however, near fields and the magnetic-
polarizability dyadic will give a different form, but one with natural frequencies (purely
real) and vectors coming from the decomposition of the dyadic.

3. Perfectly conducting target in a lossy dielectric medium

Consider now the (relatively) simple case of a perfectly conducting target. Here, we observe
from the form of the kernel

↔̃
Zt(rs , r

′
s; s) =− sµ0

↔
1S (rs) ·

↔̃
G0(rs , r

′
s; s)·

↔
1S (r

′
s)

=− sµ0
↔
1S (rs) · {[−2ζ−3− 2ζ−2]e−ζ1R1R

+ [ζ−3+ ζ−2+ ζ−1]e−ζ [
↔
1 −1R1R]}· ↔1S (r′s) (3.1)

where

R = |rs − r′s | 1R = rs − r
′
s

R
for rs 6= r′s

ζ = γ̃ (s)R ↔
1S (rs) =

↔
1 −1S(rs)1S(rs) ≡ transverse dyadic atrs

1S(rs) ≡ unit surface normal atrs

involving the dyadic Green’s function of the external uniform isotropic medium, that there
is a special scaling relationship.

Summarizing from [17, 21], let

γ̃ (0)(s) = s(0)

c
= s(0)[µ0ε0]−1/2 ≡ propagation constant of free space (3.2)

and equate this to the propagation constant in the external medium of interest (e.g. soil).
Applying this to the natural frequencies we have

γ (0)α =
s(0)α

c
= [sαµ0(σ + sαε)]1/2 ≡ γα

sα = − σ
2ε
+
[[ σ

2ε

]2
+ ε

ε0
s(0)

2

α

]1/2

.

(3.3)

This result comes from observing that the natural frequencies come from (2.3) in the form
of particularγα, as in (3.1). Changing the form thatγ̃ (s) takes changes thesα, not the
γα. Furthermore, note from (2.3) and (2.8) that the natural modes and coupling vectors are
unchanged (sinceγα does not change) which we indicate symbolically as

jsα (rs) = j(0)sα (rs) cα(1i ) = c(0)α (1i ) (3.4)

noting, of course, that these are applied to the new (shifted) natural frequencies. With these
scaling relationships it is not necessary to calculate the natural frequencies, say from a
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discretized form of (2.3). One can measure these parameters, say in an anechoic chamber,
and then use these scaling equations to scale to a lossy dielectric medium of interest.

For larges(0)α compared withσ/ε, in what is called the high-frequency window [33],
we have

sα =
[ε0

ε

]1/2
s(0)α −

σ

2ε
+O(s(0)

−1

α ) ass(0)α →∞. (3.5)

For σ andε assumed independent ofs, this is a simple affine transformation (dilation and
translation) in thes plane. As such, the ‘pattern’ of the natural frequencies for a particular
target is an aid in identification. As we can see from the dilation term, the natural frequencies
will be reduced by a significant factor from their free-space values, and shifted slightly to
the left (more damping) for typicalε/ε0 (say 10 or so) andσ(10−3–10−2 S m−1).

As part of the design of a GPR to exploit the above results, one needs to propagate a
signal from the ground surface to the target, and from the target (scattered signal) back to
an antenna on or above the ground surface. There are various ways to design appropriate
antennae [26–30] to transmit and receive appropriate pulses, perhaps using the Brewster
angle for better transmission through the ground surface. Lettingd be some distance of
interest for propagation in this medium, we have the propagation factor

e−γ̃ (s)d = e−
s
v
de−

σZ∞d
2 [1+O(s−1)] as s →∞ (3.6)

where

v = [µ0ε]
−1/2

Z∞ =
[µ0

ε

]1/2

e−
s
v
d ≡ delay (by timed/v)

e−
σZ∞d

2 ≡ attenuation factor.

If σ and ε can be approximated as frequency independent, then in this high-frequency
window pulses are propagated with attenuation, but without dispersion. Propagation
distances of a few metres are typically useful with acceptable attenuation. Expression
(3.6), related for the electric and magnetic fields, can be readily expressed in a time domain
(for delta- or step-function response) to give exact responses, including the low-frequency
dispersion [17, 21].

