CHAPTER V

EXTERIOR DIFFERENTIAL FORMS

5.1. SCOPE OF THE CHAPTER

Studies of differential forms has started with the works of Grassmann
and efforts to extend the integral theorems in classical vector analysis has
played a significant part in the development of the theory. Several elemental
concepts, for instance the exterior product, has been introduced by French
mathematician Jules Henri Poincaré (1854-1912). However, it was French
mathematician Elie Joseph Cartan (1869-1951) who enormously contributed
in the period from 1899 to 1926 to the establishment of the theoretical
framework of exterior forms on differentiable manifolds by identifying ex-
terior differential forms as exterior products of differentials of coordinates
(exterior derivatives) and thus equipping them with an algebraic structure.

In Sec. 5.2, the exterior differential forms on differentiable manifolds
and exterior algebra formed by them are defined and it is shown that they
constitute a module. Sec. 5.3 deals with some useful algebraic properties
concerning 1-forms. In Sec. 5.4 the interior product of a vector with an ex-
terior form is defined, various properties of this operation that reduces the
degree of the form by one are revealed and criteria for the existence of a di-
visor of a form are established by making use of the interior product. To re-
place the natural basis of the exterior algebra, we consider in Sec. 5.5 a top-
down generation of a new basis from the volume form, which has the
highest degree on a given manifold, by its appropriate interior products with
natural basis vectors of the tangent bundle. We examine relations between
these bases in detail. In some cases, the use of these bases turns out to be
quite advantageous. Sec. 5.6 is concerned with certain subalgebras of the
exterior algebra called ideals and characteristic vectors of an exterior form
and also of an ideal are introduced. It is shown in Sec. 5.7 that a smooth
mapping between two differentiable manifolds gives rise to an additive pull-
back operator that transports exterior forms on the range of the mapping to
forms on its domain by preserving their degrees. Moreover certain
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220 V' Exterior Differential Forms

properties of this operator are emphasised. The exterior derivative which is
one of the fundamental operators acting on exterior forms is defined in Sec.
5.8 and its properties are discussed there. Closed and exact forms are
introduced as well in this section. Sec. 5.9 deals with Riemannian manifolds
endowed with a metric tensor that makes it possible to measure distances
between points of a manifold. Metric tensor also helps us to relate covariant
components of a tensor with its contravariant components and vice versa.
Utilising this opportunity, we define the Hodge dual of a form and the
Hodge star operation generating this form. Then, we discuss its properties
and scrutinise the co-differential, Laplace-de Rham and Laplace-Beltrami
operators. Sec. 5.10 is concerned with closed ideals, the forms belonging to
which have exterior derivatives remaining in the ideal and conditions
leading to a closed ideal are examined. The Lie derivative of an exterior
form that measures the variation in this form along the flow generated by a
vector field on a manifold is considered in Sec. 5.11 and the Cartan formula
that makes it possible to calculate Lie derivatives of forms relatively easily
is derived. We define in Sec. 5.12 isovector fields of an ideal and show that
the ideal remains invariant under the flow produced by an isovector field
and prove that isovectors constitute a Lie subalgebra of the tangent bundle.
Finally, we investigate in Sec. 5.13 the mappings, or submanifolds, annihi-
lating an ideal. The notion of complete integrability is introduced, condi-
tions providing its existence are discussed and the theorems of Cartan and
Frobenius, that play a pivotal part in comprehending this concept, are
proven. Sec. 5.14 is devoted to an overview of some properties of exterior
forms defined on a Lie group which is also a smooth manifold. Left- and
right-invariant 1-forms are defined by using certain pull-back mappings on
the exterior algebra built on the Lie group. These mappings are generated by
left and right translations in the group. It is shown further that left-invariant
1-forms called Maurer-Cartan forms constitute the dual of the Lie algebra of
the Lie group and they satisfy a system of exterior differential equations
depending on structure constants of the Lie algebra.

5.2. EXTERIOR DIFFERENTIAL FORMS

We have seen in Sec. 4.3 that a k-exterior differential form field on an
m-dimensional smooth manifold M is defined as a completely antisymmet-
ric k-covariant tensor field or as an alternating k-linear functional and it can
be represented in natural coordinates x = ¢(p) in a chosen chart as follows

1

w(p) = il Wiy iy (X) AT Ad™ A -+ A da™t (5.2.1)
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where smooth functions w;,;,...;, € A°(M) are completely antisymmetric in
their indices. We call k as the degree of the form. If we identify the sum
w = w] + wy of two forms w; and wy of the same degree k£ by employing
the following completely antisymmetric components

Wiriy: iy (X) = w’lll’izmik (X) + w? (X) € AO(M)s

182"+

then we deduce that w is a k-form as well. Similarly the scalar multiplica-
tion fw where f € A°(M) is a k-form specified by smooth functions

F(X)wiyiyi (x) € A°(M).

Therefore, k-exterior differential forms constitute a module over the com-
mutative ring A°(M ). Henceforth, we denote this module by A (/). Natu-
rally, A*(M) reduces to a vector space over the field of real numbers. When
k > m, it is evident that exterior forms vanish identically. The basis of this
module are the following linearly independent k-forms:

{dxil /\dxlé/\.../\dxik:z'l,.,.,ik. = 1,...,m}

m!
Okl (m—k)!
cretely in terms of essential components through ordered indices in the form
{dx"" Ndz™ N--- Ndx™ 11 < iy <ig < -+ < i < m}.In this case (5.2.1)
can also be written as

whose number is ( k: ) . This basis is expressed more con-

w(p) = Wigig-iy (X) dz™ A dx™ A - A da™,

1< <9< - <. <m

Instead of m natural basis dx’ of T*(M) associated with local coordinates
2’ in local charts at every points of the manifold we can of course choose m
linearly independent 1-forms prescribed by

0 = Og(x) de? € AY (M), i,j=1,...,m; det [Og(x)] #0
as a basis and represent a k-form in terms of this basis in the following

manner

1

H Qilig--~ik(x) 0“ N 0“ VARERWAN 9“

w(p) =
where

Qiliz---ik (X) = Wiijo- gk (X)@EZI 6512 : @ﬁ]
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Here [©/(x)] is the inverse of the matrix [6%(x)].
Just like in Sec. 1.5 we can define the operation of the exterior product
of exterior differential forms a € A*(M), 3 € A/(M) by

1
B
1 A , . .
= L Vireeviggye - AL N - Ndx™ AN dat N A da!
where A : AF(M) x Al(M) — A¥(M) assigns now a (k + [)-form to k-
and [-forms. Here the functions 7;,...;,j,...;; (X) € A°(M) are given by

(k + 1)1
Viye-eigjie i = Wa[nmikﬁjwm

y=aAfB= i By dx A - Adx™t Adz A A da?

[see (1.5.1)]. If we regard a function f € A°(M) as a O-form, we can write
fAw= fwe A*(M)

for a k-form w. It is straightforward to observe that the exterior product
possesses the following properties:

alhN(B+y)=aAB+aNy, (5.2.2)
(a+B)ANy=aAy+BAY,
aN(BAY)=(aAB)Ay=aABA7,

BAha=(-D)"aAB, aecA¥(M), 8eA(M).

It is thus seen that the exterior product is associative and distributive, but it
is generally not commutative. Whenever kl is an even number one has
BANa=aAf, whereas 6 Aa = —a A when it is an odd number. If
w € A¥(M) and k is an odd number, then we find that

w/\w:(—l)kzw/\w: —wAw

since k2 is also an odd number. Thus the square of such a form vanishes

P =wAw=0.

The set of exterior differential forms of all degrees on a manifold M
constitute the exterior algebra A(M') with the binary operation of exterior
product. The exterior algebra is expressible as the direct sum

AM) =N (M)s A (M) @ - & A (M) @ - &A™ (M)
= &AM
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of modules A*(M),k =0,1,...,m. Hence A(M) is a graded algebra. Of
course, only the sum of forms of the same degree is really meaningful.
Smooth coefficient functions belong to the ring A’(M) and the natural basis
of the exterior algebra A(M) is given by

{1}u{dz'}u{da’ Nda? i < jYU---U{dz" A Ada'tig < - <}
U---U{daz' ANdz® A--- A da™}.

Thus the dimension of the exterior algebra is

m

> () =2

k=0

The value of a form w € A¥(M) on vectors Uy, Us, ..., U, € T(M) is com-
puted as we have mentioned in p. 26 [see (1.4.4)] by the relation

w(Ul, UQ, ceey Uk) = wiliQ...iku?u?- . qu (523)
. o0
where we wrote U, = u! (X) Fycti 1,2,....m;a=1,2,... k. It then
x
immediately follows that coefficient functions are determined by
0 0 0
Wiy = w( T aw)’ (5.2.4)

On an m-dimensional manifold M, the module A" (M) is 1-dimen-
sional. Hence, every m-form is represented as

w=f(x)dz' Ndz®* A---Ndz™, f € A" (M),

The form
p=dz' Adz* A Ade™ € AT(M) (5.2.5)
is called the volume form. Indeed if we consider m linearly independent
vector fields V; = Av! %, I VA Avmaxim, we obtain
At 0 -0
p(Vi, Va, oo, Vi) = O A:UQ O = AvtAL? - AV
0 0 - Aym

and this is the volume of a rectangular parallelepiped in R™.
We are not compelled to employ the natural basis {dz'} C T*(M)
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and its reciprocal basis {0/0z'} C T(M). Let us introduce a reciprocal
basis {0'} C T*(M) and a basis {V;} C T(M). Therefore the relations
0'(V;) = 5;,1',]' =1,...,m are to be satisfied. A form w € A¥(M) can now
be represented by

1 ) ) ,
w(p) = y wilir..ik(x) 9“ A 912 A A 9”“

where coefficients w;,;,...;, must of course be completely antisymmetric.
Then we obtain

01 (Vi) 67(Vi,) - 01(V;)
1 02 Vi, 972 Vi,) - 072 (V;,
W(W17W2,-..,Wk) = ijljr“jk (: ) (: ) (: k)
0 (Vi) 03 (Vi) oo B3(V;)
P AN R ¥
le Z? 7'.]"
1 & 5 L g2 1 o
= g Whke] Y b | = 2 Wi
§hogh L g
gt 12 i)

Therefore, we again conclude that

w(V}l, ‘/iQ, ey V;k) = Wiyig- - i (526)

5.3. SOME ALGEBRAIC PROPERTIES

We say that a k-form Q € A*(M) is a simple form if it is expressible
as an exterior product of k linearly independent 1-forms [see p. 36]. Hence,
if we can write

Q=w' AP A AW € AP (M)

where w” € AY(M),r =1,...,k < m are linearly independent, then  is a
simple k-form.

Theorem 5.3.1. w',w?, ..., w* € AY(M) are linearly independent 1-
forms if and only if Q@ = w' Aw? A+ AWF £ 0.

Let us suppose first that {2 # 0. We consider the linear combination
W' = cwt + cpw? + -+t =0 where ¢y, co,..., ¢, € A°(M) are
arbitrary coefficient functions. The exterior product of this form by the
(k — 1)-form w? A --- AW yields ¢;Q =0 because square of a 1-form
vanishes. We thus find ¢; = 0. In a similar fashion, we deduce that all
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coefficients must be zero. Hence, 1-forms w!,w?,...,w" are linearly inde-

pendent. Conversely, let us choose k linearly independent 1-forms w!, w?,

.,w" that are represented by
Wo=alda',r=1,...,k<m;i=1,...,m

Hence, the rank of the & x m matrix [a]] should be & so that this matrix
must have at least one £ X k submatrix with non-vanishing determinant. On
the other hand, the k-form that is the exterior products of these 1-forms can

be written as follows:

Q=w' AP A A

=alal---al dx“ Adz? A - A dzh

= a[lhaf2 u] de" Ndx A--- A da™,
One immediately sees that for a particular choice of indices 1, ..., i, the
coefficient of the form dz" A --- A da* will be the determinant of a k X k
submatrix of the matrix [a]. Therefore, the form €2 is the sum of such k-
forms. However, in this sum at least one term is different from zero. Hence,
we obtain €2 # 0. a

Theorem 5.3.2. If the forms o",3 € AL{(M),r=1,...,k are con-

nected by the expression

g =cia’ c. € AO(M), r,s=1,...,k,
then there exists the relation
BEABA-ABY = (det[c!]Dal Aa? A - AdF

among them.
In fact, it is readily found that the relation
ABPA - ABF=clé? --~ckozSl ANa™ N Ao’k
B NG 51Cs
=cle?.. cégmka/\a/\ ‘AP

51752

= (det[cNal Aa® A -~ AaF

is obtained. O
Theorem 5.3.3. If 1-forms w" € AY(M),r=1,...,k are linearly
independent and if 1-forms v, € AL (M), r = 1, ..., k satisfy the relation

WA = A+ AR+ F A =0,

then every form -y, belongs to the submodule generated by the forms

wl,Ww?, ..., WF. Hence one is able to write
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Yo = s, aps € NO(M), r,s=1,... k

where the matrix A = |a,s] is symmetric, namely, a,; = .

Exterior product of the relation 7, Aw" = 0 with the (k — 1)-form
WA AW yields TAQ=0. Q=w' Aw? A+ AwF # 0 because 1-
forms w" are linearly independent. It then follows that the form ~; is linearly
dependent on the forms w',w?, ..., w". In a similar fashion, we find 7, A
= 0 for each r. Therefore, the forms ~, are linear combinations of the

forms w". Thus, one can write
Vr = s W'
On the other hand, the relation
O=% AW =asw AW = apgw’ Aw"

leads to ap.) = 0, and consequently to the symmetry relation a,s = a,.
This theorem is also known as the Cartan lemma. O

5.4. INTERIOR PRODUCT

We have seen that new elements of the exterior algebra A(M) over an
m-dimensional manifold M are generated by exterior products of its ele-
ments. But the exterior product is an operation that raises the degrees of
forms. Nevertheless, we can obtain at most forms of degree m with an
operation raising degrees because we know that forms of degrees higher
than m vanish identically. Since it is evident that it is not possible to obtain
a form with a lesser degree than a given form by resorting to the exterior
product, we need to introduce a new operation to achieve this task. We
further wish that this operation possesses appropriate properties. We devise
this operation by means of a vector field. We call it the interior product of a
vector field V' € T'(M) with an exterior form field w € A(M). To this end,

we introduce the interior product operator i in the following form
i:T(M)x A¥(M) — A¥1(M),
or
iy AF(M) — AL (M)

where the vector V' is now specified. We further impose the conditions that
the operator iy has to satisfy the following rules:
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(i).iy(f) =0,V € T(M), f € A°(M). (5.4.1)
(7). iy (w) = w(V) = (w, V) =wpv' € A°(M),V € T(M),w € A'(M).
(i4). iy (o + ) = iy (@) +iy(8), V € T(M), a, 3 € A*(M).
(iv).iy (a A B) =iy () A B+ (=)™ Da Ay (B),
VeT(M), a,peAM).
Here k can only take the values 1, ..., m. Since we can interpret the func-

tion f € A°(M) as a 0-degree form so that we can write f A w = fw, the
rules (¢) and (iv) result in iy (fw) = fiy(w). It is readily verified that the
above rules would suffice to determine the operator iy uniquely. Let us as-
sume that there exists a second operator ij, accommodating to these rules.
Then, it would be necessary to write iy (f) = iy, (f) = 0,iy (w) = iy (w) =
w(V) for each f € A°(M) and w € A'(M). We thus find that if |,y =
iv|noary Wlaan = 1v[aan- But, the rules (i) and (iv) assure us that
actions of these two operators will also be the same on 2-, 3-, ..., m-forms.
Consequently, we write [,y = iv|5(ys) over the entire exterior algebra
so that we get iyy = ij,. The rule (iv) indicates clearly that the interior pro-
duct is an antiderivation. The interior product operator iy is sometimes
symbolised by the hook operator |. In that case, the form iy (w) will be
denoted by V' |w.
Let f € A°(M). We take w = df € A'(M) so (5.4.1 (it)) results in

iy (df) =df(V) = fo' =V(f).

We shall now try to evaluate explicitly the action of the interior pro-
duct iy : A(M) — A(M), which maps the exterior algebra into itself, by
the aid of the above rules. Suppose that a form field w € A*(M) and a vec-
tor field V' € T'(M) are given by

1 A A |
w = E Wiyiy- iy (X) dz" Ndzx? N - A dx““)
V=0 )

v'(x) o

Because of the relation iy (wj,,...;, (X)) = 0 we can write

1 . A A
iv(w) = E wilig"'ikiv(dxll ANdz” A+ A d.CCLk)
On the other hand, the rule (i) dictates that iy (dz") = V (dz™) = v".
Hence, according to (iv) we get
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iy (de™ Adz™ A - Ada™) =iy (da™) Adz? A - A da
—dz" Ny (dx A - Adz™) = iy (de) Adz? A - A da'
—dz" Ny (dz™) Adz™ A - A dat
+dx Adz™ Ay (dz® A - A dx™)
= =g Ao Nda't —vRda AdeB A Adatt -
+ (= D lolrda Ada® A - A dzi

k
= Z( — D) Widat Adx® A AdzAdxA - A da
=1

In the last line above, we adopted the convention dz® = 1. So we find that

k
_Z(_l)l_l Wiy yiginey i, 01T A - Adx A d N A da

1 & . , ‘ . .
B EZ(—DQ(FU VWi iy yigey--ip G A - Adz"t Adx™ A - A da

1N _ | |
- yzvzwii1i2“'ik71d1’“ ANdx? N --- N dx!

= Hviwiiliz...imdx“ Adz A - A dzt.

In the third line, on making use of the complete antisymmetry of coeffi-
cients, we have written wi,...i, iy in = (— 1) " Wiireovip yinsyip- We have
gone into the fourth line by appropriately renaming the dummy indices. We
finally deduce that, by means of the operator iy, a k-form w € A*(M) is
transformed into a (k — 1)- form iy (w) € A¥~1(M) defined by

1 A A )
iy (w) = Wvlwiiliz...%ldajll ANdz? N--- Ndx™ . (5.4.2)

This expression can also be rewritten in term of essential components as

iy (W) = Z iniiligu-ik,ldl‘il Adx®? A - Adzt,

1<ii<-<ip_1<m

When we recall, together with the rule (5.4.1.(ii7)), that iy (fw) = fiy(w)
for a function f € A°(M), we immediately see that the operator iy is linear
over the module B(M). Next, let us consider k arbitrary vector fields V/,
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Vi,Va, ..., Vi1 € T(M). We know that the value of a form w € A¥(M) on
these vectors is given by

i i i1

w(V, ‘/1, ‘/2, ey Vk—l) = Wiiy--ip_, VU U7

On the other hand, according to (5.4.2) the value of the form iy (w) €
AF=1(M) on vectors Vi, Vs, ..., Vi_1 is found as

iv(w)(‘/l, ‘/2, ey V;gfl) = wiil..,ikqviv?- . ’U;fk:ll

Therefore, for every vector fields V', Vi, Vs, ..., Vi_; the equality
i (@) (Vi Vay oo, Vic) =w(V, Vi, Vo, Vier) (5.43)

holds. Actually, it can be shown that this relation may be employed to define
the interior product operator.
Example 5.4.1. Let the form w € A%(M) be given by

w = §w,;jdxl /\dl‘j, wji = —wij.

Interior product of this form with a vector field V' becomes
iy (w) = v'w;; do? € A (M) [ |

Let us now calculate the interior product of the form w € A¥(M) with
two vector fields V; and V5 successively. It follows from (5.4.2) by re-
naming dummy indices that

iv, (i1 (w)) = (iy; oy (w) = M%”iwim--m dz" Ao A dat,
It is clear that (i, oi,,)(w) € A¥=2(M). Let us now change the order of
the vectors in the interior product. On recalling that the coefficients w; j;,...;,
are antisymmetric with respect to indices ¢ and j, we get
1
(k—2)!
= — (iy oiyy)(w).

(iy, oiyy)(w) = — viv%wm]_,_im Az A - A dzt?

Since this relation must be valid for every form w € A(M ), we arrive at the
anticommutativity property of the interior product:

iV1 o lV2 = — lV2 o iVl- (544)

Thus for every vector V', we get the result
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iy oiy =i = 0. (5.4.5)
The successive interior products of a k-form with [ vector fields where
I <k is the (k — [)-form given below:

1
(k—1)!

i i — i i i i
(le O---0 lVl)(w) = Ull' Y wil".ilil+l”.ikdx HUA - Adx'™.

Evidently the operator iy; o - -- o iy; is completely antisymmetric:
i‘/lO.'.oivpo.'.oi‘/qo'.'oi‘/l P _i‘/zo...oi‘/qO.-.oi‘/po...oi‘/v]‘

It is readily observed that for k& vector fields Vi,..., Vi, Viiq, ..., Vi, we
obtain

(in 0:---0 i\/l)(w)(w-i-la ...,Vk) = w(‘/i, "'7‘/17‘/2-&-17 7‘/2:) (546)

If we take I = k, we conclude that

11,02

(in 0---0 iVL)(W) = U1y “'U;gkwiliz"'ik = W(Vi,‘/é, EER) Vk)

Thus the successive interior products of a k-form with k& ordered vector
fields yields the value of this form on these vectors. If [ > k, then the suc-
cessive interior products of a k-form with [ vectors vanishes identically.
It follows from the definition (5.4.2) that
1
(k—1)!
= iy () + i (),

. 1 i i i ir1 .
iy (w) = mfv Wiiyig--ip_y AT AN dz A --- Ndx™ ' = fiy (w).

v (w) = (vll + vé) w7;7;17;2...7;k71dxi1 Adx? A - A dz

Since these relations are valid for every form w € A(M), then we reach to
the following properties:

iy, =ly, + iy, iy = fiy. (5.4.7)

Next, let us assume that the forms w and (2 satisfy the degree condition
deg () < deg (w). If we can find a form w; so that one is able to write
w = wi A €, the form €2 is called a divisor of the form w. It is obvious that
deg (w1) = deg (w) — deg ().

Theorem 5.4.1. 4 1-form Q) # 0 is a divisor of a form w € A(M) with
non-vanishing degree if and only if w N\ 2 = 0.

Evidently, this is the necessary condition. If we can write w = w; A €1,
then we obtain w A Q = w; A QA Q = 0 since Q € A(M). We now prove
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that it is also the sufficient condition. Let us write Q = Q; dz’,i =1, ..., m.
Since 2 #£ 0, at least one of the coefficients should be different from zero.
By changing the ordering, if necessary, we take €2; # 0. Let us choose a
new basis in 77 (M) as follows

' =Q, 0> =da?, ..., 0" = da™.

The transformation of bases is designated by

6! Q Q - Q, dz?
92 B 0 1 0 d$2
gm 0 0 ... 1 dam

Since ; # 0, the determinant of the matrix of transformation does not
vanish. Hence, the inverse transformation becomes
1 Qs Q, , ,
del = —Q— —=¢>—... - 29" dz' =0"i=2,....,m
Ql Ql Ql ? ) 9 )
On inserting these 1-forms into w and noting that the square of a 1-form is
zero, we arrive at the expression

w=wi AQ+wy

where we must have deg (w;) = deg (w) — 1 and deg (ws) = deg (w). The
form (2 is not included in forms w; and ws. We thus get

O0=wAQ=w AQAQ+w AQ=wy AQ

whence we deduce that wy = 0. Hence, one writes w = wi A €2. O

An immediate corollary of this theorem can be expressed in the follow-
ing manner: If linearly independent forms Q', Q% ...,Q" € AL{(M) are
divisors of a form w € A*(M), then the form Q' N2 A --- AQ" is also a
divisor of w.

Indeed if ! is a divisor, then we write w A Q' = 0 and w = w; A QL.
Since 2 is also a divisor, the relation 0 = w A Q% = w; A Q! A Q2 should
be satisfied. But Q' and Q? are linearly independent so that Q! A Q2 £ 0.
Consequently, we find w; A Q% = 0. Thus Q% must be a divisor of wj.
Hence, we have to write w; = wy A Q2. Continuing this way, we reach to
the result

w=w AQPAQEA - AQE O

If we A*(M), then the condition w A Q = 0 which secures that 1-
form €2 is a divisor of w is cast into the relation



232 V' Exterior Differential Forms

1 , . , ,
Hwili:z“"ik-gi dr"" Ndx® A--- ANdx™ ANdx' =0

whence we deduce that the following < k‘T 1> expressions

QpiWiyiy-. i) = 0. (5.4.8)

should be satisfied.

We can easily identify through the interior product whether a given k-
form is simple.

Theorem 5.4.2. Let w € A*(M) be a non-zero form. We construct a
form Q € AY(M) as follows

Q= (iy_, 0 oiy, oy (w)

where Vi, Vo, ..., Vi_1 € T(M). The form w is simple if and only if w A\
= 0 for all vector fields V1, Vs, ..., Vi1 € T(M).

To show that this is the necessary condition, let us suppose that w is a
simple form, in other words, it is expressible as w = w' Aw? A --- A WF
where w” € AY(M), r =1,..., k. Next, we shall try to determine a basis
{U,..., Ug, U1, ..., Uy} of the tangent bundle T'(M) in such a way
that they possess the following properties:

iy, (W) =6, r=1,...,k;a=1,...,k,k+1,...,m.

