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CHAPTER V

EXTERIOR DIFFERENTIAL FORMS

5.1. SCOPE OF THE CHAPTER

Studies of differential forms has started with the works of Grassmann
and efforts to extend the integral theorems in classical vector analysis has
played a significant part in the development of the theory. Several elemental
concepts, for instance the exterior product, has been introduced by French
mathematician Jules Henri Poincaré (1854-1912). However, it was French
mathematician Élie Joseph Cartan (1869-1951) who enormously contributed
in the period from 1899 to 1926 to the establishment of the theoretical
framework of exterior forms on differentiable manifolds by identifying ex-
terior differential forms as exterior products of differentials of coordinates
(exterior derivatives) and thus equipping them with an algebraic structure.

In Sec. 5.2, the exterior differential forms on differentiable manifolds
and exterior algebra formed by them are defined and it is shown that they
constitute a module. Sec. 5.3 deals with some useful algebraic properties
concerning -forms. In Sec. 5.4 the interior product of a vector with an ex-"
terior form is defined, various properties of this operation that reduces the
degree of the form by one are revealed and criteria for the existence of a di-
visor of a form are established by making use of the interior product. To re-
place the natural basis of the exterior algebra, we consider in Sec. 5.5 a top-
down generation of a new basis from the volume form, which has the
highest degree on a given manifold, by its appropriate interior products with
natural basis vectors of the tangent bundle. We examine relations between
these bases in detail. In some cases, the use of these bases turns out to be
quite advantageous. Sec. 5.6 is concerned with certain subalgebras of the
exterior algebra called ideals and characteristic vectors of an exterior form
and also of an ideal are introduced. It is shown in Sec. 5.7 that a smooth
mapping between two differentiable manifolds gives rise to an additive pull-
back operator that transports exterior forms on the range of the mapping to
forms on its domain by preserving their degrees. Moreover certain
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220 V  Exterior Differential Forms

properties of this operator are emphasised. The exterior derivative which is
one of the fundamental operators acting on exterior forms is defined in Sec.
5.8 and its properties are discussed there. Closed and exact forms are
introduced as well in this section. Sec. 5.9 deals with Riemannian manifolds
endowed with a metric tensor that makes it possible to measure distances
between points of a manifold. Metric tensor also helps us to relate covariant
components of a tensor with its contravariant components and vice versa.
Utilising this opportunity, we define the Hodge dual of a form and the
Hodge star operation generating this form. Then, we discuss its properties
and scrutinise the co-differential, Laplace-de Rham and Laplace-Beltrami
operators. Sec. 5.10 is concerned with closed ideals, the forms belonging to
which have exterior derivatives remaining in the ideal and conditions
leading to a closed ideal are examined. The Lie derivative of an exterior
form that measures the variation in this form along the flow generated by a
vector field on a manifold is considered in Sec. 5.11 and the Cartan formula
that makes it possible to calculate Lie derivatives of forms relatively easily
is derived. We define in Sec. 5.12 isovector fields of an ideal and show that
the ideal remains invariant under the flow produced by an isovector field
and prove that isovectors constitute a Lie subalgebra of the tangent bundle.
Finally, we investigate in Sec. 5.13 the mappings, or submanifolds, annihi-
lating an ideal. The notion of complete integrability is introduced, condi-
tions providing its existence are discussed and the theorems of Cartan and
Frobenius, that play a pivotal part in comprehending this concept, are
proven. Sec. 5.14 is devoted to an overview of some properties of exterior
forms defined on a Lie group which is also a smooth manifold. Left- and
right-invariant -forms are defined by using certain pull-back mappings on"
the exterior algebra built on the Lie group. These mappings are generated by
left and right translations in the group. It is shown further that left-invariant
"-forms called Maurer-Cartan forms constitute the dual of the Lie algebra of
the Lie group and they satisfy a system of exterior differential equations
depending on structure constants of the Lie algebra.

5.2. EXTERIOR DIFFERENTIAL FORMS

We have seen in Sec. 4.3 that a -exterior differential form field on an5
7 Q-dimensional smooth manifold  is defined as a completely antisymmet-
ric -covariant tensor field or as an alternating -linear functional and it can5 5
be represented in natural coordinates  in a chosen chart as followsx œ Ð:Ñ:

= =Ð:Ñ œ Ð Ñ .B • .B • â • .B
"

5x
3 3 â3

3 3 3
" # 5

" # 5x (5.2.1)
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where smooth functions  are completely antisymmetric in= A3 3 â3
!

" # 5
− ÐQÑ

their indices. We call  as the degree of the form. If we identify the sum5
= = = = =œ  5" # " # of two forms  and  of the same degree  by employing
the following completely antisymmetric components

= = = A3 3 â3
" # !
3 3 â3 3 3 â3" # 5 " # " #5 5

Ð Ñ œ Ð Ñ  Ð Ñ − ÐQÑx x x ,

then we deduce that  is a -form as well. Similarly the scalar multiplica-= 5
tion  where  is a -form specified by smooth functions0 0 − ÐQÑ 5= A!

0Ð Ñ Ð Ñ − ÐQÑx x= A3 3 â3
!

" # 5
.

Therefore, -exterior differential forms constitute a module over the com-5
mutative ring . Henceforth, we denote this module by . Natu-A A! 5ÐQÑ ÐQÑ
rally,  reduces to a vector space over the field of real numbers. WhenA5ÐQÑ
5  7, it is evident that exterior forms vanish identically. The basis of this
module are the following linearly independent -forms:5

Ö.B • .B • â • .B À 3 ß á ß 3 œ "ß á ß 7×3 3 3
" 5

" # 5

whose number is . This basis is expressed more con-Š ‹7 7x

5 5x Ð7  5Ñx
œ

cretely in terms of through ordered indices in the formessential components  
Ö.B • .B • â • .B À " Ÿ 3  3  â  3 Ÿ 7×3 3 3

" # 5
" # 5 . In this case (5.2.1)

can also be written as

= =Ð:Ñ œ Ð Ñ .B • .B • â • .B"
"Ÿ3 3 â3 Ÿ7

3 3 â3
3 3 3

" # 5

" # 5
" # 5x .

Instead of  natural basis  of  associated with local coordinates7 .B X ÐQÑ4 ‡

B 74 in local charts at every points of the manifold we can of course choose 
linearly independent -forms prescribed by"

) ) A )3 3 4 " 3
4 4œ Ð Ñ .B − ÐQÑß 3ß 4 œ "ß á ß 7à Ð Ñ Á !x xdet  ‘

as a basis and represent a -form in terms of this basis in the following5
manner

= H ) ) )Ð:Ñ œ Ð Ñ • • â •
"

5x
3 3 â3

3 3 3
" # 5

" # 5x

where

H = @ @ @3 3 â3 4 4 â4 3 3 3
4 4 4

" # " #5 5 " " "

" # 5Ð Ñ œ Ð Ñ âx x [ ].
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Here  is the inverse of the matrix .Ò Ð ÑÓ Ð Ñ@ )4 4
3 3x x ‘

Just like in Sec. 1.5 we can define the operation of the exterior product
of exterior differential forms  by! A " A− ÐQÑß − ÐQÑ5 6

# œ ! " ! "

#

• œ .B • â • .B • .B • â • .B
"

5x 6x

œ .B • â • .B • .B • â • .B
"

Ð5  6Ñx

3 â3 4 â4
3 3 4 4

3 â3 4 â4
3 3 4 4

" "5 6
" "5 6

" "5 6
" "5 6

where  assigns now a -form to -• À ÐQÑ ‚ ÐQÑ Ä ÐQÑ Ð5  6Ñ 5A A A5 6 56

and -forms. Here the functions  are given by6 Ð Ñ − ÐQÑ# A3 â3 4 â4
!

" "5 6
x

# ! "3 â3 4 â4 3 â3 4 â4" " " "5 6 5 6
œ

Ð5  6Ñx

5x 6x
[ ]

[  (1.5.1)]. If we regard a function  as a -form, we can writesee 0 − ÐQÑ !A!

0 • œ 0 − ÐQÑ= = A5

for a -form . It is straightforward to observe that the exterior product5 =
possesses the following properties:

! " # ! " ! #

! " # ! # " #

! " # ! " # ! " #

" ! ! " ! A " A

• Ð  Ñ œ •  • ß

Ð  Ñ • œ •  •

• Ð • Ñ œ Ð • Ñ • œ • •

• œ Ð"Ñ • ß − ÐQÑß − ÐQÑ

,
,

 .

(5.2.2)

56 5 6

It is thus seen that the exterior product is associative and distributive, but it
is generally not commutative. Whenever  is an even number one has56
" ! ! " " ! ! "• œ • • œ  •, whereas  when it is an odd number. If
= A− ÐQÑ 55  and  is an odd number, then we find that

= = = = = =• œ Ð"Ñ • œ  •5#

  

since  is also an odd number. Thus the of such a form vanishes5# square 

= = =# œ • œ !.

The set of exterior differential forms of all degrees on a manifold Q
constitute the   with the binary operation of exteriorexterior algebra AÐQÑ
product. The exterior algebra is expressible as the direct sum

A A A A A

A

ÐQÑ œ ÐQÑ Š ÐQÑ Š â Š ÐQÑ Š â Š ÐQÑ

œ ÐQÑ

! " 5 7

5œ!

7
5Š
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of modules . Hence  is a . OfA A5ÐQÑß 5 œ !ß "ß á ß 7 ÐQÑ graded algebra
course, only the sum of forms of the same degree is really meaningful.
Smooth coefficient functions belong to the ring  and the natural basisA!ÐQÑ
of the exterior algebra  is given byAÐQÑ

Ö"×  Ö.B ×  Ö.B • .B ß 3  4×  â  Ö.B • â • .B ß 3  â  3 ×

 â  Ö.B • .B • â • .B

3 3 4 3 3
" 5

" #

" 5

                                                                 7×.

Thus the dimension of the exterior algebra is

"Š ‹
5œ!

7
77

5
œ # .

The value of a form  on vectors  is com-= A− ÐQÑ Y ß Y ß á ß Y − X ÐQÑ5
" # 5

puted as we have mentioned in . 26 [  (1.4.4)] by the relation: see

= =ÐY ß Y ß á ß Y Ñ œ ? ? â?" # 5 3 3 â3 " #
3 3

5
3

" # 5
" # 5 (5.2.3)

where we wrote  . It thenY œ ? Ð Ñ ß 3 œ "ß #ß á ß 7à œ "ß #ß á ß 5
`

`B
! !

3
3

x !

immediately follows that coefficient functions are determined by

= =3 3 â3 3 3 3" # 5 " # 5
œ ß ß á ß

` ` `

`B `B `B
Š ‹. (5.2.4)

On an -dimensional manifold , the module  is -dimen-7 Q ÐQÑ "A7

sional. Hence, every -form is represented as7

= Aœ 0Ð Ñ .B • .B • â • .B ß 0 − ÐQÑx " # 7 ! ,

The form

. Aœ .B • .B • â • .B − ÐQÑ" # 7 7 (5.2.5)

is called the . Indeed if we consider  linearly independent volume form 7

vector fields  , we obtainZ œ @ ß á ß Z œ @
` `

`B `B
" 7

"
" 7

7? ?

.ÐZ ß Z ß á ß Z Ñ œ œ @ @ â @

@ ! â !

! @ â !
ã ã ã ã
! ! â @

" # 7

"

#

7

" # 7

â ââ ââ ââ ââ ââ ââ ââ â
?

?

?

? ? ?

and this is the volume of a rectangular parallelepiped in .‘7

We are not compelled to employ   the natural basis Ö.B × X ÐQÑ§3 ‡
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and  . Let us introduce  its reciprocal basis a reciprocalÖ`Î`B × X ÐQÑ§3

basis a basisÖ × X ÐQÑ ÖZ × X ÐQÑ§ §)3 ‡
3 and  . Therefore the relations

) $ = A3 3 5
4 4ÐZ Ñ œ ß 3ß 4 œ "ß á ß 7 − ÐQÑ are to be satisfied. A form  can now

be represented by

= = ) ) )Ð:Ñ œ Ð Ñ • • â •
"

5x
3 3 â3

3 3 3
" # 5

" # 5x

where coefficients  must of course be completely antisymmetric.=3 3 â3" # 5

Then we obtain

= =

) ) )

) ) )

) ) )

ÐZ ß Z ß á ß Z Ñ œ
"

5x

ÐZ Ñ ÐZ Ñ â ÐZ Ñ

ÐZ Ñ ÐZ Ñ â ÐZ Ñ
ã ã ã

ÐZ Ñ ÐZ Ñ â ÐZ Ñ

œ
"

5

3 3 3 4 4 â4

4 4 4
3 3 3

4 4 4
3 3 3

4 4 4
3 3 3

" # " #5 5

" " "
" # 5

# # #
" # 5

5 5 5
" # 5

â ââ ââ ââ ââ ââ ââ ââ â
   

x 5x

â

â

ã ã ã

â

œ
"

= = $

$ $ $

$ $ $

$ $ $

4 4 â4 4 4 â4

3 3 3
4 4 4

3 3 3
4 4 4

3 3 3
4 4 4

4 4 â4
3 3 â3" # " #5 5

" #

" " "

5

" #

# # #

5

" #

5 5 5

5

" # 5

" # 5

â ââ ââ ââ ââ ââ ââ ââ ââ â
Therefore, we again conclude that

= =ÐZ ß Z ß á ß Z Ñ œ3 3 3 3 3 â3" # " #5 5
. (5.2.6)

5.3. SOME ALGEBRAIC PROPERTIES

We say that a -form  is a  if it is expressible5 − ÐQÑH A5 simple form
as an exterior product of  linearly independent -forms [  . 36]. Hence,5 " :see
if we can write

H = = = Aœ • • â • − ÐQÑ" # 5 5

where  are linearly independent, then  is a= A H< "− ÐQÑß < œ "ß á ß 5 Ÿ 7
simple -form.5

Theorem 5.3.1. = = = A" # 5 "ß ß á ß − ÐQÑ are linearly independent -"
forms if and only if  .H = = =œ • • â • Á !" # 5

Let us suppose first that . We consider the linear combinationH Á !
- œ -  -  â  - œ ! - ß - ß á ß - − ÐQÑ< " # 5 " # 5

< " # 5 != = = = A where  are
arbitrary coefficient functions. The exterior product of this form by the
Ð5  "Ñ • â • - œ ! "-form  yields  because square of a -form= = H# 5

"

vanishes. We thus find . In a similar fashion, we deduce that all- œ !"
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coefficients must be zero. Hence, -forms  are linearly inde-" ß ß á ß= = =" # 5

pendent. Conversely, let us choose  linearly independent -forms 5 " ß ß= =" #

á ß=5  that are represented by

=< < 3
3œ + .B ß < œ "ß á ß 5 Ÿ 7à 3 œ "ß á ß 7.

Hence, the rank of the  matrix    should be  so that this matrix5 ‚ 7 Ò+ Ó 53
<

must have at least one  submatrix with non-vanishing determinant. On5 ‚ 5
the other hand, the -form that is the exterior products of these -forms can5 "
be written as follows:

H = = =œ • • â •

œ + + â + .B • .B • â • .B

œ + + â + .B • .B • â • .B

" # 5

3 3 3
" # 5 3 3 3

3 3 3
" # 5 3 3 3
" # 5

" # 5

" # 5

" # 5
[ ] .

One immediately sees that for a particular choice of indices , the3 ß á ß 3" 5

coefficient of the form  will be the determinant of a .B • â • .B 5 ‚ 53 3" 5

submatrix of the matrix . Therefore, the form  is the sum of such -Ò+ Ó 53
< H

forms. However, in this sum at least one term is different from zero. Hence,
we obtain .H Á ! 

Theorem 5.3.2.  If the forms are con-! " A< < "ß − ÐQÑß < œ "ß á ß 5
nected by the expression

" ! A< < = < !
= =œ - ß - − ÐQÑß <ß = œ "ß á ß 5 ,

then there exists the relation 

" " " ! ! !" # 5 < " # 5
=• • â • œ Ð Ò- ÓÑ • • â •det

among them.
In fact, it is readily found that the relation

" " " ! ! !

$ ! ! !

! ! !

" # 5 " # 5 = = =
= = =

= = =
" # 5 " # 5

"#â 5
= = â=

=
< " # 5

• • â • œ - - â - • • â •

œ - - â - • • â •

œ Ð Ò- ÓÑ • • â •

" # 5

" # 5

" # 5

" # 5

det

is obtained. 
Theorem 5.3.3.  If -forms are linearly" = A< "− ÐQÑß < œ "ß á ß 5

independent and if -forms satisfy the relation"   # A<
"− ÐQÑß < œ "ß á ß 5

# = # = # = # =< " # 5
< " # 5• œ •  •  â  • œ ! ,

then every form belongs to the submodule generated by the forms#< 
= = =" # 5ß ß á ß . Hence one is able to writ/
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# = A< <= <=
= !œ + ß + − ÐQÑß <ß = œ "ß á ß 5

where the matrix is symmetric, namely, .A œ Ò+ Ó<=  + œ +<= =<

Exterior product of the relation  with the -form# =<
<• œ ! Ð5  "Ñ

= = # H H = = =# 5 " # 5
"• â • • œ ! œ • • â • Á ! " yields .  because -

forms  are linearly independent. It then follows that the form  is linearly= #<
"

dependent on the forms . In a similar fashion, we find = = = # H" # 5
<ß ß á ß •

œ ! < for each . Therefore, the forms  are linear combinations of the#<

forms . Thus, one can write=<

# =< <=
=œ + .

On the other hand, the relation

! œ • œ + • œ + •# = = = = =< <= <=
< = < = <

[ ]

leads to , and consequently to the symmetry relation .+ œ ![ ]<= + œ +<= =<

This theorem is also known as the Cartan lemmaÞ 

5.4. INTERIOR PRODUCT

We have seen that new elements of the exterior algebra  over anAÐQÑ
7 Q-dimensional manifold  are generated by exterior products of its ele-
ments. But the exterior product is an operation that raises the degrees of
forms. Nevertheless, we can obtain at most forms of degree  with an7
operation raising degrees because we know that forms of degrees higher
than  vanish identically. Since it is evident that it is not possible to obtain7
a form with a lesser degree than a given form by resorting to the exterior
product, we need to introduce a new operation to achieve this task. We
further wish that this operation possesses appropriate properties. We devise
this operation by means of a vector field. We call it the  of ainterior product
vector field  with an exterior form field . To this end,Z − X ÐQÑ − ÐQÑ= A

we introduce the interior product operator in the following formi 

i À X ÐQÑ ‚ ÐQÑ Ä ÐQÑA A5 5" ,

or

iZ
5 5"À ÐQÑ Ä ÐQÑA A

where the vector  is now specified. We further impose the conditions thatZ
the operator  has to satisfy the following rules:iZ
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Ð3ÑÞ Ð0Ñ œ !ß Z − X ÐQÑß 0 − ÐQÑ

Ð33ÑÞ Ð Ñ œ ÐZ Ñ œ ß Z œ @ − ÐQÑß Z − X ÐQÑß − ÐQÑ

Ð333ÑÞ Ð  Ñ œ Ð Ñ  Ð Ñß Z − X ÐQÑß ß − ÐQÑ

Ð3@ÑÞ

i
i
i i i
i

Z
!

Z 3
3 ! "

Z
5

A

= = = = A = A

! " ! " ! " A

. 

.

   .

  ¡
Z Z

Z Z Z
./1 Ð ÑÐ • Ñ œ Ð Ñ •  Ð"Ñ • Ð Ñß

Z − X ÐQÑß ß − ÐQÑ

! " ! " ! "

! " A

i i!

                                                        .

(5.4.1)

Here  can only take the values . Since we can interpret the func-5 "ß á ß 7
tion  as a -degree form so that we can write ,  the0 − ÐQÑ ! 0 • œ 0A = =!

rules  and  result in . It is readily verified that theÐ3Ñ Ð3@Ñ Ð0 Ñ œ 0 Ð Ñi iZ Z= =
above rules would suffice to determine the operator  uniquely. Let us as-iZ

sume that there exists a second operator  accommodating to these rules.iw
Z

Then, it would be necessary to write i i i iZ Z
w w
Z ZÐ0Ñ œ Ð0Ñ œ !ß Ð Ñ œ Ð Ñ œ= =

= A = AÐZ Ñ 0 − ÐQÑ − ÐQÑ œ for each  and . We thus find that ! " w
Z ÐQÑki A!k k ki i iZ ZÐQÑ ÐQÑ

w
Z ÐQÑA AA! "", . But, the rules  and  assure us thatœ Ð333Ñ Ð3@Ñ

actions of these two operators will also be the same on - - -forms.# ß $ ß á ß 7
Consequently, we write   over the entire exterior algebrak ki iw

Z ÐQÑ Z ÐQÑA Aœ

so that we get . The rule  indicates clearly that the interior pro-i iZ
w
Zœ Ð3@Ñ

duct is an . The interior product operator  is sometimesantiderivation iZ

symbolised by the  . In that case, the form  will behook operator © iZ Ð Ñ=

denoted by .Z ©=
Let . We take  so 5.4.1  results in0 − ÐQÑ œ .0 − ÐQÑ Ð33ÑA = A! " ˆ ‰

iZ ß3
3Ð.0Ñ œ .0ÐZ Ñ œ 0 @ œ Z Ð0Ñ.

We shall now try to evaluate explicitly the action of the interior pro-
duct , which maps the exterior algebra into itself, byiZ À ÐQÑ Ä ÐQÑA A
the aid of the above rules. Suppose that a form field  and a vec-= A− ÐQÑ5

tor field  are given byZ − X ÐQÑ

= =œ Ð Ñ .B • .B • â • .B ß
"

5x

Z œ @ Ð Ñ
`

`B

3 3 â3
3 3 3

3
3

" # 5
" # 5x

x .

Because of the relation  we can writei xZ 3 3 â3ˆ ‰=
" # 5

Ð Ñ œ !

i iZ Z3 3 â3
3 3 3Ð Ñ œ Ð.B • .B • â • .B Ñ

"

5x
= = " # 5

" # 5 .

On the other hand, the rule  dictates that .Ð33Ñ Ð.B Ñ œ Z Ð.B Ñ œ @iZ
3 3 3< < <

Hence, according to  we getÐ3@Ñ
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i i
i i

Z Z
3 3 3 3 3 3

3 3 3 3 3 3
Z Z

Ð.B • .B • â • .B Ñ œ Ð.B Ñ • .B • â • .B

 .B • Ð.B • â • .B Ñ œ Ð.B Ñ • .B • â • .B

" # " #5 5

" # " #5 5

                                                  

                                                           

            

 .B • Ð.B Ñ • .B • â • .B

 .B • .B • Ð.B • â • .B Ñ

3 3 3 3
Z
3 3 3 3

Z

" # $ 5

" # $ 5

i
i

œ â œ @ .B • â • .B  @ .B • .B • â • .B  â

 Ð  "Ñ @ .B • .B • â • .B

œ Ð  "Ñ @ .B

3 3 3 3 3 3 3

5" 3 3 3 3

6œ"

5
6" 3 3

" # # " $5 5

5 5"" #

6 "

                                        

" • .B • â • .B • .B • â • .B3 3 3 3# 6" 6" 5 .

In the last line above, we adopted the convention . So we find that.B œ "3!

iZ

6œ"

5
6" 3 3 3 3 3

3 â3 3 3 â3

6œ"

5
#Ð6"Ñ 3 3 3 3

3 3 â3 3 â3

Ð Ñ œ

"

5x
Ð"Ñ @ .B • â • .B • .B • â • .B

œ Ð"Ñ @ .B • â • .B • .B
"

5x

=

=

=

    "
"

" 6" 6 6" 5
6 6" 6" 5"

6 6"
6 6" 6" 5"

" 6" 5

" # 5"
" # 5"

" # 5"
" # 5"

• â • .B

œ @ .B • .B • â • .B
"

5x

œ @ .B • .B • â • .B
5

5x

3

6œ"

5
3 3 3 3

33 3 â3

3 3 3 3
33 3 â3

" =

= .

In the third line, on making use of the complete antisymmetry of coeffi-
cients, we have written . We have= =3 â3 3 3 â 3 3 3 â3 3 â 3

6"
" "6" 6 6" 5 6 6" 6" 5

œ Ð"Ñ
gone into the fourth line by appropriately renaming the dummy indices. We
finally deduce that, by means of the operator  a -form  isiZ

5, 5 − ÐQÑ= A
transformed into a - form  defined byÐ5  "Ñ Ð Ñ − ÐQÑiZ

5"= A

iZ
3 3 3 3

33 3 â3Ð Ñ œ @ .B • .B • â • .B
"

Ð5  "Ñx
= =

" # 5"
" # 5" . (5.4.2)

This expression can also be rewritten in term of essential components as

iZ

"Ÿ3 â3 Ÿ7

3 3 3 3
33 3 â3Ð Ñ œ @ .B • .B • â • .B= =     ."

" 5"

" # 5"
" # 5"

When we recall, together with the rule (5.4.1. , that Ð333ÑÑ Ð0 Ñ œ 0 Ð Ñi iZ Z= =
for a function , we immediately see that 0 − ÐQÑA! the operator  is lineariZ

over the module ÉÐQÑ. Next, let us consider  arbitrary vector fields 5 Z ß
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Z ß Z ß á ß Z − X ÐQÑ − ÐQÑ" # 5"
5. We know that the value of a form  on= A

these vectors is given by

= =ÐZ ß Z ß Z ß á ß Z Ñ œ @ @ â@" # 5" 33 â3
3

"
3

5"
3

" 5"
" 5" .

On the other hand, according to (5.4.2) the value of the form iZ Ð Ñ −=
A5"

" # 5"ÐQÑ Z ß Z ß á ß Z on vectors  is found as

iZ " # 5" 33 â3
3

"
3

5"
3Ð ÑÐZ ß Z ß á ß Z Ñ œ @ @ â@= =

" 5"
" 5" .

Therefore, for every vector fields  the equalityZ ß Z ß Z ß á ß Z" # 5"

iZ " # 5" " # 5"Ð ÑÐZ ß Z ß á ß Z Ñ œ ÐZ ß Z ß Z ß á ß Z Ñ= = (5.4.3)

holds. Actually, it can be shown that this relation may be employed to define
the interior product operator.

Example 5.4.1.  Let the form  be given by= A− ÐQÑ#

= = = =œ .B • .B ß œ 
"

#
34 43 34

3 4 .

Interior product of this form with a vector field  becomesZ

iZ
3 4 "

34Ð Ñ œ @ .B − ÐQÑ= = A è

Let us now calculate the interior product of the form  with= A− ÐQÑ5

two vector fields  and  successively. It follows from (5.4.2) by re-Z Z" #

naming dummy indices that

i i i iZ Z 343 â3Z Z
4
# "

3 3 3
# " "# " 5#

" 5#ˆ ‰Ð Ñ œ Ð ‰ ÑÐ Ñ œ @ @ .B • â • .B
"

Ð5  #Ñx
= = = .

It is clear that . Let us now change the order ofÐ ‰ ÑÐ Ñ − ÐQÑi i
Z# Z "

= A5#

the vectors in the interior product. On recalling that the coefficients =343 â3$ 5

are antisymmetric with respect to indices  and , we get3 4

Ð ‰ ÑÐ Ñ œ  @ @ .B • â • .B
"

Ð5  #Ñx

œ  Ð ‰ ÑÐ Ñ

i i

i i

Z Z
3 3 3
" #

4
433 â3

Z Z

# " " 5#
" 5#

" #

= =

= .

Since this relation must be valid for every form , we arrive at the= A− ÐQÑ
anticommutativity property of the interior product:

i i i iZ Z Z Z" # # "
‰ œ  ‰ . (5.4.4)

Thus for every vector , we get the resultZ
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i i iZ Z Z
#‰ œ œ !. (5.4.5)

The successive interior products of a -form with  vector fields where5 6
6 Ÿ 5 Ð5  6Ñ is the -form given below:

Ð ‰ â ‰ ÑÐ Ñ œ @ â@ .B • â • .B
"

Ð5  6Ñx
i iZ Z 3 â3 3 â3

3
"

3
6

3 3
6 " "

" 6
6 6" 5

6" 5= = .

Evidently the operator  is completely antisymmetric:i iZ Z6 "
‰ â ‰

i i i i i i i iZ Z Z Z Z ZZ Z6 : ; " ; "6 :
‰ â ‰ ‰ â ‰ ‰ â ‰ œ  ‰ â ‰ ‰ â ‰ ‰ â ‰ .

It is readily observed that for  vector fields , we5 Z ß á ß Z ß Z ß á ß Z" 6 6" 5

obtain

       . (5.4.6)Ð ‰ â ‰ ÑÐ ÑÐZ ß á ß Z Ñ œ ÐZ ß á ß Z ß Z ß á ß Z Ñi iZ Z 6" 5 " 6 6" 56 "
= =

If we take , we conclude that6 œ 5

Ð ‰ â ‰ ÑÐ Ñ œ @ @ â@ œ ÐZ ß Z ß á ß Z Ñi iZ Z 3 3 â3 " # 5
3 3
" #

3
55 " " #

" # 5
5

= = = .

