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This paper, which addresses the important issue of estimating 
the instantaneous frequency (IF) of a signal, is a sequel to the 
paper which appears in this issue, and dealt with the concepts 
relating to the IF. In this paper the concept of IF is extended to 
be able to cope with discrete time signals. The specific problem 
explored is that of estimating the IF of frequency modulated 
(FM) discrete-time signals imbedded in Gaussian noise. There 
are many well established methods for estimating the IF-these 
methods include differentiation of the phase and smoothing thereof; 
adaptive frequency estimation techniques such as the phase locked 
loop (PLL), and extraction of the peak from time-varying spectral 
representations. More recently methods based on a modeling of the 
signal phase as a polynomial have been introduced. All of these 
methods are reviewed, and their performances are compared on 
both simulated and real data. Guidelines are given as to which 
estimation method should be used for a given signal class and 
signal-to-noise ratio (SNR). 

I. INTRODUCTION 
The estimation of the instantaneous frequency (IF) is a 

natural progression from steady-state sinusoidal frequency 
estimation which has been studied extensively for many 
years. The various methods which have been developed for 
obtaining good sinusoidal frequency estimates are briefly 
described in Section I1 as background information. For 
nonstationary frequency modulated (FM) signals, the FM 
law may be considered to be a continuum of different 
frequencies, with the frequency at a particular time being 
described well by the concept of “instantaneous frequency.” 
These nonstationary signals are common both in nature and 
in many man-made processing environments. There is a 
great need, then, to develop effective techniques for IF 
estimation. 

Section 111 includes a review of currently available IF 
estimation techniques. The coverage includes phase dif- 
ferencing of the analytic signal and smoothing thereof, 
counting the zero crossings, adaptive estimation meth- 
ods based on the least mean square (LMS) algorithm, or 
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the recursive least squares (RLS) algorithm, phase-locked 
loop techniques, estimation via time-frequency distribution 
(TFD) moments or peaks [20], and methods based on a 
modeling of the signal phase law as a polynomial. Only the 
single FM component case will be dealt with in detail, but 
a short description of how one may extend the algorithms 
to multicomponent signals will be provided. 

Simulations are provided in Section IV to compare the 
various methods with one another and with the theoretical 
lower variance bounds. Finally, some discussion on the 
suitability of a particular method for given signal class and 
SNR range is presented. 

The following model is used throughout the text: 
s ( n ) , n  = 0 , .  . . , N  - 1 is a length, N ,  sequence. The 
analytic signal associated with s (n )  is a discrete-time 
sequence given by z , (n)  = s(n)  + j H [ s ( n ) ] ,  where H [  ] 
defines the discrete-time Hilbert transform operation [45]. 
z ( n ) ,  n = 0, . . . , N - 1 is a length N sequence of complex 
data values corresponding to the undistorted analytic signal, 
z S ( n ) ,  plus an additive complex Gaussian noise component, 
~ ( n ) .  The undistorted complex signal has real part, s (n )  
and imaginary part q(n) ,  while the distorted signal has 
real and imaginary parts given respectively by x(n) and 
y(n). The sequence s (n )  is modeled as having the form, 
s (n )  = A(n)cos($(n)),  where A(n) and 4(n)  are the 
amplitude and phase functions, respectively. It is assumed 
that z , (n) ,  generated with a Hilbert Transformer, is of 
the form, z , (n)  = A(n)ejq(n). The conditions which are 
necessary for this last assumption to be valid are discussed 
in [12]. The sampling period (and the sampling frequency) 
is assumed to be unity throughout this paper. 

11. FREQUENCY ESTIMATION TECHNIQUES 
FOR STATIONARY SIGNALS 

Before considering the specific problem of frequency 
estimation and subsequently of IF estimation it is useful 
to recall some principles used in the process of estima- 
tion generally. These basic principles are outlined below. 
Several properties are usually sought for a “good” esti- 
mator. Typically, one seeks estimators that are consistent, 
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and statistically and computationally eficient. A consistent 
estimator is one which converges in probability to the true 
value asymptotically. For a consistent estimator, then, 

lim Pr{ 16 - a1 > E }  = 0 (1) N + w  

where ii is the estimator of a, N is the number of samples 
in the observation sequence, Pr denotes probability, and E 

is an arbitrarily small positive number [40, p. 451. 
A statistically eficient estimator is one whose variance 

is the lowest theoretically possible (assuming the estimate 
is unbiased). This lower theoretical bound on the variance 
is called the Cramer-Rao (CR) bound [40, p. 461, [60, p. 
721. It is given by 

(2) 
1 

var(6) 2 
E[( a lnp(z; a)/aa)21 

or equivalently by, 

(3) 
-1 

E[(  a2 lnp(z; a)/a2a)]  
var(6) 2 

where z = [z(1)2(2), . . z ( n ) ]  is the vector of observed 
samples, and p ( z ;  a )  signifies the probability density func- 
tion (pdf) of z given the parameter, a. E is the expectation 
operator. Since z is complex with real part z and imaginary 
part y, the pdf of z is the joint pdf of z and y. p ( z ; a )  is 
often referred to as the likelihood function. 

It may be that no estimator will meet this bound, but if 
there is one, it can be produced by the use of maximum like- 
lihood (ML) techniques, i.e., that estimate of the parameter 
is chosen which would have made the observed sequence 
most likely to occur [40, p. 471. While the ML estimate is 
guaranteed to be statistically efficient for long data lengths, 
it may not be computationally efficient. It may in fact 
be computationally quite intensive. For this reason, ML 
estimators are sometimes discarded in favor of suboptimal 
but computationally simpler ones. The principles described 
above have been put to very wide use in estimating the 
frequency of a sinusoid in white Gaussian noise. The signal 
model which has often been used is 

z ( n )  = AejaTfn + ~ ( n )  (4) 
where A is the amplitude, f is the frequency, ~ ( n )  is 
the discrete complex observation sequence and ~ ( n )  is 
the complex white Gaussian noise sequence. The ML 
estimate for the frequency of a single sinusoid in white 
Gaussian noise has been shown to be given by finding that 
frequency at which the periodogram, or “spectrum,” attains 
its maximum [52]. This may be implemented with an initial 
coarse search on the bins of a Fast Fourier Transform (FFT) 
and a subsequent interpolation procedure [52]. As long as 
the “coarse” frequency estimate falls within the main lobe 
of the frequency response, this technique converges to the 
correct global maximum [53]. This estimate meets the CR 
bound above a SNR threshold, the bound being given by 
[52]: 

12 
var[f^l ’ ( ~ T ) ~ ( A ~ / U ~ ) N ( N ~  - 1) (5) 

where N is the number of independent samples in the data, 

BOASHASH: INSTANTANEOUS FREQUENCY OF SIGNAL: PART 2 

A is the signal amplitude and 2u2 is the complex noise 
variance. 

The estimated variance departs quite dramatically from 
the CR bound once the SNR falls below a threshold value, a 
phenomenon which is common in nonlinear estimators [52]. 
(See also [2] for a detailed discussion on the CR bound for 
stationary signals). 

As mentioned earlier, the ML method can be computa- 
tionally too intensive in some applications. In an attempt 
to find frequency estimators which reduce computation 
and/or increase resolvability, many researchers have turned 
to parametric methods. These methods typically model the 
signal as having a rational transfer function. It is often 
computationally advantageous to assume that the numerator 
of the transfer function is a constant. Such models are 
said to be auto-regressive (AR), or alternatively, linear 
predictive. The frequency estimates are obtained by finding 
the roots of the polynomial denominator. For say a simple 
complex sinusoid, these methods are very computation- 
ally efficient, although they are generally not statistically 
efficient. They also allow closely spaced sinusoids to be 
well resolved. Several variants of this approach exist, and 
include maximum entropy methods, Prony ’s Method, etc. 
They are described in [40] and [43]. 

Other techniques which have found widespread use for 
spatial frequency estimation in the array processing field 
are the eigenbased methods, such as Pisarenko’s Harmonic 
Decomposition and MUSIC [40, p. 4311. These methods 
assume that the observed signal can be decomposed into 
noise and signal components, and then use the fact that the 
signal vectors will be orthogonal to the noise vectors. Thus 
the MUSIC spectral estimator is formed as the inverse of 
the sum of inner products between signal vector and noise 
vector estimates. The frequencies of the signal components 
are,taken to be the peaks of the spectral estimate. 

Recently, Tretter introduced another frequency estimation 
technique [58]. He showed that for a complex sinusoid 
in white Gaussian noise at high SNR, the phase may be 
approximated well as a linear function of time, imbedded 
in an additive white Gaussian noise process. He then used 
a linear regression (i.e., least squares fitting) technique to 
estimate the frequency. Because the least squares technique 
is equivalent to the ML one for white Gaussian processes 
[40, p. 491, his estimator is also ML for the high SNR range 
under consideration. It thus approaches the CR bound for 
high SNR. One problem with Tretter’s algorithm is that 
the first stage of the algorithm necessitates extracting the 
phase from the data. This is prone to significant numerical 
errors. Kay obtained a modified form of this estimator by 
fitting a model to adjacent phase difference estimates, rather 
than the phase values themselves, thus avoiding the phase 
unwrapping problem [39]. The resulting estimator is simply 
a smoothing of phase differences with a quadratic window. 

The methods described in this section have dealt specifi- 
cally with sinusoidal frequency estimation. They provide a 
good basis to understand the more complicated problem of 
estimating time-varying frequencies, which is considered 
in the next section. 
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111. REVIEW OF INSTANTANEOUS FREQUENCY 
ESTIMATION TECHNIQUES 

Order 

A. Definition of the Discrete-Time IF 

s ( t ) ,  was given by Ville as [62]: 
The definition for the IF of a real continuous-time signal, 

Coefficients 

where d ( t )  is the phase of the analytic signal associated 
with s ( t ) .  This was the definition used in [12]. 

To implement discrete-time IF estimators based on the 
definition in (6a), one must first address the question of 
how the differentiation operation may be realized in discrete 
time. One solution is to use a discrete finite impulse 
response (FIR) differentiator [45, p. 1641. The discrete-time 
IF may then be defined as 

(6b) 
1 

f d n )  = g q 7 4  * d(n) 

where d(n) is the impulse response of an FIR differentiating 
filter, and * denotes convolution in time. Such filters have 
practical problems, however, since they exaggerate the 
effects of high frequency noise [ 141. Good approximations 
to the differentiation operation in discrete-time can be 
obtained by using a phase differencing operation. This 
approach is very computationally efficient and in general 
yields better noise performance than is obtainable with 
(6b). The forward and backward finite differences ((FFD) 
and (BFD), respectively) defined by (7) and (8), are two 
commonly used phase differencing operations: 

6 

One may also estimate the discrete-time IF using another 
single phase differencing operation, referred to as the 
central finite difference (CFD): 

-1 3 - _  3 0 3 - -  3 1  
60 20 20 60 

(9) 

Of the three discrete IF estimators in (7), (8), and (9), the 
one defined by (9) has some distinct advantages. Firstly it 
is unbiased and has zero group delay for linear FM signals 
[ 121, and secondly it corresponds to the first moment in 
frequency of a number of TFD’s [19], [13]. 