To this end, let us write U, = ug& and w" = W] dz' in terms of local coor-
dinates. Since w # 0, the forms w" are linearly independent. Therefore, the

rank of the k& x m matrix [w]] is k. We then split the relation iy, (w") =

whul, = 6", i =1,...,m into following expressions

wguf—i—w?ug:ég, r,s,A=1,....k;T=k+1,...,m, (54.9)
w&uﬁ—l—w?ug:(), rnA=1,... )k T A=k+1,...,m.

We may assume without loss of generality that det [w';] # 0. We thus obtain
from (5.4.9) that

uy = (W = (W) ey,

On defining
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we find that

u = (W A+ QfuE, ud = Q.

T 7

Hence, the basis vectors U, meeting the desired conditions can now be ex-
pressed as

9 _ a0 10

Urzulr(9 - = Ta——kura
= [ + ] 5+l
— P + ]
If we introduce vectors W4 and Wr by
Wa= %’ Wr = aaf +Qf‘laiz4
we obtain
U, = (W HAW4 + S W, Up = ubWa
where [ul] and [uf] are arbitrary matrices. We observe at once that m

vectors {Wy, Wr} are linearly independent. If we restrict the arbitrariness
of the square matrix [uf'] such that it has a non-zero determinant, then the
vectors {U, } turn out to be linearly independent. Consequently, any vector

field V4 with A = 1,..., k can now be expressed as a linear combination
Vi=cqUy = U+ -+
where ¢4, a=1,...,m;A=1,...,k are arbitrary coefficient functions

from which we get

(=D iy, (W)W A AT AW A AW

I
M=

iVA(w)
k
:Z(_ )rlaérw/\ A Tl/\u)r_‘—l/\"‘AWk

k
= Z:(—l)“lcgw1 A AGTEAWTEA A WE
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Therefore, the (k — 1)-form iy, (w) is now a linear combination of k simple
(k — 1)-forms. When we apply the operator i, to this form, we see that the

(k — 2)-form (iy, o iy, )(w) is the linear combination of k simple (k — 2)-
forms. On continuing this way by applying the operators iy, ..., iy, , suc-
cessively to the form w, we reduce the form (2 to the linear combination of
k number of 1-forms w':

Q=(iy,, 0 oiy)(W A AWF) = X" =\ + -+
We thus conclude that
WAQ=w A AWFA (MW -+ ™) = 0.

In order to show sufficiency, we consider the k-form
1

w= ywil.i.ik(x) dz" A --- Ada' € AF(M)

and the 1-form
Q= (in—l 00 iVL)(w) = wil"'ik—likv?. ’ ’U;etlld'%ﬂk € Al (M)

which is made up by interior products with arbitrary vector fields V7, ...,
Vi._1. Let us then write

WAQ = il Wiy Wiy g e U100 A A Ada™ A da?t = 0.

Since this equality must be satisfied for all vector fields Vi,..., Vi_1, we
arrive at the conditions

w,;l.‘.jkwjl..‘jkfljkdsvil A A d%ik A dacj"' =0
leading to
wjl"‘jk—l[jkwil"‘ik] =0. (5.4.10)

These conditions require that the completely antisymmetric coefficients

wj,...;, have to satisfy certain quadratic equations whose number is clearly
m m .

( i 1) ( - 1). We shall now attempt to recognise the result brought

about by these equation in a somewhat indirect way. Since we have presum-

ed that w # 0, we can select wis...;; # 0 by renaming, if necessary, recip-

rocal basis vectors. We then define the following 1-forms
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Ql = W;23..-k da;i, Q2 = W1i3.. -k d(L‘i, ceey Qk = W123...k—1i d(ﬂl
Therefore, we can write withr =1,... ;) kand ' =k +1,...,m
Q= W123.. .k dx” +w123...1‘“...]€ da;r (5411)

T

_ r k+1 m
= wi23..p dx" + W123- k4 1ok dz"" + -+ W123-m-- -k dx
T T

These forms are linearly independent. In fact, if we write ¢,)" = 0 where

¢, =1,..., k are arbitrary coefficient functions, the relation
k
Q) = wioz..pepdx” + E W13 T kCr dazt =0
r=1 T

requires that ¢, = 0,7 =1,...,k. On the other hand, a proper choice of
indices j1, j2, - - -, jx—1 in (5.4.10) leads to the relations

W3 k[iWiy--ip] = 0, wis. kWi = 0, oo

W123 - (k=1)[iWi--+i] = 0.

In view of (5.4.8), we infer that the 1-forms Q', 2, ..., QF are divisors of
the form w. Since these forms are linearly independent, we conclude that
w= A2 A--- A QF. The factor \ can be found by equating coefficients of
the form dz' A --- A dz* in both sides of this expression. Utilising (5.4.11),
we end up with

1
A= -
(W123~~k)'
Hence, on defining w' = AQ', w? = Q2. ..., w" = OF, we get
w=w AN A O

Example 5.4.2. We consider the formw = § w;; da’ A da? € A*(M).

The requirement that this form is to be a simple form can be written from
(5.4.10) as follows

wipjwiey = 0 or wjj wiy + wik, wij + wi wjr, = 0.
When this condition is met, we obtain
Ql = W;2 d$i, QQ = W1i; d%l

if we take wis # 0. Then we find that
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Ql A QQ = wigwlj d(L‘Z A d(L‘j = W[i2w1j] d.%'i A dl‘j

1 , .
= Q(wigwlj — (.Ujg(.du) dl’z A dCBJ.

On the other hand, the coefficients w;; are satisfying the relations
wipw1j + wWiwje + wijwel = wipwi; — Wjpwi; — wijwiz =0
so that we obtain wjpw1; — wpwi; = wisw;;. This yields
w= Q'A Q2/w12.
Hence, if we choose
W= Ql/ww and o = Q%
we find that

w= W A |

5.5. BASES INDUCED BY THE VOLUME FORM

The non-zero m-volume form p on an m-dimensional manifold M
was introduced by (5.2.5). On using Levi-Civita symbols defined in p. 31,
this form can also be expressed as

p=dzt Adz® Ao Adz™
1 ) . )
= — €itiy-—iy, dr" Ndx® N\ - ANdx'™.
m

Our aim is to derive a new set of basis forms for the exterior algebra that
may prove to be more advantageous in certain cases than the natural basis.
However, to fulfil this task, we have to reveal some novel properties of the
generalised Kronecker deltas introduced previously by the expression
(1.4.6):

i i1 i1
5, 8, 8,

.. . 12 12 19

R LR S (5.5.1)
s gt . g

J1 Jo Jk

If we expand the k£ X k symbolic determinant (5.5.1) with respect to its first
row, we obtain the following expression by adopting the convention that (5;“
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does not exist

(2 2 23 (2
i k 11 0 o 6j171 6jl+1 o 6jk
1i2e ol qy\l-1gh . . : . .
6j1j2"'jk - z :( 1) 6j1 - . . .
1=1 sk g WL s
J1 Ji-1 Ji+1 Jk
k
_ _ l 1 ol gl i-10104 1 ik
- Z( 6 6 S Jk
=1
_ 11 7k 2101 U
6 + Z 6]1 J=1gi e Je

=2
On the other hand, for [ > 2 we can write

1—1 clorl—1biler i _ [—141—2 2 U—18d141° " T
(=1) 671]2 Ji-1jier n_( 1) 6 CJadidie gk
:( )21 3612 18041l
e Ji- 1J1J1+1 Tk
i?"'ll—lllll+l R
J2r i1 J1die 1 gk

and find
1102 1 ol ik CU 18T Tk
671]2 7 671 6]2"'.7'1« o 26 s -1 Ji gk (5'5'2)
ol gl 1] oi2i3e- 11 l20304" -1 1] i3 igp_10g
- 6j1 6j2"'jk 6]2 6]1]; 6]3 6J2J1]4 “Jk 6]k 6]2]5 cJk-1J1°

On making a contraction on the indices ¢; and j; in (5.5.2) by taking
iy = j1, we arrive at

Byl e =m8y = (k= 1)8 (5.5.3)
=(m—-k+ 1)6 i

When we repeat this operation r times, we conclude that
Gy lplpgre g
67/1"'1'7'.7-7::1"'47.1\‘ = ‘ ' (5'54)
(m—k+1)(m—k+2)-(m—k+ro " "

Jr+1 7 Jk”

Let us next take £k = m in the expression above. We thus conclude that
(5.5.4) then yields

21""1'rl:r+1"'iv7 ' 677+1 (55.5)

il"‘ZV'J1‘+l"'JVn Jr+17 Jm

so one deduces that
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(SLCTRR Y
Oy iy, = M- (5.5.6)
We know from (1.4.16) that we can write

1182 Uy I ST DRERY} L .
o =e € e i (5.5.7)

Jij2:Jm
Hence, making use of (5.5.5) we can reach to the relation

11 _
Ojyrj, = (m — )l

iy

r7;7‘+1' i . .. .
€ 6]1"'jrl7'+1"'lm'

We now define m number of (m — 1)-forms as follows

1 ) )
i =g, (1) = oD Ciiyori, AT A -+ Ndx'™ € A"THM).  (5.5.8)

Let us next evaluate the exterior product of a form pi; with dz7 to obtain

dad A p; = da? Adz A - A dxin (5.5.9)

(m — 1) Cim
1 o
e m 624242_”2,7”6‘]224.%771 dxl /\ de /\ /\ den

1 Jig* - vim . (m B 1)' J

- (m—1)! iy i (m—
= 6jp e A™(M)

We now write c'yy; =0 where ¢’ are arbitrary functions. The exterior
product of this zero form with dz’ is

0=clde! Ap; = ciégu = .

Since, p does not vanish we deduce that ¢/ =0,j=1,...,m. Thus m
forms y; € A™1(M) are linearly independent and they constitute a basis
for the module A™~1(M).

We shall now try to determine top-down generated bases for the
modules A™*(M) for k =0,1,...,m in an exactly similar fashion. To
this end, we introduce the forms

Hiyiy iy = (g, 01, 0+ 0lp ) (1) (5.5.10)

k-1
1 : ,
W eil.”ik’ik#l"'im dek+1 /\ e /\ dlﬂ/m E A7n_k(M)
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Because of the properties of the interior product, these forms have to be
completely antisymmetric:

Hoigig_y--+iy = Hligip_y---i1]-
Therefore, the number of their independent components is (k) =

( " k:) which is equal to the dimension of the module A™ *(M). By
m —
adopting the convention y;, = p, the definition (5.5.10) leads to

Wigi iy = g, (i yvin)y 1<k <m (5.5.11)

On using Levi-Civita symbols, we obtain from (5.5.10) that

1 WUkt Jm i) 1
m 67;11"'i:7;k]"++11"'im dxlk+l /\ o /\ dxlm
_ k! 6jk+1"'j7nd Brit din
B (m - k)! i]\',‘*’l“‘iﬂl £ /\ e /\ x
— k:! dx[.jl\7+1 /\ - /\ da':jm]
— kl d.’L’jk“ Ao A dxjm

Gl ke Jmy, . —
€ Hi-viy =

where we have employed (1.4.8). We thus find the inverse relation

dxik'+1 /\ e /\ dl-im — l eil"'ikikdrl"'im 'LLL

o (5.5.12)

i e
Let us now choose m — (k — 1) < m, namely, [ < k. In this case the form
Az A - Adzt A Wiy -y

becomes obviously a (m — k + [)-form. The explicit evaluation of that form
by making use of (5.5.10) and (5.5.12) gives

Az A - Adxt A Wiy iy

1 ) , ) ‘
N m eil“.ikik*l"'imdx]l /\ e /\ dle /\ dmszrl /\ et /\ dem

1 1
N (m — k)' (k — l)' eil"'ikikﬂ“'imeSI St 7mlu’8k—l"'81

1 S1°Sk—1J1° " Ji
= = )i Dt isai i s (5.5.13)

If we take! = k, then (5.5.13) leads to

Z]i2~*-ik
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since we have assumed that p,, = p. After having this relation on hand, we
can easily demonstrate that the forms ..., constitute a basis for the mo-
dule A™*(M). Let us write

R

c Pig-iy = 0

where ¢ are arbitrary smooth functions. It is obvious that we can select
the coefficient functions ¢’ """ as being completely antisymmetric, that is,
satisfying relations

e — el
without loss of generality. The exterior product of the above linear combi-

nation with the form dz/' A --- A da/* yields due to (5.5.14)

T2k iy,

¢ty — R el
=kl = 0.

1189 - ik

Since p # 0, we then deduce that all coefficients vanish, i.e., %" = 0.
Therefore, the forms y,...;, are linearly independent so they constitute a
basis of the module A"%(M). Consequently, we obtain the following se-
quence of top down generated bases for modules A™ (M), A"~ (M), ...,
A?(M), AY(M), A°(M) from the volume form y:

1 4 . .
Am(M) p= — 61112...1'771(1{[)“ Adz? N A dl’l’”,
m:
- . 1 , .
A" 1(M) CHE = lai(lu) - m eii?“'imdxZ2 AREERA dwzma
AT (M) = gy = g, () = (m —2)! Cijig-ipg AT N -+ Ada™™,

Am_k(M) D Wiy i = i&'k (/"Lik—l"'il)
1

m €y vipipr1im

dz™ A - A dxi’",

Al <M) : Mim*ln.il = iaim—l (’LLim*Q"'il) = ez‘1"'im—1im dxl?ﬂ?
AO(M) : lu’im"'il = eil"'im = :l: 1

If we take [ =1 in (5.5.13) and utilise (5.5.2) the following result
comes out
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Lo i
(k _ 1)' il"~7:k,1ik/‘L]kfl"']l
_ 1 iJieJr-1 | Jijer k-1
- (k‘ . 1)[ iL-il"'ik—IMjk—l"'jl

_ 1 i cjijare k-1 5i 5
- (k,_ 1)' i 109 Tp_1 0 2U2 U1

dl‘i N My, -iy =

i cgijer k-t i Jij2 e Jk-1 -
- 6i26i1ik--'ik,1 - 6ik,16i1i2--'ik Jk—1""J1 —

6;;\1“[ik71"-i2i1] - 6;1M[ik71"‘i2ik] - 6;f2/‘L[ik—l"'ikil] - 6;L.,1N[ik"-izi1]
= 6Zkuilc—1"'i2i1 - 6;1/”%1\«71'”1'21'/{
— Oy iy ety = O Mgy
Finally, we observe that we can write

d.’Ei A iy -ip = k 6[Zikll’1/ik—l"'i2i1] (5515)

because of the complete antisymmetry of forms p;, ,...;,;, With respect to its
k — 1 indices. Indeed, we find that

6 i 1) = % A AL IR

For instance, we have the relations
da’ A e = 26[1ug = 830 — 6,115, (5.5.16)
dz' A puji = 36[lk-ﬂji] = 5;1#;5 + 5]1',Uik + 5;,%]‘.

Thus, a form w € A™*(M) is also expressible as

w = HWIQ ]‘(X) iy - -igiy (5517)
where the functions w"® " € AY(M) are completely antisymmetric, that is,
they satisfy the relation w12 = liiz-i],

On utilising this representation, we can readily prove that every form in
A™Y(M) is simple. A non-zero form w € A"~ !(M) can now be expressed
as w = w'y;. If 1-form Q = Q;dx’ is a divisor of the form w, then the
relation Q Aw =0 or Quwidz! A p; = Quw'é/p = Qw'p =0 must hold.
This means that Q' = Quw! + Qow? + -+ + Q,,w™ = 0. Since we have
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supposed that w # 0, then at least one coefficient does not vanish. Without
loss of generality, we may choose that the coefficient w™ is different from
zero. We thus obtain

wl <'02 wm—l
m

Q= —
w

and inserting this expression into the form €2, we get

1 m—1

Q= Qu(da' — 2 da™) + -+ Qg (da™ = T da™).
wm wm
Next, we define m — 1 linearly independent 1-forms by
2 m—1
Q= W dzt —whda™, Q2= da? — Zdam, .. = dgm = Y g,
w"L wm,

Each one of these forms divides the form w. Hence, we can write
w=UAQRZA-AQTL O

The interior product of a vector V = v'9; with a form w € A™~*(M)
can now be expressed as follows

iv(w) = E viwiliz..-ik,iai (Mik-“izﬁ) — H viwilizu.ikﬂiik“.iﬂl
Erl o )
= mv[lwmz M]Miik~~~i2i1 cA™ (kH)(M),

It is clear that a form w € A™ (M) can hereby be represented by
resorting to two different bases as given below:

1 1

W= g e = ¢

. ) Bl A L im
k)] Wiy i AT N - Adx™,

When we employ (5.5.10) it follows from this expression that
1 1

y m Wil.”ik 62‘1-'~i1¢ik+1"-imdmiwrl JARERNA dxim =
1 ; ,
e . . Lk+1 e m
(m— k)l Wiy i AT N - A d
so that coefficient functions are interrelated by
. . _l S AT 5518
wlkJrl""Lm - k‘ 611"'2k2k+l"'1mw ( e )
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After having performed some operations involving Levi-Civita symbols, we
readily get

e Tk i — O R LN SRR /)
m Ll T kg i

Wijyr---i

_ JUdk iy
= H(m — k) W
= (m — k)!w[jl“'jk]

= (m— k)l
and we finally reach to the inverse relation

i = L i ing,

(m o k)' Tkt T

(5.5.19)

Let us consider a form w € A*(M) given by

1 . )
W= Wiy, (X) dx"™ A oo A dx™

in the natural basis. On using the same functions wj,...;,, but transferring
lower indices to upper indices to comply with the Einstein summation con-
vention in its usual fashion, we may define a form *w € A" *(M) asso-
ciated with the form w € A*(M) by the relation

*w = %w% Lhig- i, - (5.5.20)
The form *w so obtained will called the Hodge dual of the form w. This
concept was first introduced by English mathematician William Vallance
Douglas Hodge (1903-1975). We investigate properties of the Hodge dual a
little bit later within the context of the Riemannian manifolds in detail and
put the operation of raising the indices of component functions on a more
solid foundation. Let us just point out that, according to (5.5.14) one is able
to write

1\2 . . .
H) Wiy WAL N NN gy

1N2 oo -
= (E) 65112‘?“&}]1]/\ wll-..Lk_ILL
1
k
1
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As an example, consider a 1-form w = w;dx’. We then obtain
1
(m—1)!

*w =W = City iy AT A - N dx'™ € ATHM),

and consequently

WA *w = Ww; .

5.6. IDEALS OF THE EXTERIOR ALGEBRA A (M)

Since A(M) is an algebra, it is quite natural that we look for its ideals.
A subset, or more precisely a subalgebra, of the exterior algebra A(M) is
called an ideal T (homogeneous ideal) of A(M) if it satisfies the conditions
below:

(7). For every forms o, 3 € T of the same degree, one has a + 3 € .
(#). If a € T, then one has y A o = (—1)\49Mde99 0 Ay € T for
all v € A(M).

We see that only the sum of forms of the same degree in Z is allowed. That
is the reason why we call the ideal Z as a homogeneous ideal. 1t is quite
obvious that it is not possible for elements of the ideal to escape outside this
subalgebra by means of exterior product.

Let us now consider some r members aq, s, ...,a, of the exterior
algebra A(M) that can be of diverse degrees and construct all forms in the
following shape

B=F'ANar+-+7 AN, =7 " Nag, v €AM),a=1,...,r.

If the degree of the form [ is p, then it is evident that the degree conditions
given below must hold

degy" +dega, =p, dega, <p, a=1,...,7.

We denote the collection of all members of A(M) constructed this way by
Z(a, g, ..., ). Let two forms 3 and (3, of the same degree belong to Z.
Hence, we can write

Br =90 A B2 = A a, V1), V(e € AM)
so that we obtain

B+ B = (v + ) A aa
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Since Yy T € A(M), we see that 51 + 3, € Z. Similarly, if 5 € Z and
o € A(M) we have to write

cANB=0N"Nag) = (0 AY") Na,

where v* € A(M). Since o Av* € A(M), we find that o A § € Z. These
clearly results indicate that the set Z (a1, ag, ..., a;) so constructed by given
forms that may be of various degrees is an ideal of the exterior algebra
A(M). The forms aq, ag, ..., a, are then naturally called the generators of
the ideal 7.

We say that an ideal 1 is generated by the forms oy, o, ..., q, if each
member of which is expressible as the sum of terms admitting at least one
member of the set {a, s, ..., a,} as an exterior factor.

Example 5.6.1. Let us consider the exterior algebra A(R*) and the
coordinate cover {x'} = {z,, z,t} for the manifold R*. We want to deter-
mine the members of the ideal generated by the forms

o) =2dr — 3ydz,
ay = xdy — zdt,
as = z’tdz A dt — tdy A dz.
Since the lowest degree of the generating forms is 1, then this ideal cannot
contain 0-forms, namely, smooth functions. Forms with degrees higher than
4 are identically zero. We can classify the forms in the ideal according to
their degrees as follows:
I-forms: B = f(2dx —3ydz) + g(xdy — zdt), f,g€ A°(R?)
2-forms:
B=v" AN+ Aas + fas
where
7" = fldx + g"dy + hdz + k“dt, f, f* g%, h, k€ A°(RY),a = 1,2
so that we get
B=—2¢" —zf)de Ndy — Byf' +2h')dz A dz
— (2f* +2k' — 2%tf) da A dt — (3yg" + xh* +tf)dy A dz
— (2¢* + zk?*) dy A dt + (3k'y — zh*) dz A dt

3-forms:

ﬂ:'ylAal—l—'yzAag—i—'y/\ag
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where
v = fUdx Ndy + g*dx ANdz + h'dx Adt + k*dy A dz
+ 1%y A dt + m®dz A dt, £, g%, b, k%, 1%, m* € A°(RY),a = 1,2,
v = fdx+gdy+hdz+kdt, f,g,h ke AR,

so that
B=—Cyf' —2k' +ag* +tf)dr ANdy Adz,

+ (21 — zf? — xh? — 2%tg) dx A dy A dt,

+ (3yh' + 2m! — z¢® — 2’th) dx A dz A dt,

+ (3yl' — 2k + xm? — tk) dy A dz A dt.
4-forms:

52’71/\a1+’yz/\a2+’y/\a3

where

N = fldx Ndy Ndz + g*dxz Ndy ANdt + hdx A dz A dt
+ k'dy Adz Adt, % ¢% Rh% kY € A°(RY),a = 1,2,
v=fdxNdy+gdx ANdz+hdx ANdt+kdyNdz+1ldyAdt
+mdz ANdt 4 ldy ANdt +mdz ANdt, f,g,h,k, 1,m e A°(RY),

so that
B = (3yg" —2k' — 2f* + ah® —th + 2*tk)dz Ady Adz A dt. W

Let Z be an ideal. If two forms «, 3 € A(M) of the same degree are
related by o — f € Z, we write « = GmodZ or, amounting to the same
thing, @« — = Omod Z. When we consider such kind of forms « and 3, it
becomes clear that we may use the representation v A (o — ) = Omod Z
for all forms v € A(M).

The characteristic vector fields of a form w € A(M) are defined as
vector fields satisfying the condition

iv(w) = 0. (5.6.1)

These vectors belong to a subbundle of the tangent bundle 7'(M ). Indeed, in
view of (5.4.7), if iy (w) = 0 we then obtain ify(w) = fiy(w) = 0 for all
f € A°(M). Likewise, if iy (w) = iy, (w) = 0 we get iy, 41, (w) = iy, (w) +
iy,(w) = 0. Therefore vectors fV and V; + V; are also characteristic vectors
of the form w. We can easily demonstrate that if the rank of the form
defined in Sec. 1.6 is r, the number of linearly independent characteristic
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vector fields turns out to be m — r. Let us take the form w € A¥(M) into
account. Then the relation
1

iy (w) = (k‘ 1)"inii1i2~--ik,1dxi] Adz? A Adz =0

results in v'wii iy, = 0,1 <iy,d9,...,4,_1 < m. If we note that these
relations are identical with equations (1.6.3), we arrive at the fact that if the
form possesses m — r linearly independent characteristic vector fields, then
its rank must be r. This amounts to say that there are exactly r linearly

independent forms 6% € A'(M),a = 1,...,7so that w is represented just as
in (1.6.6) by the expression
1
w= i Wayag---a 0 AN O N - NGV (5.6.2)

When the rank r is equal to m, then the characteristic vector can only be the
Zero vector.

Let Z be an ideal of the exterior algebra A(M). If a vector field
V € T(M) satisfies the condition iy (w) € Z for all forms w € Z, then it is
called a characteristic vector field of the ideal!. If we recall the definition
of an ideal and properties of the interior product, we immediately recognise
that characteristic vector fields of an ideal form a submodule S(Z) C U(M)
that is called the characteristic subspace of the ideal. We thus symbolically
write iy (Z) C Z whenever V € S(Z).

Theorem 5.6.1. Let T(w',w?,...,w") be an ideal of the exterior
algebra A(M) generated by the forms w',w?, ... ,w" € AF(M) of the same
degree. A vector field V € T (M) is a characteristic vector field of the ideal
Zifand only if iy (w") =0,a=1,2,... 7.

We suppose that iy (w”) = 0,a =1,...,r. If « € Z, then we need to
write o = 7y, A w” where all forms «, € A(M) ought to have the same
degree. We thus obtain

iv(a) =iy (7,) A" + (—l)de-‘”“% Niy(w?) =iy (7,) ANw® € Z.