Thus the successive interior products of a -form with  ordered vector5 5
fields yields the value of this form on these vectors. If , then the suc-6  5
cessive interior products of a -form with  vectors vanishes identically.5 6

It follows from the definition (5.4.2) that

i

i i

i i

Z Z 33 3 â3" #
3 3 3 3 3

Z Z

0Z Z
3 3 3 3

33 3 â3

" # " # 5"
" # 5"

" #

" # 5"
" # 5"

Ð Ñ œ Ð@  @ Ñ .B • .B • â • .B
"

Ð5  "Ñx

œ Ð Ñ  Ð Ñ

Ð Ñ œ 0@ .B • .B • â • .B œ 0 Ð Ñ
"

Ð5  "Ñx

= =

= =

= = =

,

.

Since these relations are valid for every form , then we reach to= A− ÐQÑ
the following properties:

i i i i iZ Z ZZ 0Z Z" # #"
œ  ß œ 0 . (5.4.7)

Next, let us assume that the forms  and  satisfy the degree condition= H
./1 Ð Ñ Ÿ ./1 Ð ÑH = =. If we can find a form  so that one is able to write"

= = H H =œ •" , the form  is called a  of the form . It is obvious thatdivisor
./1 Ð Ñ œ ./1 Ð Ñ  ./1 Ð Ñ= = H" .

Theorem 5.4.1. -  A form is a divisor of a form   with" !H = AÁ − ÐQÑ
non-vanishing degree if and only if .= H• œ !

Evidently, this is the necessary condition. If we can write ,= = Hœ •"

then we obtain  since . We now prove= H = H H• œ • • œ !" H A− ÐQÑ"
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that it is also the sufficient condition. Let us write .H Hœ .B ß 3 œ "ß á ß 73
3

Since , at least one of the coefficients should be different from zero.H Á !
By changing the ordering, if necessary, we take . Let us choose aH" Á !
new basis in  as follows X ÐQÑ‡

) ) )" # # 7 7œ œ .B ß á ß œ .BHß .

The transformation of bases is designated by

Ô × Ô ×Ô ×Ö Ù Ö ÙÖ ÙÖ Ù Ö ÙÖ Ù
Õ Ø Õ ØÕ Ø
)

)

)

" "

# #

7 7
ã ã

œ

â .B
! " â !
ã ã ã ã
! ! â "

.B

.B

H H H" # 7

.

Since , the determinant of the matrix of transformation does notH" Á !
vanish. Hence, the inverse transformation becomes

.B œ   â  ß .B œ ß 3 œ #ß á ß 7
"" # 7 3 3

H H H
H

H H

" " "

# 7
) ) )

On inserting these -forms into  and noting that the square of a -form is" "=
zero, we arrive at the expression

= = H =œ • " #

where we must have  and . The./1 Ð Ñ œ ./1 Ð Ñ  " ./1 Ð Ñ œ ./1 Ð Ñ= = = =" #

form  is not included in forms  and . We thus getH = =" #

! œ • œ • •  • œ •= H = H H = H = H" # #

whence we deduce that . Hence, one writes . = = = H# "œ ! œ • 
An immediate corollary of this theorem can be expressed in the follow-

ing manner:  If linearly independent forms areH H H A" # < "ß ß á ß − ÐQÑ
divisors of a form , then the form is also a= A H H H− ÐQÑ • • â •5 " # < 
divisor of .=

Indeed if  is a divisor, then we write  and .H = H = = H" " "
"• œ ! œ •

Since  is also a divisor, the relation   shouldH = H = H H# # " #
"! œ • œ • •

be satisfied. But  and  are linearly independent so that .H H H H" # " #• Á !
Consequently, we find . Thus  must be a divisor of .= H H =" "

# #• œ !
Hence, we have to write . Continuing this way, we reach to= = H" #

#œ •
the result

= = H H Hœ • • • â • .<
<" # 

If , then the condition  which secures that -= A = H− ÐQÑ • œ ! "5

form  is a divisor of  is cast into the relationH =
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"

5x
.B • .B • â • .B • .B œ != H3 3 â3 3

3 3 3 3
" # 5

" # 5

whence we deduce that the following  expressionsŒ 7

5  "

H =[ ]3 3 3 â3" # 5
œ !. (5.4.8)

should be satisfied.
We can easily identify through the interior product whether a given -5

form is simple.
Theorem 5.4.2.  Let be a non-zero form. We construct a= A− ÐQÑ5

form  as followsH A− ÐQÑ1

H œ Ð ‰ â ‰ ‰ ÑÐ Ñi i iZ Z Z5" # " =

where . The form  is simple if and only if Z ß Z ß á ß Z − X ÐQÑ" # 5" = = H•
œ ! for all vector fields .Z ß Z ß á ß Z − X ÐQÑ" # 5"

To show that this is the necessary condition, let us suppose that is a= 
simple form, in other words, it is expressible as = œ • • â •= = =" # 5

where , . Next, we shall try to determine a basis =< − A1ÐQÑ < œ "ß á ß 5
ÖY ß á ß Y ß Y ß á ß Y × X ÐQÑ" 5 5" 7   of the tangent bundle  in such a way
that they possess the following properties:

iY
< <

!
Ð Ñ œ ß < œ "ß á ß 5à œ "ß á ß 5ß 5  "ß á ß 7= $ !! .

To this end, let us write  and  in terms of local coor-Y œ ? `! !
3

3 = =< < 3
3œ .B

dinates. Since , the forms  are linearly independent. Therefore, the= =Á ! <

rank of the  matrix  is . We then split the relation 5 ‚ 7 Ò Ó 5 Ð Ñ œ=3
< iY

<
! =

=3
<? œ ß 3 œ "ß á ß 7! !

3 <$  into following expressions

= =

= =
E
< <

E
< <

?  ? œ ß <ß =ß E œ "ß á ß 5à œ 5  "ß á ß 7ß

?  ? œ !ß <ß E œ "ß á ß 5à ß œ 5  "ß á ß 7
= = =
E <

E
>

>

>

? ?
>

$ >

> ? .

(5.4.9)

We may assume without loss of generality that . We thus obtaindet Ò Ó Á !=E
<

from (5.4.9) that

? œ Ð Ñ  Ð Ñ ? ß

? œ  Ð Ñ ?
= = < =
E E E

E E
<

= =

=

" "

"

=

=
>

>

<

<

>

? ?
> .

On defining

H = => >
E E <

<œ  Ð Ñ" ,
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we find that

? œ Ð Ñ  ? ß ? œ ?< < <
E E E E E= H H"

> ? > ?
> > .

Hence, the basis vectors  meeting the desired conditions can now be ex-Y!

pressed as

Y œ ? œ ?  ?
` ` `

`B `B `B

œ Ð Ñ  ?  ? ß
` `

`B `B

Y œ ? œ ?  ?
` ` `

`B `B `B

œ ?  Þ
` `

`B `B

< < < <
3 E

3 E

< < <
E E

E

3 E
3 E

E
E

>
>

>
> >

>

> > > >
?

?

> ?
?

?

 ‘

 ‘

= H

H

"

If we introduce vectors  and  by[ [E >

[ œ ß [ œ 
` ` `

`B `B `B
E E E

E
> > >H

we obtain

Y œ Ð Ñ [  ? [ ß Y œ ? [< < <
E

E=" > ?
> > > ?

where  and  are arbitrary matrices. We observe at once that Ò? Ó Ò? Ó 7<
> ?

>

vectors  are linearly independent. If we restrict the arbitrarinessÖ[ ß [ ×E >

of the square matrix  such that it has a non-zero determinant, then theÒ? Ó>
?

vectors  turn out to be linearly independent. Consequently, any vectorÖY ×!
field  with  can now be expressed as a linear combinationZ E œ "ß á ß 5E

Z œ - Y œ - Y  â  - YE E E E
" 7

" 7
!

!

where  are arbitrary coefficient functions- ß œ "ß á ß 7à E œ "ß á ß 5E
! !

from which we get

i iZ Z

<œ"

5
<"

<œ"

5
<" <

E

<œ"

5
<" <

E

E E
Ð œ Ð"Ñ Ð Ñ • • • • â •

œ Ð"Ñ - • • • • â •

œ Ð"Ñ - • • • • â •

= = = = = =

= = = =

= = = =

Ñ â

â

â

"
"
"

< " <" <" 5

" <" <" 5

" <" <" 5

!
!$

.
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Therefore, the -form  is now a linear combination of  Ð5  "Ñ Ð 5iZ"
=Ñ simple

Ð5  "Ñ-forms. When we apply the operator  to this form, we see that thei
Z#

Ð5  #Ñ Ð ‰ ÑÐ Ñ 5 Ð5  #Ñ-form  is the linear combination of   -i iZ Z# "
= simple

forms. On continuing this way by applying the operators i iZ Z" 5"
ß á ß  suc-

cessively to the form , we reduce the form  to the linear combination of= H
5 " number of -forms :=<

H = =œ œÐ ‰ â ‰ ÑÐ • â • Ñ œ  â  Þi iZ Z < " 5
< " 5

5" "

" 5 - = - = - =

We thus conclude that

= H - = - =• œ • â • • Ð  â  Ñ œ != =" 5
" 5

" 5 .

In order to show sufficiency, we consider the -form5

 = = Aœ Ð Ñ .B • â • .B − ÐQÑ
"

5x
3 â3

3 3 5
" 5

" 5x

and the -form"

H œ Ð ‰ â ‰ ÑÐ Ñ œ @ â@ .B − ÐQÑi iZ Z 3 â3 3
3
"

3
5"

3 "
5" " " 5" 5

" 5" 5= = A

which is made up by interior products with arbitrary vector fields Z ß á ß"

Z5". Let us then write

= H = =• œ @ â@ .B • â • .B • .B œ !
"

5x
3 â3 4 â4 4

4 4
" 5"

3 3 4
" "5 5" 5

" 5" " 5 5 .

Since this equality must be satisfied for all vector fields , weZ ß á ß Z" 5"

arrive at the conditions

= =3 â3 4 â4 4
3 3 4

" "5 5" 5
" 5 5.B • â • .B • .B œ !

leading to

= =4 â4 4 3 â3" "5" 5 5[ ] œ !. (5.4.10)

These conditions require that the completely antisymmetric coefficients
=3 â3" 5

 have to satisfy certain quadratic equations whose number is clearly

Š ‹Œ 7 7

5  " 5  "
. We shall now attempt to recognise the result brought

about by these equation in a somewhat indirect way. Since we have presum-
ed that , we can select  by renaming, if necessary, recip-= =Á ! Á !"# â 5

rocal basis vectors. We then define the following -forms"
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H = H = H =" 3 # 3 5 3
3#$ â5 "3$ â5 "#$ â5"3œ .B ß œ .B ß á ß œ .B .

Therefore, we can write with  and < œ "ß á ß 5 œ 5  "ß á ß 7>

H = =

= = =

< <
"#$ â5 "#$ â â5

<

"#$ â5 "#$ â5"â5 "#$ â7â5
< 5" 7

< <

œ .B  .B

œ .B  .B  â  .B

>
>

l

l l

(5.4.11)

These forms are linearly independent. In fact, if we write  where- œ !<
<H

- ß < œ "ß á ß 5<  are arbitrary coefficient functions, the relation

- œ - .B  - .B œ !< "#$ â5 < "#$ â â5 <
< <

<œ"

5

<

H = =" >
>

l

requires that . On the other hand, a proper choice of- œ !ß < œ "ß á ß 5<

indices  in (5.4.10) leads to the relations4 ß 4 ß á ß 4" # 5"

= = = =

= =
#$ â5 3 3 â3 "$ â 5 3 3 â3

"#$ âÐ5"Ñ 3 3 â3

[ ] [ ]

[ ]

" "5 5

" 5

œ !ß œ !ß á ß

œ !Þ

In view of (5.4.8), we infer that the -forms  are divisors of" ß ß á ßH H H" # 5

the form . Since these forms are linearly independent, we conclude that=
= -H H -œ • â •" 5 . The factor  can be found by equating coefficients of
the form  in both sides of this expression. Utilising (5.4.11),.B • â • .B" 5

we end up with

-
=

œ
"

Ð Ñ"#$â5
5"

.

Hence, on defining , we get= -H = H = H" # 5 5œ œ œ" #ß ß á ß

= = = =œ • • â •" # 5 

Example 5.4.2. We consider the form .= = Aœ .B • .B − ÐQÑ"
# 34

3 4 #

The requirement that this form is to be a simple form can be written from
(5.4.10) as follows

= = = = = = = =3 4 56 34 56 35 64 36 45[ ] œ !   œ !  or  .

When this condition is met, we obtain

H = H =" 3 # 3
3# "3œ .B ß œ .B

if we take . Then we find that="# Á !
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H H = = = =

= = = =

" # 3 4 3 4
3# "4 3# "4

3# "4 4# "3
3 4

• œ .B • .B œ .B • .B

œ Ð  Ñ .B • .B
"

#

[ ]

.

 On the other hand, the coefficients  are satisfying the relations=34

= = = = = = = = = = = =3# "4 3" 4# 34 #" 3# "4 4# "3 34 "#  œ   œ !

so that we obtain . This yields= = = = = =3# "4 4# "3 "# 34 œ

= H H =œ • Î ." #
"#

Hence, if we choose

= H = = H" " # #
"#œ Î œ and ,

we find that

= = =œ • ." # è

5.5. BASES INDUCED BY THE VOLUME FORM

The non-zero -volume form  on an -dimensional manifold 7 7 Q.
was introduced by (5.2.5). On using Levi-Civita symbols defined in . 31,:
this form can also be expressed as

. œ .B • .B • â • .B

œ / .B • .B • â • .B
"

7x

" # 7

3 3 â3
3 3 3

" # 7
" # 7 .

Our aim is to derive a new set of basis forms for the exterior algebra that
may prove to be more advantageous in certain cases than the natural basis.
However, to fulfil this task, we have to reveal some novel properties of the
generalised Kronecker deltas introduced previously by the expression
(1.4.6):

$

$ $ $

$ $ $

$ $ $

4 4 â4
3 3 â3

4 4 4
3 3 3

4 4 4
3 3 3

4 4 4
3 3 3

" # 5

" # 5

" #

" " "

5

" #

# # #

5

" #

5 5 5

5

œ

â

â

ã ã ã

â

â ââ ââ ââ ââ ââ ââ ââ ââ ââ â
. (5.5.1)

If we expand the  symbolic determinant (5.5.1) with respect to its first5 ‚ 5

row, we obtain the following expression by adopting the convention that $4
3

!

<
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does not exist

$ $

$ $ $ $

$ $ $ $

$ $

4 4 â4 4
3 3 â3 3

6œ"

5
6"

4 4 4 4
3 3 3 3

4 4 4 4
3 3 3 3

6œ"

5
6"

4 4 â4 4 â
3

" # 5 6

" # "5
"

# # # #

6" 6" 5

"

5 5 5 5

6" 6" 5

6 6" 6"

"

"

œ Ð"Ñ

â â

ã ã ã ã ã ã

â â

œ Ð"Ñ

" Ô ×Ö Ù
Õ Ø

"
4

3 â3 3 3 â3

4 4 â4 4 4 â4 4 â4
3 3 â3 3 3 â3 3 3 â3

6œ#

5
6"

5

# 6" 6 6" 5

" # "

" # " #

5 6 6" 6" 5

5 6" 6 6" 5œ  Ð"Ñ$ $ $ $" .

On the other hand, for  we can write6   #

Ð"Ñ œ Ð"Ñ

œ Ð"Ñ

œ

6" 6"6#
4 4 â4 4 â4 4 â4 4 4 â4
3 â3 3 3 â3 3 â3 3 3 â3

#6$
4 â4 4 4 â4
3 â3 3 3 â3

$ $

$

" # # "6" 6" 5 6" 6" 5

# #6" 6 6" 5 6" 6 6" 5

# "6" 6" 5

# 6" 6 6" 5

 $4 â4 4 4 â4
3 â3 3 3 â3

# "6" 6" 5

# 6" 6 6" 5

and find

$ $ $ $ $

$ $ $ $ $ $

4 4 â4 4 4 â4 4 4 â4 4 4 â4
3 3 â3 3 3 â3 3 3 â3 3 3 â3

6œ#

5

4 4 â4 4 4 4 â4 4 4 4 4 â
3 3 â3 3 3 3 â3 3

" # " # # "5 5 6 6" 6" 5

" # " # " #5 5 6" 6 6" 5

" # # " $ $ # " %

" # " # $ "

5 5

5 5

œ 

œ  

"
4 4 4 4 â4 4

3 3 3 â3 3 3 3 â3 3

5 5 5"

# $ % " # $5 5" 5

# $ "
 â$ $ .

(5.5.2)

On making a contraction on the indices  and  in (5.5.2) by taking3 4" "

3 œ 4" ", we arrive at

$ $ $

$

3 4 â4 4 â4 4 â4
3 3 â3 3 â3 3 â3

4 â4
3 â3

" # # #5 5 5

" # # #5 5 5

# 5

# 5

œ 7  Ð5  "Ñ

œ Ð7  5  "Ñ .

(5.5.3)

 When we repeat this operation  times, we conclude that<

$

$

3 â3 4 â4
3 â3 3 â3

4 â4
3 â3

" < <" 5

" < <" 5

<" 5

<" 5

œ

Ð7  5  "ÑÐ7  5  #ÑâÐ7  5  <Ñ .

(5.5.4)

Let us next take  in the expression above. We thus conclude that5 œ 7
(5.5.4) then yields

$ $3 â3 4 â4 4 â4
3 â3 3 â3 3 â3

" < <" 7 <" 7

" < <" 7 <" 7œ <x (5.5.5)

so one deduces that
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$3 3 â3
3 3 â3

" # 7

" # 7 œ 7x. (5.5.6)

We know from (1.4.16) that we can write

$4 4 â4
3 3 â3 3 3 â3

4 4 â4" # 7

" # 7 " # 7
" # 7

œ / / . (5.5.7)

Hence, making use of (5.5.5) we can reach to the relation

$4 â4
3 â3 3 â3 3 â3

4 â4 3 â 3" <

" < " < <" 7
" < <" 7

œ / /
"

Ð7  <Ñx
.

We now define  number of -forms as follows7 Ð7  "Ñ

. . A3 33 â3`
3 3 7"œ Ð / .B • â • .B − ÐQÑ

"

Ð7  "Ñx
i

3 # 7
# 7Ñ œ . (5.5.8)

Let us next evaluate the exterior product of a form  with  to obtain.3
4.B

.B • œ / .B • .B • â • .B
"

Ð7  "Ñx

œ / / .B • .B • â • .B
"

Ð7  "Ñx

œ œ
" Ð7  "Ñx

Ð7  "Ñx Ð7  "Ñx

œ − ÐQÑ

4 4 3 3
3 33 â 3

33 â 3
43 â3 " # 7

33 â3 3
43 â3 4

3
4 7

.

$ . $ .

$ . A

# 7
# 7

# 7
# 7

# 7

# 7 .

(5.5.9)

We now write  where  are arbitrary functions. The exterior- œ ! -3 3
3.

product of this zero form with  is.B4

! œ - .B • œ - œ -3 4 3 4
3 3

4
. $ . ..

Since,  does not vanish we deduce that . Thus . - œ !ß 4 œ "ß á ß 7 74

forms  are linearly independent and they constitute a basis. A3
7"− ÐQÑ

for the module .A7"ÐQÑ
We shall now try to determine top-down generated bases for the

modules  for  in an exactly similar fashion. ToA75ÐQÑ 5 œ !ß "ß á ß 7
this end, we introduce the forms

. .

A

3 3 â3 ` ` `

3 â3 3 â3
3 3 75

5 5" " 3 3 35 5" "

" 75 5"
5" 7

œ Ð ‰ ‰ â ‰ ÑÐ

/ .B • â • .B − ÐQÑ

i i i Ñ

œ
"

Ð7  5Ñx
.

(5.5.10)



5.5  Bases Induced by the Volume Form 239

Because of the properties of the interior product, these forms have to be
completely antisymmetric:

. .3 3 â3 3 3 â35 5" 5 5"" "œ [ ].

Therefore, the number of their independent components is Š ‹7

5
œ

Š ‹7

7  5
ÐQÑ which is equal to the dimension of the module . ByA75

adopting the convention , the definition (5.5.10) leads to. .3!
œ

. .3 3 â 3 3 â 3`5 5" 5"" "35
œ Ð Ñß " Ÿ 5 Ÿ 7i . (5.5.11)

On using Levi-Civita symbols, we obtain from (5.5.10) that

/ œ .B • â • .B

œ .B • â • .B
5x

œ 5x .B • â • .B

œ 5x .B

3 â3 4 â4 3 3
3 â3 3 â3 3 â3

3 â3 4 â4

3 â3
4 â4 3 3

4 4

4

" 7 75 5" 5"
5 " " 75 5"

" 75 5"

5" 7

5" 7 5" 7

5" 7

. $

$

"

Ð7  5Ñx

Ð7  5Ñx

 

 

[ ]

5" 7• â • .B4

where we have employed (1.4.8). We thus find the inverse relation

.B • â • .B œ /
"

5x
3 3 3 â3 3 â3

3 â3
5" 5 5"7 " 7

5 ". . (5.5.12)

Let us now choose , namely, . In this case the form7  Ð5  6Ñ Ÿ 7 6 Ÿ 5

.B • â • .B •4 4
3 â3

" 6
5 "

.

becomes obviously a -form. The explicit evaluation of that formÐ7  5  6Ñ
by making use of (5.5.10) and (5.5.12) gives

.B • â • .B •

œ / .B • â • .B • .B • â • .B

œ / /

œ

4 4
3 â3

3 â3 3 â3
4 4 3 3

3 â3 3 â3 = â=
= â= 4 â4 3 â 3

" 6
5 "

" 75 5"
" 76 5"

" 7 "5 5" 56
" " 756 6 5"

.

.

"

Ð7  5Ñx
" "

Ð7  5Ñx Ð5  6Ñx
"

Ð5  6Ñx
 $ .3 3 â3 3 3

= â= 4 â4
= â=" # 5# 5" 5

" "56 6

56 "
.                                      (5.5.13)

If we take , then (5.5.13) leads to6 œ 5

.B • .B • â • .B • œ4 4 4
3 â3 3 3 3 â3

4 4 â4
" # 5

5 # " " # 5

" # 5. $ . (5.5.14)
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since we have assumed that . After having this relation on hand, we. .=!
œ

can easily demonstrate that the forms  constitute a basis for the mo-.3 â35 "

dule . Let us writeA75ÐQÑ

- œ !3 â3
3 â3

" 5
5 "

.

where  are arbitrary smooth functions. It is obvious that we can select-3 â3" 5

the coefficient functions  as being completely antisymmetric, that is,-3 â 3" 5

satisfying relations

- œ -3 â 3 3 â 3" "5 5[ ]

without loss of generality. The exterior product of the above linear combi-
nation with the form  yields due to (5.5.14).B • â • .B4 4" 5

$ . .

.

3 3 â3
4 4 â4 3 â3 3 â3

3 â3
" # 5

" # 5 " "5 5

" 5

- œ 5x -

œ 5x - œ !

[ ]

.

Since , we then deduce that all coefficients vanish, i.e., .. Á ! - œ !3 â3" 5

Therefore, the forms  are linearly independent so they constitute a.3 â35 "

basis of the module . Consequently, we obtain the following se-A75ÐQÑ
quence of   for modules , , ,top down generated bases A A7 7"ÐQÑ ÐQÑ á
A A A .# " !ÐQÑ ÐQÑ ÐQÑ, , from the volume form : 

A .

A . .

A . .

7 3 3 3
3 3 â3

7" 3 3
3 33 â3`

7# 3 3
43 3 343 â3`

ÐQÑ À œ / .B • .B • â • .B ß
"

7x

ÐQÑ À œ Ð / .B • â • .B ß
"

Ð7  "Ñx

ÐQÑ À œ Ð / .B • â • .B ß
"

Ð7  #Ñx

" # 7
" # 7

3 # 7
# 7

4 $ 7
$ 7

i

i

Ñ œ

Ñ œ

ã
A . .

A . .

A .

75
3 3 â3 3 â3`

3 â3 3 â3
3 3

" 3
3 â3 3 â3 3 â3 3`

!
3 â3

ÐQÑ À œ Ð Ñ

œ / .B • â • .B ß

ÐQÑ À œ Ð œ / .B ß

ÐQÑ À

5 5" 5"" "35

" 75 5"
5" 7

7" " 7# " " 7" 737"

7

7 "

i

i

"

Ð7  5Ñx

Ñ

ã

œ / œ „ "Þ3 â3" 7

If we take  in (5.5.13) and utilise (5.5.2) the following result6 œ "
comes out



5.5  Bases Induced by the Volume Form 241

.B • œ
"

Ð5  "Ñx

œ
"

Ð5  "Ñx

œ 
"

Ð5  "Ñx

3
3 â3 4 â43 â3 3

4 â4 3

3 3 â3 4 â4
34 â4 4 4 â4

3 3 3 â3 3
3 4 4 â4 3

3 3

. $ .

$ .

$ $ $ $

5 5"" "" 5" 5

" 5"

5 5" 5"" "

" " #5" 5"

5 5"" # "

" # 5"

5’ # 5"

# " " #5 5" 5" 5

" # " #5" 5"

5" "

5 5"5" 5" 5 5" 5# " # "" #

â3

3 3 3 â3 3 3 3 â3
3 4 4 â4 3 4 4 â4

4 â4

3 3 3 3
3 3 3 3

3 â3 3 3 â3 3 3 â3 3 3

  â  œ

   â 

$ $ $ $ .

$ . $ . $ . $ .

“
[ ] [ ] [ ] [ 5 # "

5 5" 5" 5# " #"

# 5" 5 5" # "5"

â3 3

3 3
3 3

3 â3 3 3 â3 3

3 3
3 3

3 â3 3 3 â3 3

]

œ 

  â 

$ . $ .

$ . $ .                                                    .

Finally, we observe that we can write

.B • œ 53
3 â3 3 â3 33

3
. $ .

5 5"" # "5[ ] (5.5.15)

because of the complete antisymmetry of forms  with respect to its.3 â3 35" # "

5  " indices. Indeed, we find that

5 œ
5

5x

œ
"

Ð5  "Ñx

$ . $ $ .

$ .

[ ]

.

3
3 4 â4 4 3

3 â3 3 4 â43 â3 3 4

3 â3 3
4 â4 3

4 â4

5 5" 5"# " "" 5" 5 5

" 5" 5

" 5" 5

" 5"

5" "

For instance, we have the relations

.B • œ # œ  ß

.B • œ $ œ  

3
45 5 5 44

3 3 3
4 5

6
543 43 43 35 545 5

6 6 6 6
4 3

. $ . $ . $ .

. $ . $ . $ . $ .

[ ]

[ ] .

(5.5.16)

Thus, a form  is also expressible as= A− ÐQÑ75

= = .œ Ð Ñ
"

5x
3 3 â3

3 â3 3
" # 5

5 # "
x (5.5.17)

where the functions  are completely antisymmetric, that is,= A3 3 â3 !" # 5 − ÐQÑ
they satisfy the relation .= =3 3 â3 3 3 â3" # " #5 5œ [ ]

On utilising this representation, we can readily prove that every form in
A7"ÐQÑ is simple. A non-zero form  can now be expressed= A− ÐQÑ7"

as . If -form  is a divisor of the form , then the= = . H H =œ " œ .B3 4
3 4

relation  or  must hold.H = H = . H = $ . H = .• œ ! .B • œ œ œ !4 3 4 3
3 4 3 3

3
4

This means that . Since we haveH = H = H = H =3 " # 7
3 " # 7œ   â  œ !
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supposed that , then at least one coefficient does not vanish. Without= Á !
loss of generality, we may choose that the coefficient  is different from=7

zero. We thus obtain

H H H H
= = =

= = =
7 " # 7"

" # 7"

7 7 7
œ    â  

and inserting this expression into the form , we getH

H H H
= =

= =
œ Ð.B  .B Ñ  â  Ð.B  .B Ñ" 7"

" 7 7" 7
" 7"

7 7
.

Next, we define  linearly independent -forms by7  " "

H = = H H
= =

= =
" 7 " " 7 # # 7 7" 7" 7

# 7"

7 7
œ .B  .B ß œ .B  .B ß á ß œ .B  .B

Each one of these forms divides the form . Hence, we can write=

= œ • • â •H H H" # 7". 

The interior product of a vector  with a form Z œ @ ` − ÐQÑ3 75
3 = A

can now be expressed as follows

i iZ 3 â3 3 33 â3 3
3 3 3 â3 3 3 3 â3

3 3 3 â3 7Ð5"Ñ
33 â3 3

Ð Ñ œ @ Ð Ñ œ @
" "

5x 5x

œ @ − ÐQÑ
5  "

Ð5  "Ñx

= = . = .

= . A

" # " #5 5
5 5# " # "

" # 5
5 # "

`3

[ ] .

It is clear that a form  can hereby be represented by= A− ÐQÑ75

resorting to two different bases as given below:

= = . =œ œ .B • â • .B
" "

5x Ð7  5Ñx
3 â3 3 3

3 â3 3 â3
" 75 5"

5 5"" 7
.