I) General Phase Difference Estimator: One can define a 
class of phase difference estimators which are unbiased for 
polynomial phases of arbitrary order. For phase given by 

P 

d(n)  = ai722 (10) 
i=O 

the IF is obtained as 

A qth order generalized phase difference estimator may be 
defined as [9]: 

where q is an even integer. The bk coefficients are to be 
found so that f ( n )  = f i (n) ,  or: 

q / 2  P 

bkf$(n + k )  = i(&(n)i-l. (13) 
k = - q / 2  i=l 

For example, the second order phase difference estimator 
is just the CFD estimator. Note that the even ordered 
estimators are favored over the odd order ones because they 
introduce no group delay. A table of the coefficients for the 
first few even ordered phase difference estimators, each of 
which is unbiased for a polynomial phase function of the 
given order, is shown as follows: 

The details are provided in [9]. 
One can also implement the phase differentiation using 

the classical continuous-time formula for FM discriminators 
[30], [l],  [31]: 

This leads to the following discrete-time estimator [30, p. 
721 

FIR filters are also used to approximate the differentiation 
operations needed in order to evaluate the numerator [45]. 

B. Smoothed Versions of the Phase Difference Estimator 

The CFD estimator given in (9) is unbiased for linear FM 
signals, but exhibits very high variance for noisy signals. A 
number of approaches may be used to reduce the variance. 
Firstly, if the signal’s frequency is known to be constrained 
to a bandwidth, B, then the signal is filtered outside this 
bandwidth. Secondly, smoothing may be used to yield lower 
variance (but not necessarily unbiased) estimates. 

A particular smoothed estimator has been proposed by 
Kay. He defined a “weighted phase difference” estimator, 
which meets the CR bounds for a stationary signal, as given 
in (5).  He arrived at this estimator by trying to find the 
ML estimate of a sequence of local frequency estimates. 
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These local frequency estimates are obtained by forward 
finite difference operations. Because of the differencing 
operation, the sequence of estimates are correlated, or 
“colored.” The solution for the optimal or ML value for the 
frequency, then, does not reduce to a linear averaging, but 
rather to a “weighted” averaging procedure. Kay’s estimator 
is given by 

N - 2  

f ( , )  = h T L [ 4 ( n  + - 4(41 (16) 
n = O  

where h,, the averaging or smoothing window, is given 
by [39]: 

The variance reduction which is achieved by using the 
above window is [39]: 

var(f)lno window N ( N  + 1)  N 
(18) - N _  - 

var(f))window 6 ( N  - 1)  - 6 ’ 

The weighting function, h,, can also be applied to AR 
based frequency estimates [39] in preference to the nor- 
mal rectangular window, and simulations have shown that 
significantly enhanced performance results. As pointed out 
in [35], the estimator in (16) can easily be implemented 
as an IF estimator or tracker, by formulating it as a 
recursion in time. That is, a sliding window may be used to 
evaluate the frequency locally, in much the same way as the 
spectrogram is used to estimate the spectrum locally. This 
approach, however, will yield degraded estimates if there 
are significant frequency variations (particularly nonlinear 
ones) within the window. To overcome this limitation, 
one can reconsider the whole problem using a polynomial 
phase model for the signal rather than a linear phase one 
[9]. Both Tretter’s linear regression fit estimator [58] and 
Kay’s weighted phase difference estimator, in fact, may be 
extended to a polynomial phase signal model. Section IV 
describes both extensions in detail. 

C. Zero-Crossing IF estimation 
One means for estimating the local frequency of a nar- 

rowband process, which is common in seismic processing, 
is to measure the number of zero-crossings. For a sinusoidal 
signal, or a signal which can be considered to be locally 
stationary, the frequency is given by the inverse of the 
period, or alternatively by half the inverse of the interval 
between zero-crossings, i.e., 

1 
f = -  

2l-z 
or 

f = z / 2  (20) 

where T, is the interval between zero crossings, 2T, is the 
period, f is the frequency, and Z is the zero-crossing rate. 

Since we are dealing with discrete-time signals with unit 
sampling rate, the value of T, is actually given by the 

number of sample intervals, k ,  between zero-crossings, and 
therefore, (19) becomes f = 1/2k.  (It is assumed for 
the present that the zero-crossings fall exactly on sample 
points). Then there will be exactly k + 1 sample points in 
the interval between consecutive zero-crossings (including 
the two end points). This zero-crossing estimate is shown 
below to be a linear average of the FFD estimates within 
the interval [9]. 

Proof: Since T, = k ,  the zero-crossing estimator in 
(19), assuming the first zero-crossing occurs at time index 
n, can be expressed as 

1 
2k 

f ( n )  = -. 

The usual FFD estimator may be written as, 

The linear average of the k consecutive FFD estimators 
within the interval is 

+ . . . + (b(n + IC) - 4 ( n  + k -- I>] (23) 

which may be rewritten as 

Now since qb(n+k)-qh(n) = n, (24) reduces to (21).Q.E.D. 
Thus the expression for the zero-crossing estimate is 

simply a linear average of k adjacent FFD estimates. 
The averaging does not incorporate the optimal quadratic 
weighting function, h,, described in the previous section, 
and hence is suboptimal. It is, however, extremely simple 
computationally. Note that if the interval between zero- 
crossings is not an integer number of samples, then in 
addition to the linear averaging produced by the estimator, 
quantization “noise” is introduced. To reduce the variance 
of the zero-crossing estimate, Rabiner and Schafer [46] 
have proposed taking the average number of zero-crossings 
within a window of length 111. Their estimator is defined 
by 

M 

2 (n )  = Isgn[s(m)] - sgn[s(m - l ) ] (h(n  - m) 
Tn=-i\{ 

where 

sgn[s(n)] = 1, for s (n )  2 O 

= -1. for s(n)  < 0 (26) 

and where 
1 

2 M ’  
h(n) = - for O < n < M - I  

= 0 otherwise. (27) 

The previous discussion applies to locally sinusoidal pro- 
cesses. For nonstationary FM signals, the zero-crossing 
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based instantaneous frequency estimator can be extended 
according to: 

where Z ( n )  is given by (25). By sliding the window, h(n) ,  
with n, we obtain an estimate of the IF as a function of 
n. The finite length of the window, M ,  introduces a bias- 
variance trade-off in IF estimation. If M is large, and the 
IF law is not linear within the window, there will be a bias. 
If M is small the bias is likely to be reduced but at the cost 
of higher variance. Results are presented in Section V. 

D. Adaptive IF Estimation 

One approach to IF estimation is to formulate it as a 
problem of adaptively estimating the local frequency. This 
approach has given rise to the phase locked loop (PLL), 
which is used widely in communications systems [17]. 
The PLL adaptively demodulates the incoming signal to 
baseband, where it is filtered, and the output fed back into 
the demodulation stage. The standard PLL performs quite 
well in noise, but is unable to track very rapid changes in 
the IF. Special modifications are required to be able to deal 
with the latter. 

Snyder has derived some useful adaptive estimators in 
[56]. He derived an estimator based on a nonlinear least 
squares criterion, and a linear approximation to this esti- 
mator (the Extended Kalman Filter ). He also showed that 
the Extended Kalman filter reduces very nearly to the PLL 
in the stationary case. Other variants and extensions of the 
PLL have also been devised [33]. 

Another form of adaptive IF estimation is based on 
modeling the data as a linear predictive process. Two 
methods which may be used for this type of estimation are 
the LMS and the RLS algorithms [32]. Both are described 
as follows. 

I )  LMS Algorithm: Griffiths proposed an adaptive IF es- 
timation algorithm in [29] based on a linear prediction 
filter which has its coefficients updated with each new 
data sample. Griffiths’ method is based conceptually on 
extracting the peak of a short-time linear prediction based 
spectral estimate. Great computational savings are achieved 
in the process by recursively updating the spectral estimate 
as each new point is received rather than by recalculating it 
from the raw data each time. The resulting algorithm, which 
is based on gradient descent techniques, is quite simple. 
However, because the recursive algorithm is inherently an 
IF tracking process, it is unable to respond to very rapid 
(or noisy) IF changes. The estimate may therefore exhibit 
significant noise susceptibility. Details of the algorithm are 
given below. 

The vector of data samples at time, n, is denoted by 

Z, = [ ~ ( n )  z ( n  - 1) . . ~ ( n  - L + l)]’ (29) 
where L is the linear prediction filter length, and repre- 
sents the transpose operation. The corresponding vector of 
linear prediction filter coefficients is 

0, = [a1(n) a2(7L). . (30) 

As each new data sample is processed, the filter coefficients 
should ideally be updated so as to minimize the mean 
square prediction error. For stationary statistics the error 
is a unimodal function of the filter coefficient vector, and 
hence gradient descent techniques may be used to converge 
to the optimal values for the filter coefficients. The LMS 
algorithm of Widrow and Hoff [69] is used and the updated 
coefficients are given by the relation as [43, pp. 264-2661 

= an - 2w,, , ,z~ 

e,+l = z ( n  + 1) + znTa, 
(3 1 a) 
(31b) 

where e,+l is the linear prediction error at time index, 
n + 1, p is the adaptation constant, and * denotes the 
complex conjugate. A standard form of equations for the 
LMS algorithm is given in [32, pp. 302-3041. 

The IF estimate is determined from the peak of the linear 
prediction based spectrum, i.e., 

fit,, = fi which maximizes 

11 + 5 ~ ( n )  e x p [ - j 2 r f i k ]  . (32) 

Where several frequencies are being estimated or tracked, 
the expression in (32) is modified to extract the 
different peaks corresponding to the individual frequency 
components. For tracking a single complex sinusoid in 
noise, the IF may be determined with great computational 
efficiency according to 

1 
fz(n) = - arg [a,*]. 

2 r  
The coefficient p controls the rate of adaptation-if p is 
close to its upper limit, adaptation is swift but steady state 
error may be large, while if p is small, adaptation will be 
slow. The main advantage of this algorithm is its computa- 
tional simplicity which is apparent from (31). In addition, 
better algorithms may be used for the adaptation [70]. 