Conversely, let us assume that iy () € Z for all & € Z. Consequently, this
property is also valid for the forms a = f, w® € A*(M) where the functions
fa € A°(M) are arbitrary. However, it is not possible for (k — 1)-forms to
belong to the ideal. Therefore, we can only write i, (o) = 0. Hence, we
conclude that

ISometimes it is called a Cauchy characteristic vector field after Cauchy who had
introduced the concept of characteristics to partial differential equations.
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iv(e) = faiy(w") =0

andi,(w’) =0,a =1,...,r because the functions f, are arbitrary. O
Naturally, Theorem 5.6.1 would also prevail for an ideal generated by
the forms w',w?, ... ,w" € AY(M). The characteristic vectors of such a

special ideal will be called the characteristic vectors of the exterior system
{w* e AY(M),a=1,...,r}

Theorem 5.6.2. The characteristic vectors of an exterior system
{w* € AL(M),a=1,...,r} engender a submodule S of B(M. If the
forms w* are linearly independent, namely, if Q= w' AwW? A... Aw" #0,
then the dimension of S is m — r.

We know that characteristic vectors of any ideal constitute a character-
istic subspace S. If Q = w! Aw? A ... AW # 0, then the 1-forms w', ...,
w" are linearly independent. If we add m — r linearly independent 1-forms
Wl w™ e AY(M) to those forms, then the forms w!, ..., w™ can now
be chosen as a basis for A'(M) = T*(M). As is well known, we can select
a basis {V;} in T'(M) so that {w'} becomes reciprocal basis satisfying the
relations

iy (W) = (V) =6, i, j=1,...,m.
We thus get
ivj(wi):(), i=1,...,mmj=r+1,...,m.

Therefore, m — r linearly independent vectors V,,1,...,V,, are actually
characteristic vectors of the exterior system. On the other hand, because of
the relations

iy, (W) =iy W) = =iy ) =1

the vectors V1, ..., V, cannot be characteristic vectors of the exterior system.
Hence, the dimension of the characteristic subspace S becomes m —r. [
It is seen right away from above that the relations

iv(W)=0i=r+1,....myj=1,...,r

together with

. 1 s 2 .

1‘/7'+1 (u‘)T+ ) = 1V7'+2 (u')T+ ) == lvm (wm) = 1
are satisfied as well. This amounts to say that the vector fields Vi, ..., V, are
in turn characteristic vectors of the exterior system {W' ™, ... W™} while

vectors Vyi1, ..., Vy, cannot be characteristic vectors of that system. This
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means that the dimension of the characteristic subspace of the exterior sys-
tem {w' ™, ... ,w™} is r. We can summarise the foregoing results by the
symbolic relations

Moreover, if we denote the interior product by the hook operator J, we can
also write

whence we readily reach to the following conclusion:

Let Z(w") be an ideal generated by 1-forms and let V' be a charac-
teristic vector field of this ideal. If one has iy(w)#0 for a form
w € AY(M), then this form cannot belong to the ideal T(w®) or, conversely,
it is not possible to get iy (w) = 0 if w ¢ Z(w").

Let the ideal Z be generated by forms !, ... ,w" € A(M) of diverse
degrees. Then we can provide the theorem below for a systematic deter-
mination of its characteristic vectors.

Theorem 5.6.3. The necessary and sufficient conditions for a vector
V € T(M) to be a characteristic vector of the ideal T(w",w?,...,w") is the
existence of forms A € A(M) of suitable degrees such that the relations

iy (W) =M AL, a,b=1,2,...,7

are satisfied.

Let us suppose the vector field V' holds the foregoing conditions. If w
is a member of the ideal, we can write w = v, A w®, 7, € A(M). Clearly,
one must have deg (7,) + deg (w*) = deg (w). We thus deduce that

iv(w) =iy (7.) Aw® + (—l)deg(w’ya Ay (W)
= (iv(w) + (~1)"5 0y, A ) Ab € T

which means that V' is a characteristic vector. Conversely, if V' is a charac-
teristic vector, then its interior product with any form in the ideal should lie
within the ideal. This rule will of course be valid for the generators w® so
that one must find forms \¢ so much so that the relations iy (w®) = A\¢ A w®
will hold. |

If S(Z) C T(M) is an r-dimensional characteristic subspace of an ide-
al Z, then for all linearly independent vectors Vi,...,V; € §,1 <k <r
and a form w € 7 we clearly get

(i 0---oiy)(w) €Z, 1<k <
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We consider an ideal Z(w',w?,...,w*) of A(M) generated by forms
of diverse degrees and assume that S(Z) is its characteristic subspace with
dimension m — r. S(Z) is brought forth by linearly independent vector
fields Vi41, ..., V. We can supply this set with arbitrary linearly independ-
ent vector fields V;,...,V, to obtain a basis in the tangent bundle 7'(M).
We now pursue the path used in proving Theorem 5.6.2 to determine the
reciprocal basis 0',...,0™ € AY(M) in the cotangent bundle T*(M) in
such a way that we have

iv.(0")=0'(V;) =6, i,j=1,2,...,m.

]’
We thus obtain
iy (0°) =6, =0, a=r+1,....m,a=1,...,r (5.6.3)

This means that the same vectors V,,a =r +1,...,m span the (m — r)-
dimensional characteristic subspace of the ideal 7(0“) generated by 1-
forms 0%, o =1,...,r. In other words, we conclude that S(Z) = S(J).
The number r is called the rank of the ideal . Within this context, we can
prove the following theorem.

Theorem 5.6.4. Let S(Z) be the (m — r)-dimensional characteristic
subspace of an ideal T(w”) generated by forms wi, A=1,....s of
various degrees. There exist linearly independent 1-forms 0%, o =1,...,r
and if the ideal generated by these 1-forms is [J(0%), then one finds
T(w) C J(6).

If Viiq,..., Vi, € T(M) is a basis of the characteristic subspace
S(Z), we first complete to a full basis of T'(M) as we have mentioned
above, then we can construct the reciprocal basis 6',...,0™ € A'(M) of
T*(M. We define m — r degree preserving mappings h, : A(M) — A(M)
where a = r+ 1, ..., m by the rule

04 = he(w) = w — 0% Ny, (w) (5.6.4)

Let us remember that the summation convention will be disabled on under-
scored indices. 1t is clear that o, = h,(w) € Z whenever w € Z. Next, we
consider a generator w” of the ideal Z. Let us now introduce the forms o/
= ha(w?) = w? — 02 Aiy, (w?) € T to find

iv, (07) = iy, (W) — iy, (09 iy, (W) + 0“ AR}, (w0!) =0
)

where we have employed the relations iy, (/) = 1 and i%,a = (. We see that
the definition o}, = hy, 0 ho(w?) = hy(0y!) = ot — 02 N iy, (07}) € T leads
similarly to ivb(alﬁl) = 0. Furthermore, since iy, (') = 0 we obtain
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iv, (04) = v, (0)) = 84w, (07) + 6% Ay, 0 iy (07))
= — 02 Ady, oy, (0) =0

for b # a. These results clearly indicate that the forms

ot =0l i =(hmo-ohy)(wh)eT (5.6.5)
will satisfy the relations

iy (0 =0, a=r+1,....,m, A=1,...,s.
Thus, for all vectors V' € S(Z) we find that
iy(c?) =0, A=1,...,s. (5.6.6)

The rule of formation of the forms o4, which are of the same degree as the
forms w* implies that Z(w?) = Z(c?). We now assume that o4 € A*(M).
When we choose the 1-forms {6’ :i = 1,...,m} as a basis of T*(M), we
can of course write

1 , ,
ot = o Uﬁ,.,nﬂ“ ARERWANCAH
If we express a vector V € T(M) as V = v'V; and pay attention that the
vectors {V;} and the forms {0’} are reciprocal bases in 7'(M ) and T*(M),

respectively, then we can describe the interior product of the form o with
the vector V' as follows

. A i A i 19 .
lV(O' )_ (k—l)‘v O-iiliz"'ikf]e]/\92/\'”/\9“ L

just as expressed in (5.4.2). On the other hand, when V' € S(Z) we have to
write V = v*V,. We thus get

1 . i ,
i’(UA) = (k 1)‘7)(10'::11‘11‘2,__2‘1‘4710“ A\ HLZ VANRERWAN 9%4 — 0

since v' =0 for i = 1,...,r. That yields 1}"’(7;141»11»2,,_Z-kf1 = 0. Because this

equality must be valid for every choice of functions v* € A’(M), we find at
last that O-fjléliliQ"'ik»—l = 0. Due to the complete antisymmetry of these func-
tions with respect to its k indices, these relations would be met for all posi-
tions of indices. This is tantamount to say that

A

Tiigeriy = 0, r+1<14,%9,...,7% < m.
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Therefore the forms o have to possess the following structure

ot = %Jﬁlmaﬂal AN A%, 1T <aq,am...,a <7
which implies that o4 € J(0%). This result means of course Z(c*) C
J (6%) and consequently Z(w”) C J(6). This proves the theorem. O

Example 5.6.1. Let us take the form w = w;(x)dz’ € A'Y(M) into
account. A vector V = v'(x)9; € T(M) is a characteristic vector of the
form w if it meets the condition iy (w) = v'w; = 0. If we take w; # 0, we
see that there are m — 1 linearly independent vectors

0
Ve ger T e

satisfying this condition. [ |
Example 5.6.2. An exterior system is given by the forms

W' =dr —ydz e A'(RY), W =dx —xdy+tdz € A'RY).

k=2,3,....m

IfV =2v"0, +1Y0, + v°0, + v!0; is a characteristic vector of this system,
then the following equations should be satisfied:

vt —yv* =0, v —xvd +t* = 0.

We thus obtain

t
vt =gt v = yt v°.
x

Hence, two linearly independent characteristic vectors are found to be

9 y+td9 9 D
Vo T o ooyt T .

Vi

Example 5.6.3. We consider the ideal generated by the forms
W' =dr —ydz e N'(RY), W =tdxAdz—xzdyAdt € ANRY)

Its characteristic vector field V' must satisfy the relations iy (w') = 0 and
iy (W) = A(x)w! where A € AY(R?) that can be written explicitly as

vt —yv® =0, tv'dz — tvide — xvVdt + xv'dy = Adx — Ay dz
whence we find that

A= —t*, v" =¥, v =0 =0.
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Thus 1-dimensional characteristic subspace of the ideal is spanned by the
vector field

0 0

1 2

On the other hand, the characteristic vectors of the forms w' and w* are
determined through the relations iy (w') = 0 and iy (w?) = 0 leading to

V=g =0, v =u' =u =u' =0.
Hence, characteristic vectors are

Vl:y% 0z

5.7. EXTERIOR FORMS UNDER MAPPINGS

Let M™ and N™ be two differentiable manifolds and ¢ : M — N be a
smooth mapping. We know that the mapping ¢* : AY(N) — A°(M) derived
from ¢ via the rule ¢*g = go ¢ assigns a smooth function f = ¢*g €
A°(M) to a smooth function g € A°(N) [see p. 98]. We shall now show
that ¢ gives rise in general to a mapping ¢* : A(N) — A(M). Let us take a
form w € A¥(N) into consideration. If we denote local coordinates associ-
ated with a chart at the point ¢ € N by y = {y*} = {¢',9*, ..., 4"}, we
may write

1
w(@) = 7 Warap o (V) A" Ady™ A Ady™ € AM(N).
Here the indices aq, ..., a; take values 1, ..., n. On the other hand, if local
coordinates in a chart at a point p € M are x = {z'} = {z!, 2%, ... 2™},

we know that the mapping ¢ = ¢(p) elicits a mapping ® : R™ — R" in the
functional form y = ®(x) or y* = ®*(z!,...,2™),a = 1,...,n. The dif-
ferential d¢ : T),(M) — Ty, (IN) of ¢ at the point p carries a vector at that
point p over a vector at the point ¢ = ¢(p). We now define a form w* =
¢*w at the point p corresponding to a form w at the point ¢(p) in such a way
that the numerical equality

(0" wW)(V1,..., Vi) = w(dp(V1),...,dp(V)) (5.7.1)

will be satisfied for all vectors Vi, Vo, ..., V) € T),(M). This relation will
actually determine a mapping in the form ¢* : A*(N) — A¥(M). In fact,
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the vector V* = d¢ (V) is represented in view of (2.7.4) by

v ;00 0 v O
= - — = N
ox' Oy~ oy“
; 0 .
where V = v ek Therefore, we obtain
xl
WG Visoo, Vi) = w0t v =
* * *Qr *Quy, a(I)Dtl 8(1)0% 7 i)
WV, V) = Wayeeq Uy 0 = Way-wop " vy
Since, this expression would be valid for all vectors Vi, ..., Vi, we reach to
the conclusion
. 09 0P
Wiy, (X) = Way---ay, (q)(x)) Ot e i (572)
odl  9Pparl
= Way- 0y (P(X) o e

We have to note that the complete antisymmetry on indices a causes the

complete antisymmetry on indices i. Accordingly, the pull-back, or recipro-

cal image w*(p) of a form w(q) € A*(N), where ¢ = ¢(p) € N and
p € M, is the k-form given by

. . 1 0PY 9P

W' (5) = 6" (0) = 1 W (X)) e

1 A ,
=4 Wi (X)dz" Ao Ada' € AF(M).

Az A -+ A dx

¢* is called the pull-back operator and it can also be expressed in the usual
form ¢*w = w o ¢. However, this operation must be interpreted this time in
a broader sense. We simply realise that the form ¢*w is obtainable from the
form w by inserting into w the differential transformation
ay* . . 0P”
= ——dz' = .
Bzt " ox’
in addition to the mapping wy,...q, © ¢. It is clear that ¢* is a degree pre-
serving mapping. If n > k£ > m, then it is evident that ¢*w = 0 identically.
Let us consider the forms a, 3 € A*(V). If we notice the relation
(5.7.2) we find that

dy® dz!

P (a+0)=¢"a+ ¢*p. (5.7.3)
Hence the operator ¢* is additive. Furthermore, if w € A¥(N), o € A/(N),
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then the form v = w A o € A*!(V) becomes

1 ‘
Y= m Way---a, 086 dya‘ VANRERIVAN dya’“ A dyﬂl VANRERIA dyﬁl
and the form ¢*y € AF+ (M) is cast into
Py = i Wi Oy AT A Nt N dz? A A da

We thus reach to the conclusion
P (wAo)=d WA p*o.
When g € A°(N), we get from (5.7.4)
9" (gw) = (¢"9)¢"w.

255

(5.7.4)

If g € R, one finds ¢*(gw) = g ¢*w. Therefore, ¢* reduces to a linear ope-
rator only on the field of real numbers. On recalling (5.7.4), we recognise
that the mapping ¢* is a homomorphism on the exterior algebra A(N).If ¢
is a diffeomorphism, then it becomes clear that the operator ¢* will be an al-

gebra isomorphism.

Let My, M> and M3 be smooth manifolds, and ¢ : M; — M, and
1+ My — Ms be smooth mappings. These mappings give rise to pull-back
operators ¢* : A(M3) — A(M,) and ¢* : A(My) — A(M;) so that one has
P'w € A¥(My) and ¢*(¢*w) € A¥(M;) for a form w € A¥(M3). On the
other hand, it is straightforward to see that we can write ¢ o ¢ : M} — M3
and (¢ o ¢)* : A(M3) — A(M;). In appropriate local coordinates, we have

1

w= ﬁwal~--ak(z) dz™ A --- Adz™,

' 1 9z 0z% ay oy

Prw= k_!walv-.ak» (Z(y)) ayal --.8yak dy® A --- A dy™,
1 82(11 8zak ayal 8y”k

¢*(1/}*W) — k;_l Way---ay, [Z (Y(X))} ay(yl o 8y0/k Oxrh ' Oxtk

But, the chain rule of differentiation

0z Oyt 0z
dyer dzir Oz

implies that

ay Qaj

0z 0z
o

ox ox

QZS* (¢*w) = ki' wal"'(lk (Z(X))

— dz" A - A dat

dz" A --- Nda'™ = (Yo ¢)*w.
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Since this relation must be valid for all forms w € A(Ms), we arrive at the
composition rule

(Yop) =g oy (5.7.5)

If the mapping ¢ : M — N is a diffeomorphism, then the mapping
¢~': N — M is also a diffeomorphism. Thus the relations ¢! o ¢ = iy,
po¢pt=iyandil, = in(M)> Ty = () leads, according to (5.7.5), to

(07 o) =irxan =0 0 (67)", (pod™) =iawy = (¢71) 0 ¢

which implies in this case that (¢*)™! = (¢71)* : A(M) — A(N).

We have so far seen that the mapping ¢ : M — N generates both the
differential mapping d¢ = ¢, : T(M) — T(N) and the pull-back operator
¢* : A(N) — A(M). Let us now consider a form w € A¥(N) at a point
#(p) € N corresponding to a point p € M and a vector V = v'; € T,(M).
We know that the vector V* = ¢, (V') = do(V') € Ty, (N) is given by

0 8<I>a

dgb(V) =" a—ya, v 6:1}5 .

The interior product of the form w with this vector is of course

i L « o a;
sy (W) = mwalaz...ak(y)u Ly A - A dy©

The pull-back of that form then becomes

% (s 1 i, 001 00 9O ;
¢" (lag() (w)) = by W G g g A A A dat
1 i g i
= m Wiliz...ik(X)’U tdx A - Adx'™
= lv(¢*w)
Since this relation would be true for all forms w € A(N), we conclude that
for all vectors V' € T'(M) we get the rule

¢* oy ) =" oy =iy 09" AF(N) — A1 (M), (5.7.6)

If the operator ¢ * exists, then (5.7.6) means that the relation
¢ oy =iy 1y 0" (5.7.7)

will also be valid for all vectors U € T'(N).
If ¢ : M — M, then ¢ maps the manifold M into itself. When ¢ is a
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diffeomorphism, it produces a coordinate transformation on M that can be
represented locally by functions y = ®(x) or y* = ®*(x!,...,2™), a =

1,...,m where ® = o ¢ o ! with ¢ being the local homeomorphism of
the associated chart. If we denote the Jacobian determinant by J = det ¢
= det [0®*/Ox], then we must have, in this case, J # 0. We would like
now to investigate the transformation of bases induced by the volume form
under such a mapping ¢. The transformation of a generic basis form

1

Hoy--ay = m 60‘1'"akakﬂ'“mndyakﬂ ARSRA dyam € Amik<M)

yields

« 1 8yak+1 8yam
O Moo = T Con o an g g

dz™ A - Adx'

from which we write

9y oy .
oxrin Qi P Payear =

1 ayal ayak ayak+1 8yam

(m —k)! Coronan o gi s Griv | Oin

Az A - A dxt,

According to (1.4.18), we have

8:[](){1 8yam _ A A d t ay()/
€aq---am 8.%'i1 cee 8$im = Ciy--iyy e |:ax7 :| )
Therefore, we find that
8y0‘1 8y(¥k .
8xi1 e ax% ¢ //Lak,...al =
dy” 1 ) |
det [ 81.2 i| m eil.”ikihrl"'im dxlk+l JARERIAN dxl

and finally, owing to (5.5.10)

) O . (518)

Hiiin = (det[a:m' Oz i
Let us now consider a form w € A *(M) described by
1

w= T ) B ar (5.7.9)

The pull-back of w thus becomes
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* ]. G1e-in 1 * Q) *
¢ w = 5 WT(X) pigeiy = y@s W™ (Y) @ payen

k!
and (5.7.8) gives

R (N e AN CEAT)

In the module A" (M) bases are the volume forms
px =dz' Ao Ada™, Ly = dyt A--- Ady™

and (5.7.8) leads to

8y,]ux — Jdz' A Adz™. (5.7.11)
ox!
Conversely, if the relation (5.7.11) is valid, then we must find det ¢ # 0. In
consequence, the celebrated implicit function theorem states that the map-
ping ¢ is locally a diffeomorphism. Any form w(y) € A™(M) is now ex-
pressible as w(y) = g(y)py. Thus, under coordinates transformation we ob-
tain the form ¢*w = (g o ¢)det [8y0‘/6xi] Ly

Next, we consider a submanifold S of dimension r < m of the mani-
fold M. We suppose that we describe this submanifold by a smooth map-
ping ¢ : S — M. In local coordinates, this mapping will be prescribed as a
coordinate transformation

&' 1y = (det g)puy = det|

i =d ), i=1,....,m;a=1,...,r (5.7.12)
The pull-back ¢*w € A*(S) of a form w € A¥(M) on S is given by
1
P'w = i Way o (W) AUt A - A du™ (5.7.13)

where the coefficients wy,..., (u) are determined through the relations

oo g
our  Quo’

Way-ap (1) = Wiy, (P () (5.7.14)
If the form w does not vanish identically on M, then the submanifold S,
consequently the mapping ¢ : S — M, satisfying the condition ¢*w = 0 is
called a solution of the exterior equation w = 0. When k > r, then ¢*w =0
identically, that is, any submanifold whose dimension is less than & is auto-
matically a solution of this equation. If & < r, then the mapping ¢ that gives
rise to an r-dimensional solution submanifold is determined, in view of
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(5.7.13) and (5.7.14), through the equations wy,...o, (u) = 0. We then call ¢
as the resolvent mapping for the exterior equation.

We can introduce another interpretation to a solution of an exterior
equation. The differential d¢ : T'(S) — T'(M) of the mapping ¢ : S — M
push a vector field in the tangent bundle of S up to a vector field in the tan-
gent bundle of M. Let V' € T'(S), then we can write

0 0

=" — == eT(M
|4 v 8ua7 d¢(v) v 8.%'2 € ( )’
where
i aq)z «
v = auav .

According to (5.7.1), every k linearly independent vector fields selected
from 7'(S) of dimension 7 > k must satisfy the relation

w(dp(V1),...,do(Vi)) = (¢*w)(V1, ..., Vi) = 0

since ¢*w = 0. Hence, in order to determine /ocally an r-dimensional solu-
tion submanifold through a point p € M, all we need to do is to find a sub-
space 1,,(S) of the tangent space T},(/) annihilating the form w. We know
from the Frobenius theorem that the distribution made up by those local
subspaces should be involutive so that the local tangent spaces can be
patched together to generate a smooth submanifold.

Example 5.7.1. We take M = R? and w = zdy — 3ydz € A*(R?).
Our aim is to determine a mapping ¢ : R — R? so as ¢*w = 0. Let us write

z=a(u), y=p0(u).
Then we get ¢*w = (aff’ — 36a’)du = 0 and the condition af’ = 35d/.
This differential equation can be cast into the form

o4 _ o r_ /
5 =35 or (logh) =3(loga)

so that we obtain 3(u) = Ca(u)?. Therefore, the curves prescribed by para-
metric equations = a(u), y = Ca(u)? where a(u) is an arbitrary function
solve the exterior equation w = 0.

. 0
Let us now consider a vector V' = v"(u) 90 € T(R). We then have
u

_ /ui /uﬁ 2
d(b(V)—owagc—i-ﬁv 8y€T(R).
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Hence the equation w(d@(V)) = zv? — 3yv” = (af’ — 38/ )v" = 0 leads
similarly to the above expression and to
V" = f(u), v =30 f(u) = Ca(u)®) f(u).

where we defined v*(u) = f(u). [ |
Example 5.7.2. We consider M = R? and the form

w= Pdz' Ndz? + Qda' Ada® + Rdx® Ada® € A*(R?)

where P,Q, R € A°(R?). We define a 2-dimensional solution submanifold
by the parametric equations z’ = ¢'(u',u?),i = 1,2,3. We denote the
functional determinant by

(¢, ¢)) 99" o7 D¢ D¢

O(u,ul)  Ou*ouf  Oubf duo

we then attain at the result
(9", ¢*) (9", ¢*) d(¢?, ¢*)
R
A, w?) gty T

Therefore, in order to satisfy ¢*w = 0 we have to find the solution of the
following non-linear partial differential equation

o*w=|P +Q dul A du?.

d(pt, ?) (9", ¢ (9%, ¢*)
Patd, ) T Yot ur) T R agur, ) "
where P = P(¢',¢%,6%),Q = Q(¢', 9%, ¢°), R = R(¢!, ¢%, ¢°). u

5.8. EXTERIOR DERIVATIVE

We define an operator d : A(M) — A(M) on a smooth manifold M
mapping the exterior algebra A(M) into itself in such a way that it holds the
following rules:

(1).dlw+o0) =dw+do, d(Aw) = Adw; w,o0 € A(M),\ € R.
). dwA o) =doho+ (—1)@u A do.
(iii).d* = dod = 0, i.e., d(dw) —d2w—0f0rallw€A( ).
(). If f € A°(M), then df = f;dx' € A*(M).
The rule (i) means that d is a linear operator on R whereas the rule (iv)

implies that the 1-form d f is the classical differential of the smooth function
f € A°(M). Here, we have introduced the notation
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a(-)
ort

= (), (5.8.1)

which we shall employ frequently henceforth. The rule (ii7) shows that d is
a nilpotent operator. d so defined is called the exterior derivative operator
and the form dw is the exterior derivative of the form w.

Theorem 5.8.1. The foregoing rules (i)-(iv) determine the exterior
derivative operator d uniquely.

We know that an exterior form w € A*(M) on a manifold M is ex-
pressible in local coordinates on an open set U C M as follows

1 . ‘ ’}
w = H WiliQ...ikdxh ANdxr2 N --- A dx%, Wiy iy c AO(M)
Since wj,,...;, is a 0-form, we obtain
1 , A ‘ A
dw = E [duh‘l...ik ANdx" A - Adx* + wiliz--»ikd<d(£“ A A d.%‘”‘)]

in view of (i7). We shall now demonstrate by mathematical induction that
d(dz™ A --- Ndz™) = 0.