There are various errors to contend with, such as those associated with inhomogeneities
(rocks, etc) in the external medium as well as the ground/air interface. If these are close to
the target (in units of target size) they can affect thesα. Furthermore,σ andε can vary with
frequency (in the range of interest). This can be partly compensated by measuring these
constitutive parametersin situ, say by measuring the reflection of the incident wave (from
the GPR, including appropriate variations of the direction of incidence and polarization)
from the ground/air interface.

4. Dielectric target in lossy dielectric medium

Let the target now be characterized as a simple dielectric with constant permittivityε2 and
permeabilityµ0 with

εr ≡ ε2

ε1
(4.1)

where now a subscript 1 will be used to designate parameters of the external medium.
We now consider the case thatεr is small compared to 1. Withε2 as about 2ε0 or 3ε0
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(corresponding to a typical plastic explosive) and typical soil permittivities (in the 100 MHz
range) as about 10ε0 (or 81ε0 in water), one can justify such an approximation. For later
use we have

Z̃1 =
√
µ0

ε1

[
1+ σ1

sε1

]−1/2

≡ wave impedance in external medium

Z2 =
√
µ0

ε2
≡ wave impedance in target

ξ̃ ≡ Z2

Z̃1

= γ̃1

γ̃2
= ε−1/2

r

[
1+ σ1

sε1

]1/2

.

(4.2)

In the limit of small εr (or large ξ̃ ) one can look at the properties of the external and
internal resonances [17, 24]. For the external resonances we can think of the target surface,
S, as a perfect magnetic conductor (infinite surface impedance) in the limit asξ̃ → ∞.
This lets one consider the dual problem in whichS is a perfect conductor and the electric
and magnetic fields are interchanged [13]. Thesα then are the same as for a metal target as
in the previous section, and the scaling relationships there can be applied from free-space
measurements of a metal-coated dielectric target to obtain thesα in soil (or water). Of
course, this procedure only gives the unperturbed external resonances, but this can be used
as a starting point.

Leaving behind the external resonances, go on to the internal resonances which are, in
general, more important due to their smaller damping (higherQ). In this case the lower
external wave impedance (largeξ̃ ) allows one to consider the internal resonances as the
usual cavity resonances withS considered as a perfect conductor in the first approximation.
From an experimental point of view one can cover the dielectric target with metal and couple
electromagnetic fields into the cavity through a small penetration (small wire coupling loop,
etc) to determine the interiorsα (on thejω axis for a lossless cavity). Then one considers
the perturbation away from thesesα into the left-halfs plane due to the external medium.
Write
sα = s(0)α +1sα
s(0)α ≡ natural frequency (unperturbed) for target as lossless cavity

with perfectly conducting boundary

1sα ≡ perturbation of natural frequency.

(4.3)

For the perturbation of the natural frequencies we can consider canonical problems to
get some idea of what the perturbation from the cavity problem is. A simple canonical
problem is a dielectric slab of thicknessl. As an infinite slab, we constrain the direction of
incidence to be perpendicular to the slab to make the natural frequencies unique and give a
simple transmission-line problem. The reflection or backscattering coefficient is

R̃0 = [ξ̃2− 1] sinh(γ̃2l)

2ξ̃ cosh(γ̃2l)+ [ξ̃2+ 1] sinh(γ̃2l)
. (4.4)

The poles are found from the zeros of the denominator as

0= ξ̃2(sα)+ 1

2ξ̃ (sα)
+ coth(γ̃2(sα)l). (4.5)

Large ξ̃ gives the limiting (unperturbed) form as

Tl ≡ √µ0ε2l s(0)α = jω(0)α
0= sin(ω(0)α Tl) ω(0)α Tl = nπ for n = 1, 2, . . . .