2) l U S  Adaptive Frequency Estimation: The RLS algo- 
rithm is a technique which again models the data as a 
linear prediction sequence, and which updates the linear 
prediction coefficients with each new data sample. The 
RLS algorithm differs from the LMS algorithm in that an 
exponentially weighted approximation to the inverse of the 
covariance matrix is used as the “adaptation coefficient,” 
rather than a scalar coefficient. The advantage of the RLS 
algorithm over the LMS one is its improved speed of 
convergence and robustness to signal energy levels. The 
classical RLS algorithm requires order L2 computations as 
opposed to order L for the LMS algorithm, but fast  RLS 
algorithms have been developed which are only order L 
[18]. The updating of the algorithm parameters at time, 
n, is achieved by the following set of equations [43, pp. 

k=l 1r2 

(33) 

267-2691 : 

an+1 = an - en+lPnZn* (344  
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P ,  = [aP,-, -l + Z,,*Z,, '1 -l (34c) 

where P ,  is the exponentially weighted approximation to 
the covariance matrix inverse, and Q is the forgetting factor. 
A standard form of equations for the RLS algorithm is given 
in [32, pp. 48fJ-4831. By using the matrix inversion lemma, 
these equations reduce to: 

where e,+l is as defined in (29b), and I is the identity 
matrix. 

For a single noisy complex sinusoid the above equations 
can be implemented very simply, and the resulting estimator 
is unbiased. The local IF may be obtained according to 
(33). For multiple components the IF estimates are extracted 
from the peaks of the linear prediction spectrum using (30). 
Results are presented in Section V. 

E. IF Estimation Based on the Moments of TFD's 
Cohen has formulated a class of two-dimensional func- 

tions (TFD's) which may be used to represent the distri- 
bution of signal energy in time and frequency [20]. The 
discrete time expressions for these functions were given in 
[13] as 

M M  

. z*(p  - m ) e - - j 4 x m k / N  

where G(n ,k )  is a window function which selects a par- 
ticular TFD, and M = ( N  - l ) / 2 .  

A number of TFD's (e.g., the Wigner-Ville Distribution 
(WVD)) yield the IF through their first moment [19], and 
many other TFD's (e.g., the Short-Time Fourier Transform 
[ 131) yield approximations to the IF through their first 
moment. TFD first moments, then, provide another means 
of estimating the IF. In [64] White and Boashash considered 
the problem of estimating the IF of a Gaussian random 
process using WVD first moments. The particularly useful 
aspect of estimating the IF in this manner is that masking 
or other forms of preprocessing in the time-frequency plane 
can be performed so as to reduce noise effects or to estimate 
IF laws of the various components separately [13]. See for 
example, Figs. 1 and 2 which show respectively linear FM 
IF estimates obtained from the WVD first moment obtained 
with and without a preliminary masking operation. The 
SNR level was 3 dB. The masking or time-varying filtering 
operation has resulted in a significant variance reduction. 
This methodology is further described in Section VI-B and 
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in [13]. The IF derived via the first moment of the discrete 
WVD is given by [6], [19]: 

where Wg(n, k )  is the discrete WVD, and is defined by 

M 

~ g ( n ,  IC) = z ( n  + m / 2 ) z * ( n  - m/2)e-- j2xmk/M. 

(38) 
m=-M 

Because this method is computationally demanding (re- 
quiring calculation of a TFD, masking and first moment 
calculations), and is not generally statistically optimal, other 
methods are preferred. 

The IF, or an approximation thereof, may similarly be 
obtained via moments of the discrete time TFD's defined 
in (36) [6], [13]. Such moments can be shown to be 
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approximately a smoothed CFD estimator [13]. That is, 

ml,(n) = [fc(n) * G(n, l)] mod T .  f s  (39) 

Here fc(n) is as specified in (9) and G(n , l )  is the 
function G ( n , k )  of (36) evaluated at k = 1. These 
results are detailed in [13]. In practice, this method is 
computationally demanding, since it requires calculation 
of a TFD, a masking operation and then an inversion 
procedure. Because of its equivalence with a smoothed CFD 
operation, it is used only in very specific applications. 

3) Peak of theXWVD: The XWVD between a reference 
signal, ~ ( n ) ,  and an observed signal, ~ ( n ) ,  is defined as 

Ad 

W*,z,(n, k )  = zs(n + m/2) 
m=-M 

. z,*(n - m / 2 ) e - j 2 n m k / h f  (40) 

where z ,  ( n )  and z ,  ( n )  are analytic signals corresponding 
to s (n )  and ~ ( n ) ,  respectively. 

Normally the reference signal is not known, but it may be 
estimated from the observed signal. The estimation of the 
reference involves obtaining an initial IF estimate, f i (n) ,  
and reconstructing a unit amplitude signal according to 

F. IF Estimation Based on the Peak of TFD’s 

I )  Peak of the Short-Time-Fourier-Transform: As indicat- 
ed earlier, the ML estimate of the frequency of a complex 
sinusoid imbedded in a stationary white complex Gaussian 
noise sequence is given by the peak of the periodogram 
or “spectrum” [52]. It seems intuitively appealing to gen- 
eralize this result to nonstationary signals by forming an 
IF estimate from the peak of a TFD, since TFD’s were 
constructed especially to deal with nonstationary signals. 
Many authors have proposed such a technique. One of the 
most obvious TFD’s to use is the STFT, which will perform 
very well if the signal being considered is quasistationary. 
However, because of the fact that the optimum window for 
the spectrogram is the reciprocal of the square root of the 
frequency rate, poor results are obtained for rapidly slowing 
FM signals 191. Results are presented in Section V. 

2) Peak of the WVD: The WVD peak was proposed as 
an IF estimation technique in [5], and it was applied 
to determining absorption and dispersion parameters in 
seismic processing. The WVD’s usefulness arises from its 
ability to localize energy along the IF law. If the signal 
under consideration has a linear frequency law and constant 
amplitude, the WVD will reduce to a row of delta functions 
on the IF law-a situation which is very conducive to IF 
estimation. The existence of any nonlinearity in the IF law 
may cause the peak of the IF to be biased, so it is common 
to adjust the window so that the IF variation inside the 
window length is approximately linear [12]. 

Rao and Taylor showed further that WVD peak based 
IF estimation is optimal for linear FM signals with high to 
moderate SNR [51]. Wong and Jin also investigated the use 
of this estimator and compared its performance with the CR 
lower bounds for continuous time-varying frequency [71]. 
IF peak detection from an AR based WVD was also used 
in [68] and was seen to track nonlinearly varying FM laws 
better than the conventional WVD at high SNR. While the 
WVD peak extraction method has been shown to be an 
optimal IF estimator for linear FM signals at high SNR, it 
degrades significantly at low SNR. For this reason the use 
of the cross Wigner-Ville (XWVD) peak has also been 
proposed as an IF estimator [46], [47], [13], [lo]. It is 
described below. Simulations may be found in Section V. 

The proposed XWVD based IF estimation procedure is: 
1) Initialization: Form a unit amplitude reference signal 

from the estimated IF; 
2) Estimation: Form the XWVD between the reference 

signal and the observed signal; estimate the IF from 
the peak of the XWVD; 

3) Recursion: Repeat Step 1 until the difference of IF 
estimates from successive iterations is less than a 
specified amount. 

The rationale behind the method is that each time a new 
XWVD is estimated the signal energy concentration should 
increase, so that the probability of correctly estimating the 
IF in a noise background should also increase. Note that 
any estimator could be used as the starting value for the IF. 
If an STFT peak detection estimate is used, the algorithm 
converges typically within a couple of iterations. Details of 
this scheme, including an analysis of the performance, is 
provided in [lo], [13], and [46]. If the signal is long and 
is analyzed via a sliding window, such that the FM law is 
linear within the window, then the method will attain the 
CR bound with an SNR threshold substantially lower than 
in the case of the WVD peak (see Table 1) [13]. Results 
are presented in Section V. 

4) Peak of the generalized WVD: The generalized WVD 
(GWVD) provides a tool for the problem of time-frequency 
signal representations of polynomial nonlinear FM signals 
[15]. The GWVD is multilinear and it represents higher- 
order polynomial FM signals as delta functions in the 
time-frequency domain. 

The IF estimate from the peak of the GWVD is unbiased 
and its variance meets the CR lower bounds at high SNR’s 

5) Other TFD’s: Further possibilities for TFD peak 
based IF estimates lie with some of the recently proposed 
TFD’s [ 161. The Zhao-Atlas-Marks Distribution, for 
example, seems to have good time-frequency localization 
and good noise performance [72], making it a useful 
prospect for IF estimation. It also tends to suppress cross- 
terms, so that it is suited to multicomponent signals. The 
signal-dependent TFD’s of Baraniuk and Jones [3] and 
the adaptive techniques for high resolution time-varying 

~ 5 1 .  
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spectral estimation of Fineberg and Mammone [26] also 
seem promising. The relationship between the IF and the 
wavelet transform [22] is an open question. 

G. Time-Varying A R  Model Based IF Estimation 

Sharman and Friedlander [51] proposed an IF estimator 
based on time-varying AR modeling of the signal data. 
The authors developed an AR estimation procedure which 
specifically takes account of the signal nonstationarity, and 
arrived at a solution based on solving an adapted version of 
the Modified Yule-Walker equations. The IF was obtained 
from the roots of the time-varying AR polynomial in much 
the same way as frequency is derived from the stationary 
transfer function. The accuracy attainable is unfortunately 
lower than is attainable for the stationary case, due to 
the fact that it is difficult to obtain good “instantaneous” 
covariance estimates. That is, it is not possible in the 
nonstationary case to average over large data records. 

H. Enhancement of IF Laws Through the 
Application of Tracking Algorithms 

One can achieve significant improvement in the IF es- 
timates if some a priori information about the rate of 
variation of the IF is available. This information usu- 
ally involves some assumption about the IF being slowly 
varying, which can be used to “smooth” the sequence of 
IF estimates. One way to characterize this information is 
to assign probability distributions (known as a posteriori 
distributions) to various parameters in the IF law. The 
smoothing of the IF law is commonly referred to as 
“tracking” [4]. 

One technique for tracking is to model the IF estimate 
sequence as a Markov chain in which there is a fixed 
probability distribution associated with the IF changing 
from one point to the next. Normally small changes in 
consecutive IF estimates will be assigned high probabilities, 
while large changes will be given low probabilities. The 
optimal IF law or “track” is the one which makes the actual 
sequence of IF estimates most likely to have occurred. It can 
be obtained using a Hidden Markov Modeling algorithm. 
This kind of maximum a posteriori  (MAP) IF estimation 
approach has been applied to spectrogram peak based IF 
estimates for single component signals in [4], and for 
multiple signals in [67]. MAP IF estimation algorithms 
have also been developed for use on the data directly. 
These latter algorithms, based on dynamic programming 
[66] and on Hidden Markov Modeling [66], [67], have the 
advantage that the IF law need only be slowly varying in 
general. Sharp transitions are possible, but are assigned a 
low probability. 