If k = 1, because of (iii-iv) we find d(dz™) = d*z" = 0. Let us assume
that the above relation is valid for k¥ — 1. Hence, we deduce from the rules
of exterior differentiation

d(dz" A -+ Adz™) =
A’z A (dz A - Ada™) — dz Ad(dz A - A da')
= —dz" Ad(dz"” A -+ Adz™) = 0.

so that this relation is also valid for k. Therefore, the exterior derivative of
the form w € A*(M) is designated uniquely in local coordinates as follows

1 . .
dw = Kl dwi,...;y Ndx" N - N da'™ (5.8.2)
10w s, 5 '
N H% da' Adz" A - A dz™
: T
1 , . ,
= iy ot Ada' Ao N da't € AV,

Thus the operator d is of the form d : A¥(M) — A*"1(M) and increases
the degree of the form by one. The form dw € A**1(M) can be written in
the standard form in the following manner
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1 , . ,
dw = m u)“]LdeCl N dz" VARERWAN dx™

where we obviously have
Wiy, = (k + 1) Wiy---ipyi] € AO(M) (5.8.3)

In order that this definition of the exterior derivative to be meaningful it
should not depend on the chosen local coordinates, namely, the chosen
chart of the atlas. To observe this property, let us consider the coordinate
transformation x' = z'(y’) in overlapping charts. We thus write

1

w :lellk(x) dxil/\ A dxi"‘
1 7» |

so that the exterior derivatives with respect to y- and x-coordinates are
found to be related by

_ = J i1 g
dyw = o 0 dy’ Adx"(y) A -+ Adz"(y)
1 Qw;,...i, (x) 0" | : :
= ————~ > —dy Ndz"(y) AN Ada™
o g W ¥) z"(y)
1 Owiy..i, (X) i i
—HTCZ% Adx' A - Adx"™ = dyw.
This relation is valid for all w € A(M). Hence, we obtain dy = dy showing
that the operator d is intrinsically defined. O

After having defined the exterior derivative by the expression (5.8.2),
it is straightforward to see that the rules (7)-(iv) are automatically satisfied.
That (i) becomes valid is obvious. To show (i7), let us consider the forms
w € A¥(M) and o € A'(M) given by

1 . .
W= Wiy dx A - AN da't

1 A ,
g = ﬁ Ty dz"" A -+ ANdzx"

and evaluate the exterior derivative of w A 0. We obtain

11

Wipoiy Oy AT A - Adx™ Adz? A - A da
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1 , ) 1 ) .
= —dw;..; NdZ" AN ANdx"™ N = o dx? A+ Adx?
k' 1 k l Jr
1 . ) )
+ 1 Wi gy dcr]l G ANATTA - Adrt A da A A da

1 4 1 . ,
=1 dwiy...iy Nz A Ada't A~ T dz’' A -+ N dz?

1 , ; ;
+ (_1)kﬁwi1”'i’“ dzt A - A dz™ A ﬁ doj..jy Ndxh A - A da

and we thus get
dwAho)=dwho+ (1) wAdo.
Similarly, we find

d*w = %Wh--»imij dz' Adx? Ada A - A dat € AR (M.

But the exterior product is antisymmetric with respect to indices ¢ and j,
while the second partial derivatives are symmetric. Therefore, summations
over these indices from 1 to m become zero and we get d’w = 0. The rule
(iv) is retrieved immediately form the definition (5.8.2).

We can provide a more explicit expression for coefficient functions
Wiy, € AY(M) specifying the form dw € A**1(M). If we take notice of
the relation (5.5.2) we readily arrive at

L k41 i o 1 5]6J1J2 Jk . 6] 6}1]2 Ik
Wiy iy = (k—i— 1)' oI TY) w]l"'.%] k' 7 Zi1ig- - 11 o g
_ J1g2eJk _ J jljg jL o
6226“%-2‘» 6Lk 109 lp— 1z:| wﬂl *Jks]
1 Jija- ]k ) 6]1]2 Tk, 6}1]2 ¥/
k' i1d9- - 1 kst ilg- - g J1 kst Q1% - g J1 e Jkst2
_ Jij2:Jk . L.
61112 U 12w11"']k11k} :

Since wj,...;, is completely antisymmetric, this expression may be trans-
formed into the following form:

Wiy iy = Wigeeigi — wm iy — Wigieigyiy — 70— Wiigiy (5.8.4)

gy E Wiy iy ity iy

Example 5.8.1. The exterior derivative of the form w = w;dz’ €
AL (M) will be
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_ 1 ) .
dw = wj;dx" Ndz’ = 3 wijdz' A\ dz’,
Wij = 2Wlja) = Wi — Wi

Let us take M = R3. In this case, the number of the independent compo-
nents of the coefficients w;; is three and this matrix can be represented by an
axial vector. One can then write w =V - dr = X da' + Xo da? + X3 da?
where we employed the notation of the classical vector algebra to denote
V = Xe; + Xoes + X3e3 and dr = dxie; + dxoes + dxses. ( - ) is the
usual scalar product and ey, e;, e3 are orthonormal basis vectors of R?. The
exterior derivative of the form w becomes

_(0X5;  0X5\ 5 (0X1  0X3\ | 4 1
do= (G = ggr) 4" n e + (G5 = Gt ) e A
6X2 aXl 1 2
+ (gt = a2 ) a1

Evidently the coefficients of the form dw is nothing but the components of the
curl of the vector V, i.e., W = curl V. = V x V. This vector is also expres-
sible as

00X}, .
W =W;e; = Cijh 57 & = €ijk Xk j€i, 1,J,k=1,2,3.

On the other hand, if we consider the forms
wi; = Vi-dr and wy =V, -dr
we see that their exterior product is

wi Awy = (XoY3 — X3Y3) da® Ada® + (X3Y) — X1V3) da® A da?
+ (X1Ys — XoYy) daxt A da?

the coefficients of which are components of the usual vectorial product W
= V; x V5, . This vector can also be written as follows

W= VViei = eiijijei7 i7j7k = 17273'

Let us next calculate the exterior derivative of the form w = fV - dr where
f € A°(R?), we easily reach to the relation

curl f'V=grad f xV+ fcurl V. [ ]

1 .
Example 5.8.2. We consider the form w = o1 wijr dx? A dz e AQ(M)

whose exterior derivative becomes
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1 , . 1 ; ;
dw = o Wik dx' Ndx! Ndx = 37 Wik dz' Adx! Adz® e AP(M).

According to (5.8.4), the coefficients of this form are given by
Wijk = Wik — Wik,j — Wik = Wik, T Wki,j + Wij k-
Let us choose again M = R? and write
w= X1 dz* A dax® + Xy da® A da' + Xz da' A da? € AX(R?)
in terms of essential components. We observe at once that

_0X, 09X, 0X,
dw = (8:1:1 + 0z? + Ox3

>da:1 Adz? A da® € A3(RP),

namely, the coefficient of this form is just the divergence V - V = divV of
the vector field V = X e; + Xsey + X3e3 which can also be written as
follows

0X;

v.v=""0 oy
ox! ’

If we take into account the forms w; and wo defined in Example 5.8.1, then
the relation d(wy A wy) = dwy A wy — wy A dws yields the equality

div <V1 X VQ) = VQ - curl V1 — V1 - curl V2. |

We know that a form w € A™ *(M) is expressible as in (5.5.17) by
using a basis induced by the volume form. Since dy;,...;,i, = 0, the exterior
derivative of this form is given by

dw = g Wi ZL‘,[ dx* A\ Wiy iniy = H Wi Zk’i 6[1“/1%71'%,2“]
where we employed the relation (5.5.15). Because of the antisymmetry of
w2 % we conclude that

(k—1)! (,L)il’iz-~<ik‘i 6Zkui,€,1...i2il (5.8.5)
= (k 1 1)' w’iﬂz...ik—li:i Wi - igiy € Anh(k’—l)(M).

It is clear that one has

i]ig*--’ik,11 i1i2-~*ik,12 i1i2~*-ik,17n
g iei Ow Oow Oow

i 81.1 82?2 Oxrm
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We thus see that the coefficients of the form dw is evaluated as a kind of
divergence.

Let ¢ : M — N be a differentiable mapping between the smooth ma-
nifolds M and N. We know that this mapping conduces toward the pull-
back mapping ¢* : A(N) — A(M) which assigns a form ¢*w € A¥(M) to
aformw € AF(N).

Theorem 5.8.2. If ¢ : M — N is a smooth mapping, then we have the
relation d(¢*w) = ¢*dw for all forms w € A(N). Consequently, one has the
following rule of composition

do¢*=¢*od: AF(N) — AFTH(M)

which means that the operators d and ¢* commute.
We prove this theorem by explicitly calculating both sides. Let us con-
sider a form

1
W= Wayan-op YT A dy®2 A - A dy™ € AF(N).

Its exterior derivative is

1

dw = y Wayag: - -ay,a dy® Ady®™ ANdy® A --- A dy®t.
We thus obtain
¢ dw =
1 (0waay-ay 09 09 9P i i
H< Iy~ Oqj) o7 ounogw Gw NdTEA - NdTt

where the functions y® = ®*(z?) is generated by the mapping ¢ through
local charts at the points p € M and ¢ = ¢(p) € N. On the other hand, due
to the symmetry of second derivatives and antisymmetry of exterior pro-
ducts, we get

aq Qap
1 [awm...ak 000 00™ oo e oo
E'L oy>  Oxi Oxzh Oz W Grigrh Qi
9o e

+ -t wapea Py }d:ci/\dx“ A Adai®

Qx0T
1 0wy (B(X)) 99 0PN O
k! oy ox' dxhr  Ox

dz' Adz A -+ A dz
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Therefore, we find that d(¢*w) = ¢*dw for any w € A(N). O

If the exterior derivative of a form w € A(M) vanishes, that is, if dw
= 0, then w is called a closed form. Thus, closed forms constitute the rnull
space or kernel of the operator d:

N(d) =Ker(d) = {w e A(M) : dw = 0}.

If for a form w € A*(M), there exists a form o € A*~1(M) such that
w = do, then w is called an exact form. Obviously, this means that exact
forms occupy the range of the operator d:

R(d)=Im(d) ={we AM):w=dy,ye A(M)}

If w is an exact form, we have dw = d?¢ = 0. Hence, an exact form is
naturally a closed form. However, the converse statement is not always true.
This subject will be investigated in detail in Chapter VI through the homo-
topy operator.

If we A™(M) we get dw = 0 because every (m + 1)-form is identi-
cally zero. Therefore, every m-form will be closed on an m-dimensional
manifold.

Theorem 5.8.3. The closed and exact forms in the module AF(M)
constitute linear vector spaces CF(M) and E*(M), respectively, over real
numbers.

Let us consider the closed forms w, o € A¥(M) satisfying dw = do
= 0. Let f,g € A°(M be arbitrary functions. Then we find that

d(fw+go)=df Nw+dgAo.

Hence, this expression vanishes if and only if df = dg = 0. Thus if only if
f and g are constants, then the form fw 4+ go is closed. In other words,
closed forms constitute a linear vector space C*(M) only on R.

This time, let us take the exact forms w, o € A¥(M) into consideration.
Hence, there are forms o, 3 € A*~!1(M) such that w = da, o0 = df3. Since
we can write

wHo=da+df=d(a+p)
we see that the form w + o is exact. Next, let us consider the form
fw=fda=d(fa)—df N«
for an arbitrary function f € A°(M). This means that the form fw can be
exact if only df = 0, or f is a constant. Thus exact forms constitute a linear

vector space £¥(M) only on R. Since every exact form is closed, it is evi-
dent that £F(M) C CF(M). O
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Next, we define the sets C(M) = kén% Ck(M) and (M) = kénB EF(M).
=0 =1

We can easily verify that they form graded subalgebras of the exterior
algebra A(M) on R. In fact, if w,o € C(M), we have dw = do =0 and
consequently, d(wA o) = dw Ao + (—=1)*@w A do =0 so we find that
wA o € C(M). On the other hand, if w,o € £(M), then we have to write
w=da, o =df so that we obtain w A 0 = da A dff = d(a A df3) leading
towAo e EM).

Example 5.8.3. We consider a form w € AY(M). If w € EY(M), then
there must exist a function Q € A°(M) so that we can write w = df or

w; dz' = Q; dz'.

Hence, the relations w; = €2; must hold. Thus, the coefficients w; have to
verify the integrability conditions w; ; — w;; = 0 in order to be able to de-
termine 2. On the other hand, if the form w is closed, then we get

from which we deduce that wy; j; = 0 or w; ; — w;; = 0. Thus, if the form is
exact, then the conditions to be closed is satisfied automatically. However,
in order that a closed 1-form is to be exact we have to find the solution of
m(m —1)/2 first order partial differential equations satisfied by m un-
knowns w; in the form w; = €2 ;. The existence of the solution is, however,
strongly dependent on the topology of the manifold. |

Example 5.8.4. We consider a form w € A?(M). This form will be
exact if there exists a form o € A*(M) such that w = da. Let us then take
w= %wij dz' A dx) and o = o dz’. The relation

3 Wij dz' Ndx! = o dz’ N\ da? = oy da’ A da?

leads to w;; = 2aqj;) = «j; — «; ;. In order that the functions «; satisfying
these conditions could be determined the 2-form w must be closed. This
becomes possible if the condition

dw = 5 Wiik dz® A dz' A da? = 5 Wik da® A dx' Ada! =0

is met. Therefore, the coefficients w;; must satisfy the following differential
equations

(9007; j 6wjk 8wk,

oxk ox’ ozl 0. "

Wij k]l = 0 or
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Example 5.8.5. Let us consider the form w € A™~*(M). This form is
exact if w = da so that (5.8.5) yields

1 i1 i 1 1 ik
o= e e = 4Gy )
. lailmiki
- k! i Hig---iy

Hence, the coefficients must satisfy a relation like

T
Ji

whence we conclude that

(RN 7Y B S R J
w j =« 4 =0.

If w € A™~1(M), the above conditions obviously reduce to
W= aijjj and o'; = o/-j,].j =0. u
Let us finally consider the sequence of modules

d d
H

A S o L ARy L AR () d

L damony Lo (5.8.6)

where homomorphisms between successive linear vector spaces are pro-
vided by the exterior derivative d on real numbers. Since dod = d? =0,
this sequence is evidently a cochain complex. As we shall see later in
Chapter VIII, this cochain complex will play quite a significant part in re-
vealing some fundamental properties of closed and exact forms that connect
some topological and analytical features.

5.9. RIEMANNIAN MANIFOLDS. HODGE DUAL
A 2-covariant tensor field G € T(M)) on a smooth manifold M will

be called a metric tensor if it obeys the following requirements:

(7). G is a symmetric tensor.
(t3). The bilinear form G, is not degenerate at every point p € M, that is,
G,(U,V)=0forallU € T,(M) if and only if V' = 0 at the point p.

A manifold equipped with such a metric tensor will be called a Riemannian
manifold. In local coordinates, the metric tensor is expressible as

G = gij(x)dz’ @ da’!, g;; = gji. (5.9.1
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Consequently, the condition G(U,V) = g;ju'v! =0 for all vectors U =
u'd; where V =0'0; results in g;jv/ = 0. Whenever this homogeneous
system of linear equations is satisfied if and only if V' = 0, then the matrix
G = [g;;] must be regular at every point, namely, its inverse must exist. Let
us denote the inverse matrix by G~ = [(¢7!)”] = [¢"/]. Hence, the relations
gikgkj = gjkgki = 6} will hold. By means of the metric tensor G, we can
assign a field of 1-form in 7%(M) to every vector field V € T'(M) pre-
scribed by V' = v'9/dx" where v'(x) denote the contravariant components
of V' through the relation

wy =G(V) = gijv’ de' = v;dz' € T*(M) = AY(M).

Thus the metric tensor gives rise to a linear mapping G : T'(M ) — T*(M).
The coefficients of the form wy given by

v = gij'l)j € AO(M) (5.9.2)

is called the covariant components of the vector V. If we make use of the
inverse matrix G~!, (5.9.2) can be transformed into

vt = gijvj. (5.9.3)

Thus a vector V' can also be expressed as

0 9 ,
— o — iy, — vl
V=w B =g vlaxj = ve’.
Since the matrix G is regular, the vectors
e = i 9 i=1 m (5.9.4)
=49 85Uj’ A -

constitute a basis for the tangent space as well. It then easily follows from
(5.9.1) and (5.9.4) that

G(0:,9;) = gij, G(e',¢) = gug™g" = g". (5.9.5)

Let us now consider a form w = w; dz’ € A*(M) and introduce a vector
through the relation
0 -0

:wl

: - e T(M), W' = g'w,.
a.’L'Z 81’7’ € ( )7 w g w]

Vo= gijwj
We can readily verify that G(V,,) = w. Moreover, we can write

GV, V,) = giw'o? = gijg"* ¢'wror = gMwran. (5.9.6)
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These results reveal the fact that the metric tensor furnishes an isomorphism
between bundles T'(M) and T(M). The inverse operator is procured by
the inverse matrix ¢g*/. Let us define a new set of basis vectors in 7%(M) by

fi = gijda’. (5.9.7)
We then obtain
fi(e?) = gix dz" (¢ D)) = ging" 6 = ging"’ = 6!

which means that {e’} and {f;} are reciprocal bases. On making use of
(5.9.7) we can also write da’ = g% f;. Utilising (5.9.7), we easily get anoth-
er representation of the metric tensor

91, @ f; = g7 gingy da* @ da' = 8y da* @ da’
=gudi* @ ds! =G.

When we consider a coordinate transformation such as 3' = y'(2’) in a
neighbourhood of a point p € M we arrive at the following rule of trans-
formation

_ozb ot oy O2F

! 0 j l
fily) = 9ij dy’ = Dy 8—ngkl Gy T = Dy gridx
oz*
The inverse relation then obviously becomes
oy
fix) = 52 1)
Hence, the relation
ij oy’ 0y .
G=g"flef= Mo fi= @@9“]7 ® f
leads to the transformation
1ij _ Ay’ % gt
ozk Ox!

meaning that the coefficients g%/ are actually contravariant components of
the tensor G.

If the tensor G is positive definite, namely, if for every non-zero vector
field V € T(M) one has
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G(V,V) = giv'v’ >0 (5.9.8)

we say that the Riemannian manifold is complete and the metric is definite.
If this condition does not hold, then M is a pseudo-Riemannian manifold
or an incomplete Riemannian manifold and the metric is indefinite. When
the metric on a Riemannian manifold verifies the constraint (5.9.8), then it
becomes possible to define an inner product or, if we put it another way, a
scalar product of two vectors on the tangent bundle 7'(M ) of the manifold
through the relation

(U,V)=G(U,V) = gjjuv’, U,V eT(M). (5.9.9)

It is a simple exercise to show that the above definition entirely complies
with the rules concerning an inner product on a vector space. Hence, the
finite-dimensional vector space T,(M) then becomes a real Hilbert space.
T(M) will then be the union of Hilbert spaces. The relations (5.9.9) and
(5.9.8) makes it possible to associate with a vector a positive number that
vanishes if and only if the vector is zero. We call this number as the length
or the norm of the vector V':

VI = V(V,V)=/gijo'vi > 0. (5.9.10)

In like fashion, we can define an inner product on the dual space 7% (M) by
the relation

(w,0) = gwio;, w,a€ A'(M).

If (U, V) = g;ju'v! = 0 for distinct vectors U and V, namely, if their inner
product vanishes, we say that these vectors constitute an orthogonal set.
When, in addition, their norms is equal to 1, then they form an orthonormal
set. When we are provided with a set of orthogonal vectors, this set can
obviously be cast into a set of orthonormal vectors by dividing each vector
by its norm. In a finite-dimensional complete Riemannian manifold, we can
always construct an orthonormal basis for 7'(M) inductively. Let U;, i =
1,...,m be a linearly independent set of vectors. Let us start by taking
W1 = U and construct the following sequence of vectors

UNW WZ .
W;=U; — E —— V= ,t=1,...,m.
IIWH Wil

It is straightforward to verify that the vectors V1, Vs, ..., V,, form an ortho-
normal basis, that is, they possess the property
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(Vi, V) = guvf o} = &y5.

This method that generates generally a set of orthonormal vectors from a
given countable set of linearly independent vectors spanning the same sub-
space is known as the Gram-Schmidt orthonormalisation process after
Danish mathematician Jorgen Pedersen Gram (1850-1916) and German
mathematician Erhard Schmidt (1876-1959). They had developed it inde-
pendently. However, it must be fair to mention that French mathematician
Pierre-Simon Laplace (1749-1827) had presented this process much earlier
than either Gram or Schmidt albeit in a somewhat limited context. Thus, we
can always choose an orthonormal basis in the finite-dimensional 7'(M)
such that the components of the metric tensor become simply

Indeed, if we choose a reciprocal basis {#} in T*(M) in such way that the
relations 6'(V;) = 6}'- are satisfied, then the metric tensor will be represented
in the following form

G=60R0=0"00"+0°R0°+ - +0"®0"

We thus conclude that in a complete Riemannian manifold, there is always a
local basis in T'(M) such that the metric tensor is locally given by an iden-
tity matrix. Such a manifold is also called locally Euclidean as far as the
inner product properties are concerned.

If the metric is indefinite, we can still define a kind of inner product by
(5.9.9), but, this time, the so-called norm of a vector V' defined by

IVl = VIV, V) = [giovl = \/givie,

may be a real or an imaginary number because the term (V, V) = g; 0’0/
may be positive, negative or zero. If g;jv'v/ = 0, then V # 0 is called a null
vector. However, metric tensor is still symmetric and non-degenerate.
Hence, its real eigenvalues cannot be zero and it has m linearly independent
orthogonal eigenvectors Vi, V5,...,V,, so normalised that (V;,V;) =0 if
i# jand [(V;,V;)| =1, 0r (V;,V;) = £ 1. This means that we can write the
relation

(Vi, V) = gkwf@lj = X 6.

According to this definition a null vector will be orthogonal to itself. Hence,
the components of the metric tensor with respect to such a basis are pre-
scribed by
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G(Vi,V)) = guviv) = (V;, V) = £ 65

This amount to say that there is always a basis {V;} of T'(M) with respect
to which the metric tensor is designated by a diagonal matrix whose entries
are either + 1 or — 1. We then choose the reciprocal basis {6} in T (M)
to express the metric tensor in the form

gzel®91+‘”+9r®9r_9r+1®9r+1_“._em@em

by changing the ordering of basis vectors if necessary. The number s =
m — r is called the index of the metric tensor. We say that the sequence
-+ ---4+ —--- — that consists of r number of + and s number of — is the
signature of this tensor. The signature is even if s is an even number and is
odd if s is an odd number. A manifold endowed with such a metric is named
as a locally Minkowskian manifold after German mathematician Hermann
Minkowski (1864-1909) who had explored such manifolds within the con-
text of the theory of general relativity. If the metric tensor is positive defi-
nite, we evidently have s = 0 and » = m.

The metric tensor provide a means to calculate the arc length of a
curve on a manifold. We know that a curve on a manifold M is a differenti-
able mapping ~ : [a,b] — M and the point p(t) € M on the curve are de-
scribed by p(t) = v(t), a <t < b. If the tangent vector of the curve at a
point pis V' (p(t)), then the elementary arc length may be defined as

ds’ = [V (0)|*dt* = gio' ()0 (t) di* = g;; da'da?

and the arc length of the curve between the points p(a) and p(b) is conse-
quently given by

= /abnwwudt = /ab\/gi_wi(t)w(t) d.

If the Riemannian manifold is complete, then [ is always a positive number.

The metric tensor also helps convert covariant components of a tensor
to its contravariant components and vice versa. Let us consider the covariant
tensor

that can also be written in the form
T — giljl__ 'gikjktjl-“jkfil KRR f“t — ti]u.ikfil R ® fik

if we use the inverse relation (5.9.7) as dz’ = g% f;. Here we define
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{ieie = gt gikdig (5.9.11)

1

The coefficients ¢/ are obtained by performing k contractions on a
tensor T(M)?* formed as the product of a T(M)? tensor and k times of a
T(M)? tensor which is the inverse metric tensor. Hence, the quotient rule
[see p. 212] states that they are nothing but the contravariant components of
the same tensor 7. Thus the components of the inverse metric tensor prove
to be useful in raising the indices in the tensorial components. Similarly, we
can show that the components of the metric tensor can be instrumental in
lowering indices in the tensorial components. Indeed, if a tensor 7 is given
in the form
0 0

_ gk
T=t Oxh ® ® Ok

then inserting 9; = g;; €’ that follows from (5.9.4) into the above expression
we find that

T = iy gikjktjlmjk el K- ® el = til»..z‘keil Q& el
where the covariantly transforming coefficients
by = Givii Gigiu (5.9.12)

are called the covariant components of the tensor 7. It is seen that the
existence of the metric tensor effectively abolishes the distinction between
covariant and contravariant tensors and provides a natural transition be-
tween components of such kind of tensors. It is clear that this procedure is
applicable to any index of mixed components of a tensor.

Suppose that a tensor is defined as a contraction of a product of two
tensors. In terms of components we can write for example
Tkjl“'j/

LA — ik Jidqt gk ogj
tnl-nsz = gi;9 t i1--~ik7—k = (Sj t i

= tjil__.iijJ] I,
We thus reach to the conclusion that such a tensor does not change if we
arbitrarily lower one and raise the other of contracted indices.