(4.6)
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Continuing the expansion as in (4.3) we have

1sαTl = −arctanh

[
2ξ̃ (sα)

ξ̃2(sα)+ 1

]
= −2ξ̃−1(sα)+O(ξ̃−3) as ξ̃ →∞

ξ̃ (sα) = ξ̃ (s(0)α )[1+O(1sα)] as1sα → 0

1sαTl = −2ξ̃−1(sα)+O(ξ̃−3) as ξ̃ →∞.

(4.7)

For a pure dielectric external medium(σ1 = 0) we have

1sαTl = −2ε1/2
r +O(εr) asεr → 0 (4.8)

which is a particularly simple result. Including a non-zeroσ1 we have

1sαTl = −2ε1/2
r

[
1+ j

2

σ1

ω
(0)
α ε1

+O

((
σ1

ω
(0)
α ε1

)2
)]
+O(ξ̃−3)

as
σ1

s
(0)
α ε1

→ 0 andξ̃ →∞ (4.9)

showing the leading effect in the high-frequency limit as a shift to the left in thes plane
with a smaller shift of the imaginary part (toward the origin).

A second canonical problem is a dielectric sphere of radiusa. Leaving behind the
details of the spherical vector wavefunctions [17, 24], the exterior natural frequencies for
ξ̃ →∞ are given as

0(1) ≡ γ̃1a = [sµ0(σ1+ sε1)]
1/2a

[0(1,H)α kn(0
(1,H)
α )]′ = 0 kn(0

(1,E)
α ) = 0

(4.10)

where

0(1,H)α ≡ roots for externalH (or TE) modes

0(1,E)α ≡ roots for externalE (or TM) modes

where anH mode has a radial (normal to the sphere surface) component of the magnetic
field, and similarly for anE mode. The prime indicates differentiation with respect to the
argument of the spherical Bessel function.

For the internal resonances we have for largeξ̃

0(2) ≡ γ̃2a = s√µ0ε2a

in(0
(2,H)
α ) = 0 [0(2,E)α in(0

(2,E)
α )]′ = 0

(4.11)

where

0(2,H)α ≡ roots for internalH (or TE) modes

0(2,E)α ≡ roots for internalE (or TM) modes

these roots being purely imaginary. For the interiorH modes we then have

Tα ≡ √µ0ε2a

s(2,H,0)α Ta ≡ 0(2,H)α

s(2,H)α ≡ s(2,H,0)α +1s(2,H)α .

(4.12)

Performing the appropriate expansions leads to

1s(2,H)α Ta = −ξ̃−1+O(ξ̃−2) as ξ̃ →∞
= −ε1/2

r +O(εr) asεr → 0 for σ1 = 0 (4.13)
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which is very similar to the slab results. For the interiorE modes we have

s(2,E,0)α Ta ≡ 0(2,E)α a s(2,E)α ≡ s(2,E,0)α +1s(2,E)α (4.14)

which are used to obtain

1s(2,E)α Ta = −ξ̃−1 0(2,E)
2

α

0
(2,E)2
α + n(n+ 1)

+O(ξ̃−2) as ξ̃ →∞

= − ε1/2
r

0(2,E)
2

α

0
(2,E)2
α + n(n+ 1)

+O(εr) asεr → 0 for σ1 = 0. (4.15)

This is also similar to the slab results, but slightly more complicated.
These results have the general form for the interior resonances

s(2)α T = −Cξ̃−1+O(ξ̃−2) ξ̃ →∞ (4.16)

where

C > 0, C ≡ dimensionless parameter depending on mode and target shape

T ≡ some characteristic time associated with propagation through

the target (in medium 2).

This is primarily a shift to the left in thes plane associated withε1/2
r , but there is a small

imaginary part associated withσ1.