Another type of tracking algorithm which may be used is 
based on Kalman filtering techniques. This type of approach 
is described in [36]. 

The application of tracking algorithms is a particularly 
attractive proposition for WVD peak based estimates. Often 
the artifacts inherent in the WVD create interpretation 
difficulties, and limit the usefulness of the WVD. However, 

these artifacts should be ignored by the tracker, because 
of their irregular behavior. This property was used to 
advantage in [20], where IF tracks were extracted from the 
WVD plane, based on the assumption that the IF laws were 
polynomial functions of time. 

IV. IF ESTIMATION METHODS BASED ON 
POLYNOMIAL PHASE MODELING 

The estimators based on the direct definition of the 
discrete IF in Section 111-A make no implicit assumptions 
about the form of the IF law, and for this reason, they 
exhibit high variance. Significant reductions in variance 
can be achieved by incorporating some form of a priori  
knowledge into the estimation procedure. One means of 
doing this is to assume that the IF law may be expressed as a 
finite order polynomial, which in turn implies a polynomial 
phase law. The selection of order of the polynomial is what 
allows the incorporation of the a priori information: if the 
signal’s IF is known to be slowly changing, low orders 
can be chosen, whereas high orders can be chosen if the 
IF law is known to be changing rapidly. The signal model 
under the polynomial phase approximation is generalized 
from (4) and reads: 

z ( n )  = A(71) cxp(jq5(7~)) + ~ ( 1 1 )  
= S(76) + j y (7L)  + 4 7 1 )  

(42) 
(43) 

k=O 
and where A ( n )  is the amplitude, 4(n) is the phase, ~ ( n )  is 
a complex noise process of variance 2a2, and n = 0, N -  1. 
s(n) and q(n) are given by 

s(n,) = A(n)  cos(uo + U171 + ( 1 2 7 ~ ~  + . . . up.”) 
y(”) = A(n)  sin(ao + a l n  + a2n2 + . . . apnp) .  

(44a) 
(44b) 

To estimate the coefficients a k ,  ( k  = 0:.  . . , p ) ,  of the 
phase polynomial in (44), one possibility is to find the set 
of coefficients which minimize the squared error between 
the estimated signal and the observed one. This will result 
in a nonlinear least squares problem and would have to 
be solved numerically. An alternative is to “linearize” the 
problem by unwrapping the phase. Tretter [58] has shown 
that this approximation is valid for high SNR. Simple linear 
least squares estimation techniques may then be used [9]. 

A further possibility is to extend the ML parameter 
estimation approach of Rife and Boorstyn for a stationary 
tone [52] to the polynomial case. Since the observed signal 
is assumed Gaussian this will be equivalent to the nonlinear 
least squares solution [60, p. 611, but is in many respects 
more straightforward to implement. Once the polynomial 
phase law estimate 4(n)  has been calculated, the IF, f i(n) 
is directly obtained from: 

where u k  is the estimate of the coefficient ak. 
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All of the above mentioned techniques are described in 
more detail in the following sections. 

0 -  1 0 ... 
1 1 . . .  1 

x =  I l  2 . . .  2 p  

. . .  
1 N - 1  . . .  ( N - l ) P ,  

A.  Least Squares Based Polynomial 
CoefJicient Estimation Algorithms 

1 )  Least Squares Estimation Methodology: The p + 1 un- 
known parameters ( U O ,  . . . u p )  in (44) may be obtained by 
minimizing the sum of squared error, E,  according to: 

N - l  

E = I2(n) - z (n) l z .  (46) 
n=O 

The solution for the parameters, i i k ,  is obtained numerically 
by solving the system of equations, (47) and (48) below, 
derived in Appendix B [9]: 

N - 1  N - l  

. . .  (56) 

n=O n = O  
N - 1  N - 1  

~ ( n )  ejJ(n) nk = A(,) ezjm(n)  nk.(48) 

A(,) is the amplitude law estimate obtained as an order q 
polynomial in a similar manner to that used for obtaining 
the phase: 

n=O n = O  

0 

A(n) = Cj;k nk 
k=O 

(49) 

(47) and (48) then become a system of p + q + 2 highly non- 
linear equations which are not easily solved. Furthermore, 
the statistical characteristics of the resulting estimators 
would not be analytically obtainable. A numerical solution 
may be obtained for the full vector of parameters, p = 
[bo, b l ,  bz ,  . . . b,, U O ,  a l ,  U Z ,  . . . @ I T ,  from: 

where p ( z ; P )  is the pdf of the signal, Pk the kth iterative 
evaluation of and J is the Fisher Information matrix [40, 
p. 471, with elements given by 

where E [  ] denotes the expectation operator, and ,& is the 
ith element of the parameter vector, @. Use of this method 
for determining the optimal parameter set, is problematical. 
There may be many local maxima to which the algorithm 
will converge, and one must then incorporate some means 
of trying to escape from these local equilibria. A good initial 
estimate is therefore crucial. 

An alternative and simpler method is to unwrap the phase 
and model the phase function using regression techniques 
[40, p. 491. The instantaneous phase is then obtained from 
the data as 

Solving (52) for $(n) is not a straightforward procedure, 
since arctan is defined on (0, 27r] [45, p. 2161. Thus 
there are numerical problems associated with “unwrapping” 
the phase, particularly at low SNR. Assuming constant 
amplitude, the polynomial phase model of (45) may be 
expressed in matrix form as 

4 = X a  (53) 

where 4 is the unwrapped phase observation vector, a is the 
parameter vector and X a matrix of constants. The three 
matrices are defined as follows: 

4 = [$(O), $(I),. .  . 4 ( N  - 1>1* (54) 

(55)  
T a = [uol a l l . .  .up] 
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[43]. Kitchen [41] has shown that if the phase function 
is modeled as a weighted sum of orthogonal polynomials 
the matrix inversion may be dispensed with and a simple 
algorithm derived. Furthermore the polynomial coefficients 
may be readily obtained from those of the orthogonal 
polynomials. 

The algorithm works well for high SNR, where the 
parameter estimate variances meet the CR bounds. The 
algorithm fails when used for short signals at low SNR 
due to phase unwrapping errors [58]. The polynomial signal 
model is conducive to very long observation windows, and 
for long signals, consequently, the performance can be quite 
good across a broad SNR range. Simulations are presented 
in Section V. 

- 1  0 0 4 
.(P - 1) 1 2 3 

1 1  4 12 . (p  - 1)2”-1 x=-. . 
27r 

B. IF Estimation by Fitting a Polynomial 
to Local IF Estimates 

Kay’s weighted phase difference IF estimator, as pre- 
sented in Section 11-B, may be extended to a polynomial 
phase law, by replacing the forward finite difference esti- 
mator by a qth order phase difference estimator. The signal 
model under the polynomial phase assumption was given 
in (44). 

The local IF estimator used will be one of the yth 
order phase difference estimators defined in (12). For N 
discrete data samples, then, N - y consecutive IFAestimates 
will be available. They will be denoted by fq(n) ,  for 
TI = 0 , .  . . , N - y. Note that these estimators will be 
unbiased, but will contain a colored zero mean Gaussian 
noise component, i.e., 

- 1 2(N - 4 - 1) 3(N - q - 1)2 , ( p  - 1)(N - 4 - 1)p-I-  

1 
j , (n) = % [ ( U 1  +2azn+3a3r12+...+pn.pnnP-1)]+u(n) 

(58) 
where u(n)  is the zero mean colored Gaussian noise 
process, f ( n )  is obtained through a linear combination of 
Gaussian distributed phases. 

The problem of estimating the parameters, a1 , a2, . . . up,  
becomes one of parameter estimation in colored Gaussian 
noise. The ML solution involves minimizing [40, p. 501 

where f, = [f,(l), f q ( 2 ) , .  . . f , (N  - l)IT,C is the ( N  - 
1) x ( N  - 1) covariance matrix of f,, a = [uoal.  . . a,lT, 
and the matrix (60) shown at the bottom of the page. 
The optimal set of parameter estimates for a is given by 

[40, P. 501 

(61) 

and the variance of the estimator is given by [40, p. 501 

var(6) = (x‘’’c-1~) -’. (62) 

The covariance matrix, G, is a q + 1 diagonal matrix given 
by [91: 

Equation (61) may be solved in a straightforward fashion 
to yield the polynomial phase coefficient estimates, and 
hence the ML estimate of the IF law. These estimates will 
meet the CR bounds for high SNR. (See Appendix A for 
a derivation of lower variance bounds for the polynomial 
coefficient estimates). 

At the time of finalizing this manuscript, another paper 
on frequency rate estimation appeared in the literature [24] 
which contains a number of useful insights into extending 
the Kay estimator to higher order phases. The discussion 
on obtaining robust phase difference estimates is especially 
helpful. 

C. ML Based Polynomial CoefJicient Estimation Procedure 
Another IF estimator may be defined by deriving the ML 

solution for the polynomial phase coefficient estimates [9]. 
The method is a simple generalization of the ML solution 
for estimating the frequency of a stationary tone [52]. It 
will be seen that the ML estimates are those coefficients 
which maximize the magnitude of a polynomial Fourier 
transform, the latter being a correlation of the observed 
signal with a continuum of polynomial phase signals rather 
than with the usual sinusoidal tones. In other words, the ML 
solution finds the best correlation match of a sinusoidal tone 
to the observed signal in the stationary case, while in the 
nonstationary case it finds the best correlation match of a 
polynomial phase function with the observed signal. The 
details are provided below. 