If we can find a form Q € A™ (M) on an m-dimensional manifold M
such that Q) £ 0 at every point p € M, then we say that M is an orientable
manifold and ) is a volume form. In that case, it is clear that one is able to
write Q = f(x)dz! A -+ A dx™ where we must have f # 0 everywhere on
M. When M is a complete Riemannian manifold, we get g = det[g;;] > 0.

Under a coordinate transformation y' = y'(z7), we readily obtain in general
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ortorl ) _ delouts)

! — R

where J = det [0y /0z7] # 0. Let us now define g = |det [g;;]| > 0 so that
we can write ¢'(y) = g(x)/J? . We now introduce a volume form as
follows

p(x) = \/§da:1 A ANdx™. (5.9.13)

If the Riemannian manifold is not complete, then det [¢;;] may be positive or
negative although it cannot be zero because we have assumed that the met-
ric tensor is non-degenerate. In that case, we always have g = |det [g;;]| > 0
in (5.9.13). Such a g has obviously the same transformation rule as that of
given above. The form p € A" (M) will be called the Riemannian volume
form. Under a coordinate transformation 3 = y'(2), this form is trans-
formed in the following manner

w(y) = /g dy' A Ady™

\/§8y1 oy™ . )
= X . dll/\/\d tm
T[] 0zt Bain “T v
1 m
= %%6“"'””%-'-—3; det Ao Adz™
J 1 m
:\/Emdx A--- ANdx
= (sgnJ)\/gdz' A--- ANda"
= (sgnJ) p(x)

where sgnJ = J/|J| is +1 if J >0and —1 if J <0. Clearly, this
volume form remains invariant under coordinate transformations if J > 0.
The form (5.9.13) can also be written as

1 . 4
= —1\/g€i.i,dz" N ANdz™ (5.9.14)
m

1 A )
= — €j- iy, dr" A -+ ANdx'
m)!

where we defined the covariant Levi-Civita permutation tensor by the
relation

6il"'im = \/Eeil"'im' (5915)

On the other hand, the expression
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i1 Jm _ ]1 .77" ] im
el ‘7,u—m'\/>6 adr™ N Ndx
— f dm[]l .. /\ dl»]m]
— \/5 d$7l A A dxjm
yields
. . i]"'irn . .
dr" A - ANdzx'™ = uw=€evtmy
V9
where the contravariant Levi-Civita permutation tensor is defined by
. 3 11
girin = © (5.9.16)

V9
In order to identify the tensorial character of these quantities let us start with
the relations

Oz Ox>  Oxln
-1 _
Ciyig-- iy, (y)J = €jijy--- ( ay“ 8y22 e 8yi”
. . . . ay“ 8yLZ 8yln
2122 *lp — pJ1J2 I P
€ (y)J =€ ( )8:13.11 anJQ a(ﬁjn
from which we deduce the transformation rules of Levi-Civita symbols as
8x.jl axh axjn
Cirig---in (y) = ayil ay¢2 T 8y% €1 o (:E),
.. . 8y“ 8y7"2 8y7"" .. .
112" lp — -1 e J1J2 " Jn
€ W =7 5 5o opnt ().

This means that e; ;,...;, and e’ "= are actually tensor densities because the
transformation rule depends on the Jacobian of the coordinate transforma-

tion. Since we can write J =

sgn J|.J |, Levi-Civita tensors will satisfy

oz dx’2 Qi
€iyig-- i (y) =sgnJ Dy 8yi2 o Ay €jrjojn (z),
S 8y“ 6:1]22 8yi" S
112" lp — e J1J2:Jn
€ (y) =sgnJ D Bt D € ().

So Levi-Civita tensors €;,;,...;, and €1 are pseudotensors because the
transformation rule changes sign depending on the Jacobian of the coordi-
nate transformation. They behave like absolute tensors if J > 0. In order to
understand how they are related, let us consider the relation
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g g e, = g €, g gt = (g det [g] e

_ 9 iviyin _ det [g:.]) efizin
det [gqj]e (Sgn € [gl]])e

Similarly, we find that
Givir G, €0 = (sgndet[g]) €.,

Hence, they represent covariant and contravariant components of the same

tensor if det [g;;] > 0. We also easily observe that we get the absolute tensor
J1J7n = e“ ' ejl"‘jm - 6“ ! 6j1"'.jm'

We can now fulfil the task of the top down generation of ordered bases

for the exterior algebra A(M) just like we have done in Sec. 5.5 by using

the volume form defined by (5.9.14). Let us introduce similarly the ordered
forms

Pigig 1ty = (iaz'k © iaik,l -0 ic’);l)(ﬂ) (5.9.17)

= iaik (H’ik—l"'il)
1 ; ‘ ,)
= m Eil...Z‘kikﬂ...imdx%ﬂ A ANdx' e A" k(M)
where 1 < k < m. Following the path we have pursued in obtaining the re-
lation (5.5.12), we easily deduce from (5.9.17) that

dz™ A A dain = % €I I (5.9.18)
It is straightforward to see that all expressions appearing between (5.5.13)
and (5.5.18) remain without change if we replace i by (5.9.14) and Levi-
Civita symbols by Levi-Civita tensors. In like fashion, we can verify at once
that the forms p;,...;, defined in (5.9.17) constitute a basis of the module
A™k(M). Thus a form w € A™*(M) may be written again as

w= o wil”'ikmk.-.il-
But, the exterior derivative of this form is now rather different from what is
given in (5.8.5). This derivative is of course

1

w k_jd.’L' A iy + W "d,uik..,il).

On the other hand, an explicit calculation leads to
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d iy iy
1

" (m—k)! Cirevigir-in (1/9) AT N AT Ao A dat

(m— k) Jg e
= 1 (\/5)7 €; . . . 1 Ejl'~~jk,1ii1\.+1...imlu/j .
B g T
—_ 1 1 (\/a)’i6j1"'jk—1iik+1"'i7n " '
= (k — 1)' (m — k)‘ \/g A RRRR TRY X AT RRRY M oy SRRV i}
L (V9 g R

W=

= (k _ 1)| \/g i1 vip_rip k-1 1 \/g 6[ikiuikv71"'i2i1]~

Hence, according to (5.5.15) and due to the complete antisymmetry of func-
tions w'" " we obtain

dz' A dz™ A - A dxtn

dw — 1 (wz‘l--»ikj n (\/5)1 wil...ik)(si

i Foi—1---i1]

~ (k=) 7
L 1 Qyee iy i

_ m%(\/&w ) 6ty 1]
1 1 .

T (k- 1)!%(\/5

il' . ~ik_1i)

il _yeip = (k — 1)' w“mlkiﬂ;i Hig_y---iy

where we introduced the definition

o 1 it
S = (T, (5919
' 9

A semicolon in front of an index denotes the covariant derivative with
respect to a variable depicted by this index. We discuss the concept of co-
variant derivative in Chapter VII in detail. Here we just confine ourselves to
indicate that although the quantities w" """ ; are not generally components
of a tensor, the coefficients w'" *-1"; of the form dw are components of a
(k — 1)-contravariant tensor. We now suppose that a form
1 , A
W= Wiy i, (X) dzt A - A da € AF(M)

is given on an orientable Riemannian manifold. The Hodge dual or just
simply the dual of this form is defined by
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1 . .
= W(X) gy, € A™TR(M) (5.9.20)

where contravariant components are of course now prescribed by
W = gt gt TR (5.9.21)

The operator * : A¥(M) — A™*(M) is known as the Hodge star operator.
The form (5.9.20) is expressible in the natural basis as

1 1 N | |
CH (m —k)! €ireigipsy i@ AT A o Ada'™ (5.9.22)
'(m —Kk)!
1 | |
B W *Wik*’l'“imd‘r“*l /\ LAY /\ dm“n
m — |

where we have defined

1 e
*Wip i, = y éil,..ikjkﬂ...imw“ U, (5923)
Hodge star operator is evidently a linear operator on the graded exterior

algebra. On applying * operator successively, it follows from (5.9.22) that

= 1 1 i
*kw = m *W i iy
= M %(— 1)k(m_k)€ik+l'..imil.”ikwil"'ikuim”{kJA
= (—1)k(m—k)%wi1.'.ikd$i1 Ao A dzit — (—1)k(m_k)w.

In order to reach to this result, we have raised and lowered the indices
appropriately utilising the metric tensor. Consequently, if applied on k-
forms, the inverse of the operator * becomes

sl = (—1)Fmk)y = (q)km=1), (5.9.24)

because k% — k is always an even number. It easily verified that the dual of
the volume form (5.9.14) is

m

1o Lo
*IIJ, = —' 6711 Wuim"'il = _| el meil"'i = 1' (59'25)
m: m!

If we take k = m, then (5.9.24) yields ¥~ = * and we obtain
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Let us now consider the forms w, o € A¥(M) given by

1

W= Wiy dx™ A - A da't
1 , A
o = E O'il--»ikdx“ A Ada'.

In this situation, we have w A xo € A™(M). If we evaluate this form expli-
citly, we obtain
1

WA *xo = '

) Wiy i 0 IR A - A da A Moy

gli iy,

1k

k!
1 AR 1
k! > Wiy O-Jl jk&]l Gk = Ew‘

1 i
= 1 W@ L.

On the other hand, since the same expression may be directly transformed

into the form w A xo = o giy...i,w ", we arrive at the identity

wA*x0 =0 N *w. (5.9.27)

For a form w € A*(M), we similarly find

Wy

WA W = Wiy,

k!

Next, we take a form w € A*(M) into account and calculate the exterior
derivative of its dual. Recalling the definition (5.9.19), we obtain

d(ww) = d( T ) = = 1>!wil“”‘k*émm..il (5.9.28)

- 1 1 Q1 lp_1t ik im
B (k? — 1)' (m —k+ 1)!(")1 ' ?iEil'''ik’flik'-'imdaj Ao Ndxt

It is clear that d(xw) € A" *T1(M). An operator 6 : A¥(M) — A*~1(M)
will now be defined as follows

Sw — (_1)m(k+1)+1*d<*w) — (_1)k**1d(*w) (5.9.29)

where we adopted the convention §f = 0 for f € A°(M). Since § is the
composition of linear operators, it is a linear operator on R. According to
(5.9.29) we can write 6 = + *d * . If m is even or if m and & are odd, the
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sign is —, if m is odd and k is even, the sign is +. (5.9.29) is then
expressed as

(—1)mk+D)+1 1 o ,
6“.““{71“1.Hzmwil-”ik,li'l /'LZ “
(m—Fk+ 1! L(k—1)! B

bw =

where we naturally define
J Y S Ji1Jk-1t
wll"'lk—l’l? - glljl glk—l]k—lw e
Since we can write

1
(m—k+1)!

(_1)(k—1)(m—k+1)
(m—Fk+1)!
— (_1)(k’71)(m7k+1)dl,i1 A-er A dl‘ik’]

Ut U1 Tk—1

61 k—1tk m

Iu’im" 'ik =

on using (5.9.18), we finally reach to the result

(="

m Wil...ikili;i dl’il A A dxik*l (5930)

ow =

after having omitted even numbers in the exponent (k — 1)(m — k+ 1) +
m(k+ 1)+ 1 of —1 in the above expression. Thus we can regard ¢ as a
sort of divergence operator. Hence, the form (—1)¥éw € A¥=1(M) will be
called the divergence of the form w € AF(M). We shall call § as the co-
differential operator. Various properties of this operator can easily be
identified:

(). We have 6 o bw = 6°w = £+ ldsx ldxw = £+ 'd*w =0 for
all w € A(M) so that we obtain §* = 0.

(ii). If w € A* (M), we have *(6w) = (—1)F d(xw).

Indeed (5.9.30) and (5.9.17) yield

(- 1)*
(k—1)!

_ (=1)*
T k—Dl(m—k+ 1)

i1 te-1t .
w ;szH- G

*(0w) =

i1 p—_1% i i
w ! i 67;1...7;,\1717;,\,.‘.7;7"6[.%' A Adx'™.

We then obtain the desired result in view of (5.9.28). We can also arrive at
this result directly from the definition of the operator 6. Let us consider a
form w € A*"'(M). We find that

wbw = (— 1)) s dww = (= 1) RN gy = (1) dxw.

Since the number 1 < k < m is arbitrary, when we apply this operator to
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the form w € A*(M), we get 6 = (—1)" dx.
(iii). Ifw € A¥(M), we have §(xw) = (—1)F+1xd(w).
In fact, discarding even numbers in the exponent of —1 we find
6(*&)) ( l)m(m k+1) H*d**w _ (_1)7mk+1+k(m71)*d(w)
= (=1)""d(w) = (=D xd(w).
Hence, we get 6% = (—1)"*!xd when applied to the form w € A*(M).

(1v). The relations x6d = dé* and *dd = 6dx are valid:
Let us take w € A¥(M). By direct calculations, we find

#6d(w) = (—1)"F 2D+ didw = (— 1) dxdw,
dé(+w) = (—=1)"m D+ gy g = (— 1) dsdw.

We thus conclude that *6d(w) = dé*(w) for all w € A(M). Similarly, we
obtain

%dd(w) = (—1)"F+ Dy dxdsww,
Sdx(w) = (= 1)+ dadiw = (—1)"FHD Ty dsdsw

where w € A¥(M). This implies that *dd(w) = dd*(w) for all w € A(M)
since it is valid for all degrees.

(v). The relations 6xd = dx6 = 0 are valid.

Ifw e A¥(M), we get

Sxd(w) = (—1)™FHDH s dusdw = (— 1) xd?(w) = 0,
dxb(w) = (—1)™FHDH duesedsw = (— 1)1 @2 (sw) = 0
so that xd(w) = dx6(w) = 0 forallw € A(M).
For a form w € A'(M) we obtain #(6w) = — ', and bw € A°(M)
is given by §w = — w';. Let us define the form w = w;dz’ € A'(M) asso-

ciated with a vector field V = v' §; € T(M) by taking w; = g;;v’. Then, we
naturally find w’ = g”w; = v’ so that we are able to write

v =divV = —éw
We now define an operator A : A*(M) — A¥(M) that is linear on R
by the following relation
A = 6d + déb. (5.9.31)

A is called the Laplace-de Rham operator after Laplace and Swiss mathe-
matician Georges de Rham (1903-1990). If we take a function f € A°(M)
into account, application of this operator yields
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Af =6df +d6f = 6df = V2 f (5.9.32)

where V? = 6d : A°(M) — A°(M) is called the Laplace-Beltrami opera-
for [Italian mathematician Eugenio Beltrami (1835-1900)]. Since we write
df = fidx', according to (5.9.30) and (5.9.19) we get

Vi = — (£ = - \}g(ﬁg”f,j),i- (5.9.33)

In Cartesian coordinates, this expression takes the form

m an
Vif= — .
/ Zaxﬂ

i=1

We have to note that this operator is differing only in sign from the familiar
one encountered in partial differential equations. The Laplace-Beltrami ope-
rator A possesses the following properties that can easily be verified:

(i). One has A = (d + 6)*.

A= (d+6)o(d+8)=d*+db+bd+ 6 =dé+éd.
(ii). One has dA = Ad = déd.
dA = déd +d*6 =déd, Ad=6d*+ déd = déd.
(i1). One has 6 A = Ad = 6db.
A = 6%d + 6d6 = 6do, A = 6d6 + db* = 6d6.
(iv). One has *A = Ax.

* A = %(0d + db) = *6d + xdd = db* + 6d* = (d6 + 6d)x*
= Ax.

A form w € A¥(M) satisfying the equation Aw = 0 will be called a
harmonic form. The set

HY (M) = {w e A"(M) : Aw =0} = N'(4Q)

is a subspace of A¥(M) on R.
Example 5.9.1. Let us take M = R? and we introduce the spherical
coordinates (r, 0, ¢) connected to Cartesian coordinates by the relations

x=rsinfcos¢p, y=rsinfsing, z=rcosh, 0 <0 <7,0< ¢ <27

Since the arc element is determined by
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ds® = dr? + r2d6? + r?sin’6 d¢?,
the components of the metric tensor and its inverse are given by
grr =1, goo =17, gpp = r’sin’0;
g =1, ¢" =1/r ¢°° = 1/r’sin’6.
Thus the volume form becomes
p=r’sinfdr A df A de
whence we produce the basis for A%(R?)
= ig (1) = r’sin@d A dp, g =ig,(n) = — r’sinfdr Adg,
fg = g, () = r’sin@dr A db
We can now represent a form w € A'(R?) by
w=w,dr+wydd +wy de

where coefficients are functions of variables r, 8, ¢. The Hodge dual of the
form w will be given by

*w = Wty + W g + Wy

where the coefficients are calculated as follows

1 1

T 0 10)
W =Wp, W = S Wp, W = 505, Wy
" r2 r2sin2f ~*

Therefore, we get

we

dr A df — wpsin@dr A dé + w,rsin 0 d A dé.

*W = —
sin @

We readily see that we obtain

Asw = (2 + l 2 4 ; 2
WA = (W r2 “o r2sin260 Wo ) H-
Let us now evaluate the exterior derivatives of the forms w and *w. We find
dw = <w97r—u)r79)d7’ A df + (wa‘),r—wrw)dr A d¢ + (u)¢,9—w97¢)d9 A\ d(b

) ) w
dww = [(w; r’sin6) . + (wpsin) g + (ﬁ)(b] dr ANdO A do

( N 2 n 1 n cosf n 1 )
= (w —w —w ——w —w .
T T T2 M0 a6 T 12sin29 H
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Since xu = 1, m = 3, k = 1, the co-differential of w becomes

ow, 2 1 Owy cos 6 1 8w¢>

b —sins = (2 4 2, L0 o !
“ e 8r+rw +r2 89+T251n9w9+r2sm29 fole

Let us now consider the function f € A°(R?). Its differential is the 1-form
df = f}r dr + fﬂ dé + f_¢ do.

Hence, if we write w, = f,, wg = fg, wy = f 4 the above relation leads to

O*f 20f 10*f cos® Of 1 0*f

2, _ . (9) =20 L1LOJ ar gy
Vif=odf = (87"2 + r or + r2 062  r2sinf 00  r’sin%6 (9(;52)
that is the known result apart from a sign difference. [ |
5.10. CLOSED IDEALS

Let Z be an ideal of the exterior algebra A(M). Z is called a closed
ideal if dw € T for all forms w € Z. This situation is symbolically express-
ed as dZ C Z. Sometimes, a closed ideal is also named as a differential
ideal. Let us consider the ideal Z (w1, ...,w,) generated by forms wy, ...,
w, € A(M). If the ideal Z is not a closed one, then we can construct an
extended ideal I (wn,...,w,,dws,...,dw,), which is called the closure of
Z, that will be closed. Indeed, if w € Z, then there are appropriate forms v*
and I'*, o = 1,...,r such that we can write w = Y* Awy + I'* A dw,. We
then obtain

dw = dy* Awy + (dD” + (—1)"97"4*) A dw, € T.

Naturally, if the exterior derivatives of some generating forms are already
inside the ideal, we have to discard these exterior derivatives as generators
in determining the closure. More generally, let us denote the set of forms dw
corresponding to all forms w € Z by dZ. We immediately observe that the
set Z = Z UdZ is a closed ideal in A(M).

Next, we discuss the necessary and sufficient conditions for an ideal
generated by finitely many forms to be closed.

Theorem 5.10.1. Let Z(wy, ... ,w,) be an ideal of the exterior algebra
A(M). The ideal T is closed if and only if appropriate forms T'> € A(M),
a,B=1,...,r can be so found that the relations dw, =T A wg are
satisfied.

It is clear that the conditions degw, + 1 = deg'? + degwj or
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degfg =degw, —degwg+1>0

should be satisfied if the forms I'? exist. Hence, only the generating forms
whose degrees are less than or equal to degw, + 1 can take place in the
sum. Let us first assume that the ideal Z is closed. Then we must get
dw, € T when w, € Z. This means that there exists forms I'? so that the
relations dw, = ') A ws are satisfied. For sufficiency, let us assume the
existence of the relations dw, = Fg Awg. If w € Z, then we can find forms

(e}

~* so that one is able to write w = y“ A w,. In this case, the exterior
derivative of w is evaluated as

dw = dy* Awy + (=197 % A dw,
= (77 + (=1)""y* AT]) Awg

implying that dw € Z. However, the forms I'Y should be restricted because
they have to satisfy the following compatibility conditions:

d’w, = dI‘g Aws + (—1)degrgf‘g A dwg
( Y A £
= (I + (=1)*9"er) ATY) Awg =0.

Evidently, in the above sums only forms complying the degree conformity
can take place. O

Example 5.10.1. Let us consider the ideal Z(w;,ws) of A(R*) generat-
ed by the forms wy = dz — ydz, we =tdx ANdz — xdy A dt. We write

dwy, = —dy Ndz =T} A (dx —ydz) + T3 (tde Adz — xdy A dt)
where '} € AY(R?),T? € A°(R?). If we choose
Il =mdz+ydy+ys3dz +yidt
then we find

dy Ndz = (yy1 +3 —tI?) dx Adz + yodx Ady + vy dx A dt
+yyady Adz + 2T2dy Adt — yyudz A dt.

Comparing both sides, we see that the following equations must hold
it =y=y=alf=ynu=0,yp=1

from which we obtain '} = v4 =0, 73 = — yv;. But, to satisfy the rela-
tions v = 0 and yv» = 1 simultaneously is not possible. Hence, the form
I'l does not exist implying that dw; does not belong to Z. On the other
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hand, we have
1 1
dws = dt A da Adz — dz A dy A dt = (—daz—f— Zdt) A ws.
x

Thus dws is inside the ideal. In this case the closure of the ideal Z should be
designated by Z (w1, ws,dy A dz). [

When we are dealing with ideals whose generators are 1-forms, the
condition of being closed is reduced to a much simpler form.

Theorem 5.10.2. Let an ideal of the exterior algebra A(M ) generated
by linearly independent 1-forms W', ... ,w" be Z(w',...,w"). If T <m —1,
then the ideal T is closed if and only if the conditions dw* N} =0, =
1,...,r are satisfied where we defined Q} = W' A --- A w" # 0.

If 7 is closed, that is, if there exist forms I'j € AY(M™) so that we can
write dw® = T'g A WP, then it is evident that the relations dw® A = 0 are
automatically satisfied. Conversely, let us suppose that we get dw® A Q2 =0

for 1 < o < r. Next, we add m — 7 linearly independent 1-forms w™*!, ...,

W™ to the forms w',...,w" to make a basis {w'} = {w*, w'},a =7+1,
co.,myi=1, ...,m of A}(M). In this situation, a basis for the module
A?(M) becomes w' A w’,i < jand so long as A%, = — %, we can write

dwa:)\%wi/\wj:)\%‘ywﬂ/\w”y—l—)\gﬂw“/\wﬂ—i—)\f;awﬁ/\w“—i—)\f:bwa/\wb
= /\g,ywﬁ/\wV—l—Q)\gﬂw“/\wﬂ—i—/\f{bwa/\wb.

whence we deduce that

dw® AQ =A% W A" AQ, X — Apa-

ab =

When r < m — 2, the foregoing expression is a (r 4+ 2)-form which is the
sum of simple (r 4 2)-forms. Since the forms w® and w” are linearly inde-
pendent none of the forms w® A w” A Q vanishes if a # b. Thus the condi-
tion dw® A © = 0 can only be realised when A, = 0. In this case, we obtain

dw® = ()\% W+ 2075w A o= 3 A Jer

Hence, the ideal 7 is closed. O
When r > m — 1 the forms dw® A €2 are identically zero because their
degrees is higher than m. Therefore, they cannot provide a criterion to
identify a closed ideal. However, the theorem below fills this gap.
Theorem 5.10.3. An ideal of the exterior algebra A(M™) is closed if it
is generated either by r = m or r = m — 1 linearly independent 1-forms.
When r = m, the linearly independent 1-forms w!,...,w™ generating
an ideal Z constitute a basis of A'(M). Consequently, we can write



5.10 Closed Ideals 289

dw® :)\%w"y/\wﬁ :I’g/\wﬂ S

where I'; =A%, w?. Hence, the ideal 7 is closed. When r = m — 1, we can

choose a 1-form o that is independent of those m — 1 forms. Thus wl,
w™ 1 o become a basis of A'(M). If we consider an ideal Z generated by
these forms, we get

dw® :/\%uﬂ/\wﬂ—i—)\go/\wﬁ = ()\f:ﬁw“’—i—)\g‘o)/\wﬂ: g/\wﬁ el

Hence, the ideal again becomes closed. O
The following theorem is concerned with the closure Z(w!, ..., w",
dw!,...,dw") of anideal Z(w', ..., w").

Theorem 5.10.4. The exterior derivative dw of a form w € A*(M)
remains inside the closure T of the ideal T if and only if we can find forms
a € A¥(M) and 8 € C**1 (M) in the ideal T such that d(w + o) = 3.

If a, B8 € Z, then we can write a = v, A w*, 3 = Ay A w” for approp-
riate forms 7, and A\, where o = 1,2, ..., r. Thus, we readily obtain for a
k-form w satisfying the relation d(w + «) = 3, the following expression

do= —do+0=(—dya+ ) Aw® + (=1)90e)y A dw® € T.