5. Highly, but not perfectly, conducting targets

A recent technique [17, 22, 23] concerns the diffusive natural frequencies in metal targets
(MSI). For this case one uses loops above the ground surface as transmitters and receivers
of quasistatic magnetic fields, with wavelengths (or skin depths) in the external medium
large compared with distances between loops and target. In this case, one is interested in the
magnetic polarizability dyadic which gives the target an induced magnetic dipole moment
as

m̃(s) = ↔̃M(s) · H̃ (inc)(s) (5.1)

where

H̃ (inc)(s) = incident magnetic field at target
↔̃
M(s) = magnetic polarizability dyadic

m̃(s) = induced magnetic dipole moment.

The scattered magnetic field is then

H̃ (sc)(r, s) = 1

4πr3
[31r1r−

↔
1] ·

↔̃
M(s) · H̃ (inc)(s) (5.2)

with the usual spherical coordinates centred on the target. The distancer to the observer
is assumed large compared with target dimensions so that higher-order magnetic moments
are not significant.

Summarizing, we have
↔̃
M(s) =

↔̃
M(∞)+

∑
α

MαMαMα[s − sα]−1

1

s

↔̃
M(s) = 1

s

↔̃
M(0)+

∑
α

Mα

sα
MαMα[s − sα]−1

(5.3)
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where

Mα ·Mα = 1 Mα ≡ real unit vector forαth mode

Mα = real scalar sα < 0 (all negative real natural frequencies)

↔̃
M(∞) =

3∑
ν=1

M(∞)
ν M (∞)

ν M (∞)
ν

M (∞)
ν ≡ real eigenvectors (three)

M (∞)
ν ·M (∞)

ν = 1ν1,ν2 (orthonormal)

M(∞)
ν ≡ real eigenvalues (non-positive, not necessarily distinct)

↔̃
M(0) =

3∑
ν=1

M(0)
ν M

(0)
ν M

(0)
ν

M (0)
ν ≡ real eigenvectors (three)

M (0)
ν1
·M (0)

ν2
= 1ν1,ν2 (orthonormal)

M(0)
ν ≡ real eigenvalues (non-negative, not necessarily distinct)

1ν1,ν2 =
{

1 for ν1 = ν2

0 for ν1 6= ν2.

Note the presence of only first-order poles; the entire function is a constant (delta function
in time domain). Transit times across the target in the external medium are so short on
the present time scale as to be neglected. Fundamental to the above results is the neglect
of ωε compared withσ in the target. (Note that in general in the target we can have

dyadic (anisotropic) constitutive parameters
↔
σ (r) and

↔
µ (r).) From a discretized point

of view the target can be viewed as a circuit comprised of inductors and resistors (LR)
and appropriate circuit theorems applied, leading to only first-order poles withsα real and
negative, corresponding to simple exponential decays in time domain. Inclusion of point
symmetry (rotation and/or reflection) in the target further simplifies (5.3) by making the
various unit vectors line up according to the planes and axes of symmetry.

This general form of the response is consistent with the well known examples of a metal
sphere and a simple loop. However, one need not calculate thesα (and perhaps associated
vectors) for each target type of interest. These can be measured to give the target-library
entries. While my original thoughts concerning this technique were directed towards targets
in the ground, it has become apparent that the same technique can be applied to security
systems such as at airports [34]. One can think of this as a ‘smart’ metal detector.

6. Acoustic/elastodynamic target discrimination

There is an analogue to the SEM representation for electromagnetic scattering in the case
of acoustic/elastodynamic scattering, this being important for the case of UXO in water or
water-saturated soil. Going by the name of acoustic resonance scattering, various canonical
problems having analytic solutions (based on circular-cylindrical and spherical shells) have
been treated [12]. One thing needed here is a more general form of the scattering, applicable
to general shapes of bodies that are passive, linear, and reciprocal. Recent results [17, 25]
have found the general form of the scattering poles directly analogous to the form in
section 2. For scalar p-wave scattering this consists in replacing the vectorcα by scalar
cα, and similarly dyadics by scalars. Including s-waves in the incident and scattered waves
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complicates the problem significantly.
Summarizing from [17, 25], in terms of the displacement vectoru(r, t) we have