1) ML Estimation Algorithm: It is assumed that the signal 
to be analyzed is corrupted by white complex Gaussian 
noise of variance, 2a2 .  The analytic version of the ob- 
served signal has a real part, ~ ( n ) ,  and an imaginary part, 
y(n). The real and imaginary parts of the uncorrupted 
signal are s (n)  and q(n), respectively. The parameter 
vector, assuming constant amplitude, A,  is given by a = 
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[A, uo, ul, u2, .  . . upIT. The pdf of z (n ) ,  given the param- 
eter vector, a, is [40, p. 441 

1 

The ML estimate of a requires that p ,  (or lo&)), be 
maximized over a [40, p. 471. The maximum of p will 
occur at the maximum of 

- N - 1  
1 -  - 

n=O 
N LO = -- 1 ( ~ ( n )  - ~ ( n ) ) ~  + ( ~ ( n )  - q(n))2.  (65) 

Since C Z ( ~ ) ~  and  CY(^)^ are constants corresponding to 
the signal energy, maximization of LO is equivalent to 
maximizing the function 

over all the parameters. Now substituting with the expres- 
sions for s(n)  and q(n) from (44) into (66) yields 

L = 2A Re[exp (-juo)D(ul, u2, .  . . up)] - A2 (67) 

where 
. N-1 

. e x p ( - j ( u 1 n + u z n 2 +  ... u p n p ) ) .  (68) 

It can be easily seen that L is maximized over a0 when 
uo = arg[D(al, $2 , .  . . ap)]. Also L is maximized over 
[ul, u2, .  . . u p ]  when D(UI ,UZ ,  . . . up)  = D(G1,&, . . . $), 
where the “ A ” denote the parameters which maximize 
D(u1, u2,. . . u p ) .  Thus the maximum of L over all ai 
parameters is given by 

This expression is maximized over A when A = 
ID(61,62, . . . i ip ) l .  Hence the maximum of L over all 
parameters is 

(70) 
2 max L = max JD(iL1, h 2 , .  . . tip)\ . 

This result is a simple generalization of the result derived 
in [52] for a stationary tone. Solving for the ML estimates 
necessitates maximizing ID(a) I over a p dimensional space, 
which is difficult for a large value of p. For this reason it 
was proposed in [9] that p be made small (e.g., p = 2 
or 3), and a window length chosen so that the signal’s IF 
law could be approximated by the polynomial within the 
window. A new estimation of the parameters is performed 

each time the window slides forward, and one searches 
over a fine grid centered on the existing parameters. This 
type of estimation is analogous to one of the adaptive IF 
estimation techniques. The size of the grid over which the 
search must be performed for each new data sample plays 
a role similar in some senses to the adaptation constant in 
the LMS algorithm. If the grid is chosen too small, accurate 
tracking will not occur; while if the grid is chosen to be too 
large, tracking will occur but there will be a large amount 
of computation required. 

The maximization of lD(a)I in (69) can be implemented 
practically with the use of FFT’s. If p = 1, one has 
only to find the a1 which maximizes lD(a)l, i.e., the 
frequency corresponding to the maximum value of the 
signal’s spectrum. If p = 3, say, one must first dechirp the 
signal by the dechirping function, exp(ju2n2 + ju3n3), for 
all u2 and u3, and search for the global maximum spectrum 
value. Computation can be reduced very considerably by 
making a search over a coarse grid, followed by a fine 
search. Alternatively, one may use a multidimensional FET 
implementation [44]. Details of the estimation procedure 
for the parameters vector, a, are given in Appendix C. 

D. IF Estimation for  Multicomponent Signals 

Many practical applications require that the IF laws 
of multicomponent signals be estimated. It is important, 
then, to consider which of the methods which have been 
presented can be readily extended to the multicomponent 
case. Those methods which are based on peak detection 
in the tf plane should be capable of processing multiple 
signals. One will encounter similar problems to those found 
in the stationary case, however. That is, useful estimates 
will only be able to be found if the frequency laws 
are clearly separable (or resolvable) [63]. Thus for two 
widely separated FM laws, one may use the ML method 
described in Section IV-C, and extract the two IF laws 
which maximize the polynomial Fourier transform. For 
closely spaced laws, parametric techniques such as the RLS 
or LMS algorithms will be necessary. Similarly, the method 
based on tf filtering and first moment calculation should be 
a viable way of processing multiple components [13]. The 
methods which could be used for the multiple component 
case, then, would be the adaptive RLS and LMS algorithms, 
the spectrogram and XWVD peak detection methods, the 
ML based polynomial phase coefficient estimation methods, 
and the TFD moment based technique [23], [37], [38]. 

An interesting approach to generalizing the IF for mul- 
ticomponent signals has been provided in [28]. There the 
author reasoned that since the output of the FFT is simply a 
sequence of filtered subcomponents of the signal, one may 
differentiate the phase of these outputs with time to yield 
an “Instantaneous Frequency Distribution.” The concept 
was applied to the tracking of formats in speech signals. 
McMahon and Barrett [44] used a very similar approach in 
deriving their “Phase Interpolation Estimators,” and putting 
them to use in tracking underwater acoustic frequency lines. 

The problem of tracking the individual IF’S of a mul- 
ticomponent signal in the presence of noise was also 
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Table 1 

ESTIMATOR SNR THRESHOLD (FOR 5=128) COMPUTATIONAL REQUIREMENTS 

Comparison of IF Estimation Techniques (Obtained from simulations using a linear FM chirp signal in additive noise). 

Phase Differencing - -\* complex multiplications, A- phase 

Zero-Crossings - sLV real additions, S real multiplications 

conversion operations N real multiplications 

LMS (Order 1) - 

RLS (Order 1) - 

Smoothed Phase Differencing 

Linear Least Squares Estimation of Phase 
Polynomial 

18 dB 

8 dB 

STFT Peak 

WVD Peak 

ML Estimation of Phase Polynomial 

1 dB 

-3 dB 

Adaptive Estimation of Phase Polynomial - 

XWVD Peak 4 dB 

3 N  complex multiplications, 2 N  complex 
additions N real multiplications, N phase 
conversion operations 

4>\- complex multiplications, 2:V complex 
additions, 3 N  real multiplications, real 
additions, A\r phase conversion operations 

S complex multiplications, N phase 
conversion operations, S t V  real 
multiplications, Ar1t7 real additions 

Av2 p 2 + p 2  + 2-%'p + .Vp'reaI multiplications, 
,V2pZ + p' + 2Np + N p 2  real additions, N 
phase conversion operations 

S1,t7/2 log 1,i7 + F,VW7 + WC1'/2 complex 
multiplications, 2YW7 log I+' + Fn'1,C' complex 
additions, IV real multiplications 

A'a7/41og1)1,- + K(I.t7 + l ) / 4  + FArW'/2 
complex multiplications, 

complex additions, 1Y real multiplicatlons 

(G( N / 2  log S + F,V + 3N/2 j jp-' complex 
multiplications, 
(G(Arlog N + FLV))" -~  + Np real additions, 
.\'(p - I ) @ - I  + 11'p real multiplications, 
X ( p  - 1)Gp-I + A'p real additions A'GP-' 
phase conversion operations 

2(  S / 2  log A' + FA%' + 3N/2)  complex 
multiplications, 2( 
additions, GA' + 2 real multiplications, 6A' + 2 
real additions, 2 5  phase conversion operations 

A W / 2  log 14,- + A T (  14- + 1)/4 + FL?W/2 

log A' + FA') complex 

IS1,i7/2 log M' + IN(1.t' + 1)  + FI"' + 
IAr1,i7/2 complex multiplications, 
IAWi' log It7 + IN(  14' + 1 j + FIA'1.t' 
complex additions, IS real multiplications, In' 
real additions, IAr phase conversion operations 

addressed by DiMonte and Arun [23]. The assumptions 
made were that the individual IF'S are slowly varying 
and that the noise is white, zero-mean and Gaussian. The 
authors performed a singular value decomposition (SVD) 
of the data matrix and then approximated it by its principal 
singular vectors and singular values, in order to achieve 
noise suppression. The number of components and the IF 
tracks are estimated from the principal singular vectors of a 
Hankel matrix [23]. Detailed discussion of IF estimation for 
multicomponent signals is beyond the scope of this paper. 

V. STATISTICAL/COMPUTATIONAL COMPARISON 
OF IF ESTIMATION ALGORITHMS 

In this section the various IF estimation algorithms are 
compared with one another. The two criteria of comparison 
used are the statistical performance and the computational 
complexity of the estimator. The computational evaluation 

is made through a table which details the approximate num- 
ber and type of calculations required for each algorithm, 
while the statistical comparison is made by graphing the 
average variance of each method against the CR bound 
~ 4 1 .  

A. Comparison in Terms of Computation and Variance 

Table 1 lists the various estimation methods described 
and gives for each an indication as to the SNR threshold, 
and computational requirements of the method [14]. All 
entries in the table are meant only as a guide, since 
each will depend critically on a number of things such 
as the type of implementation which is used, etc. The 
computational requirements listed are for the basic algo- 
rithm, without special modifications. These requirements 
have been calculated, based on the determination of the 
IF for N points within a window in the data sequence, 
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Fig. 3. Comparison with the CR bounds for IF estimates obtained using: 1) zero crossings; 2) RLS 
and LMS; 3) spectrogram peak; 4) CFD with Kay’s Window; 5 )  linear least squares (estimating 2 
parameters); 6) peak of WVD; 7) peak of XWVD; 8) ML techniques. 

assuming that a complex analytic signal is available as input 
data. If a particular method does not require an analytic 
signal as input (e.g., the Zero-Crossing Estimator), then 
a small saving may be made. If the analytic signal is 
generated with an FIR Hilbert transformer then this saving 
would be approximately ( L f  + 1)N/2 real multiplications 
and ( L f  + 1)N/2 real additions, where L f  is the filter 
length. For comparison purposes, divisions are considered 
to be equivalent to multiplications, and subtractions are 
considered to be equivalent to additions. In order to keep the 
comparison simple, a number of factors such as the storage 
requirements, the number of comparison operations, etc., 
are not considered. 

Symbols used in the table are: N is the length of the 
data sequence, W is the window length, I is the number 
of iterations in the XWVD based scheme, p is the order of 
the polynomial model for the phase, F is the number of 
“fine” (inter-bin) searches used to maximize an FFT, and 
G is the number of points in each dimension of the search 
grid for the ML polynomial phase method. The term phase 
conversion operation refers to a conversion between the 
rectangular and polar coordinate systems. 

The statistical comparison has been made by plotting 
the variance obtained through simulation with theoretically 
derived lower variance bounds. The signal chosen for 
comparison was a linear FM signal, which chirped from 
10 to 90 Hz, and had a sampling rate of 200 Hz. The IF at 
each time index was calculated using a 128 point running 
window. The reciprocal of the MSE for each estimate is 
plotted as a function of SNR in Fig. 3. Figure 3 shows 
that the XWVD based method gives best performance, in 
that it has the lowest threshold of those methods which 
meet the CR bound. It must be stressed, however, that 

this will only be the case if the signal is long compared 
with the window length used, so that end effects may be 
neglected [lo]. The WVD, which has a threshold about 6 
dB higher, would be preferred over the XWVD method for 
the SNR range in which it attains the CR bound, since it is 
computationally simpler. Kay’s estimator, without specific 
extension to the polynomial phase model, meets the CR 
bound, but only at very high SNR. The ML and linear least 
squares based method also closely approach the CR bounds, 
with the ML method having a very low threshold. The 
spectrogram never meets the CR bound corresponding to 
the 128 point window, because the optimal window length 
for the spectrogram is shorter than for the other methods. 
The smoothed RLS, LMS, and zero-crossing estimators all 
perform quite poorly because of their suboptimal smoothing 
procedures. 