When we employ (5.5.10) it follows from this expression that

"

5x
/ .B • â • .B œ

"

Ð7  5Ñx
.B • â • .B

"

Ð7  5Ñx
=

=

3 â3 3 3
3 â3 3 â 3

3 â3
3 3

" 75 5"
" 75 5"

5" 7
5" 7

so that coefficient functions are interrelated by

= =3 â3 3 â3 3 â3
3 â3

5" 5 5"7 " 7
" 5œ /

"

5x
(5.5.18)



5.5  Bases Induced by the Volume Form 243

After having performed some operations involving Levi-Civita symbols, we
readily get

= $ =

$ =

=

=

3 â3
4 â4 3 â3 3 â3

3 â3 3 â3
4 â4 3 â3

3 â3
4 â4 3 â3

4 â 4

4 â4

5" 7
" 7 "5 5" 5

" 75 5"

" 75 5"

" 5

" 5 " 5

" 5

" 5

/ œ
"

5x

œ Ð7  5Ñx
"

5x
œ Ð7  5Ñx

œ Ð7  5Ñx

[ ]

and we finally reach to the inverse relation

= =4 â4 4 â4 3 â3
3 â3

" " 75 5 5"
5" 7

œ /
"

Ð7  5Ñx
. (5.5.19)

Let us consider a form  given by= A− ÐQÑ5

= =œ Ð Ñ .B • â • .B
"

5x
 3 â3

3 3
" 5

" 5x

in the natural basis. On using the same functions , but transferring=3 â3" 5

lower indices to upper indices to comply with the Einstein summation con-
vention in its usual fashion, we may define a form  asso-‡ − ÐQÑ= A75

ciated with the form  by the relation= A− ÐQÑ5

‡ œ
"

5x
= = .3 3 â3

3 â3 3
" # 5

5 # "
. (5.5.20)

The form  so obtained will called the of the form . This‡= =Hodge dual 
concept was first introduced by English mathematician William Vallance
Douglas Hodge (1903-1975). We investigate properties of the Hodge dual a
little bit later within the context of the Riemannian manifolds in detail and
put the operation of raising the indices of component functions on a more
solid foundation. Let us just point out that, according to (5.5.14) one is able
to write

= = = = .

$ = = .

= = .

= = .

• ‡ œ .B • â • .B •
"

5x

œ
"

5x

œ
"

5x

œ
"

5x

Š ‹
Š ‹

#

4 â4 3 â3
3 â3 4 4

#

3 â3
4 â4

4 â4
3 â3

3 â3
3 â3

3 â3
3 â3

" "5 5
" "5 5

" 5

" 5

" 5
" 5

" 5
" 5

" 5
" 5

[ ]

.
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As an example, consider a -form . We then obtain" œ .B= =3
3

‡ œ œ / .B • â • .B − ÐQÑß
"

Ð7  "Ñx
= = . = A3 3 3 3 7"

3 33 â3# 7
# 7

and consequently

= = = = .• ‡ œ Þ3
3

5.6. IDEALS OF THE EXTERIOR ALGEBRA AÐQÑ

Since  is an algebra, it is quite natural that we look for its ideals.AÐQÑ
A subset, or more precisely a subalgebra, of the exterior algebra  isAÐQÑ
called an  ( ) of  if it satisfies the conditionsideal \ Ahomogeneous ideal ÐQÑ
below:

Ð3ÑÞ

Ð33ÑÞ

 .

 
       

For every forms  of the same degree, one has 
If  , then one has  for
all

! " \ ! " \

! \ # ! ! # \

ß −  −

− • œ Ð"Ñ • −Ð./1 ÑÐ./1 Ñ# !

 # A− ÐQÑ.

We see that only the sum of forms of the same degree in  is allowed. That\
is the reason why we call the ideal  as a . It is quite\ homogeneous ideal
obvious that it is not possible for elements of the ideal to escape outside this
subalgebra by means of exterior product.

Let us now consider some  members  of the exterior< ß ß á ß! ! !" # <

algebra  that can be of diverse degrees and construct all forms in theAÐQÑ
following shape

" # ! # ! # ! # Aœ •  â  • œ • ß − ÐQÑß + œ "ß á ß <" < + +
" < + . 

If the degree of the form  is , then it is evident that the degree conditions" :
given below must hold

./1  ./1 œ :ß ./1 Ÿ :ß + œ "ß á ß <# ! !+
+ +  .

We denote the collection of all members of  constructed this way byAÐQÑ
\ ! ! ! " " \Ð ß ß á ß Ñ" # < " #. Let two forms  and  of the same degree belong to .
Hence, we can write

" # ! " # ! # # A" + # +Ð"Ñ Ð#Ñ Ð"Ñ Ð#Ñ
+ + + +œ • ß œ • ß ß − ÐQÑ

so that we obtain

" " # # !" # +Ð"Ñ Ð#Ñ
+ + œ Ð  Ñ • .
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Since , we see that . Similarly, if  and# # A " " \ " \Ð"Ñ Ð#Ñ
+ +

" # − ÐQÑ  − −

5 A− ÐQÑ we have to write

5 " 5 # ! 5 # !• œ • Ð • Ñ œ Ð • Ñ •+ +
+ +

where . Since , we find that . These# A 5 # A 5 " \+ +− ÐQÑ • − ÐQÑ • −
clearly results indicate that the set  so constructed by given\ ! ! !Ð ß ß á ß Ñ" # <

forms that may be of various degrees is an ideal of the exterior algebra
A ! ! !ÐQÑ ß ß á ß. The forms  are then naturally called the  of" # < generators
the ideal .\

We say that an ideal  is generated by the forms   if each\ ! ! !" # <ß ß á ß
member of which is expressible as the sum of terms admitting at least one
member of the set  as an exterior factorÖ ß ß á ß ×! ! !" # < .

Example 5.6.1. Let us consider the exterior algebra  and theA ‘Ð Ñ%

coordinate cover  for the manifold . We want to deter-ÖB × œ ÖBß Cß Dß >×3 %‘
mine the members of the ideal generated by the forms

!

!

!

"

#

$
#

œ # .B  $C .Dß

œ B .C  D .>ß

œ B > .B • .>  > .C • .D.

Since the lowest degree of the generating forms is , then this ideal cannot"
contain -forms, namely, smooth functions. Forms with degrees higher than!
% are identically zero. We can classify the forms in the ideal according to
their degrees as follows:
" œ 0Ð# .B  $C .DÑ  1ÐB .C  D .>Ñß 0 ß 1 − Ð Ñ- :   forms " A ‘! %

#- :forms

" # ! # ! !œ •  •  0"
" # $

2

where

# A ‘+ + + + + + + + + ! %œ 0 .B  1 .C  2 .D  5 .>ß 0 ß 0 ß 1 ß 2 ß 5 − Ð Ñß + œ "ß #

so that we get

" œ Ð#1  B0 Ñ .B • .C  Ð$C0  #2 Ñ .B • .D

 ÐD0  #5  B >0Ñ .B • .>  Ð$C1  B2  >0Ñ .C • .D

 ÐD1  B5 Ñ .C • .>  Ð$5 C  D2 Ñ .D • .>

" # " "

# " # " #

# # " #

    

    

 - :$ forms

" # ! # ! # !œ •  •  •"
" # $

2
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where

#

A ‘

# A ‘

+ + + + +

+ + + + + + + + ! %

! %

œ 0 .B • .C  1 .B • .D  2 .B • .>  5 .C • .D

 6 .C • .>  7 .D • .>ß 0 ß 1 ß 2 ß 5 ß 6 ß 7 − Ð Ñß + œ "ß #

œ 0.B  1 .C  2 .D  5 .>ß 0 ß 1ß 2ß 5 − Ð Ñ

,

,

so that

" œ Ð$C0  #5  B1  >0Ñ .B • .C • .D

 Ð#6  D0  B2  B >1Ñ .B • .C • .>

 Ð$C2  #7  D1  B >2Ñ .B • .D • .>

 Ð$C6  D5  B7  >5Ñ

" " #

" # # #

" " # #

" # #

,

        ,

        ,

        .C • .D • .>.

%- :forms

" # ! # ! # !œ •  •  •"
" # $

2

where

#

A ‘

#

+ + + +

+ + + + + ! %

œ 0 .B • .C • .D  1 .B • .C • .>  2 .B • .D • .>

 5 .C • .D • .>ß 0 ß 1 ß 2 ß 5 − Ð Ñß + œ "ß #

œ 0.B • .C  1 .B • .D  2 .B • .>  5 .C • .D  6 .C • .>

 7 .D • .>  6 .C •

    ,

    .>  7 .D • .>ß 0 ß 1ß 2ß 5ß 6ß 7 − Ð ÑA ‘! % ,

so that

" œ Ð$C1  #5  D0  B2  >2  B >5Ñ .B • .C • .D • .>" " # # # . è

 Let  be an ideal. If two forms  of the same degree are\ ! " Aß − ÐQÑ
related by , we write  or, amounting to the same! " \ ! " \ − œ mod
thing, . When we consider such kind of forms  and ,  it! " \ ! " œ ! mod
becomes clear that we may use the representation # ! " \• Ð  Ñ œ ! mod
for all forms .# A− ÐQÑ

The  of a form  are defined ascharacteristic vector fields = A− ÐQÑ
vector fields satisfying the condition

iZ Ð Ñ œ != . (5.6.1)

These vectors belong to a subbundle of the tangent bundle . Indeed, inX ÐQÑ
view of (5.4.7), if   we then obtain  for alli i iZ 0Z ZÐ Ñ œ ! Ð Ñ œ 0 Ð Ñ œ != = =
0 − ÐQÑ Ð Ñ œ Ð Ñ œ ! Ð Ñ œ Ð Ñ A = = = =!

Z ZZ Z Z. Likewise, if  we get i i i i
" "# " #

iZ " ##Ð Ñ œ ! 0Z Z  Z= . Therefore vectors  and  are also characteristic vectors
of the form . We can easily demonstrate that if the rank of the form=
defined in Sec. 1.6 is , the number of linearly independent characteristic<
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vector fields turns out to be . Let us take the form  into7  < − ÐQÑ= A5

account. Then the relation

iZ 33 3 â3
3 3 3 3Ð Ñ œ @ .B • .B • â • .B œ !

"

Ð5  "Ñx
= =

" # 5"
" # 5"

results in . If we note that these@ œ !ß " Ÿ 3 ß 3 ß á ß 3 Ÿ 73
33 3 â3 " # 5"=

" # 5"

relations are identical with equations (1.6.3), we arrive at the fact that if the
form possesses  linearly independent characteristic vector fields, then7  <
its rank must be . This amounts to say that there are exactly  linearly< <
independent forms so that  is represented just as) A ! =! − ÐQÑß œ "ß á ß <"

in (1.6.6) by the expression

= = ) ) )œ • • â •
"

5x
! ! !

! ! !
" # 5

" # 5
â . (5.6.2)

When the rank  is equal to , then the characteristic vector can only be the< 7
zero vector.

Let  be an ideal of the exterior algebra . If a vector field\ AÐQÑ
Z − X ÐQÑ Ð Ñ − − satisfies the condition  for all forms , then it isiZ = \ = \
called a . If we recall the definitioncharacteristic vector field of the ideal1
of an ideal and properties of the interior product, we immediately recognise
that characteristic vector fields of an ideal form a submodule f \ ÉÐ Ñ © ÐQÑ
that is called the . We thus symbolicallycharacteristic subspace of the ideal
write  whenever .iZ Ð Ñ © Z − Ð Ñ\ \ f \

Theorem 5.6.1. Let  be an ideal of the exterior\ Ð Ñ= = =" # <ß ß á ß
algebra  generated by the forms  of the sameA = = = AÐQÑ ß ß á ß − ÐQÑ" # < 5

degree. A vector field  is a characteristic vector field of the idealZ − X ÐQÑ
\  if and only if  .iZ

+Ð Ñ œ !ß + œ "ß #ß á ß <=
We suppose that . If  then we need to iZ

+Ð Ñ œ !ß + œ "ß á ß < −= ! \ ,
write  where all forms  ought to have the same! # = # Aœ • − ÐQÑ+ +

+
 

degree. We thus obtain

i i i iZ Z + + Z Z +
+ ./1 + +Ð Ñ œ Ð Ñ •  Ð"Ñ • Ð Ñ œ Ð Ñ • −! # = # = # = \#+ .

Conversely, let us assume that  for all . Consequently, thisiZ Ð Ñ − −! \ ! \
property is also valid for the forms  where the functions! = Aœ 0 − ÐQÑ+

+ 5

0 − ÐQÑ Ð5  "Ñ+
!A  are arbitrary. However, it is not possible for -forms to

belong to the ideal. Therefore, we can only write . Hence, wei
Z

Ð Ñ œ !!
conclude that

1Sometimes it is called a  after Cauchy who hadCauchy characteristic vector field
introduced the concept of characteristics to partial differential equations.
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i iZ + Z
+Ð Ñ œ 0 Ð Ñ œ !! =

and  because the functions  are arbitrary.i
Z

Ð Ñ œ !ß + œ "ß á ß < 0=+
+ 

Naturally, Theorem 5.6.1 would also prevail for an ideal generated by
the forms . The characteristic vectors of such a= = = A" # < "ß ß á ß − ÐQÑ
special ideal will be called  the characteristic vectors of the exterior system
Ö − ÐQÑß + œ "ß á ß <×= A+ " .

Theorem 5.6.2.  The characteristic vectors of an exterior system
Ö − ÐQÑß + œ "ß á ß <× ÐQ= A É+ "  engender a submodule  of . If thef
forms are linearly independent, namely, if = = = =+ " # < ,H œ • • á • Á !
then the dimension of  is .f 7  <

We know that characteristic vectors of any ideal constitute a character-
istic subspace .f H If , then the -forms œ = = = =" # < "• • á • Á ! " ß á ß
=< are linearly independent. If we add  linearly independent -forms7  < "
= = A = =<" 7 " " 7ß á ß − ÐQÑ ß á ß  to those forms, then the forms  can now
be chosen as a basis for . As is well known, we can selectA" ‡ÐQÑ œ X ÐQÑ
a basis  in  so that  becomes reciprocal basis satisfying theÖZ × X ÐQÑ Ö ×3

3=
relations

iZ
3 3

4 4
3

4
Ð Ñ œ ÐZ Ñ œ ß 3ß 4 œ "ß á ß 7= = $ .

We thus get

iZ
3

4
Ð Ñ œ !ß 3 œ "ß á ß <à 4 œ <  "ß á ß 7= .

Therefore,  linearly independent vectors  are actually7  < Z ß á ß Z<" 7

characteristic vectors of the exterior system. On the other hand, because of
the relations

i i iZ Z Z
" # <

" # <
Ð Ñ œ Ð Ñ œ â œ Ð Ñ œ "= = =

the vectors  cannot be characteristic vectors of the exterior system.Z ß á ß Z" <

Hence, the dimension of the characteristic subspace  becomes  . f 7  < 
It is seen right away from above that the relations

iZ
3

4
Ð Ñ œ !ß 3 œ <  "ß á ß 7à 4 œ "ß á ß <=

together with

i i iZ
<" <# 7

Z Z<" <# 7
Ð Ñ œ Ð Ñ œ â œ Ð Ñ œ "= = =  

are satisfied as well. This amounts to say that the vector fields  areZ ß á ß Z" <

in turn characteristic vectors of the exterior system  whileÖ ß á ß ×= =<" 7

vectors  cannot be characteristic vectors of that systemZ ß á ß Z<" 7 . This
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means that the dimension of the characteristic subspace of the exterior sys-
tem  is . We can summarise the foregoing results by theÖ ß á ß × <= =<" 7

symbolic relations

A A A" " "
Ð<Ñ Ð7<Ñ Ð7<Ñ Ð<ÑÐQÑ œ ÐQÑ Š ÐQÑß X ÐQÑ œ X ÐQÑ Š X ÐQÑ.

Moreover, if we denote the interior product by the hook operator , we can©
also write

X ÐQÑ ÐQÑ œ !ß X ÐQÑ ÐQÑ œ !Ð7<Ñ Ð<ÑÐ<Ñ Ð7<Ñ
" "© ©A A

whence we readily reach to the following conclusion:
 -Let  be an ideal generated by forms and let  be a charac-\ Ð Ñ Z=+ "

teristic vector field of this ideal. If one has  for a formiZ Ð Ñ Á !=
= \− Ð ÑA =" +ÐQÑ, then this form cannot belong to the ideal  or, conversely,
it is not possible to get  if  iZ

+Ð Ñ œ != == \Â Ð Ñ.
Let the ideal  be generated by forms  of diverse\ = = A" <ß á ß − ÐQÑ

degrees. Then we can provide the theorem below for a systematic deter-
mination of its characteristic vectors.

Theorem 5.6.3. The necessary and sufficient conditions for a vector
Z − X ÐQÑ   to be a characteristic vector of the ideal is the\ = = =Ð ß ß á ß Ñ" # <

existence of forms  of suitable degrees such that the relations-,
+ − ÐQÑA

iZ
+ + ,

,Ð Ñ œ • ß +ß , œ "ß #ß á ß <= - =

are satisfied.
Let us suppose the vector field  holds the foregoing conditions. If Z =

is a member of the ideal, we can write , . Clearly,= # = # Aœ • − ÐQÑ+ +
+

one must have . We thus deduce that./1 Ð Ñ  ./1 Ð Ñ œ ./1 Ð Ñ# = =+
+

i i i
i

Z Z + + Z
+ ./1 Ð Ñ +

Z , +
./1 Ð Ñ + ,

,

Ð Ñ œ Ð Ñ •  Ð"Ñ • Ð Ñ

œ Ð Ñ  Ð"Ñ • • −

= # = # =

# # - = \

#

#

+

+ˆ ‰
which means that  is a characteristic vector. Conversely, if  is a charac-Z Z
teristic vector, then its interior product with any form in the ideal should lie
within the ideal. This rule will of course be valid for the generators  so=+

that one must find forms  so much so that the relations - = - =, ,
+ + + ,

Zi Ð Ñ œ •
will hold. 

If  is an -dimensional characteristic subspace of an ide-f \Ð Ñ © X ÐQÑ <
al , then for all  vectors 1\ flinearly independent Z ß á ß Z − ß Ÿ 5 Ÿ <" 5

and a form  we clearly get= \−

Ð ‰ â ‰ ÑÐ Ñ − ß Ÿ 5 Ÿ <i iZ Z5 " = \ 1 .
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We consider an ideal  of  generated by forms\ = = = AÐ ß ß á ß Ñ ÐQÑ" # =

of diverse degrees and assume that  is its characteristic subspace withf \Ð Ñ
dimension .  is brought forth by linearly independent vector7  < Ð Ñf \
fields . We can supply this set with arbitrary linearly independ-Z ß á ß Z<" 7

ent vector fields  to obtain a basis in the tangent bundle .Z ß á ß Z X ÐQÑ" <

We now pursue the path used in proving Theorem 5.6.2 to determine the
reciprocal basis  in the cotangent bundle  in) ) A" 7 " ‡ß á ß − ÐQÑ X ÐQÑ
such a way that we have

iZ
3 3

4
3

4
Ð Ñ œ Ð Ñ œ ß 3ß 4 œ "ß #ß á ß 7) ) $Z4 .

We thus obtain

iZ+Ð Ñ œ œ !ß + œ <  "ß á ß 7ß œ "ß á ß <) $ !! !
+  . (5.6.3)

This means that the same vectors  span the -Z ß+ + œ <  "ß á ß 7 Ð7  <Ñ
dimensional characteristic subspace of the ideal  generated by -] )Ð Ñ "!

forms . In other words, we conclude that .) ! f \ f ]!ß œ "ß á ß < Ð Ñ œ Ð Ñ 
The number is called the rank of the ideal < . Within this context, we can\
prove the following theorem.

Theorem 5.6.4. Let  be the -dimensional characteristicf \Ð Ñ Ð7  <Ñ
subspace of an ideal generated by forms  of\ = =Ð Ñ E œ "ß á ß =E E ,  
various degrees. There exist linearly independent -forms " ) !!ß œ "ß á ß <
and if the ideal generated by these -forms is then one finds , " ] )Ð Ñ!

\ = ] )Ð Ñ © Ð ÑE ! .
 If  is a basis of the characteristic subspaceZ ß á ß Z − X ÐQÑ<" 7

f \Ð Ñ X ÐQÑ, we first complete to a full basis of  as we have mentioned
above, then we can construct the reciprocal basis  of) ) A" 7 "ß á ß − ÐQÑ
X ÐQ 7  < 2 À ÐQÑ Ä ÐQÑ‡

+. We define  degree preserving mappings A A
where  by the rule+ œ <  "ß á ß 7

5 = = ) =+ + Zœ 2 Ð Ñ œ  • Ð Ñ+ i + (5.6.4)

Let us remember that the summation convention will be disabled on under-
scored indices. It is clear that  whenever . Next, we5 = \ = \+ +œ 2 Ð Ñ − −
consider a generator  of the ideal . Let us now introduce the forms = \ 5E E

+

œ 2 Ð Ñ œ  • Ð Ñ −+
E E E

Z= = ) = \+ i +  to find

i i i i iZ Z Z Z
E E E E

Z
#

+ + + +
Ð Ñ œ Ð Ñ  Ð Ñ Ð Ñ  • Ð Ñ œ !5 = ) = ) =+

+ +
+

where we have employed the relations  and . We see thati iZ Z
#

+ +
Ð Ñ œ " œ !)+

the definition  leads5 = 5 5 ) 5 \,+
E E E E E

, + , Z+ + +œ 2 ‰ 2 Ð Ñ œ 2 Ð Ñ œ  • Ð Ñ −, i
,

similarly to . Furthermore, since  we obtaini iZ Z
E E

, +Ð Ñ œ ! Ð Ñ œ !5 5,+ +
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i i i i i
i i

Z Z Z
E E , E E

+ + +Z Z

Z Z +
E

+ + , + ,

, +

Ð Ñ œ Ð Ñ  Ð Ñ  • ‰ Ð Ñ

œ  • ‰ Ð Ñ œ !

5 5 $ 5 ) 5

) 5

,+ +
,

,

for . These results clearly indicate that the forms, Á +

5 5 = \E E E
7â<" 7 <"œ œ Ð2 ‰ â ‰ 2 ÑÐ Ñ − (5.6.5)

will satisfy the relations

iZ
E

+Ð Ñ œ !ß + œ <  "ß á ß 7ß E œ "ß á ß =5    .

Thus, for all vectors  we find thatZ − Ð Ñf \

iZ
EÐ Ñ œ !ß E œ "ß á ß =5 . (5.6.6)

The rule of formation of the forms , which are of the same degree as the5E

forms  implies that . We now assume that .= \ = \ 5 5 AE E E E 5Ð Ñ œ Ð Ñ − ÐQÑ
When we choose the -forms  as a basis of , we" Ö À 3 œ "ß á ß 7× X ÐQÑ)3 ‡

can of course write

5 5 ) )E E 3 3
3 â3œ • â •

"

5x " 5

" 5 .

If we express a vector  as  and pay attention that theZ − X ÐQÑ Z œ @ Z3
3

vectors  and the forms  are reciprocal bases in  and ,ÖZ × Ö × X ÐQÑ X ÐQÑ3
3 ‡)

respectively, then we can describe the interior product of the form  with5E

the vector  as followsZ

iZ
E 3 E 3 3 3

33 3 â3Ð Ñ œ @ • • â •
"

Ð5  "Ñx
5 5 ) ) )

" # 5"

" # 5"

just as expressed in (5.4.2). On the other hand, when  we have toZ − Ð Ñf \
write . We thus getZ œ @ Z+

+

i
Z

Ð Ñ œ @ • • â • œ !
"

Ð5  "Ñx
5 5 ) ) )E + E 3 3 3

+3 3 â3" # 5"

" # 5"

since  for . That yields . Because this@ œ ! 3 œ "ß á ß < @ œ !3 + E
+3 3 â35

" # 5"

equality must be valid for every choice of functions , we find at@ − ÐQÑ+ !A
last that . Due to the complete antisymmetry of these func-5E

+3 3 â3" # 5"
œ !

tions with respect to its  indices, these relations would be met for all posi-5
tions of indices. This is tantamount to say that

53 3 â3
E

" # 5" # 5
œ !ß <  " Ÿ 3 ß 3 ß á ß 3 Ÿ 7.



252 V  Exterior Differential Forms

Therefore the forms  have to possess the following structure5E

5 5 ) ) ! ! !E E
â " # 5œ • â • ß " Ÿ ß á ß Ÿ <

"

5x ! !
! !

" 5

" 5

which implies that . This result means of course5 ] ) \ 5E E− Ð Ñ Ð Ñ ©!

] ) \ = ] )Ð Ñ Ð Ñ © Ð Ñ! ! and consequently . This proves the theorem.E 
Example 5.6.1. xLet us take the form  into= = Aœ Ð Ñ .B − ÐQÑ3

3 "

account. A vector  is a characteristic vector of theZ œ @ Ð Ñ ` − X ÐQÑ3
3x

form  if it meets the condition . If we take , we= = = =iZ 3 "
3Ð Ñ œ @ œ ! Á !

see that there are  linearly independent vectors7  "

Z œ  ß 5 œ #ß $ß á ß 7
` `

`B `B
5 " 55 "

= =

satisfying this condition. è

Example 5.6.2. An exterior system is given by the forms

= A ‘ = A ‘" " % # " %œ .B  C .D − Ð Ñ œ .B  B .C  > .D − Ð ÑÞ, 

If  is a characteristic vector of this system,Z œ @ `  @ `  @ `  @ `B C D >
B C D >

then the following equations should be satisfied:

@  C@ œ !ß @  B@  >@ œ !B D B C D .

We thus obtain

@ œ C@ ß @ œ @
C  >

B
B D C D.

Hence, two linearly independent characteristic vectors are found to be

Z œ C   ß Z œ
` C  > ` ` `

`B B `C `D `>
" # . è

Example 5.6.3. We consider the ideal generated by the forms

= A ‘ = A ‘" " % # " %œ .B  C .D − Ð Ñß œ > .B • .D  B .C • .> − Ð Ñ  

Its characteristic vector field  must satisfy the relations  andZ Ð Ñ œ !iZ
"=

i xZ
# " ! %Ð Ñ œ Ð Ñ − Ð Ñ= - = - A ‘ where  that can be written explicitly as

@  C@ œ !ß >@ .D  >@ .B  B@ .>  B@ .C œ .B  C .DB D B D C > - -

whence we find that

- œ  >@ ß @ œ C@ ß @ œ @ œ !D B D C > .
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Thus -dimensional characteristic subspace of the ideal is spanned by the"
vector field

Z œ C 
` `

`B `D
.

On the other hand, the characteristic vectors of the forms  and  are= =" #

determined through the relations  and  leading toi iZ Y
" #Ð Ñ œ ! Ð Ñ œ != =

@  C@ œ !ß ? œ ? œ ? œ ? œ !B D B D C > .

Hence, characteristic vectors are

Z œ C  ß Z œ ß Z œ à Y œ !
` ` ` `

`B `D `C `>
" # $ . è

5.7. EXTERIOR FORMS UNDER MAPPINGS

Let  and  be two differentiable manifolds and  be aQ R À Q Ä R7 8 9
smooth mapping. We know that the mapping  derived9 A A‡ ! !À ÐRÑ Ä ÐQÑ
from  via the rule  assigns a smooth function 9 9 9 9‡ ‡1 œ 1 ‰ 0 œ 1 −
A A! !ÐQÑ 1 − ÐRÑ : to a smooth function  [ . 98]. We shall now showsee 
that  gives rise in general to a mapping . Let us take a9 9 A A‡ À ÐRÑ Ä ÐQÑ
form  into consideration. If we denote local coordinates associ-= A− ÐRÑ5

ated with a chart at the point  by , we; − R œ ÖC × œ ÖC ß C ß á ß C ×y ! " # 8

may write

= = AÐ;Ñ œ Ð Ñ .C • .C • â • .C − ÐRÑ
"

5x
! ! !

! ! !
" # 5

" # 5
â

5y .

Here the indices  take values . On the other hand, if local! !" 5ß á ß "ß á ß 8
coordinates in a chart at a point  are ,: − Q œ ÖB × œ ÖB ß B ß á ß B ×x 3 " # 7

we know that the mapping  elicits a mapping  in the; œ Ð:Ñ À Ä9 F ‘ ‘7 8

functional form  or . The dif-y xœ Ð Ñ C œ ÐB ß á ß B Ñß œ "ß á ß 8F F !! ! " 7

ferential  of  at the point  carries a vector at that. À X ÐQÑ Ä X ÐRÑ :9 9: Ð:Ñ9

point  over a vector at the point . We now define a form : ; œ Ð:Ñ œ9 =‡

9 = = 9‡  at the point  corresponding to a form  at the point  in such a way: Ð:Ñ
that the numerical equality

Ð ÑÐZ ß á ß Z Ñ œ . ÐZ Ñß á ß . ÐZ Ñ9 = = 9 9‡
" 5 " 5ˆ ‰ (5.7.1)

will be satisfied for all vectors . This relation willZ ß Z ß á ß Z − X ÐQÑ" # 5 :

actually determine a mapping in the form . In fact,9 A A‡ 5 5À ÐRÑ Ä ÐQÑ
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the vector  is represented in view of (2.7.4) byZ œ . ÐZ Ñ‡ 9

Z œ @ œ @
` ` `

`B `C `C
‡ 3 ‡

3

F!

! !
!

where . Therefore, we obtainZ œ @
`

`B
3

3

= =

= = =
F F

‡ ‡
" 5 3 â3 "

3
5
3

‡ ‡
" 5 â â" "

‡ 3
5 5
‡ 3

3 3

ÐZ ß á ß Z Ñ œ @ â@ œ

ÐZ ß á ß Z Ñ œ @ â@ œ â @ â@
` `

`B `B

" 5

" 5

" "5 5
" 5 " 5

"

"

5

5
! ! ! !