The above equality requires that d3 = 0, thus we must have 3 € C*1(M).
Conversely, let us assume that dw € Z. Consequently, we can write

dw = Ao AW + g A dw®

where \, € AF+H1=des @) (M), 1, € AF=29) (M), Because of the relation
d*w = 0, the forms )\, and ,, ought to meet the condition

dha Aw® + (dpg + (—1)%9QDN ) A dw® =0
We now define the forms ¢, as follows
(=1 gy = dpo + (=1)"P)N,, deg (¢a) = deg (Aa)-

If we insert the form A\, = ¢, + (—1)9°9M2)=1d, into above expressions
and note that deg (u1,) = deg (A\,) — 1 by definition, we obtain

dw = G0 Aw® + (=1)*90D=1q0 A W + g A dw®
= $o Aw® + (—1)" )1 d (1, A W),
0 =dpo Aw® + (=1)*9@) g A dw® = d(pa Aw?).

It will suffice now to introduce the forms a = (—1)99\) ;A w® € T and
B = ¢a ANw* € T toreach to the result d(w + ) = S and d3 = 0. O



290 V' Exterior Differential Forms

5.11. LIE DERIVATIVES OF EXTERIOR FORMS

Let us consider a congruence on a manifold M brought out by a vector
field V' and the flow ¢, : M — M induced by this congruence. As is well
known, this mapping carries a point p € M to a point p(t) = ¢:(p) € M.
On recalling the relation (2.9.11), we represent this mapping by p(t) =
#:(p) = €' (p). We can also write

n

) ) ) ) 2 ) ¢ )
7'(t) = eV (2) = 2" + tV (') + EVQ(mi) +. gV"(glg?') 4.

in terms of local coordinates. We employed here only the symbol V' for the
vector field believing that it will no longer cause any ambiguity.

We suppose that a form field w € A¥(M) is given. Let us transport the
form w(p(t)) at a point p(¢) to a point p by pulling it back by the mapping
¢;. We thus obtain

W (pit) = wo ¢i(p) = (djw)(p) = (") w.

As we have done before, we will now define the Lie derivative of a form
field w at a point p by the following limiting process:

tVN*, tV\* _
£Vw:%ina(6 )tw uJ:hm(e )"~

we A (M) (5.11.1)

where iy : A(M) — A(M) is the identity operator on the exterior algebra.
This definition reveals immediately certain important properties of the Lie
derivative.

(). We can write

(eV)'w=w+thyw + o(t).
(7). When f € A°(M), we have [see (2.10.18)]
tvf=0fi=V(f)=iv(df).
In fact, for small values of the parameter ¢ we obtain

F(P0) = f(0) _ . fxt v +o(t) = f()
t t—0 t

£ =l -~
(4i1). We have
fy(w+o) =£yw+ £yo.

This is observed at once by noting he relation
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(™) (w+o)= (") w+ (V)0
(iv). The Leibniz rule
fy(wAho)=(Evw) Ao +wA (£yo)

is in effect.
Recalling the relation (e!V)*(w A o) = (e'V)*'w A (eV)*o, we arrive at
the desired result

£ (w A o) = lim EVYwA(eV)o—wAho

t—0 t
— lim (wHtbyw+o(t)) A (o +thvo +o(t) —wA o
_t~>0 t

. tEywA NE t
:%m& (Eve a—i—wt VU)+O(>Z£vW/\O’+W/\£vU.

This expression can easily be generalised to an arbitrary number of forms so
that one is able to write

Ey(wi Awa Ao Awp) =Epwi Awa AL Aw,y
Fwi ALywa Ao Awr +wi Awas AL AEyw,.

This relation offers essentially an approach to calculate the Lie derivative of
any form once we determine the Lie derivatives of only 0- and 1-forms. We
have already found the Lie derivative of 0-forms. We now try to evaluate
the Lie derivative of a 1-form. Let us take

. 9
=w;dz' € AN(M), V =v—
w=w;dx' € N'(M), Vo

e T(M).
Since we can write. Z' = z' + tv’ + o(t), then the Taylor series about the
point x yields

(") 'w=wi(a! +t/ + o(t)) (da’ + tv'y, da* + o(t))

o'

et 4 o(t))

ow; ,

i g i
9z " * O(t)> (d:v + tax’f

ow; o'

. i (Wi g k
wi(x) dx +t(8xﬂ'v dx +wZ8x"’ dz ) + o(t).

= (Wi(x) +t

On changing properly the names of dummy indices, we finally get

ow; o’
£Vw:<—w§vj+ v

D] wj%) dz' = (w; v’ + wjv’ji) de'. (5.11.2)
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The coefficients (£yw); = w; v/ + wjv’, € A°(M) totally specifies the 1-
form £yw. As a special example, let us consider the form df = f, dz’
where f € A°(M). Then, with w; = f; (5.11.2) leads to

Evdf = (fi0) + fv) da’ = (f ) da’ = (V(f)) , da’ = dV(f).
If we now select f = x*, we reach to quite a significant conclusion
£y dz" = dV (2¥) = do* = da. (5.11.3)

Next, we take a form w € A*(M) into account denoted by

1 ) |
w= ywil"-ik(x) dx™ A - A dxt.

On utilising the above properties, we can now calculate the Lie derivative of
this form as follows:

1 ‘ . , .
fvw = —[(Eywi,...;,) Az A+ Ada™ 4wy (Ev dz™) Ao A da't

k!
+ -+ wil.i.ikd‘fil VANRERIAN (£V dl’”‘)]
= y [Wil--ik,ivt dx"" A --- Ndx™ + Wilir--ikvj; dxt ANdx™ A - A dxt
+ -+ Wil»..ik,likvff dz™ A - Adzr A dxi]
1

— [y . o Ly R oA L ik
= [w“...“”zv + Wiy i, U5, + +w“...“,717,vyik]dx AN Adx'™.

Hence, the Lie derivative of a form w € A*(M) is expressible as

1 ) A ,

fyw= E(;va)ilh'”ik dz'' A dx® A -+ Adzt € A¥(M)
where the completely antisymmetric coefficients (£yw);,i,...;, € A°(M) are
determined by

(£Vw)i1i2“'7?k = Wiyiy- - +iy,,iV + wllz'“lkv,il + wml:;“'?/kv,iz + =+ wiﬂa“'lkqiv,ik

Wi | o 11.4
=v—p it ;Wil<~'i¢,liirﬂ<~'ik% (5.11.4)

It is clear that the complete antisymmetry in the coefficients wj,...;, renders
the coefficients in (5.11.4) completely antisymmetric. It is now clear that the
Lie derivative £y : A(M) — A(M) is a degree preserving mapping.

The expression (5.11.2) for Lie derivatives of 1-forms can be trans-
formed into the following identical shape
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fyw = [(wij — wi)v’ + (Vw)),;)]da’, we AN (M).
On the other hand, since one has dw = w; jdz’ A dz' we obtain
iy (dw) = w; 0/ dr' — w; ' do? = (v — w)v da’,
diy (w) = (Vw;); dx'.
We thus arrive at the expression
fyw = iy (dw) + diy (w), w € A'(M)

known as the Cartan magic formula. We shall now prove that this formula
is valid for any form in the exterior algebra.

Theorem 5.11.1. For any form w € A(M) and vector field V € T (M),
the Lie derivative of this form is calculated by £yw = iy (dw) + diy (w).

1 , _
Let us consider a form w = — w;,..; (X)dz" A --- A dx' € A¥(M)

k!
; 0 . o o
and a vector field V' = v'(x) e The exterior derivative of w is given by
x
1 i i ik
dw = Ewhz” dr* ANdz" A - Ndzx
1 i i i
= (k i 1)' (k‘ + 1)&)[1‘1.4.1‘,‘472‘] dr' Ndz" N - Ndz'™.

Therefore, we obtain
1

iy (dw) =

On the other hand, we can write
iv(w) = ﬁ wiiz...ikvi Az A - A da™,
diy (w) = %k(wi[iz...ikvi)m dz" A dz A - A da'
Hence, we find that
iy (dw) + diy (w) = %Qim“ikdx“/\ dz A - A dz'

where the smooth functions 2 € A(M) are defined by

g ik

Qiiyeoiy = (B + 1) Wiy iy 10" + K Wi iV + k wigiy 0,00
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In order to evaluate explicitly the coefficients €2;,;,...;,, we resort to the rela-
tions (5.8.3) and (5.8.4) to get

k
Qo= ot — Wi ot
2102k 210yt 210 b =101 sty
r=1
k
+ Wity i,y UV Wity iy _yi1dp g1 ki U
r=2

k
4+ Wi 'l)i- _ Wis L . UZ,
dig-- i, Y gy g+ - lp 1810410k Vi,
r=2

Moreover, since one has (— 1) 27! = (= 1)>"=3 = —1, we can write
Wiy ip_yiyipyr-eip — — Wigig iy 1iip g ige

We thus find

k k
Wit =S i =N
227Uy 2027 =101 Uyl - 21 b1 W1 Uy
r=2 r=1

and see, consequently, that the second line above cancels the second term in
the first line. If we arrange as well the last line in the similar way, we finally
conclude that

k

gy = Wirevid® + Y Dirigeiy ity rovi U,

=1
= (Evw)ijiy.i-

Thus for any form w € A(M), the Cartan magic formula

fyw = iy (dw) + diy (w) (5.11.5)
becomes valid. In operator form, we can express this relation as follows

£y =iy od+doiy: AF(M) — A¥(M), 0 <k <m. O

We now consider a form w € A¥(M) and vector fields U,V € T(M)
and let us calculate the form £ (iv (w)) € A" 1(M). Since we have
1

W= Wiy iy T A - A d,
1

iv(W) = (k‘ _ 1)'

oo A2 A L ik
Wiy, XN - Adx
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we obtain from (5.11.4) that

1

£y (iv(w)) = k=) {

L adat Y
Wiy i i VU Wiy, VU
k
L ol AL ik
+ g Wiy ity 0 W [ AT A Nda'™.
r=2

By adding and subtracting the terms wmzkvlujl to the coefficients within

brackets above and changing dummy indices appropriately we cast this ex-
pression into the equivalent form given below

£ (iv(w)) = 1) Wiiy-iy (W0 = V') dg® A - A da

+ G o i i

+ iji2~--17-71n,+1--~ikuf7:,.] vl dx® A - A dx™
r=2
1 J ot i 1 i

= m Wiy - i W dx N -+ ANdx"™ + (k‘ _ 1)‘ Wiy« g, i W

k

+ Zwim..‘,;,,711'7;7,+1‘..ikufi7} VAT A - A da
r=1

where

w = (uluﬂ — Ulu’J?) = [U, V]j = (£Uv)j

are components of the Lie derivative of the vector field V' with respect to
the vector field U whereas the expression within brackets are nothing but
the coefficients of the Lie derivative of the form w with respect to the vector
field U. Consequently, the above expression is now transformed into

1
(k—1)!
1

+ m (£Uw)“2£k’l)l dxiz/\ N dl’ik‘,

£U (lv (w)) == Wiy i, (£U V)l dl‘iZ VARERWAN dl‘ik

Thus for any form w € A(M), we obtain
£ (iV (w)) = i£UV (w) + iy (;EU (w)) . (5.11.6)

Hence, we realised that we have managed to establish the following
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connection between the operators of Lie derivative and interior product
i£UV = i[va] = £U 9] iV - iV o) £U = [£U7 iv]. (5117)

Since the interior product with zero vector vanishes, if [U,V] =0o0r U =
V', namely, if vectors are commutative, then (5.11.7) yields

£U OiV = iV O£U or £V OiV = iV O£v. (5118)

This means that the operators £y and iy or £y and iy commute if vector
fields U and V' are commutative.
Let us apply (5.11.5) to the form dw. Since d? = 0, we get

£y dw = iv(dQW) + div(dw) = div(dw) = d(fv w — div(w)) =dfy w.
This equality is valid for every form. We thus conclude that
fyod=dofy. (5.11.9)

Hence, the operators £y and d commute.

Let us take f € A°(M) and V € T(M). If we pay attention to the rela-
tions (5.4.7), we deduce that the Lie derivative of a form w with respect to
the vector fV is found to be

£rvw = ipy(dw) + digy (w) = fiv(dw) + d(fiy(w)) (5.11.10)
= flv(dw) + df A iv (w) + fdlv (w)
= ffyw+df A iv((.U).
We immediately see due to (5.4.7) and (5.11.5) that
friovw=£fpwt+ELyw or £yoyv =£y + £y. (5.11.11)

But, if only f = ¢ = constant, then we get £.yw = c£yw. In this case, it is

clear that the addition and scalar multiplication of Lie operators are again

Lie operators. Therefore, Lie operators form a linear vector space over R.
Next, we would like to discuss the action of the operator £ 1), where

U,VeT(M),onaformw e A(M). In view of (5.11.6), we can write

i£UV (dw) = £U (iv (dw)) - iV (£U (dw)) s
i£uv(w) = £U (lv (w)) — iV (£U (w)) .

Let us then introduce these expressions into the Cartan formula
Lo yw = £gvw = g,y (dw) + dig, v (w).

If we note that the operators £ and d commute, we reach to the following
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relation

£[U7v]w = £y (iv(dw)) —1iy (£U(dw)) + dfy (iv (w)) — diy (£U (w))
=£y (IV (dw)) — iy (d£U (w)) + £yd (IV (w)) — diy (£U (w))
= £U (iv (dw) + d (iv (w)) — [iv (d£U (w) + div (£U (w))]
= £U£Vw — £V£Uw
= <£U£V — £V£U)w.

Since this relation will be satisfied for all w € A(M), we get the operator
identity given below [see (2.10.17)]

£y = £vkv — EvEy = [Er, £v]. (5.11.12)

We now assume that an involutive distribution D C T'(M ) is prescrib-
ed by linearly independent vector fields V, € T(M),a =1,...,7r < m sa-
tisfying the conditions

[Va, V3] = Cgﬂv:/

Let us now associate a Lie operator £y, to each vector V,,. Then, it follows
from (5.11.12) and (5.11.10) that

[Ev,. £v)]w = £, vw = £ v w = copfrw +deys Ay, (w)

for any w € A(M) so that we obtain
[£Vn7£‘49] = C;ﬁfv,' —i—dcgﬂ/\iu/. (5.11.13)

Hence, if only the coefficients cg 4 are constants, then we are able to write
[£v,,£v,] = ¢ 5 £v,. Only in this situation, the operators £y,,a =1,...,r
constitute as well a Lie algebra of operators on the exterior algebra and ¢ 3
becomes structure constants of that algebra. We know that this Lie algebra
generates a r-parameter Lie group [see p. 191].

We now consider a flow ¢!V : M — M on a manifold M generated by
a vector field V' and the pull-back w*(t) = (¢'V)*w of a form w € A(M).
The derivative of the form w*(¢) with respect to the parameter ¢ can be
evaluated as

* * o E+T)V %, (V%
dw*(t)  lim® (t+71)—w(t) :hm(e V'w— (e'")w
dt —0 T 7—0 T

m (eﬂ/ o etV)*w _ (etv)*w

7—0 T




298 V' Exterior Differential Forms

= lim
7—0 T
TV \* I
= lim () (etv)*w
T7—0 T
— £yw (1)

We have seen earlier that the formal solution of this ordinary differential
equation under the initial condition w*(p; 0) = w(p) is given by

W (pit) = ™ w(p) (5.11.14)
t2 ¢

=w+thyw + §£‘2/w+---+ —Epw -

! n!

The above relation implies that we can write w* = (e!V')*w = e®w for all
forms w € A(M). Therefore, we formally arrive at the result (efV)* = ef*v.
If w*(p;t) = w(p) for all ¢, we say that the form w remains invariant under
the flow generated by the vector field V. Evidently, (5.11.14) implies that
£yw = 0 is the necessary and sufficient condition for w to be invariant.

Let us now suppose that a submodule £ of A(M) has the following
property: w* = (e!V')*w € L for every form w € £ under the flow e!” gene-
rated by a vector field V. We then say that £ is stable or invariant sub-
module under the Lie transport with respect to the vector field V. It is quite
clear that £ is stable if and only if one has £yw € L for every form w € L.
We symbolically depict this property as £,£ C L. In fact, let us first as-
sume that £,w € L for all w € L. We then obtain £y (£yw) = £}w € £ and
similarly £§;w € £ for all n € N. Since £ is a submodule, (5.11.14) implies
that w* € L. Conversely, let us suppose that w* € £ or all w € L. Since
w" —w € L and t is an arbitrary parameter, we deduce from (5.11.14) that
the conditions £yw € L, £2we L, ..., £2w € L, ... must be satisfied
for all w € L. These conditions are automatically satisfied when £yw € L.
We see that if a submodule L of A(M) is stable under a vector field V, then
it is not possible for a form w € L to escape from that submodule through
the action of the Lie derivative.

Theorem 5.11.2. The subalgebra C(M) of closed forms and the sub-
algebra E(M) of exact forms of the exterior algebra A(M ) are stable under
every vector field V € T(M).

If w e C(M), then dw = 0. Hence, for all vector fields we get dfyw =
£fydw =0 and £yw € C(M). In like fashion, if w € E(M), then there is a
form o € A(M) such that w = do. We thus obtain

£Vw = £Vd0' = d£v0‘
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implying that £yw € E(M). O
Example 5.11.1. We want to calculate the Lie derivative of the volume
form p € A™(M™) given by (5.9.14). Since du = 0, we get

Lvp = iv(dp) + div(p) = div ().

On recalling (5.5.9) and the exterior derivatives of top down generated
bases given on p. 279, it follows from iy (u) = v'; that

o i "

Evp =0 da! A pi 4 v'dp; =0’ 6

(V9),i ;
@ )M:U;iﬂ-

Thus the volume form p is invariant under divergenceless, or solenoidal,
vector fields satisfying the condition v!; = 0.

As another example, let us calculate the Lie derivatives of the basis
forms y; € A™~1(M). Since we can write

= (vlZ + 0’

(vV9)i
\/§ Hj

£y = d( i) + Vg, (dps) = Vpda® A i + vdpg; + o

on taking notice of relations

da® A g = 85 i — 67,
iy = (v/9). W9 (J9).
i

we finally get the result

(Va)i
\/5 Hj

pi = Uy = Vi — Uiy = (V) 8 — ).

j WD, /D)

Lvpi = v — vfﬁiuj + 0/ \/5 i — U \/5

Wlﬂ‘)
NG

pj+ v’
= <v7] + o

Thus the forms p; are invariant under vector fields satisfying the relation
Jo_

v = vk &!. On contracting this expression, we obtain
vh, =mol, and mv’, =% 6. [

We are now ready to evaluate the Lie derivative of any tensor if we
take notice of the relations (2.10.5); and (5.11.3) and recall that Lie
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derivative of tensor products verify the Leibniz rule as emphasised in
(4.3.5). Let a tensor field 7 € T(M)fC be designated by

0
7lazl® ®az

The Lie derivative of this tensor with respect to a vector field V' can then be
expressed as

T = tZ Rdz" ® - @ dal.

£VT = (£thl1]];) 8.’1}7:1 axil” S ® ® dl‘]]
k
, 0 0
iy
+;tf“'”a T @@Ly ) i
!
iy O 0 , . ,
+;tj_,max“ R @ @ Ly (dat) @ - @ dal,
We thus obtain
T =it i g @@ da 5.11.15)
VE =iV gpn xin z (S.11.
_Zt“...ir...ikvi 8 ® . a L 8
i Ar §pin oxt O
t”“ o ®i®dﬁ® ®dr) Q- @ da?
£ T i1 ik a d Ji d Ji
(V )]1 ],a i X - ®a i R dr’' Q- Qdx

where the components of the tensor £,7 are given by

(EyT )l =0 o —Zt“ Dol (5.11.16)

Jiedi

J
- Zt Sggeeq Ve

Let M and N be smooth manifolds and ¢ : M — N be a smooth
mapping. Let us consider a form w € A(N) and a vector field V € T'(M).

Let us calculate the Lie derivative of the form w with respect to the vector
field V* = ¢,V € T(N):

£¢*Vw = i@v(dw) + di@v(w) S A(N)
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We then pull the above form back to A(M). On making use of (5.7.6) and
Theorem 5.8.2, we can write

Lo vw = ¢'ipv(dw) + ¢ diy v (w) =iy (d(¢*w)) + div (¢*w).
Therefore, for all forms w € A(N) we are led to
6 v (W) = £ (¢'w) € A(M) (5.11.17)
and, consequently, to the relation

P okyy =@ oky =£y 0" (5.11.18)

5.12. ISOVECTOR FIELDS OF IDEALS

Let 7 be an ideal of the exterior algebra A(M). If this ideal is stable
under the flow generated by a vector field V € T (M), namely, if £yw €7
for every w €7 so that £, 7 CZ, in other words, if the ideal Z becomes
invariant under the flow generated by V, then this vector field is called an
isovector field of the ideal 7.

Theorem 5.12.1. Let Z(w®) be the ideal generated by the forms
w* e A(M),a=1,...,r. A vector field V € T(M) is an isovector field of
T if and only if £yw™ €T for every generator w® of the ideal.

If V is an isovector, then one has £y w €7 for every form w € 7 so the
generators w” must also fulfil the condition £,w® €Z. This means that there
exist appropriate forms A§ € A(M) such that £yw® = A§ A w®. Conversely,

let us assume that £yw® €7 so that the relations £yw® = Xg Aw? are
satisfied. Because of the restriction deg (\}) = deg (w*) — deg (w”) > 0,
the forms whose degrees higher than that of w® cannot take place in the

above sum. If w € Z, then we can find forms =y, € A(M) so that we are able
to write w = v, A w®. Therefore, we obtain

£Vw = (£V7@) Aw® + Ya A £Vwa = (£V7{I + B N )‘g) Aw®

implying that £yw € 7. a

If the ideal T is generated by forms of the same degree, then the vector
field V is an isovector field of that ideal if we can find smooth functions
Aj € A°(M) that enable us to write £yw® = AG W,

Theorem 5.12.2. Isovectors of an ideal I of the exterior algebra
A(M) constitute a Lie algebra that is a subalgebra of the module U(M).

It is easy to show that isovectors form a subspace of the linear vector
space U(M) over the field of real numbers R. Let V; and V2 be two
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isovectors. We thus have 0; = £y,w € 7 and 0y = £y,w €7 for every form
w€Z. On the other hand, (5.11.11) allows us to write £y, pw =
£viw+ £y,w = 01 + 02 €Z. Hence, V| + V5 is an isovector as well. Simi-
larly, Let V' be an isovector so that one finds 0 = £yw €7 for all w € 7.
For all functions f € A°(M), the expression (5.11.10) yields

Lrvw=fEyw+df Niy(w) = fo+df Niy(w).

Hence, if only d f = 0, that is, f = constant, then one gets £;y w = fo €1.
Accordingly, isovectors form a vector space only over R. If U and V' are
isovectors, then (5.11.12) leads to £y yjw = £yfyw — £y£pw €7 for all
w €Z which means that the Lie product [U, V] is also an isovector. Thus,

isovectors constitute a Lie algebra over R. (|
The, say, r-dimensional Lie algebra formed by isovectors is, of course,
determined by linearly independent vectors V,,,a« = 1,...,7 < m and there

exist structure constants ¢, so that the conditions [Va, V5] = ¢, ,V, hold.
Then, on recalling Sec. 3.8, we reach to the conclusion that isovectors gene-
rate an r-parameter Lie transformation group on the manifold M and the
ideal 7 remains invariant under this mapping. In other words, a flow
generated by an isovector transforms a form in the ideal to another form
also in the ideal.

Theorem 5.12.3. If the vector field V € T(M) is an isovector field of
an ideal T(w®) of the exterior algebra A(M), then it is also an isovector
field of its closure T (w®, dw®).

If Vis an isovector field of the ideal Z, then there are appropriate
forms A\§ € A(M) such that one is able to write £yw” = A5 A w?. Employ-

ing this relation, we get
Lydw” = dEyw® = d\§ AW’ + (= D NDNG A do’.

We consider a form o €7 that can be written as o = v, A w® + 'y A dw®.
Hence, we obtain
£yo = E£yya AW + 90 AEyw® + £y T Adw® + Ty A £y dw®
= (Evya F75 AN +T5 AdAI) AW
4 (£yTo + (= D@L AN A dw® €T

This expression means that V' is also an isovector of the closure Z of the
ideal Z. O

Evidently, this theorem does not imply that isovectors of the ideals 7
and Z are the same. Some isovectors of the closed ideal Z may not belong to
the set of isovectors of the ideal Z. This situation will be remedied to some
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extent by the following theorem.

Theorem 5.12.4. If an ideal T(w®) is generated by forms of the same
degree, then isovectors of the ideals T and T are coincident.

We have demonstrated in Theorem 5.12.3 that isovectors of Z are also
isovectors of Z. In order prove the present theorem, we have to show that
the converse statement is also true. If V' is an isovector of Z, then there are
suitable forms A§ and A§ so that we can write

frw® = Aj AW’ + AG A do”
whence we deduce that
Lydw® = dfyw® = d\§ AW’ + (= D* DG + dA) A dw’.

However, if all forms w® possess the same degree, say k, then the degree of
all forms dw® is k+1 implying that we have to take Aj =0 and

Ag € A°(M). In this case, the above relations reduce to
£rw® = Mo, £rdo® = dA§ AW + A do’

from which we conclude that an isovector V' of the ideal Z is also an isovec-
tor of the ideal Z. O

The following theorem provides a somewhat simplified approach to
evaluate isovectors of an ideal.