The comparison which has been made, and the con- 
clusions which have been drawn, are only strictly valid 
for signals with linear frequency laws. However, the table 
provides a good rule of thumb of what to expect for signals 
that may be locally approximated by a linear FM signal. 
Section V-B presents simulation results for a signal with 
nonlinear frequency law: a sinusoidal FM law. 

B. Performance of Algorithms on Nonlinearly 
Modulated FM Signals 

Computer simulations have been run to compare the 
performance of the IF estimation techniques on nonlinear 
FM signals-in particular, a sinusoidally modulated FM 
signal. The signal considered was a sinusoidal FM signal 
of 1024 points, the IF law being shown in Fig. 4(a). The 
signal was imbedded in 0 dB white Gaussian noise, and 
estimates based on b) the direct definition in (6), c) a 
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Fig. 4. (a) True instantaneous frequency law of an FM signal, s l ( t ) .  (b) Instantaneous frequency 
estimate of s l ( t )  in 0 dB white Gaussian noise obtained by using the CFD estimator. (c) 
Instantaneous frequency estimate of s l ( t )  in 0 dB white Gaussian noise obtained by using a 
smoothed phase difference estimator. (d) Instantaneous frequency estimate of s l ( t )  in 0 dB white 
Gaussian noise obtained by using the Recursive Least Squares algorithm 
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sample no ( ~ 1 0 %  

smoothed version of the direct definition in (16), d) the 
RLS algorithm, e) an averaged zero crossing measure f )  
the Spectrogram peak, g) the WVD peak, h) the XWVD 
peak, i) ML based phase polynomial coefficient estimation 
j) polynomial coefficient estimation using gradient descent 
algorithm, k) linear least squares polynomial coefficient 
estimation are shown respectively in Fig. 4 (b)-(k). It is 
seen that the only estimates which are low in variance are 
the XWVD based method and the ML polynomial phase 
model based methods. 

The second set of simulations was performed on the 

12 

same signal, but this time imbedded in -4 dB noise. 
The IF Estimates using the same methods as for signal 
1 are shown in Fig. 5(a)-(j). For these simulations the 
spectrogram peak, the XWVD method and the ML method 
are seen to yield low variance estimates. The WVD peak 
and the RLS estimates are moderate in variance, while all 
others are high. 

The linear least squares based estimates in Figs. 4(k) 
and 50)  are seen to be a fairly poor estimates. This is 
as predicted for low SNR environments. However the 
algorithm performs well at high SNR (Table 1). Figures 
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Fig. 4. (continued) (e) Instantaneous frequency estimate of s l ( t )  in 0 dB white Gaussian noise 
obtained by using a zero-crossing estimator.(f) Instantaneous frequency estimate of s l ( t )  in 0 dB 
white Gaussian noise obtained by using the STFT peak. (g) Instantaneous frequency estimate of 
s l ( t )  in 0 dB white Gaussian noise obtained by using the WVD peak. (h) Instantaneous frequency 
estimate of s l ( t )  in 0 dB white Gaussian noise obtained by using the XWVD peak. 

6 and 7 show IF estimates which have been estimated 
respectively from a linear FM and a sinusoidal FM signal. 
The estimates are very close reproductions of the true laws 
at high SNR. 

C. Performance of Algorithms on Real Data 

The real data set used for comparing the algorithms 
was an unknown chirp which corresponded to time-varying 
acoustic Doppler information, generated by a helicopter 
passing over an observer. It corresponded to a long (13 440 
samples) comparatively slowly chirping signal, with an ad- 
justed sampling rate of 444 Hz. Figures 8, 9, 10, 11, 12, 13, 
and 14 show respectively the IF estimates obtained using 

a smoothed phase differencing, smoothed RLS estimates, 
STFT peak estimates, WVD peak based estimates, XWVD 
peak based estimates, linear least squares estimation of 
polynomial phase model coefficients, and adaptive ML 
estimation of the polynomial phase model coefficients. The 
information which can be extracted from the IF measure- 
ments is 1) the speed of the aircraft which is related to the 
frequency corresponding to the flat region at the beginning 
of the plot, and 2) the altitude which is related to the 
frequency slope in the rapidly chirping section of the signal 
[25]. The XWVD method and the adaptive ML technique 
appear to give the best estimates, based on the expected IF 
law model. 
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Fig. 4. (continued) (i) Instantaneous frequency estimate of s l ( t )  in 0 dB white Gaussian noise 
obtained by using ML estimation. U) Instantaneous frequency estimate of s l ( t )  in 0 dB white 
Gaussian noise using ML estimation with adaptive searching. (k) Instantaneous frequency estimate 
of s l ( t )  in 0 dB white Gaussian noise by using Linear Least Squares Estimation. 

VI. APPLICATIONS 

A .  Use  of the IF to  Detect Harmonically Related Signals 

The occurrence of harmonically related signal compo- 
nents is very common in many natural situations. When the 
fundamental is stationary, Fourier Transform based tech- 
niques give an effective measure of the harmonic content, 
as well as of the system noise. When, however, the signal 
spectrum is time-varying, these techniques can become in- 
adequate due to poor resolution. Even the use of the STFT, 
which was introduced to take account of nonstationarities, 
has limited use. If the IF of the fundamental can first be 
estimated, though, it can be incorporated into the formation 
of the time-varying spectral representation, such that good 
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resolution in time and frequency can be achieved. This may 
be done practically by using a smoothing procedure in the 
WVD plane, which tends to preserve energy in the region 
where the harmonics would be expected, and suppresses 
energy elsewhere [7]. The general MAP estimator for time- 
varying IF estimation of the fundamental of a harmonic 
series is also addressed in [67]. 

B. Automatic Time-Varying Filtering t 

In many applications such as speech, seismic or un- 
derwater acoustics, the ability to perform time-varying 
filtering can be very helpful. Signal enhancement and signal 
separation are two areas of application. To perform this 
time-frequency filtering, a time-varying system transfer 
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Fig. 5. (a) IF estimate of .z I ( t )  in 0 dB white Gaussian noise obtained by using the CFD estimator. 
(b) IF estimate of .z 1 ( t )  in 0 dB white Gaussian noise obtained by using a smoothed phase difference 
estimator. (c) IF estimate of 5 l ( t )  in 0 dB white Gaussian noise obtained by using a zero-crossing 
estimator; (d) IF estimate of .SI ( t )  in 0 dB white Gaussian noise obtained using the RLS’s algorithm. 

function, H ( t ,  f ) ,  must be specified in accordance with the 
application. The WVD, being an entirely real transform, is 
well suited to time-varying filtering, particularly for mono- 
component signals. The time-varying filtering operation is 
given by 

Y ( t )  = W-l[w(t.  f )  . H ( t ,  f ) ]  (71) 
4 

where W(t. f )  is the WVD of the input signal to be 
processed, and W-l[  ] represents the synthesis operator, 
i.e., the operator which finds the time domain analytic signal 
whose WVD is closest to the operand in a LMS’s sense. 
If the operand is a valid WVD, the synthesis operator is 
equivalent to WVD inversion. 

The time-varying filter operation, in the discrete domain, 

1) Design of a time-varying transfer function, H ( n ,  m). 
2) Calculation of the Discrete WVD (DWVD) or win- 

3) Synthesis of y(n) from the W(n ,  m).H(n,  m) prod- 

Ideally the time-varying filter would capture all the signal 
energy but reject all the noise. Clearly the ideal is not 
generally realizable, and one must settle for a trade-off in 
which the significant signal energy is captured, while most 
of the noise is eliminated. A useful approach is to window 
about the IF, since it is known that, for monocomponent 

consists of the following steps: 

dowed DWVD of the input signal, ~ ( 7 2 ) .  

uct. 
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Fig. 5. (continued) (e) IF estimate of s l ( t )  in -4 dB white Gaussian noise obtained using the 
STlT peak. (f) IF estimate of s l ( t )  in -4 dB white Gaussian noise obtained using the WVD peak. 
(9) IF estimate of s ~ ( t )  in -4 dB white Gaussian noise obtained using the XWVD peak. (h) IF 
estimate of s l ( t )  in -4 dB white Gaussian noise obtained using ML estimation. 

signals, the signal energy tends to be concentrated there. 
The various techniques proposed earlier, then, may be 
used for IF estimation as a first step in the design of 
the automatic filter. The bandwidth of the time-varying 
filter may be selected according to the application, as 
can the window type (e.g., Rectangular, Bartlett, Hanning, 
Hamming, Blackman, etc. [45]). An automatic time-varying 
filter was designed, using the above ideas, and applied to 
a monocomponent signal [ 111. 

C. Seismic Processing 

In a typical seismic situation, a vibrioses signal is trans- 
mitted into the earth and the various subterranean layers 
provide some degree of reflection of this source signal. 

The different arrival times of these reflected waveforms 
are often used to reveal information as to the geological 
structure of the region. The reflected returns can also 
be processed, however, to yield information as to the 
amount of dispersion present in the formation. This can 
be determined simply by comparing the IF of the received 
signal with that of the source. 

IF and instantaneous phase attributes are generally used 
to highlight seismic events which are not apparent using 
normal amplitude based data processing. They have been 
proved useful in the detection of some hydrocarbons, and 
some geological structures. More recent work has shown 
that IF can be used to determine frequency dispersion in 
a vibrioses signal, which helps determine the absorbing 
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Fig. 6. Linear least squares IF estimate of a linear FM signal. 

nature of a traversed rock. 
1) Interpretation of Seismic IF and Phase: The instanta- 

neous phase of a seismic signal emphasizes the continuity 
of geological events. Phase is independent of reflection 
strength and can make weak coherent events clearer [57]. 
Consequently, when weak reflections are received, phase 
is directly useful for delineating the normal geological 
structures such as discontinuities, faults, pinchouts, etc. that 
would otherwise interfere with each other. Traditionally, 

phase displays are colored using the colors of a color wheel 

IF is used to delineate more complicated events. Re- 
flections are often composed of several individual reflec- 
tions from several closely spaced reflectors. The individual 
reflections would normally be associated with reflectors 
which are nearly constant in acoustic impedance. This 
superposition of reflections can result in the production 
of a frequency pattern (i.e., IF function) which would 

[571. 
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3.78 7.56 11.3 15.1 18.9 22.7 26.5 3 

t lme-sec 

Fig. 8. Smoothed CFD estimate of the IF law for a time-varying 
Doppler shifted signal produced by a helicopter flying over an 
observer. 

characterize a particular composite reflection. Thus fi ( t )  
is often used to correlate from one set of seismic data 
to another. The frequency character will change as the 
sequence of layers forming a composite reflection changes 
in lithology or thickness. It has been observed [57] that 
pinchouts and edges of hydrocarbon-water interfaces (oil 
field extremity) change f;(t) more rapidly. 