! !
! !

.

Since, this expression would be valid for all vectors , we reach toZ ß á ß Z" 5

the conclusion

= = F
F F

= F
F F

‡
3 â3 â 3 3

â 3 3

" 5 " 5

"

"

5

5

" 5

"

"

5

5

Ð Ñ œ Ð Ñ â
` `

`B `B

œ Ð Ñ â
` `

`B `B

x x

x

! !

! !

! !

! !

ˆ ‰
ˆ ‰ [ ]

.

(5.7.2)

We have to note that the complete antisymmetry on indices  causes the!
complete antisymmetry on indices . Accordingly, the , or 3 pull-back recipro-
cal image  = = A 9‡ 5Ð:Ñ Ð;Ñ − ÐRÑ ; œ Ð:Ñ − Rof a form , where  and
: − Q 5, is the -form given by

= 9 = = F
F F

= A

‡ ‡ 3 3
â 3 3

‡ 3 3 5
3 â3

Ð:Ñ œ Ð;Ñ œ Ð Ñ â .B • â • .B
" ` `

5x `B `B

œ Ð Ñ .B • â • .B − ÐQÑ
"

5x

! !

! !

" 5

"

"

5

5

" 5

" 5

" 5

ˆ ‰x

x .

9‡ is called the  and it can also be expressed in the usualpull-back operator
form . However, this operation must be interpreted this time in9 = = 9‡ œ ‰
a broader sense. We simply realise that the form  is obtainable from the9 =‡

form  by inserting into  the differential transformation= =

.C œ .B œ .B
`C `

`B `B
!

! !

3 3
3 3F

in addition to the mapping . It is clear that  is a degree pre-= 9 9! !" 5â
‡‰

serving mapping. If , then it is evident that  identically.8   5  7 œ !9 =‡

Let us consider the forms . If we notice the relation! " Aß − ÐRÑ5

(5.7.2) we find that

9 ! " 9 ! 9 "‡ ‡ ‡Ð  Ñ œ  . (5.7.3)

Hence the operator  is additive. Furthermore, if , ,9 = A 5 A‡ 5 6− ÐRÑ − ÐRÑ
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then the form  becomes# œ = 5 A• − ÐRÑ56

# œ .C • â • .C • .C • â • .C
"

5x 6x
= 5! ! " "

! ! " "
" "5 6

" "5 6
â â

and the form  is cast into9 A‡ 56# − ÐQÑ

9 = 5‡ ‡ ‡ 3 3 4 4
3 â3 4 â4# œ

"

5x 6x
.B • â • .B • .B • â • .B

" "5 6

" "5 6 .

We thus reach to the conclusion

9 = 5 9 = 9 5‡ ‡ ‡Ð • Ñ œ • . (5.7.4)

When , we get from (5.7.4)1 − ÐRÑA!

9 = 9 9 =‡ ‡ ‡Ð1 Ñ œ Ð 1Ñ .

If , one finds . Therefore, 1 − Ð1 Ñ œ 1‘ 9 = 9 =‡ ‡ 9‡ reduces to a linear ope-
rator only on the field of real numbers. On recalling (5.7.4), we recognise
that the mapping  is a homomorphism on the exterior algebra . If 9 A 9‡ ÐRÑ
is a diffeomorphism, then it becomes clear that the operator  will be an al-9‡

gebra isomorphism.
Let ,  and  be smooth manifolds, and  andQ Q Q À Q Ä Q" # $ " #9

< À Q Ä Q# $ be smooth mappings. These mappings give rise to pull-back
operators  and  so that one has< A A 9 A A‡ ‡

$ # # "À ÐQ Ñ Ä ÐQ Ñ À ÐQ Ñ Ä ÐQ Ñ
< = A 9 < = A = A‡ 5 ‡ ‡ 5 5

# " $− ÐQ Ñ Ð Ñ − ÐQ Ñ − ÐQ Ñ and  for a form . On the
other hand, it is straightforward to see that we can write < 9‰ À Q Ä Q" $

and . In appropriate local coordinates, we haveÐ ‰ Ñ À ÐQ Ñ Ä ÐQ Ñ< 9 A A‡
$ "

= =

< = =

9 < = =

œ Ð Ñ .D • â • .D ß
"

5x

œ Ð Ñ â .C • â • .C ß
" `D `D

5x `C `C

Ð Ñœ Ð Ñ â â
" `D `D `C `C

5x `C `C `B

+ â+
+ +

‡
+ â+

+ +

‡ ‡
+ â+

+ +

3

" 5
" 5

" 5

"

"

5

5

" 5

" 5

" "

" "

5

5

z

z y

z y x

ˆ ‰
 ˆ ‰‘

! !
! !

! !

! !5

5

" 5

`B
.B • â • .B Þ

3
3 3

But, the chain rule of differentiation

`D `C `D

`C `B `B
œ

+ +

3 3

< < <

< < <!

!

implies that

9 < = = < 9 =‡ ‡ 3 3 ‡
+ â+

+ +

3 3
Ð Ñ œ Ð Ñ â .B • â • .B œ Ð ‰ Ñ

" `D `D

5x `B `B" 5

"

"

5

5

" 5ˆ ‰z x .
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Since this relation must be valid for all forms , we arrive at the= A− ÐQ Ñ$

composition rule

Ð ‰ Ñ œ ‰< 9 9 <‡ ‡ ‡. (5.7.5)

If the mapping  is a , then the mapping9 À Q Ä R diffeomorphism
9 9 9" "

QÀ R Ä Q ‰ œ 3 is also a diffeomorphism. Thus the relations ,
9 9‰ œ 3 3 œ 3 3 œ 3" ‡ ‡

R Q RÐQÑ ÐRÑ and ,  leads, according to (5.7.5), toA A

Ð ‰ Ñ œ 3 œ ‰ Ð Ñ ß Ð ‰ Ñ œ 3 œ Ð Ñ ‰9 9 9 9 9 9 9 9" ‡ ‡ " ‡ " ‡ " ‡ ‡
ÐQÑ ÐRÑA A 

which implies in this case that .Ð Ñ œ Ð Ñ À ÐQÑ Ä ÐRÑ9 9 A A‡ " " ‡

We have so far seen that the mapping  generates both the9 À Q Ä R
differential mapping  and the pull-back operator. œ À X ÐQÑ Ä X ÐRÑ9 9‡

9 A A = A‡ 5À ÐRÑ Ä ÐQÑ − ÐRÑ. Let us now consider a form  at a point
9Ð:Ñ − R : − Q Z œ @ ` − X ÐQÑ corresponding to a point  and a vector .3

3 :

We know that the vector  is given byZ œ ÐZ Ñ œ . ÐZ Ñ − X ÐRÑ‡
‡ Ð:Ñ9 9 9

. ÐZ Ñ œ @ ß @ œ @
` `

`C `B
9

F! !
!

!
3

3
.

The interior product of the form  with this vector is of course=

i y. ÐZ Ñ â9 ! ! !
! ! !Ð Ñ œ Ð Ñ@ .C • â • .C

"

Ð5  "Ñx
= = " # 5

" # 5 .

The pull-back of that form then becomes

9 = =
F F F

=

9 =

‡ 3 3 3
. ÐZ Ñ â 3 3 3

3 3 â3
3 3 3

Z
‡

ˆ ‰i

x

i

9 ! ! !

! ! !

Ð Ñ œ @ â .B • â • .B
" ` ` `

Ð5  "Ñx `B `B `B

œ Ð Ñ@ .B • â • .B
"

Ð5  "Ñx

œ Ð Ñ

" # 5
" #

" #

" #

5

5

5

" # 5
" # 5

.

Since this relation would be true for all forms , we conclude that= A− ÐRÑ
for all vectors  we get the ruleZ − X ÐQÑ

9 9 9 A A‡ ‡ ‡ 5 5"
ÐZ Ñ Z Z‰ œ ‰ œ ‰ À ÐRÑ Ä ÐQÑi i i9‡

‡ . (5.7.6)

If the operator  exists, then (5.7.6) means that the relation9"
‡

9 9‡ ‡
Y Y‰ œ ‰i i9"

‡
(5.7.7)

will also be valid for all vectors .Y − X ÐRÑ
If , then  maps the manifold  into itself. When  is a9 9 9À Q Ä Q Q
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diffeomorphism, it produces a coordinate transformation on  that can beQ
represented locally by functions  or , y xœ Ð Ñ C œ ÐB ß á ß B Ñ œF F !! ! " 7

"ß á ß 7 œ ‰ ‰ where  with  being the local homeomorphism ofF : 9 : :"

the associated chart. If we denote the Jacobian determinant by N œ det9
œ Ò` Î`B Ó N Á !det F! 3 , then we must have, in this case, . We would like

now to investigate the transformation of bases induced by the volume form
under such a mapping . The transformation of a generic basis form9

. A! ! ! ! ! !
! !

5 5 5"" " 7
5" 7

â â â
75œ / .C • â • .C − ÐQÑ

"

Ð7  5Ñx

yields

9 .‡ 3 3
â â â 3 3! ! ! ! ! !

! !

5 5 5"" " 7

5"

5"

7

7

5" 7œ / â .B • â • .B
`C `C

`B `B

"

Ð7  5Ñx

from which we write

`C `C

`B `B
â œ

/ â â .B • â • .B
`C `C `C `C

`B `B `B `B

! !

! !

! ! ! !

! ! ! !

"

"

5

5 5 "

" 75 5"

" 7

" 7

5 5"

5 5"

5" 7

3 3
‡

â

â â 3 3 3 3
3 3

9 .

    .
"

Ð7  5Ñx

According to (1.4.18), we have

/ â œ /
`C `C `C

`B `B `B
! !

! ! !

" 7 " 7

" 7

" 7
â 3 â33 3 3

det’ “.

Therefore, we find that

  

         

`C `C

`B `B
â œ

`C

`B
/ .B • â • .B

! !

! !

!

"

"

5

5 5 "

" 75 5"
5" 7

3 3
‡

â

3 3 â3 3 â3
3 3

9 .

det’ “ "

Ð7  5Ñx

and finally, owing to (5.5.10)

. 9 .3 â3 â3 3 3

"
‡

5 5" "

"

"

5

5
œ â

`C `C `C

`B `B `B
Š ’ “‹det

! ! !

! ! . (5.7.8)

Let us now consider a form  described by= A− ÐQÑ75

= = .œ Ð Ñ
"

5x
! !

! !
" 5

5 "

â
ây . (5.7.9)

The pull-back of  thus becomes=
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9 = = . 9 = 9 .‡ 3 â3 ‡ â ‡
3 â3 âœ Ð Ñ œ Ð Ñ

" "

5x 5x
" "5 5

5 5" "
x y! !

! !

and (5.7.8) gives

Ð ÑÐ Ñ œ â Ð Ñ
`C `C `C

`B `B `B
9 = =‡ â 3 â3

3 3 3

"
! !

! ! !
" "5 5

"

"

5

5
x xŠ ’ “‹det . (5.7.10)

In the module  bases are the volume formsA7ÐQÑ

. .x yœ .B • â • .B ß œ .C • â • .C" 7 " 7

and (5.7.8) leads to

9 . 9 . .‡ " 7
3y x xœ Ð Ñ œ œ N .B • â • .B Þ

`C

`B
det det’ “! (5.7.11)

Conversely, if the relation (5.7.11) is valid, then we must find . Indet9 Á !
consequence, the celebrated implicit function theorem states that the map-
ping  is locally a diffeomorphism. Any form  is now ex-9 = AÐ Ñ − ÐQÑy 7

pressible as . Thus, under coordinates transformation we ob-= .Ð Ñ œ 1Ð Ñy y y
tain the form .9 = 9 .‡ Î 3œ Ð1 ‰ Ñ `C `Bdet ‘!

x
Next, we consider a submanifold  of dimension  of the mani-W <  7

fold . We suppose that we describe this submanifold by a smooth map-Q
ping . In local coordinates, this mapping will be prescribed as a9 À W Ä Q
coordinate transformation

B œ Ð? Ñß 3 œ "ß á ß 7à œ "ß á ß <3 3F !! . (5.7.12)

 The pull-back  of a form  on  is given by9 = A = A‡ 5 5− ÐWÑ − ÐQÑ W

9 = =‡
âœ Ð Ñ .? • â • .?

"

5x
! !

! !
" 5

" 5u (5.7.13)

where the coefficients  are determined through the relations=! !" 5â Ð Ñu

= = F
F F

! ! ! !" "5 5

"

"

5

5
â 3 â3

3 3

Ð Ñ œ Ð Ñ â
` `

`? `?
u uˆ ‰ . (5.7.14)

If the form  does not vanish identically on , then the submanifold ,= Q W
consequently the mapping , satisfying the condition  is9 9 =À W Ä Q œ !‡

called  . When , then a solution of the exterior equation = 9 =œ ! 5  < ´ !‡

identically, that is, any submanifold whose dimension is less than  is auto-5
matically a solution of this equation. If , then the mapping  that gives5 Ÿ < 9
rise to an -dimensional solution submanifold is determined, in view of<



5.7  Exterior Forms under Mappings 259

(5.7.13) and (5.7.14), through the equations . We then call = 9! !" 5â Ð Ñ œ !u
as the  for the exterior equation.resolvent mapping

We can introduce another interpretation to a solution of an exterior
equation. The differential  of the mapping . À X ÐWÑ Ä X ÐQÑ À W Ä Q9 9
push a vector field in the tangent bundle of  up to a vector field in the tan-W
gent bundle of . Let , then we can writeQ Z − X ÐWÑ

Z œ @ ß . ÐZ Ñ œ @ − X ÐQÑß
` `

`? `B
!

!
9 3

3

where

@ œ @ Þ
`

`?
3

3F
!

!

According to (5.7.1), every  linearly independent vector fields selected5
from  of dimension  must satisfy the relationX ÐWÑ <   5

= 9 9 9 =ˆ ‰. ÐZ Ñß á ß . ÐZ Ñ œ Ð ÑÐZ ß á ß Z Ñ œ !" 5 " 5
‡

since . Hence, in order to determine  an -dimensional solu-9 =‡ œ ! <locally
tion submanifold through a point , all we need to do is to find a sub-: − Q
space  of the tangent space  annihilating the form . We knowX ÐWÑ X ÐQÑ: : =
from the Frobenius theorem that the distribution made up by those local
subspaces should be involutive so that the local tangent spaces can be
patched together to generate a smooth submanifold.

Example 5.7.1. We take  and .Q œ œ B .C  $C .B − Ð Ñ‘ = A ‘# " #

Our aim is to determine a mapping  so as . Let us write9 ‘ ‘ 9 =À Ä œ !# ‡

B œ Ð?Ñß C œ Ð?Ñ! " .

Then we get  and the condition .9 = !" "! !" "!‡ w w w wœ Ð  $ Ñ.? œ ! œ $
This differential equation can be cast into the form

" !

" !
" !

w w
w wœ $ Ð Ñ œ $Ð Ñ   or   log log

so that we obtain . Therefore, the curves prescribed by para-" !Ð?Ñ œ G Ð?Ñ$

metric equations ,  where  is an arbitrary functionB œ Ð?Ñ C œ G Ð?Ñ Ð?Ñ! ! !$

solve the exterior equation .= œ !

Let us now consider a vector . We then haveZ œ @ Ð?Ñ − X Ð Ñ
`

`?
? ‘

. ÐZ Ñ œ @  @ − X Ð Ñ
` `

`B `C
9 ! " ‘w ? w ? # .
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Hence the equation  leads= 9 !" "!ˆ ‰. ÐZ Ñ œ B@  $C@ œ Ð  $ Ñ@ œ !C B w w ?

similarly to the above expression and to

@ œ 0Ð?Ñß @ œ $G 0Ð?Ñ œ G Ð?Ñ 0Ð?ÑB w C # w $ w
! ! ! !ˆ ‰ .

where we defined @ Ð?Ñ œ 0Ð?ÑÞ? è

Example 5.7.2. We consider  and the formQ œ ‘$

= A ‘œ T .B • .B  U .B • .B  V .B • .B − Ð Ñ" # " $ # $ # $

where . We define a -dimensional solution submanifoldT ß Uß V − Ð Ñ #A ‘! $

by the parametric equations . We denote theB œ Ð? ß ? Ñß 3 œ "ß #ß $3 3 " #9
functional determinant by

`Ð ß Ñ ` ` ` `

`Ð? ß ? Ñ `? `? `? `?
œ 

9 9 9 9 9 93 4 3 4 3 4

! " ! " " !

we then attain at the result

9 =
9 9 9 9 9 9‡ " #

" # " $ # $

" # " # " #
œ T  U  V .? • .?

`Ð ß Ñ `Ð ß Ñ `Ð ß Ñ

`Ð? ß ? Ñ `Ð? ß ? Ñ `Ð? ß ? Ñ
” • .

Therefore, in order to satisfy  we have to find the solution of the9 =‡ œ !
following non-linear partial differential equation

T  U  V œ !
`Ð ß Ñ `Ð ß Ñ `Ð ß Ñ

`Ð? ß ? Ñ `Ð? ß ? Ñ `Ð? ß ? Ñ

9 9 9 9 9 9" # " $ # $

" # " # " #

where .T œ T Ð ß ß Ñß U œ UÐ ß ß Ñß V œ VÐ ß ß Ñ9 9 9 9 9 9 9 9 9" # $ " # $ " # $ è

5.8. EXTERIOR DERIVATIVE

We define an operator  on a smooth manifold . À ÐQÑ Ä ÐQÑ QA A
mapping the exterior algebra  into itself in such a way that it holds theAÐQÑ
following rules:

Ð3ÑÞ .Ð  Ñ œ .  . ß .Ð Ñ œ . à ß − ÐQÑß −

Ð33ÑÞ .Ð • Ñ œ . •  Ð"Ñ • .

Ð333ÑÞ . œ . ‰ . œ ! .Ð. Ñ œ . œ ! − ÐQÑ

Ð3@ÑÞ 0 −

= 5 = 5 -= - = = 5 A - ‘

= 5 = 5 = 5

= = = A

.
.

, i.e.,  for all .
If

./1 Ð Ñ

# #

=

A A! 3 "
ß3ÐQÑ .0 œ 0 .B − ÐQÑ, then .

The rule  means that  is a linear operator on  whereas the rule Ð3Ñ . Ð3@Ñ‘
implies that the -form  is the classical differential of the smooth function" .0
0 − ÐQÑA! . Here, we have introduced the notation



5.8  Exterior Derivative 261

`Ð † Ñ

`B
» Ð † Ñ

3 ß3 (5.8.1)

which we shall employ frequently henceforth. The rule  shows that  isÐ333Ñ .
a .  so defined is called the nilpotent operator exterior derivative operator .
and the form  is the  of the form ..= =exterior derivative

Theorem 5.8.1. The foregoing rules -  determine the exteriorÐ3Ñ Ð3@Ñ
derivative operator  uniquely..

We know that an exterior form  on a manifold  is ex-= A− ÐQÑ Q5

pressible in local coordinates on an open set  as followsY © Q

= = = Aœ .B • .B • â • .B ß − ÐQÑ
"

5x
3 3 â3 3 3 â3

3 3 3 !
" # " #5 5

" # 5 .

Since  is a -form, we obtain=3 3 â3" # 5
!

. œ . • .B • â • .B  .Ð.B • â • .B Ñ
"

5x
= = = ‘3 â3 3 3 â3

3 3 3 3
" " #5 5

" "5 5

in view of . We shall now demonstrate by mathematical induction thatÐ33Ñ

.Ð.B • â • .B Ñ œ !3 3" 5 .

If , because of -  we find . Let us assume5 œ " Ð333 3@Ñ .Ð.B Ñ œ . B œ !3 # 3" "

that the above relation is valid for . Hence, we deduce from the rules5  "
of exterior differentiation

.Ð.B • â • .B Ñ œ

. B • Ð.B • â • .B Ñ  .B • .Ð.B • â • .B Ñ

œ  .B • .Ð.B • â • .B Ñ œ !

3 3

# 3 3 3 3 3 3

3 3 3

" 5

" # " #5 5

" # 5 .

so that this relation is also valid for . Therefore, the exterior derivative of5
the form  is designated  in local coordinates as follows= A− ÐQÑ5 uniquely

. œ . • .B • â • .B
"

5x

œ .B • .B • â • .B
" `

5x `B

œ .B • .B • â • .B − ÐQÑ
"

5x

= =

=

= A

3 â3
3 3

3 â3

3
3 3 3

3 â3 ß3
3 3 3 5"

" 5
" 5

" 5 " 5

" 5
" 5

[ ] .

(5.8.2)

Thus the operator  is of the form  and increases. . À ÐQÑ Ä ÐQÑA A5 5"

the degree of the form by one. The form  can be written in. − ÐQÑ= A5"

the standard form in the following manner
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. œ .B • .B • â • .B
"

Ð5  "Ñx
= = 33 â3

3 3 3
1

1
5

5

where we obviously have

= = A33 â3 3 â3 ß3
!

1 15 5
œ Ð5  "Ñ − ÐQÑ . (5.8.3)[ ]

In order that this definition of the exterior derivative to be meaningful it
should not depend on the chosen local coordinates, namely, the chosen
chart of the atlas. To observe this property, let us consider the coordinate
transformation  in overlapping charts. We thus writeB œ B ÐC Ñ3 3 4

= =

=

œ Ð Ñ .B • â • .B
"

5x

œ Ð Ð Ñ .B Ð Ñ • â • .B Ð Ñ
"

5x

3 â3
3 3

3 â3
3 3

" 5
" 5

" 5
" 5

x

x y y yÑ

so that the exterior derivatives with respect to - and -coordinates arey x
found to be related by

. œ .C • .B Ð Ñ • â • .B Ð Ñ
"

5x `C

` Ð

œ .C • .B Ð Ñ • â • .B Ð Ñ
" ` Ð Ñ `B

5x `B `C

œ .B • .B • â • .B œ .
" ` Ð Ñ

5x `B

y

x

=
=

=

=
=

3 â3

4
4 3 3

3 â3

3 4

3
4 3 3

3 â3

3
3 3 3

" 5 " 5

" 5 " 5

" 5 " 5

ˆ ‰x y
y y

x
y y

x

Ñ

.

This relation is valid for all . Hence, we obtain  showing= A− ÐQÑ . œ .y x
that the operator  is intrinsically defined.. 

After having defined the exterior derivative by the expression (5.8.2),
it is straightforward to see that the rules -  are automatically satisfied.Ð3Ñ Ð3@Ñ
That  becomes valid is obvious. To show , let us consider the formsÐ3Ñ Ð33Ñ
= A 5 A− ÐQÑ − ÐQÑ5 6 and  given by

= =

5 5

œ .B • â • .B ß
"

5x

œ .B • â • .B
"

6x

3 â3
3 3

3 â3
3 3

" 5
" 5

" 6
" 6

and evaluate the exterior derivative of . We obtain= 5•

.Ð • Ñ œ . .B • â • .B • .B • â • .B
" "

5x 6x
= 5 = 5’ “3 â3 4 â4

3 3 4 4
" "5 6

" "5 6
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œ . • .B • â • .B • .B • â • .B
" "

5x 6x

 . • .B • â • .B • .B • â • .B
" "

5x 6x

œ . • .B • â • .B • .B • â •
" "

5x 6x

= 5

= 5

= 5

3 â3 4 â4
3 3 4 4

3 â3 4 â4
3 3 4 4

3 â3 4 â4
3 3 4

" "5 6
" "5 6

" "5 6
" "5 6

" "5 6
" "5 .B

 Ð"Ñ .B • â • .B • . • .B • â • .B
" "

5x 6x

4

5 3 3 4 4
3 â3 4 â4

6

" "5 6
" "5 6    = 5

and we thus get

.Ð • Ñ œ . •  Ð"Ñ • .= 5 = 5 = 55 .

Similarly, we find

. œ .B • .B • .B • â • .B − ÐQÑ
"

5x
# 3 4 3 3 5#

3 â3 ß34= = A" 5
" 5 .

But the exterior product is antisymmetric with respect to indices  and ,3 4
while the second partial derivatives are symmetric. Therefore, summations
over these indices from  to  become zero and we get . The rule" 7 . œ !#=
Ð3@Ñ is retrieved immediately form the definition (5.8.2).

We can provide a more explicit expression for coefficient functions
= A = A33 â3

! 5"
1 5

− ÐQÑ . − ÐQÑ specifying the form . If we take notice of
the relation  (5.5.2) we readily arrive at

= $ = $ $ $ $

$ $ $ $

33 â3 4 â4 ß43 3 â3 3 3 3 3 â3 3 33 â3
4 4 â4 4 4 4 4 â4 4 4 4 â4

3 3 3â3 3 3 3 â3 3
4 4 4 â4 4 4 4 â4

1 5 5" # " # " #5 5 5

" # " # " #5 5 5

"

# " " #5 5 5"

" # 5 " # 5

œ œ 
5  " "

Ð5  "Ñx 5x

  â

’
“

’
“

=

$ = $ = $ =

$ =

4 â4 ß4

3 3 â3 33 â3 3 3â3
4 4 â4 4 4 â4 4 4 â4

4 â4 ß3 4 â4 ß3 4 â4 ß3

4 4 â4
3 3 â3 3 4 â4 ß3

" 5

" # # "5 5 5

" # " # " #5 5 5

" " " " #5 5 5

" # 5

" # 5" " 5 5

œ  
"

5x

 â  .

Since  is completely antisymmetric, this expression may be trans-=4 â4" 5

formed into the following form:

= = = = =

= =

33 â3 3 â3 ß3 33 â3 ß3 3 3â3 ß3 3 3 â3ß3

3 â3 ß3 3 â3 33 â3 ß3

<œ"

5

1 5 5 5 5 5" # " " # " #

" " <" <" <5 5

œ    â 

œ  " .

(5.8.4)

Example 5.8.1. The exterior derivative of the form = =œ .B −4
4

A"ÐQÑ will be
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. œ .B • .B œ .B • .B ß
"

#
œ # œ 

= = =

= = = =

4ß3 34
3 4 3 4

34 4ß3 4ß3 3ß4[ ] .

Let us take . In this case, the number of the independent compo-Q œ ‘$

nents of the coefficients  is three and this matrix can be represented by an=34

axial vector. One can then write = œ . \ .B  \ .B  \ .BV r† œ " # $
" # $

where we employed the notation of the classical vector algebra to denote
V e e e r e e eœ \  \  \ . œ .B  .B  .B Ð Ñ" " # # $ " " # # $ $$ and .  is the†
usual scalar product and  are orthonormal basis vectors of . Thee e e" # $

$ß ß ‘
exterior derivative of the form  becomes=

. œ  .B • .B   .B • .B
`\ `\ `\ `\

`B `B `B `B

  .B • .B
`\ `\

`B `B

= Š ‹ Š ‹
Š ‹

$ # " $

# $ $ "
# $ $ "

# "

" #
" #.

Evidently the coefficients of the form .= is nothing but the components of the
curl of the vector  V W V V, i.e., curl . This vector is also expres-œ œ f‚
sible as

W e e eœ [ œ / œ / \ ß 3ß 4ß 5 œ "ß #ß $
`\

`B
3 3 345 3 345 5ß4 3

5

4
.

On the other hand, if we consider the forms

= =" " # #œ . œ .V r V r† † and 

we see that their exterior product is

= =" # # $ $ # $ " " $
# $ $ "

" # # "
" #

• œ Ð\ ]  \ ] Ñ .B • .B  Ð\ ]  \ ] Ñ .B • .B

 Ð\ ]  \ ] Ñ .B • .B

the coefficients of which are components of the usual vectorial product W
œ V V" #‚  . This vector can also be written as follows

W e eœ [ œ / \ ] ß 3ß 4ß 5 œ "ß #ß $3 3 345 4 5 3 .

Let us next calculate the exterior derivative of the form = œ 0 .V r † where
0 − Ð ÑA ‘! $ , we easily reach to the relation

curl grad curl0 œ 0  0V V V.‚ è

Example 5.8.2. We consider the form = = Aœ .B • .B − ÐQÑ
"

#x
45

4 5 #

whose exterior derivative becomes
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. œ .B • .B • .B œ .B • .B • .B − ÐQÑÞ
" "

#x $x
= = = A45ß3 345

3 4 3 4 5 $

According to (5.8.4), the coefficients of this form are given by

= = = = = = =345 45ß3 35ß4 43ß5 45ß3 53ß4 34ß5œ   œ   .

Let us choose again  and writeQ œ ‘$

= A ‘œ \ .B • .B  \ .B • .B  \ .B • .B − Ð Ñ" # $
# $ $ " " # # $

in terms of essential components. We observe at once that

. œ   .B • .B • .B − Ð Ñ
`\ `\ `\

`B `B `B
= A ‘Š ‹" # $

" # $
" # $ $ $ ,

namely, the coefficient of this form is just the  div  of divergence f † V Vœ
the vector field  which can also be written asV e e eœ \  \  \" " # # $ $

follows

f † V œ œ \
`\

`B
3

3 3ß3.