↔̃
τ (r, s) = (C̃n,m,l,k(s)) : ∇ũ(r, s) ≡ stress tensor

(C̃n,m,l,k(s)) ≡ stiffness tensor

Cn,m,l,k = l̃1(s)1n,m1l,k + l̃2(s)[1n,l1m,k + 1m,k1m,l ]

l̃1(s), l̃2(s) ≡ Lame constants

↔̃
τ (r, s) = l̃1(s)[∇ · u(r, s)]

↔
1 +l̃2(s)[∇ũ(r, s)+ [∇ũ(r, s)]T ]

= ↔̃τ
T

(r, s)

ṽp(s) =
[
l̃1(s)+ 2l̃2(s)

ρa

]−1/2

≡ p-wave speed (longitudinal, pressure)

ṽs(s) =
[
l̃2(s)

ρa

]−1/2

≡ s-wave speed (transverse, shear)

ρa ≡ mass density.

(6.1)

For frequency-independent (and thereby real and positive) Lame constants we have

vp > vs > 0. (6.2)

The incident and scattered (far-field) waves both havep ands components in general with
the forms

ũ(inc)(r, s) = e−γ̃p(s)1i ·rũ(inc)p (0, s)+ e−γ̃s (s)1i ·rũ(inc)s (0, s)

ũ(inc)p (0, s) = ũ(inc)p (0, s)1i ũ(inc)s (0, s) · 1i = 0

ũ(sc)f (r, s) = ũ(sc)fp
(r, s)+ ũ(sc)fs

(r, s) r = r1o
ũ(sc)fp

(r, s) = ũ(sc)fp
(r, s)1o ũ(sc)fp

(r, s) · 1o = 0

γ̃p(s) ≡ s

ṽp
γ̃p(s) ≡ s

ṽs
.

(6.3)

The incident and scattered fields are related by linearity as

ũ(sc)fp
(r, s) = 1o

e−γ̃p(s)r

4πr
[3̃p,p(1o, 1i; s)1i · ũ(inc)p (0, s)+ Λ̃p,s(1o, 1i; s) · ũ(inc)s (0, s)]

ũ(sc)fs
(r, s) = e−γ̃s (s)r

4πr
[Λ̃s,p(1o, 1i; s)1i · ũ(inc)p (0, s)+ ↔̃3s,s(1o, 1i; s) · ũ(inc)s (0, s)]

(6.4)

giving four scattering coefficients (one scalar, two vector, one dyadic).
Expand these four scattering coefficients in terms of poles (here assumed first order) as

3̃p,p(1o, 1i; s) =
∑
α

3(p,p)
α (1o, 1i )[s − sα]−1+ other singularity terms

Λ̃p,s(1o, 1i; s) =
∑
α

Λ(p,s)
α (1o, 1i )[s − sα]−1+ other singularity terms

Λ̃s,p(1o, 1i; s) =
∑
α

Λ(s,p)
α (1o, 1i )[s − sα]−1+ other singularity terms

↔̃
3s,s(1o, 1i; s) =

∑
α

↔
3
(s,s)

α (1o, 1i )[s − sα]−1+ other singularity terms.

(6.5)
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The elastodynamic reciprocity theorem, when applied to the pole residues, gives

3(p,p)
α (1o, 1i ) = 3(p,p)

α (−1i ,−1o)

Λ(p,s)
α (1o, 1i ) = − ṽ

2
s (sα)

ṽ2
p(sα)

Λ(s,p)
α (−1i ,−1o)

↔
3
(s,s)

α (1o, 1i ) =
↔
3
(s,s)T

(−1i ,−1o).

(6.6)

Omitting the details, this is then used for non-degenerate natural modes to give a factored
form for these scattering coefficients as

3(p,p)
α (1o, 1i ) = cα(−1o)cα(1i )
↔
3
(s,s)

α (1o, 1i ) = cα(−1o)cα(1i )

Λ(p,s)
α (1o, 1i ) = aαcα(−1o)cα(1i )

Λ(s,p)
α (1o, 1i ) = a−1

α cα(−1o)cα(1i )

aα = ±j ṽs(sα)
ṽp(sα)

ca(1i ) · 1i = 0 (transverse).