An empirical observation given by Taner [57] involves 
the shifting of frequency for certain geological features. 
Quite often, when a reflection is made below a gas sand, 
condensate or oil reservoir, a shift toward lower frequencies 
is observed. It has been further observed by many people 
that the shift occurs only for the reflection immediately 
below the hydrocarbon zone while a normal frequency 
character is observed for deeper reflections. No full expla- 
nation has been given for this. It is simply an empirical 
observation. Similar shifts toward lower frequencies are 
also sometimes associated with fracture zones and brittle 
rocks. 
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Fig. 9. 
Doppler shifted sound signal. 

Smoothed RLS estimate for the IF law of the time-varying 
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Fig. 10. 
time-varying Doppler shifted signal. 

Spectrogram peak estimate for the IF law of the 

IF plots are made in color to observe the above mentioned 
features. Frequency is color coded in 2 Hz steps with the red 
end of the spectrum being used for low frequencies and the 
violet end being used for higher frequencies. Frequencies 
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Fig. 12. 
Doppler shifted signal. 

XWVD peak estimate for the IF law of the time-varying 

below 5 Hz are normally not colored. 
The IF was used in [5] to study borehole recorded Vi- 

broseis signals. A typical Vibroseis chirp has a bandwidth, 
B, and a duration, T ,  the product of which is large. The 
method was applied to a single component downgoing 
chirp (i.e., reflected components removed) to derive an 
empirical relationship between IF and dispersion effects. 
Frequency dispersion is simply described as an occurrence 
where different frequency components of a signal travel at 
different velocities [73]. 

D. IF in Radar Processing 

In this section, two applications of the use of IF in radar 
signal processing are examined. We consider a target which 
is to be detected, tracked and imaged. 

In the first application, the target will be considered to be 
a single point scatterer with its radial velocity being time- 
varying. It will be shown that in this case, the variations in 
radial velocity can be descripted by the IF. This provides 
information about the direction of the moving target [42]. 

In the second application, the radial velocity of the target 
is assumed constant and the target is considered to consist 
of a collection of point scatterers. It will be shown that in 
this case, the Doppler induced frequency from each of these 
point scatterers can be measured by their IF [42]. 

,700 4 I 
0.00 3.78 7.56 11.3 15.1 IS..< 22.7 26.5 30.2 

t Ime-sec 

Fig. 13. 
time-varying Doppler shifted signal. 

Linear Least Squares estimate for the IF law of the 

1) IF Applied to Frequency Tracking of the Target: In this 
application the target is described by a single point reflector 
which undergoes variations in its radial velocity. The range 
of the target becomes a function of time as indicated by 
(72). 

R(t)  = Ro - v ( t )  . t .  (72) 

The variable v here is considered to be a vector. For 
example, if the target is traveling towards the receiver, 
then the Doppler induced frequency is positive, while when 
the target is traveling away from the receiver, the Doppler 
induced frequency is negative. The time-varying delay is 
given by (73) [61]. 

The ~ ( t ) / 2  appears in (72) because of the variations in the 
range which occur at time t - . r ( t ) / 2 .  Substituting (72) into 
(73) yields: 

(74) 

c is the propagation velocity of the illuminating wave. The 
backscattered signal at the receiver is given by (75) [61]. 

(75) 

where is the energy of the transmitted signal, ~ ( t )  is 
the analytic form of the transmitted signal and Re denotes 
the real part of the expression. 

Since the radial velocity is time-varying, then, the 
Doppler induced frequency will also be time-varying 
producing a nonstationary spectrum. Consequently, IF can 
be used to track this variation in the frequency and give an 
indication on the direction of the target [42]. 

2) IF of Individual Point Scatterers: Consider a body of 
a target, whose surface is rough with respect to the wave- 
length of the illuminating wave, and which is under some 
form of rotation in space. The body illuminated by the 
incident wave is shown in Fig. 15. 
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Doppler shifted signal. 

ML (adaptive) estimate for the IF law of the time-varying 

The distance, d, between the transmitter and the receiver 
corresponds to a delay time, T ,  which is a function of the 
propagation velocity in the direction of the line of sight 
(the direct line between the transmitter and receiver). It 
is assumed that the surface variations on the body are 
such that when the incident wave undergoes reflection, the 
phase of the backscattered signal is uniformly distributed. 
Since a number of point scatterers may occupy the same 
time delay, then the resulting random variable representing 
the reflection process can be considered to be Gaussian 
distributed. Therefore, the backscattered signal due to point 
scatterers is nonstationary since the characteristics which 
describe the reflection process are nonstationary. For a 
nonrotating object the backscattered signal for each delay 
T is given by (76): 

r(7,  t )  = Re{b(T)z(t - r)} (76) 

where b ( ~ )  is the stochastic process at time delay T from 
the receiver, z ( t )  is the analytic form of the transmitted 
signal, s ( t ) .  Hence the total backscattered signal from a 
nonrotating body is given by (75). 

b ( ~ )  ~ ( t - 7 )  d r  . (77) 
r ( t )  = Re{ 1: I 

This equation can be considered to be a filtering operation 
which does not depend on time [42]. 

Because the body does undergo a rotation, the backscat- 
tered signal from each delay is effectively modulated by 
different numbers of point scatterers passing through the 
delay time. Equation (77) can be modified to include this 
modulation effect and is rewritten as (78). 

b ( t , ~ )  ~ ( t  - T )  dT . (78) 
r ( t )  = Re{ [r 1 

This can be considered to be a time-varying filtering 
operation. If this random process is assumed to be a 
stationary process then (78) can be rewritten in the form 
given by (79). 

D ( T , Y )  z ( t  - T )  dy d~ . I 
(79) 

huz d i r .  

x d i r .  

/I d i r .  

(b) 

Fig. 15. 
velocity. 

(a) Rotating body in space. (b) Variations in radial 

Here D(T, y) is the reflectivity function of the target. Form- 
ing the expected value of the Wigner-Ville distribution of 
the backscattered signal, and assuming certain coherence 
conditions gives the relationship shown in (80) [8]: 

where ** denotes convolution in both time and frequency. 
The function a(t ,  f )  denotes the scattering function of the 
target. Equation (80) can be interpreted as the WVD of the 
transmitted signal moved to points in the time frequency 
plane representing points in the scattering function. The 
Doppler shift in frequency can be considered to be a 
localized IF which represents a point scatterer traveling at 
a certain velocity, w with the Doppler induced frequency 
given by 

2v 
fd = fc-. 

Hence a point on the target traveling at velocity w and a 
given distance d from the receiver is mapped onto a location 
in the time-frequency plane described by the IF. 
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E. Other Applications 
1)  Sonar: Frequency line tracking is done very com- 

monly in sonar environments [4]. The IF estimation tech- 
niques used in this paper may be used to provide initial 
estimates for the tracking process. 

2) Biomedical Applications: Sclabassi and coworkers [54] 
used the IF to analyze electroencephalogram (EEG) signals, 
continuous time-varying voltages reflecting ongoing activ- 
ity in the brain. The data set was recorded during sleep 
in infants. The IF provides useful information, because 
frequently, the neurophysiologist is interested in knowing 
the major frequency of the EEG at a given time regardless 
of the distribution of the spectrum. It was also reported in 
[54] that the IF is an effective tool for the analysis of the 
blood flow signals. The tracking of the IF is used to study 
blood flow in an area where the flow pattern is unpredictable 
due to the complex geometry. 

3) Speech: In order to track the important time-varying 
information in speech, Friedman developed an “IF dis- 
tribution.” This is a technique which applies the normal 
definition of the IF (i.e., the time derivative of the phase) 
to the DFT. That is, rather than differentiating the phase of 
the signal itself, Friedman differentiated the phase of the 
Fourier components of the signal [28]. This enables robust 
IF estimation of the various subcomponents of the speech 
signal. 

4)  Underwater Acoustics: McMahon and Barrett [44] 
used a similar approach to Friedman in estimating the 
IF of narrowband frequency components in underwater 
acoustic signals. They were able to achieve very low 
variance estimates for both single and multicomponent 
signals. Barrett and Streit later applied hidden Markov 
model techniques to improve further the quality of their 
frequency law estimates [4]. 

5) Oceanography: Imberger and Boashash [34] used the 
IF to measure the kinetic energy dissipation of turbulent 
water using measurements obtained from temperature gra- 
dient microstructure recorders. The relationship between the 
kinetic energy and the IF parameter is detailed in [34]. 

VII. CONCLUSIONS 
A comparison of available algorithms for IF estimation 

of a monocomponent nonstationary signal has been made 
and it has been seen that the choice of estimator depends 
on the SNR and the signal class. 

The smoothed phase difference estimator has the advan- 
tage of being computationally very simple and meets the 
CR bound for high SNR signals. Thus for high SNR signals 
which are nearly stationary, this estimator may be used. 

For nonstationary signals at high SNR one may also use 
polynomial phase modeling with the polynomial parameters 
being found by nonlinear regression of the phase, or by a 
nonlinear regression on local IF estimates. 

The peak of the WVD has been shown to be optimal 
for linear FM signals at high to moderate SNR. Thus for 
high to moderate SNR signals which can be approximated 

well (at least locally) by linear FM signals, this estimator 
should be used. 

For low SNR nonstationary signals, which are compara- 
tively long, the iterative XWVD scheme may be used with 
a sliding window. For short very low SNR signals, it seems 
that only a combination of polynomial phase modeling and 
ML techniques is able to achieve low variance estimates. 

It should also be noted that further improvement in the 
overall estimation of the IF law may be achieved by use 
of a tracking algorithm [4]. Because of the robustness 
of certain tracking algorithms, it may be acceptable in 
a given application, to use computationally efficient (but 
suboptimal) estimation procedures, and rely on the tracking 
phase to remove excessive noise. 

Many applications use some sort of spectral estimation 
techniques and often, they have time-varying characteris- 
tics. The algorithms presented in this paper should then 
prove very useful for all these practical applications. 