Theorem 5.12.5. Let Z(w®) be an ideal of A(M) generated by forms
w* a=1,...,r whose degrees satisfy the condition degw® < k. We then
consider forms c%,a = 1, ..., s such that deg c® > k. A vector field V is an
isovector of the ideal T(w®, c®) if and only if

(1) it is an isovector of the ideal T (w®),
(77) £y o € T(w™,0").

Let us first assume that the vector field V' is an isovector of the ideal
Z(w®) so that one has £yw® = A4 A w’. We further assume that £y =
AA W + A A0l If w € T(w®,0%), then w = v, Aw® + 7, A 0@ and its
Lie derivative with respect to V' is found to be

Evw=£yYa AW + Yo ANEyw® + Eyva Ao® + v, ALy
= (Ev7a + 75 AL+ 9 AN Aw”
+ (Evya + 1 AN A0 € T(w®,0%).
Hence V' is an isovector of the ideal Z(w®, o). Conversely, let us suppose

that V' is an isovector of the ideal Z(w®, 0*) implying that £yw € Z(w®, c®)
for all w € Z(w*, o). Hence, the above relation requires that the condition
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Yo N Evw® + 7, A £y € T(w®, 0®) must hold. This last expression should
be valid of course for all forms w in the ideal Z(w®, ), and consequently,
for all forms 7y, v, € A(M) implying that we must have £yw® € Z(w®, 0")
and £y0% € T(w®, 0"). We thus conclude that there must be suitable forms
A%, Aas A, Ap so that we can write

£Vwa:>\g/\wﬂ+)\3/\a”', £Va“:/\ZAw“+)\§/\ab.

But, due to the restrictions degw® < k and dego® > k, we get Ay = 0 and
we find that £,,w* = )\g A w?. Thus V must also be an isovector of the ideal
Z(w®). O

Based on the Theorem (5.12.5), we may propose quite an effective
method to determine isovector fields of an ideal generated by forms of diffe-
rent degrees. Let us arrange the generators of the ideal according to
increasing degrees and collate all forms of the same degree into a set so that
let us write Z(w®, 0% ~v4,...). The degrees of the forms in each set {w"},
{0}, {7},... are the same and they are ordered as follows: degw® <
dego® < degy? < ---. In this case, in order to determine the isovector
fields, we have to ensure that the conditions

Ly € T(w®), £yo® € T(w",0%), £vy? € T(w, 0% 7)), ...

are satisfied. Since we deal with a lesser number of forms in each set with
uniform degrees, calculations turn out to be relatively simpler. Besides, if
degrees in two sets differ just 1, and if some generators in one set happen to
be exterior derivatives of some forms in the other set, then we can disregard
these generators in view of Theorem 5.12.4.

Example 5.12.1. Let us determine the isovector fields of the ideal
T(w') of the exterior algebra A(R?) generated by w! = zdy + ydz. We
denote a vector field by V = v"0, + vY0, + v*°0,. We have to show that
there exists a function A € A°(R?) such that £yw! = Aw!. Let us write
dw' = dz ANdy + dy A dz, iy(dw') = —vWdz + (v° — v*)dy + v/dz and
iy (W) = 2vY + yv* = F(z,y, z). We thus obtain

frow' = (Fy —v)dz + (Fy +v" —v*)dy + (F, +v¥)dz = Ae dy + Ay dz

yielding F, —v¥ =0, F, +v" —v* = Az and F, +v¥ = Ay. Solution of
these equations gives A = (F, + F)/y and the isovector field specified by
an arbitrary function F' becomes

0 0 1 0

1
Vi = —(F +2F, — yF))— + Fy— + ~(F — 2F,)—.
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If the isovector fields produced by functions F' and G are denoted by Vi
and Vg, then their Lie product must be given by [Vr, Viz] = V. It is rather
straightforward to verify that the function H (z, y, z) is obtainable as

H = F,G,~G,F, + ;(FGI—GFQE +FG.-GF,) + g(FZGI—GZFI).
It is plainly seen that isovectors of the ideal Z(w') constitute an infinite
dimensional Lie algebra. n

We have the following theorem if some of the isovectors of an ideal of
A(M) are also characteristic vectors of the same ideal.

Theorem 5.12.6. If some of the isovectors of an ideal T are at the
same time characteristic vectors of this ideal, then they form a Lie sub-
algebra of the Lie algebra of isovectors.

If U and V are isovectors of an ideal Z, then we have £yw, £yw € T
for all w € Z. If these vectors are also characteristic vectors of Z, they must
satisfy iy (w), iy (w) € Z. On making use of (5.11.7), we get

i[U,V] (w) =£y (iv(w)) — iy (£U (w)) eT.

That means that the Lie product [U, V'] which is known to be an isovector is
also a characteristic vector of the ideal. Therefore, such a subset of isovec-
tors that are also the characteristic vectors of Z, is closed under the Lie
product, that is, it is a Lie subalgebra. (|

We can reach to a more interesting result in closed ideals.

Theorem 5.12.7. If an ideal T of A(M) is closed, then the subspace
formed by its isovectors contains the characteristic subspace S(T).

Let us assume that the ideal Z is generated by forms w!,u?,...,
w" € A(M) of various degrees. Since Z is closed, then there are suitable
forms A§ € A(M),a, 3 =1, ...,r such that dw” = Aj§ A w”. On the other
hand, if V' € S(Z), then there exist appropriate forms x5 € A(M) such that

iv(w) = B A w?. Hence, according to (5.4.1), we find that
iv(dwa> = iv()\g) N + (_ 1)deg()\§))\g A iv(wﬂ)
=l () + (- 9NN A Ao € T

But the exterior derivative of the form iy (w®) gives

a

diy (W) = dug A’ + (- 1)d69<“3)u3 A du’
= [dpg + (= D™D AN AW €T

from which we deduce that
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Lyw® = iv(dwa) + div(wa) el

Then Theorem 5.12.1 states that the characteristic vector V' is also an iso-
vector of the closed ideal Z, that is, the characteristic subspace of the ideal
7 belongs to the subspace generated by isovectors of this closed ideal. [

When we combine this theorem with Theorem 5.12.6 we arrive imme-
diately at the following result: characteristic vectors of a closed ideal cons-
titute a Lie algebra. However, we have to stress the fact that the converse of
Theorem 5.12.7 is in general not true, i.e., all isovectors of a closed ideal are
not necessarily characteristic vectors of this ideal.

5.13. EXTERIOR SYSTEMS AND THEIR SOLUTIONS

We have seen in p. 258 how we can engender a nontrivial, » > k di-
mensional solution of an exterior equation w = 0 where w € A¥(M). We
shall now explore the notion of exterior equations in a more general context.

Let us consider a set {w®,« = 1,..., N} of forms that might be of dif-
ferent degrees. We specify an r-dimensional submanifold .S by the mapping
¢:S — M. If we get p*w* =0,a=1,...,N, namely, if the mapping
¢* : A(M) — A(S) annihilates the forms {w®} then the mapping ¢, in
other words, the submanifold S is said to be a solution of the system of
exterior equations {w* =0, =1,...,N}. A submanifold whose dimen-
sion is less than the lowest degree of the forms w® is of course a trivial
solution of the exterior system. Let us now take the ideal Z(w®) into consi-
deration. The mapping ¢ will be the solution of every form w € Z(w®) as
well. In fact, if we write w = A, A w®, we find from (5.7.4) that ¢*w =
@ Ao N ¢*w™ = 0. Conversely, we can easily demonstrate that the forms
annihilated on a submanifold S prescribed by a mapping ¢ : S — M, or
amounting to the same thing, all forms which annihilates the subbundle
T(S) CT(M) constitute an ideal of the exterior algebra A(M). Let us
consider the pull-back mapping ¢* : A(M) — A(S) induced by the map-
ping ¢. All forms annihilated on the submanifold S satisfy the relation ¢*w

= 0. We denote the set of all forms w such that ¢*w =0by Z C A(M). If
w1, ws € T are two forms with the same degree, then we have ¢*(w; + ws)
= ¢"(w1) + ¢*(we) = 0 implying that wy + we € Z. Similarly, if w € Z
and v € A(M) is an arbitrary form, then ¢*(y Aw) = ¢* () A ¢p*(w) =0
which means that Y A w € Z. Hence, Z is an ideal of the exterior algebra.

If all forms of the exterior algebra A (M) that are annihilated by every
solution of exterior equations {w® = 0} belong to the ideal Z(w") generated
by forms w®, then 7 is called a complete ideal.

Theorem 5.13.1. An ideal of the exterior algebra A(M) generated by
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linearly independent 1-forms is complete.

Let us assume that the ideal is generated by linearly independent forms
w* € AY (M), a =1, ...,N <m. As we have mentioned above, the solu-
tions of the exterior equations {w® = 0} annihilate every form within the
ideal. We now suppose that solutions of the system {w® = 0} annihilate a
form w € A(M) as well. By adding suitable linearly independent 1-forms,
we can determine a basis of 7% (M) as follows: w', ..., w™, N1 .. W™,
The form w can now be constructed as a combination of exterior products of
these forms. However, we have assumed that w = 0 whenever w! = --- =
wY = 0. Therefore, at least one of the factors w', ..., w" must be present in

each term. Hence, we conclude that w is expressible as
W=MAW +F X AP+ F Ay ALY € T(W?) O

Let us next consider two exterior systems {w®,a=1,...,N;} and
{o%, a=1,..., Ny}, and the ideals 7; = Z(w") and Z, = Z(0*) generated
by them. If these ideals are equal, namely, if they satisfy the relations
Ty C 1, and 7, C 7, we say that these two exterior systems are algeb-
raically equivalent. In this situation, there are appropriate forms \$ and A%
so that we can write w® = Aj A 0% and 0 = A% A w®.

Example 5.13.1. Let us consider a system of exterior equations of the
exterior algebra A(R*) specified by the forms w!' = dz! Adx3, W*=
dz' A dzt, WP = da! A da® — da® A dzt. A 2-dimensional submanifold of
R* is determined by the mapping z' = ¢'(u!,u?),1 <i < 4. We now
impose the condition that this mapping must satisfy

P*w' = ¢L¢%dut Ndu® =0, ¢*W = ¢l¢Y dut Adu’ =0,
o'W = (¢L,0% — ¢%,0%) du® Adu’ =0, o, B =1,2.

We immediately discover a solution by just inspection as ¢! = constant and
¢* = constant. We then consider the form w = dz' A d2?. We find that
¢*w = ¢!, ¢% du® A du” = 0. But, we realise at once that this form does

not belong to the ideal Z(w', w?, w?®). Hence, this ideal is not complete. W

Certain significant properties of ideals of the exterior algebra can be
discussed by means of Lie derivatives. An effective tool implementing this
approach is provided by the following Cartan theorem.

Theorem 5.13.2 (The Cartan Theorem). Let Z be an ideal of the
exterior algebra A(M) and let S(Z) C T(M) be the characteristic sub-
space of constant dimension of this ideal. If T is a closed ideal, then the
subspace S(ZI) is an involutive distribution of T'(M).

We know that the characteristic subspace of the ideal Z is defined by
S(Z)={VeT(M):iy(Z) CZ}. Since we have assumed that S has the
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same dimension, say, r at every point of the manifold M, the characteristic
subspace is spanned by r linearly independent vector fields V,, € T(M), «
=1,...,r. It follows from (5.11.7) that

i[U,V] (w) = £U (iV (w)) — iV (£U (w))
= iU [d (iv (w))] + d[iU (iv (w))} — iv (iU(dw)) — iV [d(iU (w))]

forallw e A(M)and U,V € T(M). Thus we obtain

i[Vde] (w) =
iy, [d (iv, (w))]+ d[iv, (iv,())] — v, (i, (dw)) — iy, [d (iv, ()]

forall we 7 and V,,, Vg € S. Since V,, and V3 are characteristic vectors of
the closed ideal, we can write iy (Z) CZ,a =1,...,r and dZ C Z. This
implies that each term in the right hand side of the above expression is in
the ideal. Hence, we get ify, v,(w) € Z for all w € Z. This amounts to say
that [V, V] € S. In other words, the characteristic subspace is closed under
the Lie product. Thus § is an involutive distribution. Therefore, the charac-
teristic vector fields of a closed ideal engender a smooth r-dimensional sub-

manifold of M. O
Let us now consider the exterior system D, = {w®} comprised of r
linearly independent 1-forms. The exterior equations w® =0, =1,...,r

constitute a Pfaff system [German mathematician Johann Friedrich Pfaff
(1765-1825)]. According to Theorem 5.13.1, the ideal Z(D,) generated by
these forms is complete. The exterior system D, is completely integrable if
it is annihilated on every one of the (m — r)-dimensional submanifolds pre-
scribed by equations of the form

g '(x)=c" a=1,...,r

with r parameter. ¢ are arbitrary real constants. Since Z(D,) is a complete
ideal, all forms annihilated by those submanifolds, which are called charac-
teristic manifolds, must belong to this ideal.

Theorem 5.13.3. An exterior system D, is completely integrable if and
only if it is possible to find a regular r X r matrix function A(Xx) and r
independent functions g*(x) such that the following relations are valid:

w* = A5dg°, o, B=1,...,r, A(x) = [A5(x)]. (5.13.1)

If the forms {w"} are given by the relations (5.13.1), when ¢’ = ¢? =
constant we find dg” = 0 and consequently w® = 0. Thus the exterior sys-
tem D, is completely integrable. Conversely, let us assume that the exterior
system D), is completely integrable. Hence, there are r independent
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functions ¢*(x) and the ideal Z(D,) is annihilated by hypersurfaces g (x)
= c“. Next, we form the ideal Z(dg®) by the forms dg* € A'(M). Since
dg® = 0 on these hypersurfaces, this ideal is also annihilated by them.
Because of the fact that both ideals are complete, we arrive at the result
Z(D,) = Z(dg"). This implies that there are functions A} € A°(M) such
that w® = Aj dg®. The forms w® and dg® are linearly independent. There-

fore, we ought to have w! A --- Aw” # 0 and dg* A --- A dg” # 0. Thus, the
relation

wl/\-'-/\wr:det(Ag)dgl/\~-‘/\dgT750

requires that det (A%) # 0. O
If we calculate the exterior derivative of the expression (5.13.1), we get

dw” = dAG Ndg” = (A1) dAG A € T(D,),

Hence, if the exterior system D, is completely integrable, then the ideal
Z(D,) must be closed. That the converse proposition is also true is provided
by the following theorem referred to Frobenius.

Theorem 5.13.4 (The Frobenius Theorem). An exterior system D, is
completely integrable if and only if the ideal I(D,) generated by r linearly
independent 1-forms {w*} is closed, that is, if dZ(D,) C Z(D,) or if there
exist r* forms T4 € A'(M) such that the relations dw® = I W are
satisfied or if we verify that dw® AW A -~ Aw" =0fora=1,...,r.

We have already seen that the ideal Z(D,) will be closed if the exterior
system D, is completely integrable. Let us assume, this time, that the ideal
Z(D,) is closed. We know that the dimension of the characteristic subspace
S(D,) of this ideal is m — r [see Theorem 5.6.2]. Let the linearly indepen-
dent vectors U,,a =+ 1, ..., m be a basis of that subspace. According to
the Cartan theorem 5.13.2, S(D,) is an involutive distribution, i.e., there are
functions ¢, € A°(M) such that [U,, Up] = ¢, U,. In this situation, we can
choose, as we have done in Theorem 2.11.1, a new basis set as vectors V,
a=r+1,...,mof §(D,) such that [V,,V}] = 0. We shall now show that
this property guaranties the existence of independent functions ¢“(x), a =
1,...,r satisfying the relations V,(¢g%) = iy, (dg®) = 0. To this end, we
look for the solutions of the system of differential equations V,(f) = 0. On
repeating our approach in Sec. 2.11, we start with V,.;(f) = 0. It is known
that the independent solutions of the first order partial differential equation

i of _

UT+1(X)% =
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can be determined through the method of characteristics as follows

hl(x) =C!, h2(x) =C?, ... ,hm*l(x) =t

where C, ..., C™ ! are constants. We then find
Oh® dx’ ~ oh®
= - = ¢ —_— = r hu
Oxl dt vT—i—l(X) a$l +1( )
where a = 1,...,m — 1. We thus write
of m of
Vi (f) = U%H(X)@ +-t Ur+1(x)87n =0
oh! o
Via(h') = Uiﬂ(x)ﬁ +oet vr+1(x)ax—m =0
- 8hm71 " 8hm71
Ve (A1) = Uiﬂ(x)w +ot Ur+1(x)8$7m =0

Since V,,1 # 0, it is only possible to find a nontrivial solution to this homo-
geneous system of equations if the Jacobian, or the functional determinant,

of the functions f,h',..., A™! vanishes
O(f, b, i)
O(xl,x?, ... a™m)

It is known that the general solution of the foregoing equation is
f=f' A% ... A, (5.13.2)

In the second step, let us apply the operator V., 5 on the function (5.13.2) to
obtain

-0 . Of Oh®

0= Visalf) = vhp ol =iy 27

r+2 a{L'i Ury2 Ohe 89&

9f
ohe”

— V. 1o(h%) (5.13.3)

On the other hand, because of the relation V. 1V,..o = V,.oV,11, we find
Vit (Vesa(h®)) = Viga (Viga (b)) = Viga(0) = 0

which means that the functions V,2(h*) become solutions of the equation
V41(u) = 0. We can thus write as in (5.13.2)

‘/7“+2(ha) = Hu(h’l’ h27 ) hmil)

and the equation (5.13.3) takes the form
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of _

HE () oh®

0, a,b=1,...,m—1.

Hence, the number of independent variables reduces to m — 1 from m. By
repeating the same procedure as above we obtain f = f(k!, k?,... k™ ?)
where k* = k*(h',h?,...,h™ 1), s =1,..., m — 2. On applying the ope-
rators V1, ..., Vy,, respectively, on the function f, we see that f is de-
pendent on m—(m—7) = r independent functions g% € A°(M),a = 1,
..., r as follows:

f=1rfg4d% ..., 0). (5.13.4)

The functions g* are clearly determined by successively solving a sequence
of ordinary differential equations with ever decreasing number of dependent
variables. We can then write

v af 9g"
“dg™ Ox'

of

V;l(f): aga

= Vu(g9")

=0,a=r+1,...,m.

This relation would of course be valid for all functions in the form (5.13.4).
If we choose f = ¢”, we find

Vg8l =V(¢®)=0,a=r+1,....m,B=1,...,r
implying that
Va(g®) = iv,(dg”) = 0. (5.13.5)

Since the functions g are independent, the forms dg® € A'(M) must be
linearly independent so that one gets 2 = dg' A --- A dg” # 0. According to
Theorem 5.6.1 the relations (5.13.5) express the fact that the vectors {V,}
are also characteristic vectors of the ideal Z(dg®). We can now readily
prove that Z(D,) = Z(w*) C Z(dg*). Let us assume that one of the genera-
tors of the ideal Z(w®), say w”, does not belong to the ideal Z(dg®). On
referring to the statement on p. 249, we are thus compelled to assume that
iy, (w”) # 0. However, V, is a characteristic vector of the ideal Z(w®) as
well and the condition iy, (w*) = 0 must be satisfied. In order to remove this
contradiction, we have to take w® € Z(dg“). Hence, all generators of Z (w®)
must belong to Z(dg®). This means that Z(w®) C Z(dg®). Therefore, there
exists a regular matrix [A% (x)] such that the relations w” = A% dg” are to
be satisfied. Thus, the exterior system is completely integrable. |

We have to pay attention to the fact that the functions ¢“ and the
matrix [Ag] cannot be determined uniquely. Provided that the functions
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h® = h%(g', g% ..., g") are so chosen that the condition det (Oh®/dg”) # 0
is satisfied, the forms dh® become linearly independent and we find that

o . Oh” ohe
b (ah) =i (5 7d9°) = 5 5

iv, (dg”) = 0.
Hence, we can write w* = Bj dhP. But, it is easily verified that the relation

Af = Bj g0
must be satisfied.

The generalisation of the Frobenius theorem to ideals generated by
forms of diverse degrees is given below.

Theorem 5.13.5. Let Z be a closed ideal of the exterior algebra A(M)
generated by forms of various degrees. If the dimension of the characteristic
subspace S(I) of T is m —r, then there exist v functionally independent
functions g°(x) € A°(M),a = 1,...,7 and the ideal T is contained in the
closed ideal generated by forms dg® € A*(M),a=1,...,7.

Since 7 is closed, its characteristic subspace is an involutive distribu-
tion in view of Theorem 5.13.2. Hence, the characteristic basis vectors V,

=v'0;,a=7r+1,...,m can be so chosen that [V,,V;] = 0. Thereby,
following the path leading to Theorem 5.13.4 we can determine independent
functions g*(x), = 1,...,r satisfying the relations V,(¢%) = iy, (dg®) =
0. Let J(dg®) denote the completely integrable closed ideal generated by
forms dg® € A'(M). Then Theorem 5.6.4 implies that Z C 7 (dg®). Since
the ideal J(dg®) is generated by 1-forms, it is the largest ideal admitting
S(Z) as its characteristic subspace. In this case, if w € Z then there are
suitable forms 7, € A(M) so that one is able to write w = v, A dg®. Con-
sequently, if we introduce (m — r)-dimensional characteristic submanifolds

prescribed by the relations ¢%(x) = ¢® = constant,oc = 1,...,r obtained
through integration of the following sets of ordinary differential equations
doet  dz? dz™ dx' ;
—1:—2: :—m or :va;azr—i—l,...,m
vk v2 v dt

which determine the integral curves of characteristic vector fields, then it is
quite clear that those manifolds are also a solution of the ideal Z. ([

It is now obvious that a solution of a closed ideal Z provided by
Theorem 5.13.5 corresponds to a solution determined by maximal number
of independent functions g*. Hence, this approach cannot usually reveal all
solutions of the ideal Z. It might be quite possible that there exist submani-
folds annihilating the ideal Z whose dimensions are larger than m — r so



5.13 Exterior Systems and Their Solutions 313

that they can be determined by means of a smaller amount of functions, but
not solving the ideal J. However, it is impossible to offer a systematic
approach based on the above procedure to access such kinds of solutions
corresponding, most probably, to much more realistic situations. Unfortu-
nately, we can frequently produce only rather trivial solutions by applying
Theorem 5.13.5.

Example 5.13.2. We build an ideal of the exterior algebra A(R*) by
forms w! = dz! + 22d2?® + dzt € AL(R?Y), W? = 22d2® Ada® € A2(RY).
Since dw! = dz? A do® = w? /2? and dw? = 0, the ideal Z(w', w?) is closed
and its characteristic vectors must satisfy the relations

iy(W) =0+ 220 + o' =0
iy (w?) = 2% (V¥dz?® — v¥da?) = N(dx! + 22 da® + dzt)

from which we obtain
A=v"=0, v* =0, v'= — '

and V = v!(d; — 9,). Thus the basis vector of 1-dimensional characteristic
subspace can be chosen as V, = 0; — 04. Therefore, the solution of the dif-
ferential equation
of of
Vilf) = oxt ozt 0

yields f = f(x! + 2, 2%, 23) and we have g' = 2! + 2%, ¢* = 22, ¢ = 2.
Hence, 1-dimensional solution submanifolds are determined by z! + z* =
c', 22 = c?, 23 = 3. We immediately observe that if we define the forms
dgt = dz' + dz*, dg® = dz?, dg® = dx® we can write w! = dg' + 2?dg?,
w? = 22dg? A dg® meaning that Z(w',w?) C J(dg',dg? dg®). However,
we can easily check that Z # 7. For instance, forms like g(x) dg® does not
belong to Z(w', w?).

Let us now search for a larger, say 2-dimensional solution submanifold
of the same ideal. We designate the mapping ¢ : R> — R* by functions z
= fi(x,y),i = 1,..., 4. The exterior equations

Lot Lo af o' af3 LA
$wl = ( R )dx+( + £ 8y>dy—0
L Drap o op -
W?—f?(%a—y‘a—y%)d“dy—o

can only be satisfied if we choose the functions f’ as solutions of the first
order partial differential equations
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oft  woft ot or .05t ort
or T or Tar =% ey T ey Yy =0

L(Of20fF  Of0f
f (Eﬂ??ﬂf_‘?if?%?)

For a simple example, we choose to take f> = 0. Then the solution is easily
found to be

flr=Ffly), =0, fP=g(z,y), f*=c— f(z,y)

where f and g are arbitrary functions and c is an arbitrary constant. |

We know that if the ideal Z(w®) is not closed, then a closed ideal con-
taining Z is its closure Z (w®, dw®).

Theorem 5.13.6. Let an ideal of the exterior algebra A(M) be T and
its closure be T =7 UdZ. If a mapping ¢ : S — M is a solution of the
ideal T, then it is likewise a solution of its closure T.

When w € Z, we have w,dw € Z. If ¢*w = 0, then we get ¢*(dw) =
d(¢*w) = 0 according to Theorem 5.8.2. Thus the ideal Z is also annihilat-
ed under this mapping. In other words, characteristic manifolds of an ideal
7 and characteristic manifolds of its closure are the same. |

Theorem 5.13.5 and 5.13.6 help us to specify some solutions of a sys-
tem of exterior equations generating an ideal that is not closed by means of
characteristic manifolds. Let us suppose that the dimension of the charac-
teristic subspace S(Z) of the closure Z of the ideal Z is m — r. Then we can
find in the usual way functions g®(x) € A°(M),a = 1,...,r enabling us to
write Z C Z C J(dg®). Hence the equations g*(x) = ¢ produce (m — r)-
dimensional characteristic manifolds annihilating the ideal Z. But, since
dZ ¢ I, we are required to enlarge the ideal in order to close it, and con-
sequently, to reduce the dimension of the characteristic subspace. Thus, we
are compelled to keep the completely integrable system, in which the ideal
7 is embedded, larger than it was necessary.