(6.7)

These four coefficients are then representable by products of one scalarcα and one vectorca
as functions of incoming and outgoing directions. These can be regarded as experimental
observables which the factorization in (6.7) makes functions of only one angle (variable
over 4π steradians).

Comparing with the electromagnetic form in (2.8) we can see that (6.7) is a
generalization including both transverse and longitudinal waves. While (2.8) has been
derived from an integral equation representation of the scattering, (6.7) has been derived by
the imposition of reciprocity on the general form of the scattering coefficients (a procedure
which can be applied just as easily to electromagnetic scattering). While (6.5) and (6.7) give

Figure 2. SEM-based target identification.
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the basic form for first-order elastodynamic poles, there is still much to be done to bring the
knowledge of the SEM terms to the same level of sophistication as in the electromagnetic
case. While the present results apply to the elastodynamic case, there are important cases
in which the external medium only supports significant p-waves (e.g. air, water). Even
though the target may support both p- and s-waves, only p-waves are present in the far-field
scattering. In such cases only the scalarcα is needed to form the single scattering coefficient
3
(p,p)
α .

7. Concluding remarks

As this summary has discussed, there are two electromagnetic techniques (EMSI and MSI)
and one acoustic/elastodynamic technique (ASI) for discriminating buried targets based on
patterns of natural frequencies (and perhaps residue vectors as well) in some target library.
Figure 2 gives a diagrammatic way of looking at these collectively. This has properties of
a matrix and a Venn diagram (used in Boolean algebra). Here we can see how the different
techniques overlap when considering different types of targets (metal, dielectric) embedded
in different types of media (soil, water). Of course, this is a simplified view, and one can
in principle, further subdivide the various domains for a more detailed evaluation of the
various target/technique combinations. Note multiple techniques applicable to metal targets
in both kinds of media. One would like to have more techniques for dielectric targets to
fill out the diagram better, such as chemical (sniffer) and nuclear techniques, but these are
beyond the scope of this paper.

References

[1] Baum C E 1976 The singularity expansion methodTransient Electromagnetic Fieldsed L B Felsen (Berlin:
Springer) ch 3, pp 129–79

[2] Baum C E 1976 Emerging technology for transient and broad-band analysis and synthesis of antennas and
scatterersProc. IEEE1598–616

[3] Dolph C L and Scott R A 1978 Recent developments in the use of complex singularities in electromagnetic
theory and elastic wave propagationElectromagnetic Scatteringed P L EUslenghi (New York: Academic)
ch 14, pp 503–70

[4] Baum C E 1978 Toward an engineering theory of electromagnetic scattering: the singularity and eigenmode
expansion methodsElectromagnetic Scatteringed P L EUslenghi (New York: Academic) ch 15, pp 571–
651

[5] Pearson L W and Marin L 1981 Special issue on the singularity expansion methodElectromagnetics349–511
[6] Baum C E 1986 The singularity expansion method: background and developmentsIEEE Ant. Prop. Newsletter

15–23
[7] Baum C E 1987A priori application of results of electromagnetic theory to the analysis of electromagnetic

interaction dataRadio Sci.1127–36
[8] Baum C E, Rothwell E J, Chen K-M and Nyquist D P 1991 The singularity expansion method and its

application to target identificationProc. IEEE1481–92
[9] Baum C E 1992 SEM and EEM scattering matrices and time-domain scatterer polarization in the scattering

residue matrixDirect and Inverse Methods in Radar Polarimetryed W-M Boerneret al (Dordrecht:
Kluwer) pp 427–86

[10] Überall H (ed) 1992Acoustic Resonance Scattering(London: Gordon and Breach)
[11] Baum C E 1994 Signature-based target identification and pattern recognitionIEEE Ant. Prop. Magazine

44–51
[12] Überall H 1994 Fine resolution of radar targetsRadar Target Imaginged W-M Boerner and ḦUberall (Berlin:
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