If we take into account the forms  and  defined in Example 5.8.1, then= =" #

the relation  yields the equality.Ð • Ñ œ . •  • .= = = = = =" # " # " #

div curl curlÐ Ñ œ V V V V V V ." # # " "‚ † † # è

We know that a form  is expressible as in (5.5.17) by= A− ÐQÑ75

using a basis induced by the volume form. Since , the exterior. œ !.3 â3 35 # "

derivative of this form is given by

. œ .B • œ
" 5

5x 5x
= = . = $ .3 3 â3 3 3 3 â3

3 â3 3 3 â3 33
3

" # " #5 5
ß3 # " ß3 # "5 5"5[ ]

where we employed the relation (5.5.15). Because of the antisymmetry of
=3 3 â3" # 5 , we conclude that

. œ
"

Ð5  "Ñx

œ − ÐQÑ
"

Ð5  "Ñx

= = $ .

= . A

3 3 â3
3
3

3 â3 3

3 3 â3 3 7Ð5"Ñ
3 â3 3

" # 5
ß3 # "5 5"

" # 5"
ß3 # "5"

.

(5.8.5)

It is clear that one has

=
= = =3 3 â3 3

3 3 â3 " 3 3 â3 # 3 3 â3 7

" # 7
" # 5"

ß3

" # " # " #5" 5" 5"

œ   â 
` ` `

`B `B `B
.
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We thus see that the coefficients of the form  is evaluated as a kind of.=
divergence.

Let  be a differentiable mapping between the smooth ma-9 À Q Ä R
nifolds  and . We know that this mapping conduces toward the pull-Q R
back mapping  which assigns a form  to9 A A 9 = A‡ ‡ 5À ÐRÑ Ä ÐQÑ − ÐQÑ
a form .= A− ÐRÑ5

Theorem 5.8.2. If  is a smooth mapping, then we have the9 À Q Ä R
relation for all forms . Consequently, one has the.Ð Ñ œ .9 = 9 = = A‡ ‡  − ÐRÑ
following rule of composition

. ‰ . À9 9 A A‡ ‡ 5 5"œ ‰ ÐRÑ Ä ÐQÑ

which means that the operators  and  commute.. 9‡

We prove this theorem by explicitly calculating both sides. Let us con-
sider a form

= = Aœ .C • .C • â • .C − ÐRÑ
"

5x
! ! !

! ! !
" # 5

" # 5
â

5 .

Its exterior derivative is

. œ .C • .C • .C • â • .C
"

5x
= =! ! ! !

! ! ! !
" # 5

" # 5
â ß .

We thus obtain

9 =

= F F F
9

‡

â

3 3 3
3 3 3

. œ

" ` ` ` `

5x `C `B `B `B
‰ â .B • .B • â • .BŠ ‹! ! !

!

! ! !
" # 5

"

"

5

5

" 5 .

where the functions  is generated by the mapping  throughC œ ÐB Ñ! !F 93

local charts at the points  and . On the other hand, due: − Q ; œ Ð:Ñ − R9
to the symmetry of second derivatives and antisymmetry of exterior pro-
ducts, we get

.Ð Ñ œ9 = = F
F F

= F F F F F
=

=

‡ 3 3
â 3 3

â

3 3 3 3 3 3â

#

â

" ` `

5x `B `B
. Ð Ñ â .B • â • .B

œ â  â
" ` ` ` ` ` `

5x `C `B `B `B `B `B `B

 â 

Š ‹ˆ ‰
’

! !

! !

! !

!

! ! ! ! !

! !

! !

" 5

"

"

5

5

" 5

" 5
" "

" "

5 5

5 5
" 5

"

x  

5

"

"

5

5

" 5

" 5
"

"

5

5

" 5

` `

`B `B `B
â .B • .B • â • .B

œ â .B • .B • â • .B
" ` ` `

5x `C `B `B `B

` Ð Ñ

F F

= F F F F

! !

! !

!

! ! !

3 3 3

#
3 3 3

â

3 3 3
3 3 3

“
ˆ ‰

 

x
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Therefore, we find that  for any ..Ð Ñ œ .9 = 9 = = A‡ ‡ − ÐRÑ 
If the exterior derivative of a form  vanishes, that is, if = A =− ÐQÑ .

œ !, then  is called a  . Thus, closed forms constitute the = closed form null
space kernel or  of the operator :.

a = A =Ð.Ñ œ Ð.Ñ œ Ö − ÐQÑ À . œ !×ÞKer

If for a form , there exists a form  such that= A 5 A− ÐQÑ − ÐQÑ5 5"

= 5 =œ . ß, then  is called an  . Obviously  this means that exactexact form
forms occupy the range of the operator :.

e = A = # # AÐ.Ñ œ Ð.Ñ œ Ö − ÐQÑ À œ . ß − ÐQÑ×Im

If  is an exact form, we have  . Hence, an exact form is= = 5. œ . œ !#

naturally a closed form. However, the converse statement is not always true.
This subject will be investigated in detail in Chapter VI through the homo-
topy operator.

If  we get  because every -form is identi-= A =− ÐQÑ . œ ! Ð7  "Ñ7

cally zero. Therefore, on an -dimensionalevery -form will be closed 7 7
manifold.

Theorem 5.8.3. The closed and exact forms in the module A5ÐQÑ
constitute linear vector spaces   and respectively, over realV X5 5ÐQÑ ÐQÑ, 
numbers.

 Let us consider the closed forms  satisfying = 5 A = 5ß − ÐQÑ . œ .5

œ ! 0ß 1 − ÐQ. Let  be arbitrary functions. Then we find thatA!

.Ð0  1 Ñ œ .0 •  .1 •= 5 = 5.

Hence, this expression vanishes if and only if . Thus if only if.0 œ .1 œ !
0 1 0  1 and  are constants, then the form  is closed. In other words,= 5
closed forms constitute a linear vector space  only on .V ‘5ÐQÑ

This time, let us take the exact forms  into consideration.= 5 Aß − ÐQÑ5

Hence, there are forms  such that . Since! " A = ! 5 "ß − ÐQÑ œ . ß œ .5"

we can write

= 5 ! " ! " œ .  . œ .Ð  Ñ

we see that the form  is exact. Next, let us consider the form= 5

0 œ 0. œ .Ð0 Ñ  .0 •= ! ! !

for an arbitrary function . This means that the form  can be0 − ÐQÑ 0A =!

exact if only , or  is a constant. Thus exact forms constitute a linear.0 œ ! 0
vector space  only on . Since every exact form is closed, it is evi-X ‘5ÐQÑ
dent that .X V5 5ÐQÑ © ÐQÑ 
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Next, we define the sets  and .V V X XÐQÑ œ Š ÐQÑ ÐQÑ œ Š ÐQÑ
5œ! 5œ"

7 7
5 5 

We can easily verify that they form graded subalgebras of the exterior
algebra  on  . In fact, if , we have  andA ‘ÐQÑ = 5 V = 5ß − ÐQÑ . œ . œ !
consequently,  so we find that.Ð • Ñ œ . •  Ð"Ñ • . œ != 5 = 5 = 5./1 Ð Ñ=

= 5 V = 5 X• − ÐQÑ ß − ÐQÑ. On the other hand, if , then we have to write
= ! 5 " = 5 ! " ! "œ . ß œ . • œ . • . œ .Ð • . Ñ  so that we obtain  leading
to .= 5 X• − ÐQÑ

Example 5.8.3. We consider a form . If , then= A = X− ÐQÑ − ÐQÑ" "

there must exist a function  so that we can write  orH A = H− ÐQÑ œ .!

= H3 ß3
3 3.B œ .B .

Hence, the relations  must hold. Thus, the coefficients  have to= H =3 ß3 3œ
verify the integrability conditions  in order to be able to de-= =3ß4 4ß3 œ !
termine . On the other hand, if the form  is closed, then we getH =

. œ .B • .B œ .B • .B œ != = =3ß4 3ß4
4 3 4 3

[ ]

from which we deduce that  or . Thus, if the form is= = =[ ]3ß4 3ß4 4ß3œ !  œ !
exact, then the conditions to be closed is satisfied automatically. However,
in order that a closed -form is to be exact we have to find the solution of"
7Ð7  "ÑÎ# 7 first order partial differential equations satisfied by  un-
knowns  in the form . The existence of the solution is, however,= = H3 3 ß3œ
strongly dependent on the topology of the manifold. è

Example 5.8.4. We consider a form . This form will be= A− ÐQÑ#

exact if there exists a form  such that . Let us then take! A = !− ÐQÑ œ ."

= = ! !œ .B • .B œ .B"
# 34 4

3 4 4 and . The relation

"

#
.B • .B œ .B • .B œ .B • .B= ! !34 4ß3 4ß3

3 4 3 4 3 4
[ ]

leads to . In order that the functions  satisfying= ! ! ! !34 4ß3 4ß3 3ß4 3œ # œ [ ]

these conditions could be determined the -form  must be closed. This# =
becomes possible if the condition

. œ .B • .B • .B œ .B • .B • .B œ !
" "

# #
= = =34ß5 34ß5

5 3 4 5 3 4
[ ]

is met. Therefore, the coefficients  must satisfy the following differential=34

equations

=
= = =

[ ]34ß5
34 45 53

5 3 4
œ !   œ !

` ` `

`B `B `B
   or   . è
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  Let us consider the form . This form isExample 5.8.5. = A− ÐQÑ75

exact if  so that (5.8.5) yields= !œ .

= = . ! .

! .

œ œ .
" "

5x Ð5  "Ñx

œ
"

5x

3 â3 3 â3 3
3 â3 3 3 â3

3 â3 3
3 â3

" "5 5 5"
5 5" 5" "

" 5
ß3 "5

Š ‹
.

Hence, the coefficients must satisfy a relation like

= !3 â3 3 â3 3" "5 5
ß3

œ

whence we conclude that

= !3 â3 4 3 â3 43
ß4

" "5" 5"
ß34

œ œ !.

If , the above conditions obviously reduce to= A− ÐQÑ7"

= ! = !3 34 3 34
ß3œ œ œ !ß4 ß34   and    . è

Let us finally consider the sequence of modules

        (5.8.6)A A A A! 5 5" 7ÐQÑ Ä â Ä ÐQÑ Ä ÐQÑ Ä â Ä ÐQÑ Ä !
. . . . ..

where homomorphisms between successive linear vector spaces are pro-
vided by the exterior derivative  on real numbers. . Since  ,. ‰ . œ . œ !#

this sequence is evidently a cochain complex. As we shall see later in
Chapter VIII, this cochain complex will play quite a significant part in re-
vealing some fundamental properties of closed and exact forms that connect
some topological and analytical features.

5.9. RIEMANNIAN MANIFOLDS. HODGE DUAL

A 2-covariant tensor field  on a smooth manifold  willZ − ÐQÑ QÇ !
#

be called a  if it obeys the following requirements:metric tensor

Ð3ÑÞ

Ð33ÑÞ : − Q

ÐY ß Z Ñ œ !

 is a symmetric tensor.
 The bilinear form   is not degenerate at every point , that is,

         for all

Z

Z

Z

 
:

:   if and only if  at the point .Y − X ÐQÑ Z œ ! ::

A manifold equipped with such a metric tensor will be called a Riemannian
manifold. In local coordinates, the metric tensor is expressible as

Z œ 1 Ð Ñ .B Œ .B ß 1 œ 134 34 43
3 4x . (5.9.1)
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Consequently, the condition  for all vectors ZÐY ß Z Ñ œ 1 ? @ œ ! Y œ34
3 4

? ` Z œ @ ` 1 @ œ !3 3 4
3 3 34 where  results in . Whenever this homogeneous

system of linear equations is satisfied if and only if , then the matrixZ œ !
G œ Ò1 Ó34  must be regular at every point, namely, its inverse must exist. Let
us denote the inverse matrix by . Hence, the relationsG" " 34 34œ ÒÐ1 Ñ Ó œ Ò1 Ó
1 1 œ 1 1 œ35 53 3

54 45 4$  will hold. By means of the metric tensor , we canZ

assign a field of -form in  to every vector field  pre-" X ÐQÑ Z − X ÐQÑ‡

scribed by  where  denote the contravariant componentsZ œ @ `Î`B @ Ð Ñ3 3 3 x
of  through the relationZ

= AZ 34 3
4 3 3 ‡ "œ ÐZ Ñ œ 1 @ .B œ @ .B − X ÐQÑ œ ÐQÑZ .

Thus the metric tensor gives rise to a linear mapping .Z À X ÐQÑ Ä X ÐQÑ‡

The coefficients of the form  given by=Z

@ œ 1 @ − ÐQÑ3 34
4 !A (5.9.2)

is called the  of the vector . If we make use of thecovariant components Z
inverse matrix , (5.9.2) can be transformed intoG"

@ œ 1 @3 34
4. (5.9.3)

Thus a vector  can also be expressed asZ

Z œ @ œ 1 @ œ @ /
` `

`B `B
4 43 3

4 43 3 .

Since the matrix  is regular, the vectorsG

/ œ 1 ß 3 œ "ß á ß 7
`

`B
3 34

4
(5.9.4)

constitute a basis for the tangent space as well. It then easily follows from
(5.9.1) and (5.9.4) that

Z ZÐ` ß ` Ñ œ 1 ß Ð/ ß / Ñ œ 1 1 1 œ 13 4 34 56
3 4 35 46 34. (5.9.5)

Let us now consider a form  and introduce a vector= = Aœ .B − ÐQÑ3
3 "

through the relation

Z œ 1 œ − X ÐQÑß œ 1
` `

`B `B
=

34 3 3 34
4 43 3

= = = = .

We can readily verify that . Moreover, we can writeZÐZ Ñ œ= =

 . (5.9.6)ZÐZ ß Z Ñ œ 1 œ 1 1 1 œ 1= 5 34 34 5 6 5 6
3 4 35 46 56= 5 = 5 = 5
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These results reveal the fact that the metric tensor furnishes an isomorphism
between bundles  and . The inverse operator is procured byX ÐQÑ X ÐQÑ‡

the inverse matrix . Let us define a new set of basis vectors in  by1 X ÐQÑ34 ‡

0 œ 1 .B3 34
4. (5.9.7)

We then obtain

0 Ð/ Ñ œ 1 .B Ð1 ` Ñ œ 1 1 œ 1 1 œ3 35 6 35 35
4 5 46 46 5 54

6 3
4$ $

which means that  and  are reciprocal bases. On making use ofÖ/ × Ö0 ×3
3

(5.9.7) we can also write . Utilising (5.9.7), we easily get anoth-.B œ 1 03 34
4

er representation of the metric tensor

1 0 Œ 0 œ 1 1 1 .B Œ .B œ 1 .B Œ .B

œ 1 .B Œ .B œ

34 34 5 6 5 6
3 4 35 46 465

4

56
5 6

$

Z.

When we consider a coordinate transformation such as  in aC œ C ÐB Ñ3 3 4

neighbourhood of a point  we arrive at the following rule of trans-: − Q
formation

0 Ð Ñ œ 1 .C œ 1 .B œ 1 .B
`B `B `C `B

`C `C `B `C

œ 0 Ð Ñ
`B

`C

w w 4 7 6
3 34

5 6 4 5

3 4 7 356 56

5

3 5

y

x .

The inverse relation then obviously becomes

0 Ð Ñ œ 0 Ð Ñ
`C

`B
5

3

5
w
3x y

Hence, the relation

Z œ 1 0 Œ 0 œ 1 0 Œ 0 œ 1 0 Œ 0
`C `C

`B `B
w w w 56 56 w w34

3 4 3 45 6

3 4

5 6

leads to the transformation

1 œ 1
`C `C

`B `B
w 5634

3 4

5 6

meaning that the coefficients  are actually contravariant components of134

the tensor .Z
If the tensor  is positive definite, namely, if for every non-zero vectorZ

field  one hasZ − X ÐQÑ
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ZÐZ ß Z Ñ œ 1 @ @  !34
3 4 (5.9.8)

we say that the is  and the  is Riemannian manifold metriccomplete definite.
If this condition does not hold, then  is aQ  pseudo-Riemannian manifold
or an  and the metric is  Whenincomplete Riemannian manifold indefinite.
the metric on a Riemannian manifold verifies the constraint (5.9.8), then it
becomes possible to define an or, if we put it another way, ainner product 
scalar product of two vectors on the tangent bundle  of the manifoldX ÐQÑ
through the relation

ÐY ß Z Ñ œ ÐY ß Z Ñ œ 1 ? @ ß Y ß Z − X ÐQÑZ 34
3 4 . (5.9.9)

It is a simple exercise to show that the above definition entirely complies
with the rules concerning an inner product on a vector space. Hence, the
finite-dimensional vector space  then becomes a real Hilbert space.X ÐQÑ:

X ÐQÑ will then be the union of Hilbert spaces. The relations (5.9.9) and
(5.9.8) makes it possible to associate with a vector a positive number that
vanishes if and only if the vector is zero. We call this number as the length
or the  of the vector : norm Z

l l È ÉZ œ ÐZ ß Z Ñ œ 1 @ @  !34
3 4 . (5.9.10)

In like fashion, we can define an inner product on the dual space  byX ÐQÑ‡

the relation

Ð ß Ñ œ 1 ß ß − ÐQÑ= 5 = 5 = 5 A34 "
3 4 .

If  for distinct vectors  and , namely, if their innerÐY ß Z Ñ œ 1 ? @ œ ! Y Z34
3 4

product vanishes, we say that these vectors constitute an set.orthogonal 
When, in addition, their norms is equal to , then they form an " orthonormal
set. When we are provided with a set of orthogonal vectors, this set can
obviously be cast  into a set of orthonormal vectors by dividing each vector
by its norm. In a finite-dimensional complete Riemannian manifold, we can
always construct an orthonormal basis for  inductively. Let X ÐQÑ Y ß 3 œ3

"ß á ß 7 be a linearly independent set of vectors. Let us start by taking
[ œ Y" " and construct the following sequence of vectors

[ œ Y  ß Z œ ß 3 œ "ß á ß 7
[ ÐY ß [ Ñ [

[ [
3 3 3

4œ"

3"

4 3 4 3

4
#

3

" l l l l .

It is straightforward to verify that the vectors  form an ortho-Z ß Z ß á ß Z" # 7

normal basis, that is, they possess the property
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ÐZ ß Z Ñ œ 1 @ @ œ3 4 56 343 4
5 6 $ .

This method that generates generally a set of orthonormal vectors from a
given countable set of linearly independent vectors spanning the same sub-
space is known as the  afterGram-Schmidt orthonormalisation process 
Danish mathematician J rgen Pedersen Gram (1850-1916) and GermanØ

mathematician Erhard Schmidt (1876-1959). They had developed it inde-
pendently. However, it must be fair to mention that French mathematician
Pierre-Simon Laplace (1749-1827) had presented this process much earlier
than either Gram or Schmidt albeit in a somewhat limited context. Thus, we
can always choose an orthonormal basis in the finite-dimensional X ÐQÑ
such that the components of the metric tensor become simply

ZÐZ ß Z Ñ œ ÐZ ß Z Ñ œ3 4 3 4 34$ .

Indeed, if we choose a reciprocal basis  in  in such way that theÖ × X ÐQÑ)3 ‡

relations  are satisfied, then the metric tensor will be represented) $3 3
4 4ÐZ Ñ œ

in the following form

Z œ Œ œ Œ  Œ  â  Œ$ ) ) ) ) ) ) ) )34
3 4 " " # # 7 7.

We thus conclude that in a complete Riemannian manifold, there is always a
local basis in  such that the metric tensor is locally given by an iden-X ÐQÑ
tity matrix. Such a manifold is also called  as far as thelocally Euclidean
inner product properties are concerned.

If the metric is indefinite, we can still define a kind of inner product by
(5.9.9), but, this time, the so-called  of a vector  defined bynorm Z

l l È É ÉZ œ ÐZ ß Z Ñ œ 1 @ @ œ 1 @ @34 3 4
3 4 34

may be a real or an imaginary number because the term ÐZ ß Z Ñ œ 1 @ @34
3 4

may be positive, negative or zero. If , then  is called a 1 @ @ œ ! Z Á !34
3 4 null

vector. However, metric tensor is still symmetric and non-degenerate.
Hence, its real eigenvalues cannot be zero and it has  linearly independent7
orthogonal eigenvectors  so normalised that  ifZ ß Z ß á ß Z ÐZ ß Z Ñ œ !" # 7 3 4

3 Á 4 lÐZ ß Z Ñl œ " ÐZ ß Z Ñ œ „ " and , or . This means that we can write the3 3 3 3

relation

ÐZ ß Z Ñ œ 1 @ @ œ „3 4 56 343 4
5 6 $ .

According to this definition a null vector will be orthogonal to itself. Hence,
the components of the metric tensor with respect to such a basis are pre-
scribed by
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ZÐZ ß Z Ñ œ 1 @ @ œ ÐZ ß Z Ñ œ „3 4 56 3 4 343 4
5 6 $ .

This amount to say that there is always a basis  of  with respectÖZ × X ÐQÑ3

to which the metric tensor is designated by a diagonal matrix whose entries
are either  or . We then choose the reciprocal basis  in  "  " Ö × X ÐQÑ)3 ‡

to express the metric tensor in the form

Z œ Œ  â  Œ  Œ  â  Œ) ) ) ) ) ) ) )" " < < <" <" 7 7

by changing the ordering of basis vectors if necessary. The number = œ
7  < is called the  of the metric tensor. We say that the sequenceindex
 â   â  <  =  that consists of  number of  and  number of  is the
signature of this tensor. The signature is even if  is an even number and is=
odd if  is an odd number= . A manifold endowed with such a metric is named
as a  after German mathematician Hermannlocally Minkowskian manifold
Minkowski (1864-1909) who had explored such manifolds within the con-
text of the theory of general relativity. If the metric tensor is positive defi-
nite, we evidently have  and .= œ ! < œ 7

The metric tensor provide a means to calculate the arc length of a
curve on a manifold. We know that a curve on a manifold  is a differenti-Q
able mapping  and the point  on the curve are de-# À Ò+ß ,Ó Ä Q :Ð>Ñ − Q
scribed by . If the tangent vector of the curve at a:Ð>Ñ œ Ð>Ñß + Ÿ > Ÿ ,#
point  is , then the elementary arc length may be defined as: Z :Ð>Ñˆ ‰

.= œ Z Ð>Ñ .> œ 1 @ Ð>Ñ@ Ð>Ñ .> œ 1 .B .B# # 3 4 # 3 4#
34 34l l

and the arc length of the curve between the points  and  is conse-:Ð+Ñ :Ð,Ñ
quently given by

6 œ Z Ð>Ñ .> œ 1 @ Ð>Ñ@ Ð>Ñ .>( (l l É
+ +

, ,

34
3 4 .

If the Riemannian manifold is complete, then  is always a positive number.6
The metric tensor also helps convert covariant components of a tensor

to its contravariant components and vice versa. Let us consider the covariant
tensor

g œ > .B Œ .B Œ â Œ .B4 4 â4
4 4 4

" # 5
" # 5

that can also be written in the form

g œ 1 â 1 > 0 Œ â Œ 0 œ > 0 Œ â Œ 03 4 3 4 3 â 3
4 â4 3 3 3 3

" " "5 5 5
" 5 " "5 5

if we use the inverse relation (5.9.7) as . Here we define.B œ 1 03 34
4
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> œ 1 â1 >3 â3 3 4 3 4
4 â4

" " "5 5 5
" 5

. (5.9.11)

The coefficients  are obtained by performing  contractions on a> 53 â3" 5

tensor  formed as the product of a  tensor and  times of aÇ ÇÐQÑ ÐQÑ 5#5 !
5 5

ÇÐQÑ#
! tensor which is the inverse metric tensor. Hence, the quotient rule

[  . 212] states that they are nothing but the  ofsee contravariant components:
the same tensor . Thus the components of the inverse metric tensor proveg
to be useful in  the indices in the tensorial components. Similarly, weraising
can show that the components of the metric tensor can be instrumental in
lowering indices in the tensorial components. Indeed, if a tensor  is giveng
in the form

g œ > Œ â Œ
` `

`B `B
4 â4

4 4
" 5

" 5

then inserting  that follows from (5.9.4) into the above expression` œ 1 /3 34
4

we find that

g œ 1 â 1 > / Œ â Œ / œ > / Œ â Œ /3 4 3 4
4 â4 3 3 3 3

3 â3" " 5 5
" " "5 5 5

" 5

where the covariantly transforming coefficients

> œ 1 â1 >3 â3 3 4 3 4
4 â4

" 5 " " 5 5
" 5 (5.9.12)

are called the  of the tensor . It is seen that thecovariant components g
existence of the metric tensor effectively abolishes the distinction between
covariant and contravariant tensors and provides a natural transition be-
tween components of such kind of tensors. It is clear that this procedure is
applicable to any index of mixed components of a tensor.

Suppose that a tensor is defined as a contraction of a product of two
tensors. In terms of components we can write for example

> œ 1 1 > œ >

œ >

3 343 â3
34 â4 35 4 5 4

3 â3 3 â35 5
4 â4 4 â4

4

4
3 â3 4

4 â4
" 5

" 6

" "5 5

" "6 6

" 5

" 6

7 7 $ 7

7 .

We thus reach to the conclusion that such a tensor does not change if we
arbitrarily lower one and raise the other of contracted indices.

If we can find a form  on an -dimensional manifold H A− ÐQÑ 7 Q7

such that  at every point , then we say that  is an H Á ! : − Q Q orientable
manifold volume form and  is a . In that case, it is clear that one is able toH
write  where we must have  everywhere onH œ 0Ð Ñ .B • â • .B 0 Á !x " 7

Q Q 1 œ Ò1 Ó  !. When  is a , we get .complete Riemannian manifold det 34

Under a coordinate transformation , we readily obtain in generalC œ C ÐB Ñ3 3 4
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det det
det

Ò1 Ð ÑÓ œ 1 Ð Ñ œ
`B `B Ò1 Ð ÑÓ

`C `C N
w
34

5 6

3 4 #56
56y x

x’ “
where . Let us now define  so thatN œ Ò`C Î`B Ó Á ! 1 œ Ò1 Ó  !det det3 4

34¸ ¸
we can write  . We now introduce a volume form as1 Ð Ñ œ 1Ð Ñ Nw #y x Î
follows

.Ð Ñ œ 1 .B • â • .Bx È " 7. (5.9.13)

If the Riemannian manifold is not complete, then  may be positive ordet Ò1 Ó34

negative although it cannot be zero because we have assumed that the met-
ric tensor is non-degenerate. In that case, we always have 1 œ Ò1 Ó  !¸ ¸det 34

in (5.9.13). Such a  has obviously the same transformation rule as that of1
given above. The form  will be called the . A− ÐQÑ7 Riemannian volume
form. Under a coordinate transformation , this form is trans-C œ C ÐB Ñ3 3 4

formed in the following manner

.

.

Ð Ñ œ 1 .C • â • .C

œ â .B • â • .B
1

lN l `B `B

`C `C

œ / â .B • â • .B
1

lN l `B `B

`C `C

œ 1 .B • â • .B
N

lN l

œ Ð N Ñ 1 .B • â • .B

œ Ð N Ñ Ð

y ÈÈ
È
È

È

w " 7

" 7

3 3
3 3

3 â3 " 7
" 7

3 3

" 7

" 7

" 7

" 7

" 7

" 7

sgn

sgn xÑ

where sgn  is  if and  if . Clearly, thisN œ N ÎlN l  " N  !  " N  !
volume form remains invariant under coordinate transformations if .N  !
The form (5.9.13) can also be written as

. œ 1 / .B • â • .B
"

7x

œ .B • â • .B
"

7x

È 3 â3
3 3

3 â3
3 3

" 7
" 7

" 7
" 7%

(5.9.14)

where we defined the  by thecovariant Levi-Civita permutation tensor
relation

%3 â3 3 â3" 7 " 7œ 1 /È . (5.9.15)

On the other hand, the expression
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/ œ 1 .B • â • .B
"

7x
œ 1 .B • â • .B

œ 1 .B • â • .B

4 â4 3 3
3 â3
4 â4

4 4

4 4

" 7 " 7

" 7

" 7

" 7

" 7

. $È
È
È

[ ]

yields

.B • â • .B œ œ
/

1
3 3 3 â3

3 â3
" 7 " 7

" 7

È . % .

where the  is defined bycontravariant Levi-Civita permutation tensor

%3 â3
3 â3

" 7

" 7

œ
/

1È . (5.9.16)

In order to identify the tensorial character of these quantities let us start with
the relations

/ Ð ÑN œ / Ð Ñ â
`B `B `B

`C `C `C

/ Ð ÑN œ / Ð Ñ â
`C `C `C

`B `B `B

3 3 â3 4 4 â4
"

4 4 4

3 3 3

3 3 â3 4 4 â4
3 3 3

4 4 4

" # 8 " # 8

" # 8

" # 8

" # 8 " # 8

" # 8

" # 8

C B

C B

from which we deduce the transformation rules of Levi-Civita symbols as

/ Ð Ñ œ N â / Ð Ñ
`B `B `B

`C `C `C

/ Ð Ñ œ N â / Ð Ñ
`C `C `C

`B `B `B

3 3 â3 4 4 â4

4 4 4

3 3 3

3 3 â3 " 4 4 â4
3 3 3

4 4 4

" # 8 " # 8

" # 8

" # 8

" # 8 " # 8

" # 8

" # 8

C B

C B

,

.