Even if an ideal Z is not closed, it can be placed into a completely in-
tegrable system if its characteristic subspace is 1-dimensional because of the
fact that such a subspace constitutes trivially a Lie algebra.

Example 5.13.3. We construct an ideal of the exterior algebra A(R*)
by the forms w' = dz! — 2?dx3, W? = z*da! Ada® — xld2® A dxt. We
then have

del  dzt

dw' = —da® Ada?, dw? = (—1 + —4> A WP,
x x

We obviously get dw? € Z(w',w?). However, we can easily verify that we
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find dw' ¢ Z(w',w?). Hence, the closure of Z is Z(w', w?, dw'). Thus, the
characteristic subspace of 7 is prescribed by the equations

vt — 2?0 =0
zi(vtdr?® — vidat) — 2t (VPdxt — vlda®) = Ndxt — 22 dx?)
— (V¥dx® — v¥da®) = p(dz' — 2?dx®)

whose solution yields A = =0 and v' =v* =v® =v* =0. We thus
obtain V' = 0 so that the characteristic subspace is the zero space. The ideal
generated by functions ¢' = 2 is just 7 (dz’) = A(R*). Hence, we can only
get trivial information about the solution. On the other hand, the characteris-
tic subspace of 7 is prescribed by the equations

ol — 2% =0,
t(vtda® — v¥dat) — 2 (Vdat — vtde?) = Ndat — 2® da?)
whose solution is A = — z%*® and o' = 220, v®» =v* = 0. Thus the
characteristic subspace is 1-dimensional and is spanned by the vector V; =
2201 + 3. The solution of the partial differential equation V4(f) = 0 is
readily obtained as f = f(g', g% ¢°) where we define ¢' = z! — 2223,
g* = 22, ¢ = z*. In this case, we can write Z(w',w?) C J(dg',dg?, dg®).
Indeed, the relations
w' =dg' + 2*dg?,

3114

4

W= — x_2 dz! Adg' — x_2 dz' ANdg® — z'dg® A dg?
x x

can easily be verified. |

If we have managed to determine a resolvent mapping for an ideal,

new resolvent mappings may be created via an isovector field of that ideal.

Theorem 5.13.7. Let T be an ideal of the exterior algebra A(M) and
¢ S — M be a resolvent mapping for that ideal. If the vector field V' is an
isovector field of the ideal, then the flow generated by V transforms ¢ into a
1-parameter family of resolvent mappings.

If $: S — M is a resolvent mapping, then we have w|g = ¢*w =0
for all w € Z. If we further assume that V' is an isovector, this implies that
fyw € T for all w € Z. We denote the flow ¢y (t) : M — M generated by
the isovector field V by vy (t)(p) = €'V (p) and define the 1-parameter fa-
mily of mappings ¢y (t) : S — M as follows

¢V(t) = ’Lﬁv(t) o¢p = €tV o .
On utilising (5.11.14), we obtain
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(bv(t)*w _ (etV O¢)*w _ [¢* o (etV)*]w: ¢* ° (etV)*w
— ¢*w* — ¢*(6t£vw)

for all w € Z. However, due to the relation e’*Vw € T we find ¢y (t)*w = 0.
Therefore, each member of the 1-parameter family of mappings ¢y () is
also a solution of the ideal Z. |

Example 5.13.4. We have already determined the isovector fields of
the ideal Z(x dy + y dz) of the exterior algebra A(R?) in Example 5.12.1.
For a tangible example, let us choose F' = zz. In this case the components
of the isovector field become

vxzw, W=z v°=N0.
Y

The flow created by this vector field is found as the solution of the ordinary
differential equations

dz _z(x+%) dy dz

dt 7 n

under the initial conditions Z(0) = z,7(0) = y,Z(0) = 2. Hence, the map-
ping vy (t) is determined by

x(y + 2t)

z(t) = pp—

, glt) =zt +y, 2(t) ==

We shall now look for a 1-dimensional solution of the exterior equation
w=xzdy+ydz=0 in the form z = ¢*(u),y = ¢*(u), 2 = ¢*(u). Then
¢*w = 0 ends up in the equation

d¢2 d¢3

¢1 ¢2
In this situation, the family of resolvent mappings ¢y (t) = ¥y (t) o ¢ is de-
signated by

L) gt @00+ 16°()
ob(uit) = 6! w) S T

oy (ust) = ¢*(u) +t¢°(u), oY (ust) = ¢*(u).

The mapping described by x = ¢i(u; ), y = ¢¥ (ust), 2 = ¢3(u;t) is also
a solution of the exterior equation w = 0 for each ¢. In fact, if we insert
these relation into that equation, we obtain
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d d 24 t0d o de® L dg?
¢V+¢2 qbv—iiiil (o1 L ¢>:o.

As a simple example, let us take ¢! = — 2ciu?, ¢% = cou, @3 = cu® where
c1 and ¢, are constants. The new family of solutions is then found to be

by

2¢1(cy + crtu)u?
co + 2citu

gi)‘l, = — , ng%/ = (c2 + c1tu)u, gzﬁ%/ = cyu’. [ |

5.14. FORMS DEFINED ON A LIE GROUP

Let (G be a finite m-dimensional Lie group. We denote the exterior
algebra on this smooth manifold by A(G). We consider the left and right
translations L, and R, on G defined by (3.3.1) and (3.3.2), respectively.
These diffeomorphisms give rise to the mappings L; : A(G) — A(G) and
R} : A(G) — A(G).1fa form w € AF(G) satisfies the relation

Lyw(gxh) =w(h) or Liw=w (5.14.1)

for all g, h € G, it is called a left-invariant form. Because of the equality
L' = Ly, we infer that (L;')* = L, 1. Hence, it follows from (5.14.1)

that we obtain

w(gxh) = Lyw(h) (5.14.2)

for a left-invariant form w and for all g, h € G. If we take h = e, (5.14.2)
leads to

w(g) = Lyw(e) (5.14.3)

for all g € G. Consequently, all left-invariant k-forms are generated by
forms w(e) € A¥(G) defined on the tensor product ® 77 (G) at the identity
k

element e € G. Thus, left-invariant 1-forms are produced by 1-forms in the
dual space T.(G). Since the dimension of the vector space 7 (G) is m,
then there are exactly m linearly independent left-invariant 1-forms and the
entire left-invariant 1-forms are expressible as their linear combinations. If
we denote a basis of T(G) by w!,w?,...,w™, we can then express a form
w(e) € A¥(G) as follows

1

H wiliz...ikw“ VAN w” A A (.4)“f

w(e) =
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where wj,....,, € R are completely antisymmetric constant coefficients.
According to the relation (5.14.3), any left-invariant k-form is extracted
from the foregoing form with constant coefficients. Similarly, right-invari-
ant forms are defined as

Rw=w (5.14.4)

for all g € G and we write w(g) = R} w(e). Hence, right-invariant forms
are also generated by m linearly independent 1-forms chosen from the dual
space T,)(G). The relation L, o R, = R, 0 L, [see (3.3.3)] leads of course
to R; o L; = L; ) R;. Therefore, if w is a left-invariant form we find that

Ly(Ryw) = R)(Lyw) = Ryw.

Thus Rjw is a left-invariant form. In the same way, If w is a right-invariant
form, then Ljw turns out to be a right-invariant form.

Theorem 5.14.1. If w is a left (right) invariant form, then dw is also a
left (right) invariant form.

According to Theorem 5.8.2, we obtain

LZdw = dL;‘w = dw

forall g € G. Similarly, we get R)dw = dw. O
Theorem 5.14.2. Let G and H be Lie groups and ¢ : G — H be a Lie
group homomorphism. Then the pull-back operator ¢* : A(H) — A(G)
transports the left-invariant forms in H to the left-invariant forms in G.
Let w € A(H) be a left-invariant form. Since ¢ is a group homomor-
phism, we readily obtain

Ly(¢"w) = (9o Ly)'w = (L) 0 ¢)'w = ¢" (Lyyw) = ¢'w

[see p. 188]. This implies that the form ¢*w is left-invariant. The same
property is also valid for right-invariant forms. |

The Lie algebra g of the Lie group G that consist of left-invariant vec-
tors is designated by the tangent space 7.(G) and left-invariant 1-forms are
elements of the dual space 7. (G). Hence, when we choose a basis V1,
Vay ...y, Vip in g = T.(G), we can find a reciprocal basis w!,w?,...,w™ in
g* = T (G) such that we get o' (V;) = 6.

Theorem 5.14.3. 4 form w € Ak(G) is left-invariant if and only if the
Sunction w(Vy, Va, ..., Vi) is constant for every k left-invariant vector fields
Vvla ‘/27 te Vk

Let w be a left-invariant k-form. We can thus write Lyw(gxh) = w(h)
and dLy(Vil;,) = Vil up, i = 1,..., k. (5.7.1) then leads to
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Lyw| g Vil s Vily) = @l (dLg(Vily), - dLg(Vil)) - (5.14.5)

from which we obtain
wl,(Vilps - Vily) = W|g*h(vl|g*h: R Vk’g*h)

since V1, ...,V are left-invariant vectors. If we take h = e, then for every
g € G we find that

wl,(Vilgs ooy Vil,) = wl,(Vil,s -, Vi|,) = constant.  (5.14.6)

Conversely, if the function w(Vy, Vs, ..., V) is constant for every k left-
invariant vector fields Vi, Vo, ..., Vj, then (5.14.5) yields

Lyw(g)(Vile, oo, Vilo) = w(e)(Viles - Vi)

whence we deduce that the relation Ljw(g) = w(e), that is, w is a left-
invariant form. (]

The left-invariant 1-forms engendering the dual g* of the Lie algebra g
of the Lie group G are called Maurer-Cartan forms [German mathemati-
cian Ludwig Maurer (1859-1927)]. So Theorem 5.14.3 implies that the
function w(V") remains constant for fieldsw € g* and V' € g.

Theorem 5.14.4. Let G be a Lie group and ' € g*,i =1,...,m be a
basis for left-invariant 1-forms. In this case, the following Maurer-Cartan
Structure equations are satisfied

ot = — % 0 A== 0 A (5.14.7)
1<i<j<m
b= -
structure constants of Lie algebra g.
According to Theorem 5.14.1, if a basis form 0% is left-invariant, then
its exterior derivative d@* is likewise left-invariant. Therefore, in terms of

basis in the dual space g* we can write

where ¢ are real constants. The constants cfj are the same as the

doF = _%bfje’meﬂ L k=1,...,m

with constant coefficients bfj These numbers ought to satisfy naturally the
antisymmetry conditions bj; = — b%. On the other hand, we get

0=d*" = — %b;}(dei NG — 0" A db)
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1 . . .
=1 b (b, 0" A O™ NG —b] 0" NG A O™
1oy i m j 1 i m j
=1 bEb 0" A O™ NG — i bYby,, 0 A O™ A G
1

) 1, .
=5 bEb, 0 A O™ NG = 3 A NN

Thus the coefficients bfj must satisfy the relations

3Lk i ik i pk o pipk

gbz[jbzm] = by, bi; + by, ;05 + byby, = 0
dictated by the Jacobi identity. Let V; € g,i = 1,...,m be the reciprocal
basis of the Lie algebra with respect to the forms ¢', that is, the relations
0'(V;) =065,14,5=1,...,m are to be satisfied. This basis vectors have to
verify the relations [V;, Vj] = ¢f;Vi where c/; are structure constants of the
Lie algebra g with respect to the basis {V;} [see (3.3.9)]. In view of the
relation (5.2.6), we can write bfj = —d0*(V;,V;). Consider a 1-form
w = w;dz’. The value of the form dw = w;;dz’ A dz' on vector fields
U,V € T(M) is given by

dw(U,V) = w; j(uv' — u'v’) = (w;; — wji)u'v'.
On the other hand, the relation

U(w(V)) =V (w(U)) = (wij — wji)w'v' +w;(v'u! —u'p)

leads immediately to
dw(U,V)=U(w(V)) - V(wU)) —w([U,V]). (5.14.8)
Consequently, because of 0% (V;) = 67, 6%(V;) = 6% we obtain

b= — doF(Vi, V) = O8IV, VD) = 5l V) = s = ¢, O
We can now prove the following theorem.
Theorem 5.14.5. The structure constants of an m-dimensional Lie
group vanish if and only if it is locally isomorphic to the group R™.

(7). Let the Lie group G be isomorphic to the group R™. We have
seen in Example 3.3.1 that the structure constants of R™ are zero. The rela-
tion (3.4.3) then requires that the structure constants of GG are also zero so
that G becomes an Abelian group.

(ii). Let the structure constants of the Lie group G be zero. Therefore,
(5.14.6) gives d0* =0,k =1,...,m. According to the Poincaré lemma,
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there are m smooth functions 9* : U — R on the domain U of a local chart
(U, ) such that % = d¥* [see p. 334]. We can choose those functions ¥*
as coordinate functions. Since the forms 6* are left-invariant, we obtain

* nk k k k
L6 (gxh) = 6" (h) = d¥*(h) = dh

forall g,h € G. g* = 9%(g), h* = 9*(h),k = 1,...,m are coordinates of g
and h. Furthermore, we can readily write (gxh)* = 9%(gxh) = 9*(L,h) =
" o Ly(h) = LE(h). Then, on making use of Theorem 5.8.2 we get

Li0*(gxh) = Lyd0" (geh) = LidLE(R) = dLyLE(h)
_OLk(h)

l
p = g dh.

=d(LE(h) o Ly) = dLi(h)]

If we compare the two expressions which we have found for L;Hk (gxh),
then we deduce that

OLE(h) OLE(h)
g dhl — dhk g
N’ o on

= 6.

It is quite easy to integrate these differential equations to obtain
k(p) — ok k
L, (h) =O%(g) + h". (5.14.9)

6% (g) are arbitrary functions. Since the functions ¥* are to be determined
up to a constant, we can impose the restriction ¥¥(e) =0,k =1,...,m
without loss of generality. Because Ly(e) = g, we get Lk(e) = 9% (g) = ¢
and when we evaluate the expression (5.14.9) for h = e, we end up with the
relation ©(g) = g*. Hence, we find that ¥*(gxh) = LE(h) = g* 4+ h*. Let
us next define the smooth function ¥ = (9%,...,9™) : U — R™ and the
elements g = (g',...,¢") € R™ and h=(h!,...,h™) € R™. We thus
conclude that

Fgxh) =g+ h =39(g) + 3(h). (5.14.10)

This implies that the Lie group G is locally isomorphic to the group R™. [

V. EXERCISES

5.1. We define on the manifold R with the coordinate cover (z,y, z,t) the fol-
lowing exterior forms

W' =ycostdr 4+ e®dy +tdz + (y — z) dt € AY(R?Y),
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5.2

5.3.

54.

5.5.

5.6.

5.7.

5.8.
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W =tanzdr Adz + (y — 2%) do Adt + sinh zdy A dz € A*(RY),
W =eVdyNdz Adt —cosydr Ady Adz+x de Adz Adt € A3(RY),
W= (2 + ) dx Ady Adz Adt € AY(RY).

Evaluate the exterior forms w' A w?, w! A w? + WP, WP A w! — w? A w? + Wt
dw? —w? + w? Awt, dwt AW? + dwt Adw?t, dw? + d(w! Aw?). The vector
fields U,V € T(R") are given by

) o 9
“Yor % "o T T Yy Cor

Find the forms ipw!, iyw?, ipw?, ivw?, ip(dw' + w?), ivigw! + iy (dw?),
d(iUwQ) + iU(dwg), £Vw1, £Uw2, £Vw3, £Uw4, £Uivw2 —ipfyw.

Consider an exterior form w = z dz — = dy + = dz € A}(R®) and a vector
field V =y0, + 20, + x0, € T(R?). Evaluate the forms £yw, £yfyw,
£V£V£Vw, £V£V£V£Vw and eXp (t£V) w.

Determine vector fields V € T(R*) in such a way that they satisfy the
relations (a) iyw! =0, (b) iyw? =0, (¢) iyw® =0, (d) iyw* =0. This
amounts to say that they will be characteristic vectors of those forms. Forms
wh, w?, w3, w? are defined in Exercise 5.1.

Express the forms w', w?, w?, w* in Exercise 5.1 in terms of bases induced by
the volume form o = dxz A dy A dz A dt.

Let {#'} C T*(M) and {V;} C T(M),i = 1,...,m be reciprocal basis vec-
tors. Verify the equality

0, if i#i,r=1,...,k

1V1(9 A+ ANl ) = {(_l)rleil Ao A Qi1 A G /\~~~/\9i"‘,if i=i,

We define the mapping ¢ : R® — R* by the relations
r=wucosv, y=usinv, z=w—2, t=uw.

(a) Find the pulled back forms ¢*w!, ¢*w?, ¢*w?, ¢*w? [see Exercise 5.1],
(b) determine the range R(¢) C R* (c) evaluate the inverse mapping
¢ 1:R(p) — R3, (d) find the vectors ¢.0,, ¢.0, and ¢.0,, (d) If
w = dz A dy A dz, then evaluate the forms ¢*(is,0, (w)) and ¢* (ip.9,(w)).

A mapping ¢ : R? — R? is described by the relations u = 3%, v = zy,
w = x3. The vector fields U,V € T(R?) and the form w € A%(R?) are given
as follows:

0 0 0

U:y£+$afy,‘/:—%+y w=uduNdv—ovwdv A dw.

27
oy’

Evaluate the quantities ¢*w, .U, ¢.V, (¢*w)(U,V), w(o.U,d V),

iy (¢"w), iy (¢*w), " (is.uw), ¢ (ig.vw).

Determine all mappings ¢ : R¥ — R* 1 < k < 4 satisfying the relations (a)
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5.11.

5.12.

5.13.
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p*wt =0, (b) ¢*w? =0, (c) ¢*w® =0, (d) ¢p*w* = 0 where the forms w?,
w?, w3, w* are those given in Exercise 5.1

Show that the form w = zdx Ady +yzdy Adz +y dz Adz € A2(R?) is
closed. Determine a form © € A!(R?) such that w = dQ.

We define the isomorphisms ¢ : R? — A'(R?), ¢ : A°(R3) — A3(R?) by

(V) = wy = u, dz + u, dy + u, dz,
Y(f) =wr=fdxNdyNdz

where U = (uy,uy,u,) € R® and f € A°(R?). Verify that (a) wyv =
wy Axwy = *wy Awy, (b) wuxy = *(wy Awy), (¢) wavy = *d*wy, (d)
Weurlu = * dwy and show that (¢) U - curl U = 0 if dwy A wy = 0.
Verify the following relations in R3:
(@) Ux (VxW)=(U-W)V— (U-V)W
BYU-(VXW)=V-(WxU)=W-(UxYV)
(c) (fg) =gV f+[fVy
(d)VU-V)=UxcurlV+V xcurlU+ (V-V)U+ (U-V)V
(e)dlv(fU) fdivU+U-Vf
(f) curl (U x V) = (divV)U — (divO)V + (V- V)U — (U - V)V
(g) div (curlU) = 0, curl (Vf) =0, div(Vf x Vg) =0
If M is a Riemannian manifold and Vi, V, € T (M), show that

div [V1, Vo] = Vi(div V2) — Va(div V).
Letw € A¥(M) and Vy, Vi, ..., Vi € T(M). Verify the relation

k
dw(Vo,Vi,..., Vi) = > (=1)'Vi(w(Vo, Vi, ..., Vic1, Vier, .., Vi)

5.14.

5.15.

5.16.

5.17.

=0
+Y 0 (D) ViL Ve, Vi, Vies, Vi o Vi, Vi -, V).
0<i<j<k

Letw € A¥(M)and V, Vi, ..., Vi € T(M). Verify the relation

£y (Wi, ..., Vi) =
k
(Evw)(Vi,..., V) +Zw(m,...,w_1, [V, Vil, Vist,s .., Vi)

=1
When U,V € T(M), verify the validity of the operator identity
£U o iv - £V o iU - i[U,V] = [d,iU o lv]

Provided that g € A°(M), dg # 0, show that a function f € A°(M) can be
expressed in the form f(p) = F(g(p)) if it meets the condition df A dg = 0.
F' is a smooth function.

Let us assume that g, ¢, ..., 9" € A°(M),dg' Adg® A--- ANdg" # 0. Show
that if a function f € A°(M) satisfies the relation df A dg* A --- Adg" = 0,
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then it is expressible in the form f = F(g',¢% ...,¢"). F is a smooth func-
tion of its arguments.

5.18. Let us assume that ¢',...,¢g" € A°(M) and dg* A --- Adg" # 0. If we can
write for a function h € A°(M) the relation dh = fidg' + -+ + f.dg" with
functions fi, ..., f, € A°(M), then show that the relations h = h(gl, ... ,g’”)

ino O
and f; = 55

5.19. Show that dxdf = — *Af = — (Af)uif f € AO(M).

5.20. Show that d(f*(dg)) = df A x(dg) — (fAg) if f,g € A°(M).

521. Let V=V A--- AVF € X¥(M) and w € A*'(M). We define the interior
product of the form w with V in such a manner that the following relation
would be satisfied for all vectors VF+1 . Vk+ ¢ X(M):

(G ) (VE L VR = (VL VR VR,

=1,...,r must be valid.

Show that this interior product is well defined and prove the operator equality
tuny = Ty © ty.

5.22. Ford € X*(M) and V € X!(M) verify the equality

Ty = (= 1)V 5 dipw + (—1)F iy digw — fygyvdw.
5.23. Assume that V = VI A V2 € X2(M) and f,g,h € A°(M). (a) Show that
iy (df Adg A dh) = iy (df Adg)dh + 4y (dg Adh)df + 3y (dh A df) dg.
(b) We define the mapping {, } : A°(M)xA°(M) — A°(M) by the relation
{f,9} =ty (df ndg).

We also name this mapping [see p. 707] as the Poisson bracket [French
mathematician Siméon Denis Poisson (1781-1840)]. Show that this mapping
is bilinear and antisymmetric. Prove the identity

{5,950} + {{g,h}, f} + {{h. [}, 9} =y (df Adgndh)

and then demonstrate that the condition (V,V) = 0 should be satisfied
[see Exercise 4.17] in order for this bracket to satisfy the Jacobi identity, and
consequently, A°(M) endowed with the product {,} to form a Lie algebra.
(¢) Show further that the bracket satisfies the equality

{f.gh} ={f,9th +{f, h}g.

5.24. Let the vectors U and V be characteristic vectors of an exterior form
w € A(M). Show that if yj(w) = iy o iy (dw). Thus, prove that characteris-
tic vector fields of a form w constitute a Lie subalgebra if and only if the
condition iy o iy (dw) = 0 is satisfied for every pair of characteristic vectors
UandV.

5.25. Let w',w?,w? w! be the forms given in Exercise 5.1. Determine the



5.26.

5.27.

5.28.

5.29.
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characteristic and isovector fields of the ideals I(w',w?), I(w!,w? w?),

I(w', w? w"). Find maximal solutions annihilating these ideals.

We define the forms w!,w? € AY(R*) as w! = ydx + zdt,w? = zdy — ydz.
Show that the ideal I(w',w?) is closed. Determine its characteristic and
isovector fields. Find the maximal solution annihilating this ideal.

Determine the characteristic subspaces and isovector fields of ideals

I(ydx +xdy +ydz),
I((1+ y?)dx + xdy,dez),
I(ydx + zzdy,dy A dz)

of A(R?). Find maximal solutions annihilating these ideals.

M is a Riemannian manifold with a metric tensor G. Show that any submani-
fold N of M can be made a Riemannian manifold equipped with a metric
tensor G’ defined by the relation G'(U, V) = G(U, V') for all pair of vectors
U,V eT(N)CT(M).

We consider a 4-dimensional manifold M with a coordinate cover (x, f* :
i = 1,2) and define the following 1-forms

W =df + fia - @
ozz» = a;!kdmk, 8= ﬂ;dmj
where a;:k = aj’-k(xl, z*) and 3} = (j(x", z*) are given functions.

(a) Let S be a submanifold with the coordinate cover (x!, 2?). Show that
the requirements ¢*w' = 0 that a resolvent mapping ¢ : S — M must satisfy
give rise to the first order partial differential equations

of | i ki
00 +ay, [" =05
determining the functions f* = fi(x!, x?).
(b) Show that the ideal Z (w', w?) is closed if only the relations

i koa i
daj; —aj Ny, =0,

dB — A a;i =0
are satisfied and these relations conduce to the integrability conditions

ol dal

i
n Jm

ik i ko _
A " + akna]’m akmajn - 07
8Bj_86k+ﬁli_ﬁli_0
ok Oz Xk kA = Y

(¢) Show that if the conditions for the ideal Z(w',w?) to be closed are
satisfied, then there exist functions 0, v’ € A°(M) so that one can write
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W= Qé-duj
and solutions of the differential equations are found as
u' (2, 22, f1, f*) = constant.

5.30. G is a Lie group, w € AY(G) is a left-invariant form, Uand V are left-
invariant vector fields. Show that

dw (U, V) = —w([U,V]).