APPENDIX 1 

Derivation of Lower Variance Bounds for 
Polynomial Phase Modeled Estimates 

The derivation of lower variance bounds for estimating 
the parameters of an arbitrary polynomial phase FM signal 
presented here is a generalization of the derivation proposed 
by Rife and Boorstyn for a single stationary tone [52]. It 
first appeared in [9] and was derived by O’Shea [47]. 

Consider an arbitrary discrete time signal given by 

. S ( T L )  = A c o ~ ( a o + ~ i n + r ~ z n ’ + ~ 3 n ~ + .  . . u ~ T L ” ) .  (Al . l )  

Its Hilbert transform is denoted by q(n). The above signal 
model assumes the observed signal can be represented as 
a constant amplitude FM signal with frequency modulation 
law given by a finite dimension polynomial. If this signal 
is imbedded in white Gaussian noise of variance c2, the 
corresponding complex N point discrete sampled signal 
will be given by 

z ( n )  = x(n) + j Y ( 7 L ) .  (A1.2) 

To evaluate the lower variance bounds the joint pdf of the 
sampled observations must be obtained. If the unknown 
parameter vector is 

(I = [ A .  (-LO. (11. a2. ~ 3 ,  . . . , ap]  (A1.3) 

then the joint pdf is given by [52] 

To find the variance bounds it is first necessary to determine 
the elements of the Fisher Information matrix, J .  The 
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elements are given by the following equation [40, p. 461: 

Inversion of this matrix and extraction of the diagonal ele- 
ments will then yield lower bounds on estimate variances. 
(See also 121 for a discussion on how “tight” this type of 
variance bound is for the stationary case). 

The lower bounds on the parameter estimates are derived 
in [9]. The approximate bounds are: 

2 
var(A) 2 - 

N 
o2 9 

var( 60) 2 - - 
A2 N 
o2 192 

var(61) 2 -~ 
A2 N3 
o2 180 

var(6z) 2 -- 
A2 N5 

(A1.6) 

(A1.7) 

(A1.8) 

(A1.9) 

where the * superscript denotes the estimator of the given 
parameter. 

All of these results are verifiable by simulation, since 
the ML likelihood estimator (derived in Section IV-C) is 
known to meet these lower variance bounds asymptotically, 
i.e., for moderate to high SNR. A detailed derivation of 
lower variance bounds for a polynomial phase signal is 
also provided in [48]. 

In practice, it is often useful to segment the signal and 
try and fit lower order polynomials to the phase segments. 
This is done because the lower variance bounds increase 
significantly as the polynomial order increases. In fact, there 
will be a biadvariance trade-off. If the polynomial order is 
made high, there will be low bias, but high variance. The 
opposite will obviously be true if a low order is chosen. 

APPENDIX 2 

Derivation of the Nonlinear Least-Squares Estimator 
Equations for Polynomial Phase Modeling 

Take a signal estimate of the form: 

i (n)  = A(,) exp(j$(.)) (A2.1) 

where &n) and A(,) are both estimated as polynomials: 
P 4 

$(n)  = x h h n h  and A(,) = c&h7th (A2.2) 
h=O h=O 

Then the sum of the squared errors, E ,  is given by 
&‘-I 

E = I i ( n )  - ~ ( 7 1 )  l 2  (A2.3) 
n=O 
N-1 

E = I A(,) exp( j&n))  - ~ ( 7 1 )  l 2  (A2.3) 

Minimizing with respect to a given phase parameter esti- 
mate, i ih  (for h = 0 , .  . . , p )  yields: 

n =O 

N-1 

= 2 [A2exp(2j&n))  
n=O 

- nA(n)z(n) exp( j&n))] jnh  (A2.5) 

Equating this to zero gives, in vector form, for all h: 

(5 - z)Tyh = 0 (A2.6) 

where z, 2, and yh are vectors containing z ( n ) ,  2 ( n ) ,  and 
yh(n)  = z ( n ) n h ,  respectively. T represents transposition. 

Expanding into matrix representation then: 

iTY = zTY (A2.7) 

where Y is the N by ( p  + 1 )  matrix: 

Y =  I 0 . . .  0 
. . .  i ( 0 )  

f (1)  i(1) 
2 i ( 2 )  i ( 2 )  . . .  2 P i ( 2 )  

. . .  
i ( N  - 1)  (N - l ) i ( N  - 1) . . .  ( N  - l )Pi(N - 1) 

(A2.8) 

Equation (A2.4) must now be minimized with respect to 
the q + 1 amplitude parameters b k ( k  = 0 , .  . . , 4 ) :  

I 
(A2.9) T 

(2-Z) wk 

where wk(n)  = n k e x p ( j & n ) ) ,  so that: 

ZTW = z?’w (A2.10) 

where W is the N(q+l) matrix shown below. The matrices 
W and Y will only be invertible if there are as many 
parameters as data points, p + 1 2 N or q + 1 2 N. 
In this case the trivial solution i = z is obtained. 
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SAMPLE N O .  

It can also be noted that if the amplitude l!w is known, or 
can be assumed to be a constant A ( n )  = A for all n, then 
Y = AW so that (A2.7) and (A2.10) become identical. 

A~PENDIX 3 

Adaptive Estimation of Polynomial Coefficients 

For the algorithm in Section IV-C to be practical, it is 
necessary to reduce the amount of computation associated 
with maximization of ID(a)l over the parameter vector, 
a, for ML based estimation. A number of approaches 
exist. An obvious technique is to limit p to 2. Many 
frequency laws can be approximated locally by a linear 
FM law, and so this is not an unreasonable constraint 
in many practical applications. One may then implement 
the p = 2 dimensional search by extracting the peak of 
a 2D Fourier transform, with frequency and frequency 
slope being the two transformed variables of the 2D FFT 
[44]. This approach is convenient in that there are efficient 
algorithms for implementing two-dimensional FFT’s. 

Alternatively, for p = 2, one may use gradient descent 
search techniques to determine a close approximation to 
the maximum of ID(a) I. This reduces the computational 
complexity greatly. The procedure is described as follows 
PI ,  [471. 

For quadratic phase functions the ML solution involves 
simply finding the maximum of ID(a1, a2)1 over all possi- 
ble a1 and a2. The maximum of ID(a)I for a given value 
of a2 is found by first dechirping (i.e., multiplying) the 
original signal by exp( -ja2n2),  then Fourier transforming 
and extracting the peak. The maximum over all a2 is found 
by performing this routine for all possible values of a2 and 
extracting the global maximum. Conveniently, when the 
maximum of ID(a)I given a2 is plotted as a function of a2, 

it becomes very close to exhibiting only one maximum (see 
Fig. 16). There are in fact, very small local maxima due to 
the sidelobe phenomenon which arise in obtaining spectral 
estimates for finite duration signals. These local maxima 
may be eliminated by applying a “smooth” window, say 
a Hanning window, before forming the spectral estimate. 
Gradient based search techniques can then be applied to 
find the maximum of ID(a)I [27]. 

The use of gradient based search techniques can reduce 
the computational complexity of polynomial phase based 
IF estimation to only about twice the computational cost 
of the spectrogram for the same signal. This may be done 
by recursively updating the 6 2  estimate with each new data 
sample, based on a gradient measure. The unimodal nature 
of the function shown in Fig. 17 indicates that for a signal 
with unchanging a1 and a2 the procedure should eventually 
converge to the correct parameter estimates (providing the 
iteration size is made small enough). Figure 18(a) shows the 
true IF law estimate for a chirp signal of length 256 and 
unnormalized sampling frequency=200 Hz. The plots in (b) 
and (c) illustrate the adaptation to the correct IF estimate 
from start-up, for various values of “adaptation constant,” U .  

Several practical points should be made in using this 
approach. Firstly, the use of say, a Hanning window trans- 
forms the spectral peak versus the &:! error into an almost 
unimodal function. There will in fact be very small minor 
maxima for very large errors. Further, the curve will have 
a low gradient at these large error values. To steepen the 
gradient at these extremities, eliminate the nonmonotonici- 
ties and hence guarantee comparatively rapid convergence 
of the algorithm one can use very smooth windows, such 
as a squared Hanning window. Secondly, spurious effects 
due to outliers may be significantly reduced by limiting 
the admissable change in 6 2  for each iteration if the signal 
parameters are slowly changing. 
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(a) 

Lower Variance Bounds for  Polynomial 
Phase Modeled Estimates 

The derivation of the lower variance bounds for estimat- 
ing the parameters of an arbitrary polynomial chirp signal is 
presented in [9], [47] and independently in [48]. The results 
obtained therein are verifiable by simulation, since the ML 
estimator (derived in Section IV-B) is known to meet these 
lower variance bounds asymptotically. 

The lower bounds for the parameter estimate, 6 2 ,  in a 
quadratic phase polynomial, with unnormalized sampling 
frequency of 200 Hz, and duration 0.64 s are shown plotted 
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in Fig. 19 as a function of SNR. The SNR is defined by 

(A3.1) 
A2 

SNR = 10 log,, - E 
where 

(A3.2) 

and where A is the amplitude of the real signal. 
Each value of variance plotted for the ML estimate was 

the result of averaging over 200 simulations. The ML esti- 
mates are seen to be extremely close to the lower variance 
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Fig. 18. 
techniques with adaptive searching. 

(continued) (b) and (c): IF law estimates of a linear FM signal using adaptive ML 

bounds for values of SNR= -1 dB and higher. At lower 
SNR the ML estimate variance increases dramatically. This 
deviation from the theoretical bounds below a certain SNR 
(the threshold) is typical of nonlinear estimators. A similar 
plot is shown in Fig. 20 for the simulated variance of 21. 
The threshold for this estimate is seen to be -3 dB, which 

-a.- . 

; 4 - 0 4  . 

7 -..U - 
P 

3 

is 2 dB lower than that for &. It should be noted that the 
variances of both and 22 exhibit thresholds at higher *_Y . 
SNR than is observed for the ML estimate of the frequency 
of a stationary tone [52].  The threshold effect for the latter 

-,.U . 

-a." . 

occurs at -5 dB for a signal of length 128. More generally, 
as the polynomial order increases, the variances of the -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 

parameters i ik  also increase. SUR (dB1 
1.lO 5 It should be noted that when true signal frequencies 

are close to either zero or half the sampling rate, small Fig. 19. h2 variance compared with lower variance bound. 
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estimation errors may cause frequency wraparound such 
that the discrete frequency estimates appear to be in error 
by almost 0.5. This can give a misleading idea of how great 
the estimation errors really are. When evaluating frequency 
errors, then, one should consider the frequency domain to 
be part of a circle, and frequency differences are measured 
as arc-lengths on the circle [35]. There is then no difference 
between the frequency values 0 and 0.5. 
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