This means that  and  are actually  because the/ /3 3 â3
3 3 â3

" # 8
" # 8 tensor densities

transformation rule depends on the Jacobian of the coordinate transforma-
tion.  Since we can write sgn , Levi-Civita tensors will satisfyN œ N lN l

% %

% %

3 3 â3 4 4 â4

4 4 4

3 3 3

3 3 â3 4 4 â4
3 3 3

4 4 4

" # 8 " # 8

" # 8

" # 8

" # 8 " # 8
" # 8

" # 8

Ð Ñ œ N â Ð Ñ
`B `B `B

`C `C `C

Ð Ñ œ N â Ð Ñ
`C `C `C

`B `B `B

C B

C B

sgn ,

sgn .

So      because theLevi-Civita tensors and are % %3 3 â3
3 3 â3

" # 8
" # 8 pseudotensors

transformation rule changes sign depending on the Jacobian of the coordi-
nate transformation. They behave like absolute tensors if . In order toN  !
understand how they are related, let us consider the relation
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1 â1 œ 1 / 1 â1 œ 1 Ò1 Ó/

œ œ Ð Ò1 ÓÑ
1

Ò1 Ó

3 4 3 4 3 4 3 4 34 3 â3
4 â4 4 â4

34

3 3 â3 3 3 â3
34

" " 8 8 " " 8 8 " 8
" 8 " 8

" # 8 " # 8

%

% %

È È det

det
detsgn

Similarly, we find that

1 â1 œ Ð Ò1 ÓÑ3 4 3 4 34 3 â3
4 â4

" " 8 8 " 8
" 8% %sgn .det

Hence, they represent covariant and contravariant components of the same
tensor if . We also easily observe that we get the absolute tensordet Ò1 Ó  !34

$ %4 â4
3 â3 3 â3 3 â3

4 â4 4 â4" 7

" 7 " 7 " 7
" 7 " 7

œ / / œ % .

We can now fulfil the task of the top down generation of ordered bases
for the exterior algebra  just like we have done in Sec. 5.5 by usingAÐQÑ
the volume form defined by (5.9.14). Let us introduce similarly the ordered
forms

. .

.

% A

3 3 â3 ` ` `

` 3 â3

3 â3 3 â3
3 3 75

5 5" " 35 3 35" "

35 5" "

" 75 5"
5" 7

œ Ð ‰ ‰ â ‰ ÑÐ

Ð Ñ

.B • â • .B − ÐQÑ

i i i
i

Ñ

œ

œ
"

Ð7  5Ñx

(5.9.17)

where . Following the path we have pursued in obtaining the re-" Ÿ 5 Ÿ 7
lation (5.5.12), we easily deduce from (5.9.17) that

.B • â • .B œ
"

5x
3 3 3 â3 3 â3

3 â3
5" 5 5"7 " 7

5 "% . . (5.9.18)

It is straightforward to see that all expressions appearing between (5.5.13)
and (5.5.18) remain without change if we replace  by (5.9.14) and Levi-.
Civita symbols by Levi-Civita tensors. In like fashion, we can verify at once
that the forms  defined in (5.9.17) constitute a basis of the module.3 â35 "

A = A75 75ÐQÑ − ÐQÑ. Thus a form  may be written again as

= = .œ
"

5x
3 â3

3 â3
" 5

5 "
.

But, the exterior derivative of this form is now rather different from what is
given in (5.8.5). This derivative is of course

. œ Ð .B •  . Ñ
"

5x
= = . = .3 â3 3 3 â3

ß3 3 â 3 3 â3
" "5 5

5 5" "
.

On the other hand, an explicit calculation leads to
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.

œ Ð 1Ñ .B • .B • â • .B

œ .B • .B • â • .B
Ð 1Ñ

1

œ
Ð 1Ñ

1

.3 â3

3 â3 3 â3 ß3
3 3 3

ß3
3 â3 3 â3

3 3 3

ß3
3 â3 3

5 "

" 75 5"
5" 7

" 5 5" 7
5" 7

" 5

"

Ð7  5Ñx
/

"

Ð7  5Ñx

"

Ð7  5Ñx

È
È
ÈÈ
È

%

%
5" 5"7 "

" 75" 5"

" 75" 5 5"

" 75" 5"

5" "

" 5" 5

"

â3 4 â4
4 â4 33 â3

ß3

3 â 3 3 3 â3
4 â4 33 â3

4 â4

ß3

3 â3 3
4

"

Ð5  "Ñx

œ
"

Ð5  "Ñx 1

Ð 1Ñ

œ
"

Ð5  "Ñx 1

Ð 1Ñ

% .

$ .

$

"

Ð7  5Ñx

È
ÈÈ

È â4 3 3
4 â4 3 â3 3

ß3

3
5"

5" 5"" # "5
. $ .œ 5

Ð 1Ñ

1

È
È [ ].

Hence, according to (5.5.15) and due to the complete antisymmetry of func-
tions  we obtain=3 â3" 5

. œ 
"

Ð5  "Ñx 1

Ð 1Ñ

œ Ð 1 Ñ
" "

Ð5  "Ñx 1

œ Ð 1 Ñ œ
" " "

Ð5  "Ñx 1 Ð5  "Ñx

= = = $ .

= $ .

= .

Š ‹È
È

È È
È È

3 â3 3 â3
ß3 3 â3

ß3

3
3

3 â3
ß3 3 â33

3

3 â3 3
ß3 3 â3

" "5 5

5 5" "

" 5

5 5" "

" 5"
5" "

[ ]

[ ]

= .3 â3 3
à3 3 â3

" 5"
5" "

where we introduced the definition

= =3 â3 3 3 â3 3
à3 ß3

" "5" 5"œ Ð 1 Ñ
"

1È È (5.9.19)

A semicolon in front of an index denotes the  withcovariant derivative
respect to a variable depicted by this index. We discuss the concept of co-
variant derivative in Chapter VII in detail. Here we just confine ourselves to
indicate that although the quantities  are not generally components=3 â3 3

ß3
" 5"

of a tensor, the coefficients  of the form  are components of a= =3 â3 3
à3

" 5" .
( )-contravariant tensor. We now suppose that a form5  "

= = Aœ Ð Ñ .B • â • .B − ÐQÑ
"

5x
3 â3

3 3 5
" 5

" 5x

is given on an orientable Riemannian manifold. The  or justHodge dual
simply the  of this form is defined bydual
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‡ œ Ð Ñ − ÐQÑ
"

5x
= = . A3 â3 75

3 â 3
" 5

5 "
x (5.9.20)

where  are of course now prescribed bycontravariant components

= =3 â3 3 4 3 4
4 â4

" " "5 5 5
" 5

œ 1 â1 . (5.9.21)

The operator  is known as the .‡ À ÐQÑ Ä ÐQÑA A5 75 Hodge star operator
The form (5.9.20) is expressible in the natural basis as

‡ œ .B • â • .B
" "

5x Ð7  5Ñx

œ .B • â • .B
"

Ð7  5Ñx

= % =

=

3 â3 3 â 3
3 â3 3 3

3 â3
3 3

" 75 5"
" 75 5"

5" 7
5" 7‡

(5.9.22)

where we have defined

‡= % =3 â 3 3 â3 3 â3
3 â3

5" 5 5"7 " 7
" 5œ

"

5x
. (5.9.23)

Hodge star operator is evidently a linear operator on the graded exterior
algebra. On applying  operator successively, it follows from (5.9.22) that‡

‡‡ œ
"

Ð7  5Ñx

œ
" "

Ð7  5Ñx 5x

œ Ð"Ñ
" "

Ð7  5Ñx 5x

œ Ð"Ñ
"

5x

= = .

% = .

% = .

‡ 3 â3
3 â3

3 â3 3 â3
3 â3 3 â3

5Ð75Ñ 3 â3 3 â3
3 â3 3 â3

5Ð75Ñ

5" 7
7 5"

" 75 5"
" 75 5"

5" 57 "
" 75 5"

= =3 â3
3 3 5Ð75Ñ

" 5
" 5.B • â • .B œ Ð"Ñ .

In order to reach to this result, we have raised and lowered the indices
appropriately utilising the metric tensor. Consequently, if applied on -5
forms, the inverse of the operator  becomes‡

‡ œ Ð"Ñ ‡ œ Ð"Ñ ‡" 5Ð75Ñ 5Ð7"Ñ (5.9.24)

because  is always an even number. It easily verified that the dual of5  5#

the volume form (5.9.14) is

‡ œ œ œ "
" "

7x 7x
. % . % %3 â3 3 â3

3 â3 3 â3
" 7 " 7

7 " " 7
. (5.9.25)

If we take , then (5.9.24) yields  and we obtain5 œ 7 ‡ œ ‡"
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‡" œ ‡‡ œ. .. (5.9.26)

Let us now consider the forms  given by= 5 Aß − ÐQÑ5

= =

5 5

œ .B • â • .B ß
"

5x

œ .B • â • .B Þ
"

5x

3 â3
3 3

3 â3
3 3

" 5
" 5

" 5
" 5

In this situation, we have . If we evaluate this form expli-= 5 A• ‡ − ÐQÑ7

citly, we obtain

= 5 = 5 .

= 5 $ . = 5 .

= 5 .

• ‡ œ .B • â • .B •
"

5x

œ œ
" "

5x 5x

œ
"

5x

Š ‹
Š ‹

#

3 â3 4 â4
4 â4 3 3

#

3 â3 3 â3
4 â4 3 â 3

4 â4
3 â3

3 â3
3 â3

" "5 5
" "5 5

" "5 5
" "5 5

" 5

" 5

" 5
" 5

[ ]

.

On the other hand, since the same expression may be directly transformed

into the form , we arrive at the identity= 5 5 = .• ‡ œ
"

5x
3 â 3

3 â3
" 5

" 5

 . (5.9.27)= 5 5 =• ‡ œ • ‡

For a form , we similarly find= A− ÐQÑ5

= = = = .• ‡ œ
"

5x
3 â3

3 â3
" 5

" 5 .

Next, we take a form  into account and calculate the exterior= A− ÐQÑ5

derivative of its dual. Recalling the definition (5.9.19), we obtain

.Ð‡ Ñ œ . œ
" "

5x Ð5  "Ñx

œ .B • â • .B
" "

Ð5  "Ñx Ð7  5  "Ñx

= = . = .

= %

ˆ ‰3 â3 3 â3 3
3 â3 à3 3 â3

3 â3 3 3 3
à3 3 â3 3 â3

" "5 5"
5 5"" "

" 75" 5
" 75" 5

.

(5.9.28)

It is clear that . An operator .Ð‡ Ñ − ÐQÑ À ÐQÑ Ä ÐQÑ= A $ A A75" 5 5"

will now be defined as follows

$= = =œ Ð"Ñ ‡.Ð‡ Ñ œ Ð"Ñ ‡ .Ð‡ Ñ7Ð5"Ñ" 5 " (5.9.29)

where we adopted the convention  for . Since  is the$ A $0 œ ! 0 − ÐQÑ!

composition of linear operators, it is a linear operator on . According to‘
(5.9.29) we can write  . If  is even or if  and  are odd, the$ œ „ ‡ . ‡ 7 7 5
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sign is , if  is odd and  is even, the sign is . (5.9.29) is then 7 5 
expressed as

$= % = .œ
Ð"Ñ "

Ð7  5  "Ñx Ð5  "Ñx

7Ð5"Ñ"
3 â3 3 â3 3

3 â3 3à 3 â3’ “" 75" 5
" 75" 5

where we naturally define

= =3 â3 3à 3 4 3 4 à3
3 4 â4 3

" " "5" 5" 5"
" 5"œ 1 â1 .

Since we can write

" Ð"Ñ

Ð7  5  "Ñx Ð7  5  "Ñx
œ

œ Ð"Ñ .B • â • .B

% . % .3 â3 3 â3 3 â3 3 â3
3 â3 3 â3

Ð5"ÑÐ75"Ñ

Ð5"ÑÐ75"Ñ 3 3

" 7 7 "5" 5 5 5"
7 75 5

" 5"

on using (5.9.18), we finally reach to the result

$= =œ .B • â • .B
Ð"Ñ

Ð5  "Ñx

5

3 â3 3à
3 3 3

" 5"
" 5" (5.9.30)

after having omitted even numbers in the exponent Ð5  "ÑÐ7  5  "Ñ 
7Ð5  "Ñ  "  " of  in the above expression. Thus we can regard  as a$
sort of . Hence, the form  will bedivergence operator Ð"Ñ − ÐQÑ5 5"$= A
called the  of the form . We shall call  as the divergence = A $− ÐQÑ5 co-
differential operator. Various properties of this operator can easily be
identified:
  Ð3ÑÞ ‰ œ œ „ ‡ .‡‡ .‡ œ „ ‡ . ‡ œ !We have  for$ $= $ = = =# " " " #

all  so that we obtain = A $− ÐQÑ œ !Þ#

 ,  .Ð33ÑÞ − ÐQÑ ‡Ð Ñ œ Ð"Ñ .Ð‡ ÑIf we have= A $= =5 5

Indeed (5.9.30) and (5.9.17) yield

‡Ð Ñ œ
Ð"Ñ

Ð5  "Ñx

œ .B • â • .B
Ð"Ñ

Ð5  "ÑxÐ7  5  "Ñx

$= = .

= %

5
3 â3 3

à3 3 â3

5
3 â3 3 3 3

à3 3 â3 3 â3

" 5"
5" "

" 75" 5
" 75" 5

.

We then obtain the desired result in view of (5.9.28). We can also arrive at
this result directly from the definition of the operator . Let us consider a$
form . We find that= A− ÐQÑ5+1

‡ œ Ð"Ñ ‡‡.‡ œ Ð"Ñ .‡ œ Ð"Ñ .‡$= = = =7Ð5#Ñ" 75"5Ð7"Ñ 5" .

Since the number  is arbitrary, when we apply this operator to" Ÿ 5 Ÿ 7
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the form , we get .= A $− ÐQÑ ‡ œ Ð"Ñ .‡5 5

  ,  .Ð333ÑÞ − ÐQÑ Ð‡ Ñ œ Ð"Ñ ‡.Ð ÑIf we have= A $ = =5 5"

In fact, discarding even numbers in the exponent of  we find"

$ = = =

= =

Ð‡ Ñ œ Ð"Ñ ‡.‡‡ œ Ð"Ñ ‡.Ð Ñ

œ Ð"Ñ ‡.Ð Ñ œ Ð"Ñ ‡.Ð Ñ

7Ð75"Ñ" 75"5Ð7"Ñ

5" 5" .

Hence, we get  when applied to the form .$ = A‡ œ Ð"Ñ ‡. − ÐQÑ5" 5

     :Ð3@ÑÞ ‡ . œ . ‡ ‡. œ .‡The relations and are valid$ $ $ $
Let us take . By direct calculations, we find= A− ÐQÑ5

‡ .Ð Ñ œ Ð"Ñ ‡‡.‡. œ Ð"Ñ .‡. ß

. Ð‡ Ñ œ Ð"Ñ .‡.‡‡ œ Ð"Ñ .‡.

$ = = =

$ = = =

7Ð5#Ñ" 5"

7Ð75"Ñ" 5" .

We thus conclude that  for all . Similarly, we‡ .Ð Ñ œ . ‡Ð Ñ − ÐQÑ$ = $ = = A
obtain

‡. Ð Ñ œ Ð"Ñ ‡.‡.‡ ß

.‡Ð Ñ œ Ð"Ñ ‡.‡.‡ œ Ð"Ñ ‡.‡.‡

$ = =

$ = = =

7Ð5"Ñ"

7Ð75#Ñ" 7Ð5"Ñ"

where . This implies that  for all = A $ = $ = = A− ÐQÑ ‡. Ð Ñ œ .‡Ð Ñ − ÐQÑ5

since it is valid for all degrees.
   .Ð@ÑÞ ‡. œ .‡ œ !The relations are valid$ $

If , we get= A− ÐQÑ5

$ = = =

$ = = =

‡.Ð Ñ œ Ð"Ñ ‡.‡‡. œ Ð"Ñ ‡. Ð Ñ œ !ß

.‡ Ð Ñ œ Ð"Ñ .‡‡.‡ œ Ð"Ñ . Ð‡ Ñ œ !

7Ð5#Ñ" 5" #

7Ð5"Ñ" 75" #

so that  for all .$ = $ = = A‡.Ð Ñ œ .‡ Ð Ñ œ ! − ÐQÑ
For a form  we obtain  and = A $= = . $= A− ÐQÑ ‡Ð Ñ œ  − ÐQÑ1 3 !

à3

is given by . Let us define the form  asso-$= = = = Aœ  œ .B − ÐQÑ3 3
à3 3

1

ciated with a vector field  by taking . Then, weZ œ @ ` − X ÐQÑ œ 1 @3 4
3 3 34=

naturally find  so that we are able to write= =3 34 3
4œ 1 œ @

@ œ Z œ 3
à3 div $=

We now define an operator  that is linear on J A A ‘À ÐQÑ Ä ÐQÑ5 5

by the following relation

J $ $œ .  . . (5.9.31)

J is called the   after Laplace and Swiss mathe-Laplace-de Rham operator
matician Georges de Rham (1903-1990). If we take a function 0 − ÐQÑA!

into account, application of this operator yields
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J $ $ $0 œ .0  . 0 œ .0 œ f 0# (5.9.32)

where  is called the  f œ . À ÐQÑ Ä ÐQÑ# ! !$ A A Laplace-Beltrami opera-
tor [Italian mathematician Eugenio Beltrami (1835-1900)]. Since we write
.0 œ 0 .Bß3

3, according to (5.9.30) and (5.9.19) we get

f 0 œ  Ð0 Ñ œ  Ð 1 1 0 Ñ
"

1
# 34

ß3 à ß4 ß3
3 È È  . (5.9.33)

In Cartesian coordinates, this expression takes the form

f 0 œ 
` 0

`B
#

3œ"

7 #

3#
" .

We have to note that this operator is differing only in sign from the familiar
one encountered in partial differential equations. The Laplace-Beltrami ope-
rator  possesses the following properties that can easily be verified:J
        .Ð3ÑÞ œ Ð.  ÑOne has J $ #

J $ $ $ $ $ $ $œ Ð.  Ñ ‰ Ð.  Ñ œ .  .  .  œ .  .Þ# #

       .Ð33ÑÞ . œ . œ . .One has J J $

. œ . .  . œ . .ß . œ .  . . œ . .J $ $ $ J $ $ $ # # Þ

      One has Ð333ÑÞ $J J$ $ $œ œ . .

$J $ $ $ $ $ J$ $ $ $ $ $œ .  . œ . ß œ .  . œ . Þ# #

      Ð3@ÑÞ ‡ œ ‡One has .J J

‡ œ ‡Ð .  . Ñ œ ‡ .  ‡. œ . ‡  .‡ œ Ð.  .Ñ‡

œ ‡Þ

J $ $ $ $ $ $ $ $

J

A form  satisfying the equation  will be called a= A J=− ÐQÑ œ !5

harmonic form. The set

H5 5ÐQÑ œ Ö − ÐQÑ À œ !× œ Ð Ñ= A J= a J

is a subspace of  on .A ‘5ÐQÑ
Example 5.9.1. Let us take  and we introduce the sphericalQ œ ‘$

coordinates  connected to Cartesian coordinates by the relationsÐ<ß ß Ñ) 9

B œ < ß C œ < ß D œ < ß ! Ÿ Ÿ ß ! Ÿ Ÿ #sin cos sin sin cos) 9 ) 9 ) ) 1 9 1.

Since the arc element is determined by
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.= œ .<  < .  < . ß# # # # # # #) ) 9sin

the components of the metric tensor and its inverse are given by

1 œ "ß 1 œ < ß 1 œ < à

1 œ "ß 1 œ "Î< ß 1 œ "Î<

<<
# # #

<< # # #

)) 99

)) 99

sin

sin

)

).

Thus the volume form becomes

. ) ) 9œ < .< • . • .#sin

whence we produce the basis for A ‘# $Ð Ñ

. . ) ) 9 . . ) 9

. . ) )

< ` `
# #

`
#

œ Ð < . • . ß œ Ð < .< • . ß

œ Ð < .< • .

i i
i

<
Ñ œ Ñ œ 

Ñ œ

sin sin

sin
)

9

)

9

We can now represent a form  by= A ‘− Ð Ñ" $

= = = ) = 9œ .<  .  .< ) 9

where coefficients are functions of variables . The Hodge dual of the<ß ß) 9
form  will be given by=

‡ œ  = = . = . = .<
<

) 9
) 9

where the coefficients are calculated as follows

= = = = = =
)

<
< # # #

œ ß œ ß œ
" "

< <
) 9

) 9sin
.

Therefore, we get

‡ œ .< • .  .< • .  < . • .= ) = ) 9 = ) ) 9
=

)
9

)sin
sin sin<

# .

We readily see that we obtain

= = = = = .
)

• ‡ œ  
" "

< <
Š ‹# # #

< # # #) 9sin
.

Let us now evaluate the exterior derivatives of the forms  and . We find= =‡

. œ Ð  Ñ.< • .  Ð  Ñ.< • .  Ð  Ñ. • .

.‡ œ Ð < Ñ  Ð Ñ  .< • . • .

œ   
# "

< < <

= = = ) = = 9 = = ) 9

= = ) = ) ) 9
=

)

= = =
)

) ) 9 9 9 ) ) 9

) )
9

9

) )

ß< <ß ß< <ß ß ß

< ß< ß
#

ß

< ß< < ß# #

 ˆ ‰ ‘
Š

sin sin
sin

cos
sin sin) )

= = .) 9 9
"

<# # ß ‹ .
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Since , , , the co-differential of  becomes‡ œ " 7 œ $ 5 œ ". =

$= = = =
= = ) =

) ) ) 9
œ  ‡.‡ œ     

` # " ` " `

`< < < ` < < `
Š ‹<

< # # # #

) 9
)

cos
sin sin

.

Let us now consider the function . Its differential is the -form0 − Ð Ñ "A ‘! $

.0 œ 0 .<  0 .  0 .ß< ß ß) 9) 9.

Hence, if we write  the above relation leads to= = =< ß< ß ßœ 0 ß œ 0 ß œ 0) ) 9 9

f 0 œ .0 œ     
` 0 # `0 " ` 0 `0 " ` 0

`< < `< < ` < ` < `
#

# # #

# # # # # # #
$

) ) ) ) 9

)Š ‹cos
sin sin

that is the known result apart from a sign difference. è

5.10. CLOSED IDEALS

Let  be an ideal of the exterior algebra .  is called a \ A \ÐQÑ closed
ideal if  for all forms . This situation is symbolically express-. − −= \ = \
ed as . Sometimes, a closed ideal is also named as a . §\ \ differential
ideal. Let us consider the ideal  generated by forms \ = = =Ð ß á ß Ñ ß á ß" < "

= A \< − ÐQÑ. If the ideal  is not a closed one, then we can construct an
extended ideal , which is called the  of\̄ = = = =Ð ß á ß ß . ß á ß . Ñ" < " < closure
\ = \ #, that will be closed. Indeed, if , then there are appropriate forms ¯− !

and  such that we can write . We> ! = # = > =! ! !
! !ß œ "ß á ß < œ •  • .

then obtain

. œ . •  .  Ð"Ñ • . −= # = > # = \! ! # !
! !ˆ ‰./1 !

¯.

Naturally, if the exterior derivatives of some generating forms are already
inside the ideal, we have to discard these exterior derivatives as generators
in determining the closure. More generally, let us denote the set of forms .=
corresponding to all forms  by . We immediately observe that the= \ \− .
set  is a closed ideal in .\̄ \ \ Aœ  . ÐQÑ

Next, we discuss the necessary and sufficient conditions for an ideal
generated by finitely many forms to be closed.

Theorem 5.10.1.  Let be an ideal of the exterior algebra\ = =Ð ß á ß Ñ" <

A \ > AÐQÑ − ÐQÑß.  The ideal is closed if and only if appropriate forms !
"

! " = > =ß œ "ß á ß < . œ • can be so found that the relations are  ! "!
"

satisfied.
It is clear that the conditions  or./1  " œ ./1  ./1= > =! "!

"
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./1 œ ./1  ./1  "   !> = =!
"

! "

should be satisfied if the forms  exist. Hence, only the generating forms>!
"

whose degrees are less than or equal to  can take place in the./1  "=!
sum. Let us first assume that the ideal  is closed. Then we must get\
. − −= \ = \ >! ! !

" when . This means that there exists forms  so that the
relations  are satisfied. For sufficiency, let us assume the. œ •= > =! "!

"

existence of the relations . If , then we can find forms. œ • −= > = = \! "!
"

# = # =! !
! so that one is able to write . In this case, the exteriorœ •

derivative of  is evaluated as=

. œ . •  Ð"Ñ • .

œ .  Ð"Ñ • •

= # = # =

# # > =

! # !
! !

" # ! "
! "

./1

./1

!

!ˆ ‰
implying that . However, the forms  should be restricted because. −= \ >!

"

they have to satisfy the following compatibility conditions:

. œ . •  Ð"Ñ • .

œ .  Ð"Ñ • • œ !

# ./1

./1

= > = > =

> > > =

! " "!
" > "

! #
" > "

"

!
"

!
#

!

!
ˆ ‰# .

Evidently, in the above sums only forms complying the degree conformity
can take place. 

Example 5.10.1. Let us consider the ideal  of  generat-\ = = A ‘Ð ß Ñ Ð Ñ" #
%

ed by the forms  . We write= =" #œ .B  C .Dß œ > .B • .D  B .C • .>

. œ  .C • .D œ • Ð.B  C .DÑ  Ð> .B • .D  B .C • .>Ñ= > >" " "
" #

where . If we choose> A ‘ > A ‘" "
" " % # ! %− Ð Ñß − Ð Ñ

> # # # #"
"

" # $ %œ .B  .C  .D  .>

then we find

.C • .D œ ÐC   > Ñ .B • .D  .B • .C  .B • .>

 C .C • .D  B .C • .>  C .D • .>

# # > # #

# > #

" $ # %"
#

# %"
# .

Comparing both sides, we see that the following equations must hold

C   > œ œ œ B œ C œ !ß C œ "# # > # # > # #" $ # % % #" "
# #

from which we obtain , . But, to satisfy the rela-> # # #"
#

% $ "œ œ ! œ  C
tions  and  simultaneously is not possible. Hence, the form# ## #œ ! C œ "
> = \"

"
" does not exist implying that  does not belong to . On the other.
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hand, we have

. œ .> • .B • .D  .B • .C • .> œ .B  .> •
" "

B >
= =# #Š ‹ .

Thus  is inside the ideal. In this case the closure of the ideal  should be.= \#

designated by .\̄ = =Ð ß ß .C • .DÑ" 2 è

When we are dealing with ideals whose generators are -forms, the"
condition of being closed is reduced to a much simpler form.

Theorem 5.10.2.  Let an ideal of the exterior algebra generatedAÐQÑ
by linearly independent forms be If ," ß á ß Ð ß á ß Ñ <  7  "-  . = = \ = =" < " <

then the ideal is closed if and only if the conditions   \ = H !. • œ !ß œ!

"ß á ß < • â • Á !  are satisfied where we defined .H œ = =" <

If  is closed, that is, if there exist forms  so that we can\ > A"
! − ÐQ Ñ" 7

write , then it is evident that the relations  are. œ • . • œ != > = = H! ! " !
"

automatically satisfied. Conversely, let us suppose that we get . • œ != H!

for . Next, we add  linearly independent -forms " Ÿ Ÿ < 7  < " ß á ß! =<"

= = = = = =7 " < 3 + to the forms  to make a basis ß á ß Ö × œ Ö ß ×ß + œ <  "ß!

á ß 7ß 3 œ "ß á ß 7 ÐQÑ  of . In this situation, a basis for the moduleA"

A = = - -# 3 4
34 43ÐQÑ • ß 3  4 œ  becomes  and so long as , we can write! !

. œ • œ •  •  •  •

œ •  # •  •

= - = = - = = - = = - = = - = =

- = = - = = - = =

! ! ! " # ! " ! " !
"# " "

! " # ! " !
"# "

34 + + +,
3 4 + + + ,

+ +,
+ + ,.

whence we deduce that

. • œ • • ß œ = H - = = H - -! ! ! !
+, +, ,+

+ , .

When , the foregoing expression is a -form which is the< Ÿ 7  # Ð<  #Ñ
sum of simple -forms. Since the forms  and  are linearly inde-Ð<  #Ñ = =! +

pendent none of the forms  vanishes if . Thus the condi-= = H+ ,• • + Á ,
tion  can only be realised when . In this case, we obtain. • œ ! œ != H -! !

+,

. œ Ð  # Ñ • œ • −= - = - = = > = \! ! # ! " ! "
#" " "+

+

Hence, the ideal  is closed.\ 
When  the forms  are identically zero because their<   7  " . •= H!

degrees is higher than . Therefore, they cannot provide a criterion to7
identify a closed ideal. However, the theorem below fills this gap.

Theorem 5.10.3.  An ideal of the exterior algebra is closed if itAÐQ Ñ7

is generated either by  or  linearly independent forms.< œ 7 < œ 7  " "-
When , the linearly independent -forms  generating< œ 7 " ß á ß= =" 7

an ideal  constitute a basis of . Consequently, we can write\ A"ÐQÑ
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. œ • œ • −= - = = > = \! ! # " ! "
#" "

where . Hence, the ideal  is closed. When , we can> - = \" #"
! ! #œ < œ 7  "

choose a -form  that is independent of those  forms. Thus " 7  " ß á ß5 ="

= 5 A \7" "ß ÐQÑ become a basis of . If we consider an ideal  generated by
these forms, we get

. œ •  • œ Ð  Ñ • œ • −= - = = - 5 = - = - 5 = > = \! ! # " ! " ! # ! " ! "
#" " #" " " .

Hence, the ideal again becomes closed. 
The following theorem is concerned with the closure \̄ = =Ð ß á ß ß" <

. ß á ß . Ñ Ð ß á ß Ñ= = \ = =" < " < of an ideal .
  Theorem 5.10.4. The exterior derivative  of a form . − ÐQÑ= = A5

remains inside the closure of the ideal  if and only if we can find forms  \̄ \
! A " V− ÐQÑ − ÐQÑ5 5" and  in the ideal  such that .\ = ! ".Ð  Ñ œ

 If , then we can write  for approp-! " \ ! # = " - =ß − œ • ß œ •! !
! !

riate forms  and  where . Thus, we readily obtain for a# - !! ! œ "ß #ß á ß <
5 .Ð  Ñ œ-form  satisfying the relation , the following expression= = ! "

. œ  .  œ Ð  .= ! " # - = # = \! ! !
! # ! Ñ •  Ð"Ñ • . −./1 Ð Ñ! ¯.

The above equality requires that , thus we must have ." " Vœ ! − ÐQÑ5" .
Conversely, let us assume that . Consequently, we can write¯.= − \

. œ= - = . =! !
! !•  • .  

where , . Because of the relation- A . A! !
= =− ÐQÑ − ÐQÑ5"./1 Ð Ñ 5./1 Ð Ñ! !

. œ !#= - ., the forms  and  ought to meet the condition! !

. •  Ð.  Ð"Ñ Ñ • . œ !- = . - =! ! !
! - !./1 Ð Ñ! .

We now define the forms  as follows9!

Ð"Ñ œ .  Ð"Ñ ß ./1 Ð Ñ œ ./1 Ð Ñ./1 Ð Ñ ./1 Ð Ñ- -
! ! ! ! !

! !9 . - 9 - .

If we insert the form  into above expressions- 9 .! ! !
-œ  Ð"Ñ ../1 Ð Ñ"!

and note that  by definition, we obtain./1 Ð Ñ œ ./1 Ð Ñ  ". -! !

. œ= 9 = . = . =

9 = . =

9 = 9 = 9 =

! ! !
! - ! !

! !
! - !

! ! !
! 9 ! !

•  Ð"Ñ . •  • .

œ •  Ð"Ñ .Ð • Ñß

! œ . •  Ð"Ñ • . œ .Ð • ÑÞ

./1 Ð Ñ"

./1 Ð Ñ"

./1 Ð Ñ

!

!

!

It will suffice now to introduce the forms  and! . = \œ Ð"Ñ • −./1 Ð Ñ- !
!

!

" 9 = \ = ! "œ • − .Ð  Ñ œ .!
!  to reach to the result  and ." œ ! 
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5.11. LIE DERIVATIVES OF EXTERIOR FORMS

Let us consider a congruence on a manifold  brought out by a vectorQ
field  and the   induced by this congruence. As is wellZ À Q Ä Qflow 9>

known, this mapping carries a point  to a point .¯: − Q :Ð>Ñ œ Ð:Ñ − Q9>

On recalling the relation (2.9.11), we represent this mapping by :̄Ð>Ñ œ
9>

>ZÐ:Ñ œ / Ð:Ñ. We can also write

B Ð>Ñ œ / ÐB Ñ œ B  >Z ÐB Ñ  Z ÐB Ñ  â  Z ÐB Ñ  â
> >

#x 8x¯
3 >Z 3 3 3 # 3 8 3

# 8

in terms of local coordinates. We employed here only the symbol  for theZ
vector field believing that it will no longer cause any ambiguity.

We suppose that a form field  is given. Let us transport the= A− ÐQÑ5

form  at a point  to a point  by pulling it back by the mapping¯ ¯=ˆ ‰:Ð>Ñ :Ð>Ñ :

9‡
> . We thus obtain

= = 9 9 = =‡ ‡ >Z ‡
> >Ð:à >Ñ œ ‰ Ð:Ñ œ Ð ÑÐ:Ñ œ Ð/ Ñ .

As we have done before, we will now define the  of a formLie derivative
field  at a point  by the following limiting process:= :

£ (5.11.1)Z
>Ä! >Ä!

>Z ‡ >Z ‡
5= = A

= =
œ œ − ÐQÑ

Ð/ Ñ  Ð/ Ñ  3

> >
lim lim A

where  is the identity operator on the exterior algebra.3 À ÐQÑ Ä ÐQÑA A A
This definition reveals immediately certain important properties of the Lie
derivative.
Ð3ÑÞ We can write

Ð/ Ñ œ  >  9Ð>Ñ>Z ‡
Z= = =£ .

Ð33ÑÞ 0 − ÐQÑ , [  (2.10.18)]When we have seeA!

£ .Z ß3 Z
30 œ @ 0 œ Z Ð0Ñ œ Ð.0Ñi

In fact, for small values of the parameter  we obtain>

£ .¯
Z ß3

>Ä! >Ä!

30 œ œ œ @ 0
0 :Ð>Ñ  0Ð:Ñ

> >

0Ð  >  Ð>ÑÑ  0Ð Ñ
lim lim

ˆ ‰ x v x9

Ð333ÑÞ We have

£ £ £Z Z ZÐ  Ñ œ = 5 = 5.

This is observed at once by noting he relation
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Ð/ Ñ Ð  Ñ œ Ð/ Ñ  Ð/ Ñ>Z ‡ >Z ‡ >Z ‡= 5 = 5.

Ð3@ÑÞ The Leibniz rule

£ £ £Z Z ZÐ • Ñ œ Ð Ñ •  • Ð Ñ= 5 = 5 = 5

is in effect.
Recalling the relation , we arrive atÐ/ Ñ Ð • Ñ œ Ð/ Ñ • Ð/ Ñ>Z ‡ >Z ‡ >Z ‡= 5 = 5

the desired result

£

£ £

£ £
£ £ .

Z
>Ä!

>Z ‡ >Z ‡

>Ä!

Z Z

>Ä!

Z Z
Z Z

Ð • Ñ œ
Ð/ Ñ • Ð/ Ñ  •

>

œ
Ð  >  9Ð>ÑÑ • Ð  >  9Ð>ÑÑ  •

>

œ œ •  •
>Ð •  • Ñ  9Ð>Ñ

>

= 5
= 5 = 5

= = 5 5 = 5

= 5 = 5
= 5 = 5

lim

lim

lim

This expression can easily be generalised to an arbitrary number of forms so
that one is able to write

£ £
                                        £ £ .

Z " # < Z " # <

" Z # < " # Z <

Ð • • á • Ñ œ • • á •

 • • á •  • • á •

= = = = = =

= = = = = =

This relation offers essentially an approach to calculate the Lie derivative of
any form once we determine the Lie derivatives of only - and -forms. We! "
have already found the Lie derivative of -forms. We now try to evaluate!
the Lie derivative of a -form. Let us take"

= = Aœ .B − ÐQÑß Z œ @ − X ÐQÑ
`

`B
3

3 " 3
3

.

Since we can write. , then the Taylor series about theB̄ œ B  >@  9Ð>Ñ3 3 3

point  yieldsx

Ð/ Ñ œ B  >@  9Ð>Ñ .B  >@ .B  9Ð>Ñ

œ Ð Ñ  > @  9Ð>Ñ .B  > .B  9Ð>Ñ
` `@

`B `B

œ Ð Ñ .B  > @ .B  .B  9Ð>Ñ
` `@

`B `B

>Z ‡ 4 4 3 3 5
3 ß5

3
3

4 5
4 3 5

3

3 3
3 4 3 53

4 5

3

= =

=
=

= =
=

ˆ ‰ˆ ‰
Š ‹Š ‹

Š ‹
x

x .

On changing properly the names of dummy indices, we finally get

£ . (5.11.2)Z 4 3ß4 4
3

4 3
4 3 4 3

4
4
ß3= = = =

=
œ @  .B œ Ð @  @ Ñ .B

` `@

`B `B
Š ‹
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The coefficients £  totally specifies the -Ð Ñ œ @  @ − ÐQÑ "Z 3 3ß4 4
4 !4

ß3= = = A

form £ . As a special example, let us consider the form Z ß3
3= .0 œ 0 .B

where . Then, with  (5.11.2) leads to0 − ÐQÑ œ 0A =!
3 ß3

£ .Z ß34 ß4 ß4 ß3
4 3 4 3 34

ß3 ß3
.0 œ Ð0 @  0 @ Ñ .B œ Ð0 @ Ñ .B œ Z Ð0Ñ .B œ .Z Ð0Ñˆ ‰

If we now select , we reach to quite a significant conclusion0 œ B5

£ . (5.11.3)Z
5 5 5 5 3

ß3.B œ .Z ÐB Ñ œ .@ œ @ .B

Next, we take a form  into account denoted by= A− ÐQÑ5

= =œ Ð Ñ .B • â • .B
"

5x
3 â3

3 3
" 5

" 5x .

On utilising the above properties, we can now calculate the Lie derivative of
this form as follows:

£ £ £

£

Z Z 3 â3 3 3 â3 Z
3 3 3 3

3 â3 Z
3 3

3 â3 ß3 3 3 â3
3 3 3 3 33

ß3

= = =

=

= =

œ Ð Ñ .B • â • .B  Ð .B Ñ • â • .B
"

5x
 â  .B • â • Ð .B Ñ

œ @ .B • â • .B  @ .B • .B • â
"

5x


‘


" " #5 5

" "5 5

" 5
" 5

" " #5 5
" #5 " • .B

 â  @ .B • â • .B • .B

œ @  @  â  @ .B • â • .B
"

5x

3

3 â3 3
3
ß3

3 3 3

3 â3 ß3 33 â3 3 â3 3
3 3 3 3 3

ß3 ß3

5

" 5" 5
5 " 5"

" # "5 5 5"" 5

" 5

=

= = =

‘
 ‘ .

Hence, the Lie derivative of a form  is expressible as= A− ÐQÑ5

£ £Z Z 3 3 â3
3 3 3 5= = Aœ Ð Ñ .B • .B • â • .B − ÐQÑ

"

5x " # 5
" # 5

where the  coefficients £  arecompletely antisymmetric Ð Ñ − ÐQÑZ 3 3 â3
!= A" # 5

determined by

Ð Ñ œ @  @  @  â  @

œ @ 
` `@

`B `B

£

            

Z 3 3 â3 3 3 â3 ß3 33 â3 3 33 â3 3 3 â3 3
3 3 3 3

ß3 ß3 ß3

3 3 3 â3

3 3
<œ"

5

3 â3 33 â3

3

= = = = =

=
=

" # " # # " $ " #5 5 5 5 5"" # 5

" # 5

" <" <" 5 <
"           (5.11.4)

It is clear that the complete antisymmetry in the coefficients  renders=3 â3" 5

the coefficients in (5.11.4) completely antisymmetric. It is now clear that the
Lie derivative £  is a  mapping.Z À ÐQÑ Ä ÐQÑA A degree preserving

The expression (5.11.2) for Lie derivatives of -forms can be trans-"
formed into the following identical shape



5.11  Lie Derivatives of Exterior Forms 293

£ .Z 3ß4 4ß3 4 ß3
4 4 3 "= = = = = Aœ Ð  Ñ@  Ð@ Ñ Ñ .B ß − ÐQÑ ‘

On the other hand, since one has  we obtain. œ .B • .B= =3ß4
4 3

i
i

Z 3ß4 3ß4 3ß4 4ß3
4 3 3 4 4 3

Z 4 ß3
4 3

Ð. Ñ œ @ .B  @ .B œ Ð  Ñ@ .B ß

. Ð Ñ œ Ð@ Ñ .B Þ

= = = = =

= =

We thus arrive at the expression

£Z Z Z
"= = = = Aœ Ð. Ñ  . Ð Ñß − ÐQÑi i

known as the . We shall now prove that this formulaCartan magic formula
is valid for any form in the exterior algebra.

Theorem 5.11.1.    ,For any form and vector field= A− ÐQÑ Z −X ÐQÑ
the Lie derivative of this form is calculated by £ .Z Z Z= = =œ Ð. Ñ  . Ð Ñi i

Let us consider a form = = Aœ Ð Ñ .B • â • .B − ÐQÑ
"

5x
3 â3

3 3 5
" 5

" 5x

and a vector field . The exterior derivative of  is given byZ œ @ Ð Ñ
`

`B
3

3
x =

. œ .B • .B • â • .B
"

5x

œ Ð5  "Ñ .B • .B • â • .B
"

Ð5  "Ñx

= =

=

3 â3 ß3
3 3 3

3 â3 ß3
3 3 3

" 5
" 5

" 5
" 5

[ ] .

Therefore, we obtain

iZ 3 â3 ß3
3 3 3Ð. Ñ œ Ð5  "Ñ @ .B • â • .B

"

5x
= =[ ]" 5

" 5 .

On the other hand, we can write

i

i

Z 33 â3
3 3 3

Z 3 3 â3 ß3
3 3 3 3

Ð Ñ œ @ .B • â • .B ß
"

Ð5  "Ñx

. Ð Ñ œ 5Ð @ Ñ .B • .B • â • .B
"

5x

= =

= =

# 5
# 5

# "5
" # 5

[ ] .

Hence, we find that

i iZ Z 3 3 â3
3 3 3Ð. Ñ  . Ð Ñ œ .B • .B • â • .B

"

5x
= = H " # 5

" # 5

where the smooth functions  are defined byH A3 3 â3
!

" # 5
− ÐQÑ

H = = =3 3 â3 3 3 â3 ß3 3 3 â3 ß3 3 3 â3
3 3 3

ß3" # " # # " #5 5 5 5 "
œ Ð5  "Ñ @  5 @  5 @[ ] [ ] [ ].
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In order to evaluate explicitly the coefficients , we resort to the rela-H3 3 â 3" # 5

tions (5.8.3) and (5.8.4) to get

H = =

= =

= =

3 3 â3 3 â3 ß3 3 â3 33 â3 ß3
3 3

<œ"

5

33 â3 ß3 33 â3 3 3 â3 ß3
3 3

<œ#

5

33 â3 33 â3 3 3 â3
3 3
ß3 ß

<œ#

5

" # " " <" <" <5 5 5

# " # <" " <" <5 5

# # <" " <"5 5"

œ @  @

 @  @

 @  @

"
"
" 3<

Moreover, since one has , we can writeÐ "Ñ œ Ð "Ñ œ "<#<" #<$

= =33 â3 3 3 â3 3 3 â3 33 â3# <" " <" " # <" <"5 5
œ  .

We thus find

= = =33 â3 ß3 33 â3 3 3 â3 ß3 3 â3 33 â3 ß3
3 3 3

<œ# <œ"

5 5

# " # <" " <" < " <" <" <5 5 5
@  @ œ @" "

and see, consequently, that the second line above cancels the second term in
the first line. If we arrange as well the last line in the similar way, we finally
conclude that

H = =

=

3 3 â3 3 â3 ß3 3 3 â3 33 â3
3 3

<œ"

5

ß3

Z 3 3 â3

" # " " # <" <"5 5 5 <

" # 5

œ @  @

œ Ð Ñ

"
£ .

Thus for any form , the Cartan magic formula= A− ÐQÑ

£ (5.11.5)Z Z Z= = =œ Ð. Ñ  . Ð Ñi i

becomes valid. In operator form, we can express this relation as follows

£  .Z Z Z
5 5œ ‰ .  . ‰ À ÐQÑ Ä ÐQÑß ! Ÿ 5 Ÿ 7i i A A 

We now consider a form  and vector fields = A− ÐQÑ Y ß Z − X ÐQÑ5

and let us calculate the form £ . Since we haveY Z
5"ˆ ‰i Ð Ñ − ÐQÑ= A

= =

= =

œ .B • â • .B ß
"

5x

Ð Ñ œ @ .B • â • .B
"

Ð5  "Ñx

3 â3
3 3

Z 43 â3
4 3 3

" 5
" 5

# 5
# 5i
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we obtain from (5.11.4) that

£

.

Y Z 43 â3 ß3 43 â3
4 3 34

ß3

<œ#

5

43 â3 33 â3
4 3 3 3

ß3

ˆ ‰ ’
" “

i Ð Ñ œ @ ?  @ ?
"

Ð5  "Ñx

 @ ? .B • â • .B

= = =

=

# #5 5

# <" <" 5 <

# 5

By adding and subtracting the terms  to the coefficients within=43 â3
3 4

ß3# 5
@ ?

brackets above and changing dummy indices appropriately we cast this ex-
pression into the equivalent form given below

£Y Z 43 â3
3 3 3 34 4

ß3 ß3

43 â3 ß3 33 â 3
3 3

ß4

<œ#

5

43 â3 33 â3
3 4 3 3
ß3

ˆ ‰
’

" “

i Ð Ñ œ Ð? @  @ ? Ñ .B • â • .B
"

Ð5  "Ñx

 ?  ?
"

Ð5  "Ñx

 ? @ .B • â • .B

œ
"

Ð5

= =

= =

=

# 5
# 5

# #5 5

# <" <" 5 <

# 5

 "Ñx Ð5  "Ñx
A .B • â • .B  ?

"

 ? @ .B • â • .B

= =

=

43 â3 43 â3 ß3
4 3 3 3

<œ"

5

3 3 â3 33 â3
3 3 3 3
ß3

# #5 5
# 5

" # <" <" 5 <

" # 5

’
" “

where

A œ Ð? @  @ ? Ñ œ Y ß Z œ Ð Z Ñ4 3 3 4 44 4
ß3 ß3 YÒ Ó £

are components of the Lie derivative of the vector field  with respect toZ
the vector field  whereas the expression within brackets are nothing butY
the coefficients of the Lie derivative of the form  with respect to the vector=
field . Consequently, the above expression is now transformed intoY

£ £

£ ,

Y Z 33 â3 Y
3 3 3

Y 33 â3
3 3 3

ˆ ‰i Ð Ñ œ Ð Z Ñ .B • â • .B
"

Ð5  "Ñx

 Ð Ñ @ .B • â • .B
"

Ð5  "Ñx

= =

=

# 5
# 5

# 5
# 5

Thus for any form , we obtain= A− ÐQÑ

£ £ . (5.11.6)Y Z Z Z Yˆ ‰ ˆ ‰i i iÐ Ñ œ Ð Ñ  Ð Ñ= = =£Y

Hence, we realised that we have managed to establish the following
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connection between the operators of Lie derivative and interior product

i i i i i .£Y Z Y Z Z Y Y ZY ßZœ œ ‰  ‰ œ ßÒ Ó £ £ £ (5.11.7)Ò Ó

Since the interior product with zero vector vanishes, if  or Ò ÓY ß Z œ ! Y œ
Z , namely, if vectors are commutative, then (5.11.7) yields

£ £   or  £ £ . (5.11.8)Y Z Z Y Z Z Z Z‰ œ ‰ ‰ œ ‰i i i i

This means that the operators £  and  or £  and  commute if vectorY Z Z Yi i
fields  and  are commutativeY Z .

Let us apply (5.11.5) to the form . Since , we get. . œ != #

£ £ £ .Z Z Z Z Z Z Z
#. œ Ð. Ñ  . Ð. Ñ œ . Ð. Ñ œ .  . Ð Ñ œ .= = = = = = =i i i iˆ ‰

This equality is valid for every form. We thus conclude that

£ £ . (5.11.9)Z Z‰ . œ . ‰

Hence, .the operators £  and  commuteZ .
Let us take  and . If we pay attention to the rela-0 − ÐQÑ Z − X ÐQÑA!

tions (5.4.7), we deduce that the Lie derivative of a form  with respect to=
the vector  is found to be0Z

£ (5.11.10)

£ .

0Z 0Z 0Z Z Z

Z Z Z

Z Z

= = = = =

= = =

= =

œ Ð. Ñ  . Ð Ñ œ 0 Ð. Ñ  . 0 Ð Ñ

œ 0 Ð. Ñ  .0 • Ð Ñ  0. Ð Ñ

œ 0  .0 • Ð Ñ

i i i i
i i i

i

ˆ ‰

We immediately see due to (5.4.7) and (5.11.5) that

£ £ £    or   £ £ £ . (5.11.11)Y Z Y Z Y Z Y Z= = =œ  œ 

But, if only , then we get £ £ . In this case, it is0 œ - œ œ -constant -Z Z= =
clear that the addition and scalar multiplication of Lie operators are again
Lie operators. Therefore, Lie operators form a linear vector space over .‘

Next, we would like to discuss the action of the operator £ , whereÒ ÓY ßZ

Y ß Z − X ÐQÑ − ÐQÑ, on a form . In view of (5.11.6), we can write= A

i i i
i i i

£

£

Y

Y

Z Y Z Z Y

Z Y Z Z Y

Ð. Ñ œ Ð. Ñ  Ð. Ñ ß

Ð Ñ œ Ð Ñ  Ð Ñ Þ

= = =

= = =

£ £

£ £

ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰
Let us then introduce these expressions into the Cartan formula

£ £ .Ò ÓY ßZ Z Z Z= = = =œ œ Ð. Ñ  . Ð Ñ£ £ £Y Y Yi i

If we note that the operators £  and  commute, we reach to the followingY .
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relation

£ £ £ £ £

£ £ £ £

£ £

Ò ÓY ßZ Y Z Z Y Y Z Z Y

Y Z Z Y Y Z Z Y

Y Z Z Z Y

= = = = =

= = = =

= = =

œ Ð. Ñ  Ð. Ñ  . Ð Ñ  . Ð Ñ

œ Ð. Ñ  . Ð Ñ  . Ð Ñ  . Ð Ñ

œ Ð. Ñ  . Ð Ñ  . Ð Ñ  .

ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ˆ ˆ ‰  ˆ
i i i i
i i i i
i i i iZ Y

Y Z Z Y

Y Z Z Y

ˆ ‰‘£

£ £ £ £
£ £ £ £ .

Ð Ñ

œ 

œ Ð  Ñ

=

= =

=

Since this relation will be satisfied for all , we get the operator= A− ÐQÑ
identity given below [  (2.10.17)]see

£ £ £ £ £ £ £ (5.11.12)Ò ÓY ßZ Y Z Z Y Y Zœ  œ ßÒ Ó.

We now assume that an involutive distribution  is prescrib-W © X ÐQÑ
ed by linearly independent vector fields  sa-Z − X ÐQÑß œ "ß á ß < Ÿ 7! !
tisfying the conditions

Ò ÓZ ß Z œ - Z! " #!"
#

Let us now associate a Lie operator £  to each vector . Then, it followsZ! Z!
from (5.11.12) and (5.11.10) that

Ò Ó œ£ £ £ £ £Z Z Z ZZ ßZ - Z! # #" ! " !"
#

#
ß œ œ -  .- • Ð Ñ= = = = =Ò Ó !" !"

# # i

for any  so that we obtain= A− ÐQÑ

Ò Ó œ£ £ £ . (5.11.13)Z Z Z Z! # #"
ß -  .- •!" !"

# # i

Hence, if only the coefficients  are constants, then we are able to write-!"
#

Ò Ó£ £ £ . Only in this situation, the operators £Z Z Z Z! # !"
ß œ - ß œ "ß á ß <!"

# !

constitute as well a Lie algebra of operators on the exterior algebra and -!"
#

becomes structure constants of that algebra. We know that this Lie algebra
generates a -parameter Lie group [  . 191].< :see

We now consider a flow  on a manifold  generated by/ À Q Ä Q Q>Z

a vector field  and the pull-back  of a form .Z Ð>Ñ œ Ð/ Ñ − ÐQÑ= = = A‡ >Z ‡

The derivative of the form  with respect to the parameter  can be=‡Ð>Ñ >
evaluated as

. Ð>Ñ Ð>  Ñ  Ð>Ñ Ð/ Ñ  Ð/ Ñ

.>
œ œ

œ
Ð/ ‰ / Ñ  Ð/ Ñ

= = 7 = = =

7 7
= =

7

‡ ‡ ‡ Ð> ÑZ ‡ >Z ‡

Ä! Ä!

Ä!

Z >Z ‡ >Z ‡

lim lim

lim

7 7

7

7

7
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œ
Ð/ Ñ ‰Ð/ Ñ  Ð/ Ñ

œ Ð/ Ñ
Ð/ Ñ  M

œ Ð>Ñ

lim

lim

7

7

7

7

Ä!

Z ‡ >Z ‡ >Z ‡

Ä!

Z ‡
>Z ‡

Z
‡

= =

7

7
=

=£ .

We have seen earlier that the formal solution of this ordinary differential
equation under the initial condition  is given by= =‡Ð:à !Ñ œ Ð:Ñ

= =

= = = =

‡ >

Z

# 8
# 8
Z Z

Ð:à >Ñ œ / Ð:Ñ

œ  >   â   â
> >

#x 8x

£Z

£ £ £

(5.11.14)

The above relation implies that we can write  for all= = =‡ >Z ‡ >œ Ð/ Ñ œ / £Z

forms . Therefore, we formally arrive at the result .= A− ÐQÑ Ð/ Ñ œ />Z ‡ >£Z

If  for all , we say that the form  remains  under= = =‡Ð:à >Ñ œ Ð:Ñ > invariant
the flow generated by the vector field . Evidently, (5.11.14) implies thatZ
£  is the necessary and sufficient condition for  to be invariant.Z = =œ !

 Let us now suppose that a submodule  of  has the following_ AÐQÑ
property:  for every form  under the flow  gene-= = _ = _‡ >Z ‡ >Zœ Ð/ Ñ − − /
rated by a vector field . We then say that  is  or  sub-Z _ stable invariant
module under the  with respect to the vector field . It is quiteLie transport Z
clear that  is stable if and only if one has £  for every form ._ = _ = _Z − −
We symbolically depict this property as £ . In fact, let us first as-Z _ _§
sume that £  for all . We then obtain £ (£ ) £  andZ Z Z

#
Z= _ = _ = = _− − œ −

similarly £  for all . Since  is a submodule, (5.11.14) implies8
Z = _  _− 8 −

that . Conversely, let us suppose that  or all . Since= _ = _ = _‡ ‡− − −
= = _‡  − > and  is an arbitrary parameter, we deduce from (5.11.14) that
the conditions £ £ £  must be satisfiedZ

# 8
Z Z= _ = _ = _− ß − ß á ß − ß á

for all . These conditions are automatically satisfied when £ .= _ = _− −Z

We see that  if a submodule  of  is stable under a vector field , then_ AÐQÑ Z
it is not possible for a form to escape from that submodule through= _−  
the action of the Lie derivative.

Theorem 5.11.2. The subalgebra  of closed forms and the sub-VÐQÑ
algebra  of exact forms of the exterior algebra are stable underXÐQÑ AÐQÑ 
every vector field .Z − X ÐQÑ

If , then . Hence, for all vector fields we get £= V = =− ÐQÑ . œ ! . œZ

£  and £ . In like fashion, if , then there is aZ Z. œ ! − ÐQÑ − ÐQÑ= = V = X
form  such that . We thus obtain5 A = 5− ÐQÑ œ .

£ £ £Z Z Z= 5 5œ . œ .
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implying that £ .Z = X− ÐQÑ 
Example 5.11.1. We want to calculate the Lie derivative of the volume

form  given by (5.9.14). Since , we get. A .− ÐQ Ñ . œ !7 7

£ .Z Z Z Z. . . .œ Ð. Ñ  . Ð Ñ œ . Ð Ñi i i

On recalling (5.5.9) and the exterior derivatives of top down generated
bases given on  279, it follows from  that:Þ Ð Ñ œ @iZ 3

3. .

£

.

Z 3 3ß4 ß4
3 4 3 3 3

3
4 ß3

ß3 à3
3 3 3ß3

. . . $ . .

. .

œ @ .B •  @ . œ @  @
Ð 1 Ñ

1

œ @  @ œ @
Ð 1 Ñ

1

È
È

Š ‹È
È

Thus the volume form  is invariant under divergenceless, or ,. solenoidal
vector fields satisfying the condition .@ œ !à3

3

As another example, let us calculate the Lie derivatives of the basis
forms . Since we can write. A3

7"− ÐQÑ

£Z 3 43 3 43 43 4
4 4 5 4 4

` ß5
4 ß3

. . . . . .œ .Ð@ Ñ  @ Ð. Ñ œ @ .B •  @ .  @
Ð 1 Ñ

1
i

4

È
È

on taking notice of relations

.B • œ  ß

. œ œ 
Ð 1 Ñ Ð 1 Ñ Ð 1 Ñ

1 1 1

5 5 5
43 3 44 3

43 6 3 4
ß5 ß4 ß3

34
65

. $ . $ .

. $ . . .
È È È
È È È

we finally get the result

£

.

Z 3 3 4 3 4 4ß4 ß3
4 4 4 4 4ß4 ß3 ß3

ß4 ß3 à4 ß3 3 ß3
4 4 4 4 4 44 5ß4

3 4 3 4 4à5

. . . . . .

. . . . $ .

œ @  @  @  @  @
Ð 1 Ñ Ð 1 Ñ Ð 1 Ñ

1 1 1

œ @  @  @ œ @  @ œ Ð@  @ Ñ
Ð 1 Ñ

1

È È È
È È È

Š ‹È
È

Thus the forms  are invariant under vector fields satisfying the relation.3

@ œ @ß3 3
4 4

à5
5 $ . On contracting this expression, we obtain

@ œ 7@ 7@ œ @ß5 à5 ß5
5 5 5

ß3 3
4 4   and   .$ è

We are now ready to evaluate the Lie derivative of any tensor if we
take notice of the relations (2.10.5)  and (5.11.3) and recall that Lie#
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derivative of tensor products verify the Leibniz rule as emphasised in
(4.3.5). Let a tensor field  be designated byg Ç− ÐQÑ5

6

g œ > Œ â Œ Œ .B Œ â Œ .B
` `

`B `B
3 â3
4 â4 3 3

4 4" 5

" 6 " 5

" 6 .

The Lie derivative of this tensor with respect to a vector field  can then beZ
expressed as

£ £

£

Z Z
3 â3
4 â4 3 3

4 4

<œ"

5
3 â3
4 â4 3 3 3Z

4 4

<œ"

6
3 â3
4 â4 3 3

g œ Ð > Ñ Œ â Œ Œ .B Œ â Œ .B
` `

`B `B

 > Œ â Œ Ð Ñ Œ â Œ Œ .B Œ â Œ .B
` ` `

`B `B `B

 > Œ â Œ
` `

`B `B

" 5

" 6 " 5

" 6

" 5

" 6 " < 5

" 6

" 5

" 6 " 5

"
" Œ .B Œ â Œ Ð.B Ñ Œ â Œ .B4 4 4

Z
" < 6£ .

We thus obtain

£Z
3 â3
4 â4 ß3

3 4 4
3 3

<œ"

5
3 â3 â3
4 â4

3 4 4
ß3 3 3 3

<œ"

6
3 â3
4 â4 â4 ß4

4

g œ > @ Œ â Œ Œ .B Œ â Œ .B
` `

`B `B

 > @ Œ â Œ Œ â Œ Œ .B Œ â Œ .B
` ` `

`B `B `B

 > @
`

`

" 5

" 6 " 5

" 6

" < 5

" 6 < " 5

" 6

" 5

" < 6

<

"
"

B `B
Œ â Œ Œ .B Œ â Œ .B Œ â Œ .B

`

œ Ð Ñ Œ â Œ Œ .B Œ â Œ .B
` `

`B `B

3 3
4 4 4

Z
3 â3
4 â4 3 3

4 4

" 5

" 6

" 5

" 6 " 5

" 6£

(5.11.15)

g

where the components of the tensor £  are given byZ g

Ð Ñ œ > @  > @

 > @

£ (5.11.16)

.

Z
3 â3 3 â3
4 â4 4 â4 ß3 4 â4 ß3

3

<œ"

5
3 â3 33 â3 3

<œ"

6
3 â3
4 â4 44 â4 ß4

4

g " "5 5 <

" " "6 6 6

" <" <" 5

" 5

" <" <" <6

"
"

Let  and  be smooth manifolds and  be a smoothQ R À Q Ä R9
mapping. Let us consider a form  and a vector field .= A− ÐRÑ Z − X ÐQÑ
Let us calculate the Lie derivative of the form  with respect to the vector=
field :Z œ Z − X ÐRÑ‡

‡9

£ .9 9 9‡ ‡ ‡Z Z Z= = = Aœ Ð. Ñ  . Ð Ñ − ÐRÑi i
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We then pull the above form back to . On making use of (5.7.6) andAÐQÑ
Theorem 5.8.2, we can write

9 = 9 = 9 = 9 = 9 =‡ ‡ ‡ ‡ ‡
Z Z Z Z Z£ .9 9 9‡ ‡ ‡

œ Ð. Ñ  . Ð Ñ œ .Ð Ñ  . Ð Ñi i i iˆ ‰
Therefore, for all forms  we are led to= A− ÐRÑ

9 = 9 = A‡ ‡
Z Z£ £ (5.11.17)9‡

Ð Ñ œ Ð Ñ − ÐQÑ

and, consequently, to the relation

9 9 9‡ ‡ ‡
Z Z Z‰ œ ‰ œ ‰£ £ £ . (5.11.18)9‡

‡

5.12. ISOVECTOR FIELDS OF IDEALS

  Let  be an ideal of the exterior algebra . If this ideal is stable\ AÐQÑ
under the flow generated by a vector field , namely, if £Z − X ÐQÑ −Z = \
for every  so that £ , in other words, if the ideal  becomes= \ \ \ \− §Z

invariant under the flow generated by , then this vector field is called anZ
isovector field of the ideal .\

Theorem 5.12.1.  Let be the ideal generated by the forms\ =Ð Ñ!

= A !! − ÐQÑß œ "ß á ß < Z − X ÐQÑ.  A vector field is an isovector field of
\ = \ = if and only if  for every generator of the ideal.£   Z

! !−
If  is an isovector, then one has £  for every form  so theZ − −Z = \ = \

generators  must also fulfil the condition £ . This means that there= = \! !
Z −

exist appropriate forms  such that £ . Conversely,- A = - =" "
! ! ! "− ÐQÑ œ •Z

let us assume that £  so that the relations £  areZ Z= \ = - =! ! ! "
"− œ •

satisfied. Because of the restriction ,./1 Ð Ñ œ ./1 Ð Ñ  ./1 Ð Ñ   !- = ="
! ! "

the forms whose degrees higher than that of  cannot take place in the=!

above sum. If , then we can find forms  so that we are able= \ # A− − ÐQÑ!

to write . Therefore, we obtain= # =œ •!
!

£ £ £ £Z Z Z Z= # = # = # # - =œ Ð Ñ •  • œ Ð  • Ñ •! ! ! "
! ! " !

!

implying that £ .Z = \− 
If the ideal  is generated by forms of the same degree, then the vector\

field  is an isovector field of that ideal if we can find smooth functionsZ
- A = - =" "
! ! ! "− ÐQÑ œ!

Z that enable us to write £ .
Theorem 5.12.2. Isovectors of an ideal  of the exterior algebra\

A ÉÐQÑ ÐQÑ constitute a Lie algebra that is a subalgebra of the module .
It is easy to show that isovectors form a subspace of the linear vector

space  over the field of real numbers . Let  and  be twoÉ ‘ÐQÑ Z Z" #
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isovectors. We thus have £  and £  for every form5 = \ 5 = \" Z # Zœ œ −−
" #

= \ =− œ. On the other hand, (5.11.11) allows us to write £Z Z" #

£ £ . Hence,  is an isovector as well. Simi-Z Z " # " #" #
= = 5 5 \ œ  Z  Z−

larly, Let  be an isovector so that one finds £  for all .Z œ − −5 = \ = \Z

For all functions , the expression (5.11.10) yields0 − ÐQÑA!

£ £ .0Z Z Z Z= = = 5 =œ 0  .0 • Ð Ñ œ 0  .0 • Ð Ñi i

Hence, if only , that is, , then one gets £ ..0 œ ! 0 œ œ 0 −constant 0Z = 5 \
Accordingly, isovectors form a vector space only over . If  and  are‘ Y Z
isovectors, then (5.11.12) leads to £ £ £ £ £  for allÒ ÓY ßZ Y Z Z Y= = = \œ  −

= \− Y ß Z which means that the Lie product  is also an isovector. Thus,Ò ]
isovectors constitute a Lie algebra over .‘ 

The, say, -dimensional Lie algebra formed by isovectors is, of course,<
determined by linearly independent vectors  and thereZ ß œ "ß á ß < Ÿ 7! !
exist   so that the conditions  hold.structure constants - Z ß Z œ - Z!" !"

# #
! " #Ò Ó

Then, on recalling Sec. 3.8, we reach to the conclusion that isovectors gene-
rate an -parameter Lie transformation group on the manifold  and the< Q
ideal  remains invariant under this mapping. In other words, a flow\
generated by an isovector transforms a form in the ideal to another form
also in the ideal.

Theorem 5.12.3. If the vector field  is an isovector field ofZ − X ÐQÑ
an ideal of the exterior algebra , then it is also an isovector\ =Ð Ñ!  AÐQÑ
field of its closure .\ = =¯Ð ß . Ñ! !

If is an isovector  field of the ideal , then there are appropriateZ \
forms  such that one is able to write £ . Employ-- A = - =" "

! ! ! "− ÐQÑ œ •Z

ing this relation, we get

£ £ .Z Z
./1 Ð Ñ. œ . œ . •  Ð "Ñ • .= = - = - =! ! ! " - ! "

" "
"
!

We consider a form  that can be written as .¯ 5 \ 5 # = > =− œ •  • .! !
! !

Hence, we obtain

£ £ £ £ £

£

£  ¯

Z Z Z Z Z

Z

Z
./1 Ð Ñ

5 # = # = > = > =

# # - > - =

> > - = \

œ •  •  • .  • .

œ Ð  •  • . Ñ •

 Ð  Ð "Ñ • Ñ • . −

! ! ! !
! ! ! !

! " "! !
" " !

! "
- " !

!
!
"

This expression means that  is also an isovector of the closure  of the¯Z \
ideal . \ 

Evidently, this theorem does not imply that isovectors of the ideals \
and  are the same. Some isovectors of the closed ideal  may not belong to¯ ¯\ \
the set of isovectors of the ideal . This situation will be remedied to some\
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extent by the following theorem.
Theorem 5.12.4.  If an ideal is generated by forms of the same\ =Ð Ñ!

degree, then isovectors of the ideals and are coincident.\ \    ¯
We have demonstrated in Theorem 5.12.3 that isovectors of  are also\

isovectors of . In order prove the present theorem, we have to show that\̄
the converse statement is also true. If  is an isovector of , then there are¯Z \
suitable forms  and   so that we can write- A" "

! !

£Z = - = A =! ! " ! "
" "œ •  • .

whence we deduce that

£ £ .Z Z
./1 Ð Ñ. œ . œ . •  Ð "Ñ  . • .= = - = - A =! ! ! " - ! ! "

" " "
ˆ ‰"

!

However, if all forms  possess the same degree, say , then the degree of=! 5
all forms  is  implying that we have to take  and. 5  " œ != A! !

"

- A"
! − ÐQÑ! . In this case, the above relations reduce to

£ £Z Z= - = = - = - =! ! " ! ! " ! "
" " "œ ß . œ . •  .

from which we conclude that an isovector  of the ideal  is also an isovec-¯Z \
tor of the ideal .\ 

The following theorem provides a somewhat simplified approach to
evaluate isovectors of an ideal.

Theorem 5.12.5.  Let be an ideal of  generated by forms\ = AÐ Ñ ÐQÑ!

= ! =! !ß œ "ß á ß < ./1  5 whose degrees satisfy the condition . We then
consider forms such that . A vector field  is an5+ +ß + Zœ "ß á ß = ./1   5 5
isovector of the ideal if and only if\ =Ð ß Ñ! 5+  
Ð3Ñ it is an isovector of the ideal \ =Ð Ñ! ,

Ð33Ñ − £ .Z 5 5+ +\ =Ð ß Ñ!

Let us first assume that the vector field  is an isovector of the idealZ
\ = = - = 5Ð Ñ œ • œ! ! ! "

" so that one has £ . We further assume that £Z Z
+

- = - 5 = \ = = # = # 5!
! ! !

!
+ + , +

, +•  • Ð ß Ñ œ •  •. If , then  and its− 5+

Lie derivative with respect to  is found to beZ

£ £ £ £ £

£

£ .

Z Z Z Z + + Z
+ +

Z +
+

Z + , +
, +

= # = # = # 5 # 5

# # - # - =

# # - 5 \ =

œ •  •  •  •

œ Ð  •  • Ñ •

 Ð  • Ñ • Ð ß Ñ

! !
! !

! " ! !
" !

!− 5+

Hence  is an isovector of the ideal . Conversely, let us supposeZ Ð ß Ñ\ =! 5+

that  is an isovector of the ideal  implying that £Z Ð ß Ñ Ð ß Ñ\ = = \ =! !5 5+ +
Z −

for all . Hence, the above relation requires that the condition= \ =− Ð ß Ñ! 5+
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# = # 5 \ =!
! !•  • Ð ß Ñ£ £  must hold. This last expression shouldZ + Z

+ − 5+

be valid of course for all forms  in the ideal , and consequently,= \ =Ð ß Ñ! 5+

for all forms  implying that we must have £# # A = \ =!
! !ß − ÐQÑ Ð ß Ñ+ Z − 5+

and £ . We thus conclude that there must be suitable formsZ
+5 \ =− Ð ß Ñ! 5+

- - - -"
! !

!ß ß ß+
+ +

,  so that we can write

£ £ .Z Z+ ,
+ + + ,= - = - 5 - = - 5! ! " ! !

" !œ •  • ß œ •  •5+

But, due to the restrictions  and , we get  and./1  5 ./1   5 œ != 5 -! !+
+

we find that £ . Thus  must also be an isovector of the idealZ = - =! ! "
"œ • Z

\ =Ð Ñ! . 
Based on the Theorem (5.12.5), we may propose quite an effective

method to determine isovector fields of an ideal generated by forms of diffe-
rent degrees. Let us arrange the generators of the ideal according to
increasing degrees and collate all forms of the same degree into a set so that
let us write . The degrees of the forms in each set \ = =Ð ß Ñ Ö ×ß! !5 #+ Eß ß á
Ö ./1 5 #+ E×ß Ö ×ß á  are the same and they are ordered as follows: =!

./1  ./1  â5 #+ E . In this case, in order to determine the isovector
fields, we have to ensure that the conditions

£ £ £  Z Z Z= \ = \ = \ =! ! ! !− Ð Ñß − Ð ß Ñß − Ð ß Ñß á5 5 # 5 #a a A a Aß

are satisfied. Since we deal with a lesser number of forms in each set with
uniform degrees, calculations turn out to be relatively simpler. Besides, if
degrees in two sets differ just , and if some generators in one set happen to"
be exterior derivatives of some forms in the other set, then we can disregard
these generators in view of Theorem 5.12.4.

Example 5.12.1. Let us determine the isovector fields of the ideal
\ = A ‘ =Ð Ñ Ð Ñ œ B .C  C .D" $ " of the exterior algebra  generated by . We
denote a vector field by . We have to show thatZ œ @ `  @ `  @ `B C D

B C D

there exists a function  such that £ . Let us write- A ‘ = -=− Ð Ñ œ! $ " "
Z

. œ .B • .C  .C • .D Ð. Ñ œ  @ .B  Ð@  @ Ñ.C  @ .D= =" " C B D C
Z,  andi

iZ
" C DÐ Ñ œ B@  C@ œ J ÐBß Cß DÑ= . We thus obtain

£Z B C D
" C B D C= - -œ ÐJ  @ Ñ.B  ÐJ  @  @ Ñ.C  ÐJ  @ Ñ.D œ B .C  C .D

yielding ,  and . Solution ofJ  @ œ ! J  @  @ œ B J  @ œ CB C D
C B D C- -

these equations gives  and the isovector field specified by- œ ÐJ  J ÑÎCB D

an arbitrary function  becomesJ

Z œ ÐJ  BJ  CJ Ñ  J  ÐJ  BJ Ñ
" ` ` " `

C `B `C C `D
J D C B B .
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If the isovector fields produced by functions  and  are denoted by J K ZJ

and , then their Lie product must be given by . It is ratherZ Z ß Z œ ZK J K LÒ Ó
straightforward to verify that the function  is obtainable asLÐBß Cß DÑ

L œ J K K J  ÐJ K KJ  J K KJ Ñ  ÐJ K K J Ñ
" B

C C
B C B C B B D D D B D B .

It is plainly seen that isovectors of the ideal  constitute an infinite\ =Ð Ñ"

dimensional Lie algebra. è

We have the following theorem if some of the isovectors of an ideal of
AÐQÑ are also characteristic vectors of the same ideal.

Theorem 5.12.6. If some of the isovectors of an ideal  are at the\
same time characteristic vectors of this ideal, then they form a Lie sub-
algebra of the Lie algebra of isovectors.

If  and  are isovectors of an ideal , then we have £ £Y Z ß −\ = = \Y Z

for all . If these vectors are also characteristic vectors of , they must= \ \−
satisfy . On making use of (5.11.7), we geti iY ZÐ Ñß Ð Ñ −= = \

i i iÒ ÓY ßZ Y Z Z YÐ Ñ œ Ð Ñ  Ð Ñ −= = = \£ £ .ˆ ‰ ˆ ‰
That means that the Lie product  which is known to be an isovector isÒ ÓY ß Z
also a characteristic vector of the ideal. Therefore, such a subset of isovec-
tors that are also the characteristic vectors of , is closed under the Lie\
product, that is, it is a Lie subalgebra. 

We can reach to a more interesting result in closed ideals.
Theorem 5.12.7. If an ideal  of  is closed, then the subspace\ AÐQÑ

formed by its isovectors contains the characteristic subspace .f \Ð Ñ
Let us assume that the ideal  is generated by forms \ = =" #ß ß á ß

= A< − ÐQÑ of various degrees. Since is closed, then there are suitable\  
forms  such that . On the other- A ! " = - =" "

! ! ! "− ÐQÑß ß œ "ß á ß < . œ •

hand, if , then there exist appropriate forms  such thatZ − − ÐQÑf \Ð Ñ . A"
!

iZ %Ð Ñ œ •= . =! ! "
" . Hence, according to (5.4.1)  we find that

i i i
i

Z Z Z
./1 Ð Ñ

Z
./1 Ð Ñ

Ð. Ñ œ Ð Ñ •  Ð "Ñ • Ð Ñ

œ Ð Ñ  Ð "Ñ • Ñ • −

= - = - =

- - . =

! ! " - ! "
" "

" #
! - ! "

"
#

"
!

#
! ‘ \ .

But the exterior derivative of the form  givesiZ Ð Ñ=!

. Ð Ñ œ . •  Ð "Ñ • .

œ .  Ð "Ñ • Ñ • −

iZ
./1 Ð Ñ

./1 Ð Ñ

= . = . =

. . - =

! ! " . ! "
" "

" #
! . ! "

"
#

"
!

#
! ‘ \

from which we deduce that
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£Z Z Z= = =! ! !œ Ð. Ñ  . Ð Ñ −i i \ .

Then Theorem 5.12.1 states that the characteristic vector  is also an iso-Z
vector of the closed ideal  that is, the characteristic subspace of the ideal\ ,
\  belongs to the subspace generated by isovectors of this closed ideal. 

When we combine this theorem with Theorem 5.12.6 we arrive imme-
diately at the following result: characteristic vectors of a closed ideal cons-
titute a Lie algebra. However, we have to stress the fact that the converse of
Theorem 5.12.7 is in general not true, i.e., all isovectors of a closed ideal are
not necessarily characteristic vectors of this ideal.

5.13. EXTERIOR SYSTEMS AND THEIR SOLUTIONS

We have seen in . 258 how we can engender a nontrivial,  di-: <   5
mensional solution of an exterior equation  where . We= = Aœ ! − ÐQÑ5

shall now explore the notion of exterior equations in a more general context.
Let us consider a set  of forms that might be of dif-Ö ß œ "ß á ß R×= !!

ferent degrees. We specify an -dimensional submanifold  by the mapping< W
9 9 = !À W Ä Q œ !ß œ "ß á ß R.  , If we get namely, if the mapping‡ !

9 A A‡ À ÐQÑ Ä ÐWÑ annihilates the forms then the mapping in    , Ö ×= 9!

other words the submanifold is said to be a solution of the system of,   W
exterior equations Ö œ !ß œ "ß á ß R×= !! . A submanifold whose dimen-
sion is less than the lowest degree of the forms  is of course a trivial=!

solution of the exterior system. Let us now take the ideal  into consi-\ =Ð Ñ!

deration. The mapping  will be the solution of every form  as9 = \ =− Ð Ñ!

well. In fact, if we write , we find from (5.7.4) that = - = 9 =œ • œ!
! ‡

9 - 9 =‡ ‡
!

!• œ !. Conversely, we can easily demonstrate that the forms
annihilated on a submanifold  prescribed by a mapping , orW À W Ä Q9
amounting to the same thing, all forms which annihilates the subbundle
X ÐWÑ X ÐQÑ ÐQÑ§  constitute an ideal of the exterior algebra . Let usA
consider the pull-back mapping  induced by the map-9 A A‡ À ÐQÑ Ä ÐWÑ
ping . All forms annihilated on the submanifold  satisfy the relation 9 9 =W ‡

œ ! œ ! ÐQÑ§. We denote the set of all forms  such that  by . If= 9 = \ A‡

= = \ 9 = =" # " #
‡ß − Ð  Ñ are two forms with the same degree, then we have 

œ Ð Ñ  Ð Ñ œ !  − −9 = 9 = = = \ = \‡ ‡
" # " # implying that . Similarly, if 

and  is an arbitrary form, then # A 9 # = 9 # 9 =− ÐQÑ Ð • Ñ œ Ð Ñ • Ð Ñ œ !‡ ‡ ‡

which means that  . Hence,  is an ideal of the exterior algebra.# = \ \• −
 If all forms of the exterior algebra  that are annihilated by everyAÐQÑ

solution of exterior equations  belong to the ideal  generatedÖ œ !× Ð Ñ= \ =! !

by forms , then  is called a .= \! complete ideal
Theorem 5.13.1. An ideal of the exterior algebra  generated byAÐQÑ
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linearly independent forms is complete."-
Let us assume that the ideal is generated by linearly independent forms

= A !! − ÐQÑ œ "ß á ß R Ÿ 7" , . As we have mentioned above, the solu-
tions of the exterior equations  annihilate every form within theÖ œ !×=!

ideal. We now suppose that solutions of the system  annihilate aÖ œ !×=!

form  as well. By adding suitable linearly independent -forms,= A− ÐQÑ "
we can determine a basis of  as follows:  .X ÐQÑ ß á ß ß ß á ß‡ " R R" 7= = = =
The form  can now be constructed as a combination of exterior products of=
these forms. However, we have assumed that  whenever  = =œ ! œ â œ"

= = =R " Rœ ! ß á ß. Therefore, at least one of the factors  must be present in
each term. Hence, we conclude that  is expressible as=

= - = - = - = \ =œ •  •  â  • − Ð Ñ" # R
" # R ! 

Let us next consider two exterior systems  andÖ ß œ "ß á ß R ×= !!
"

Ö ß + œ "ß á ß R × œ Ð Ñ œ Ð Ñ5 \ \ = \ \ 5+ +
# " #, and the ideals  and  generated!

by them. If these ideals are equal, namely, if they satisfy the relations
\ \ \ \" # # "© © and , we say that these two exterior systems are algeb-
raically equivalent. In this situation, there are appropriate forms  and - A!

!+
+

so that we can write  and .= - 5 5 A =! ! !
!œ • œ •+

+ + +

Example 5.13.1. Let us consider a system of exterior equations of the
exterior algebra  specified by the forms , A ‘ = =Ð Ñ œ .B • .B œ% " " $ #

.B • .B œ .B • .B  .B • .B #" % $ " # $ %, . A -dimensional submanifold of=
‘ 9% 3 3 " # is determined by the mapping . We nowB œ Ð? ß ? Ñß " Ÿ 3 Ÿ %
impose the condition that this mapping must satisfy

9 = 9 9 9 = 9 9

9 = 9 9 9 9 ! "

‡ " " $ ‡ # " %
ß ß ß ß

‡ $ " # $ %
ß ß ß ß

œ .? • .? œ !ß œ .? • .? œ !ß

œ Ð  Ñ .? • .? œ !ß ß œ "ß #Þ

! " ! "
! " ! "

! " ! "
! "

We immediately discover a solution by just inspection as  and9" œ constant
9 =3 œ œ .B • .Bconstant. We then consider the form . We find that" #

9 = 9 9‡ " #
ß ßœ .? • .? œ !! "

! " . But, we realise at once that this form does
not belong to the ideal . Hence, this ideal is not complete. \ = = =Ð ß ß Ñ" # $ è

Certain significant properties of ideals of the exterior algebra can be
discussed by means of Lie derivatives. An effective tool implementing this
approach is provided by the following Cartan theorem.

Theorem 5.13.2 The Cartan Theorem). Ð Let  be an ideal of the\
exterior algebra  and let  be the characteristic sub-A f \ÐQÑ Ð Ñ § X ÐQÑ
space of constant dimension of this ideal. If   is a closed ideal, then the\
subspace  is an involutive distribution of  .fÐ Ñ\ X ÐQÑ

We know that the characteristic subspace of the ideal  is defined by\
f \ \ \ fÐ Ñ œ ÖZ − X ÐQÑ À Ð Ñ © ×iZ . Since we have assumed that  has the
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same dimension, say,  at every point of the manifold , the characteristic< Q
subspace is spanned by  linearly independent vector fields< Z − X ÐQÑß! !
œ "ß á ß <. It follows from (5.11.7) that

i i i
i i i i i i i i

Ò ÓY ßZ Y Z Z Y

Y Z Y Z Z Y Z Y

Ð Ñ œ Ð Ñ  Ð Ñ

œ Ò. Ð Ñ Ó  .Ò Ð Ñ Ó  Ð. Ñ  Ò. Ð Ñ Ó

= = =

= = = =

£ £ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰
for all  and . Thus we obtain= A− ÐQÑ Y ß Z − X ÐQÑ

i
i i i i i i i i

Ò ÓZ ßZ

Z Z Z Z Z Z Z Z

! "

! ! ! !" " " "

Ð Ñ œ

Ò. Ð Ñ Ó .Ò Ð Ñ Ó  Ð. Ñ  Ò. Ð Ñ Ó

=

= = = =ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰
for all  and . Since  and  are characteristic vectors of= \ f− Z ß Z − Z Z! " ! "

the closed ideal, we can write  and . ThisiZ!Ð Ñ © ß œ "ß á ß < . ©\ \ ! \ \
implies that each term in the right hand side of the above expression is in
the ideal. Hence, we get  for all . This amounts to sayiÒ ÓZ ßZ! "

Ð Ñ − −= \ = \

that . In other words, the characteristic subspace is closed underÒ ÓZ ß Z −! " f
the Lie product. Thus  is an involutive distribution. Therefore, the charac-f
teristic vector fields of a closed ideal engender a smooth -dimensional sub-<
manifold of .Q 

Let us now consider the exterior system  comprised of H œ Ö × << =!

linearly independent -forms. The exterior equations " œ !ß œ "ß á ß <= !!

constitute a  [German mathematician Johann Friedrich PfaffPfaff system
(1765-1825)]. According to Theorem 5.13.1, the ideal  generated by\ ÐH Ñ<

these forms is complete. The exterior system  is  ifH< completely integrable
it is annihilated on every one of the -dimensional submanifolds pre-Ð7  <Ñ
scribed by equations of the form

1 Ð Ñ œ - ß œ "ß á ß <! !x !

with  parameter.  are arbitrary real constants. Since  is a complete< - ÐH Ñ! \ <

ideal, all forms annihilated by those submanifolds, which are called charac-
teristic manifolds  , must belong to this ideal.

Theorem 5.13.3. An exterior system  is completely integrable if andH<

only if it is possible to find a regular  matrix function and < ‚ < <A xÐ Ñ 
independent functions  such that the following relations are valid1 Ð Ñ! x :

= ! "! "œ 1 ß ß œ "ß á ß <ß Ð Ñ œ Ò Ð ÑÓE . E" "
! !A x x . (5.13.1)

If the forms  are given by the relations (5.13.1), when Ö × 1 œ - œ=! " "

constant we find  and consequently . Thus the exterior sys-.1 œ ! œ !" !=
tem  is completely integrable. Conversely, let us assume that the exteriorH<

system  is completely integrable. Hence, there are  independentH <<
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functions  and the ideal  is annihilated by hypersurfaces 1 Ð Ñ ÐH Ñ 1 Ð Ñ! !x x\ <

œ - Ð.1 Ñ .1 − ÐQÑ! ! !. Next, we form the ideal  by the forms . Since\ A"

.1 œ !!  on these hypersurfaces, this ideal is also annihilated by them.
Because of the fact that both ideals are complete, we arrive at the result
\ \ AÐH Ñ œ Ð.1 Ñ − ÐQÑ<

!! . This implies that there are functions  suchE"
!

that . The forms  and  are linearly independent. There-= =! " ! !œ 1 .1E ."
!

fore, we ought to have  and . Thus, the= =" < " <• â • Á ! .1 • â • .1 Á !
relation

= =" < " <• â • œ Ð Ñ .1 • â • .1 Á !det E"
!

requires that .det Ð Á !E Ñ"
! 

If we calculate the exterior derivative of the expression (5.13.1), we get

. œ . 1 œ ÐE Ñ . − ÐH Ñ= = \! " " #
#E • . E •" "

! !"
< ,

Hence,  if the exterior system  is completely integrable, then the idealH<

\ ÐH Ñ<  must be closed. That the converse proposition is also true is provided
by the following theorem referred to Frobenius.

Theorem 5.13.4 (The Frobenius Theorem). An exterior system  isH<

completely integrable if and only if the ideal generated by  linearly\ ÐH Ñ<  <
independent -forms is closed, that is, if   or if there" . ÐH Ñ © ÐH ÑÖ ×=!  \ \< <

exist  forms  such that the relations are< .# > A = > =" "
! ! ! "− ÐQÑ œ •"  

satisfied or if we verify that for ..= = = !! • • â • œ ! œ "ß á ß <" <  
We have already seen that the ideal  will be closed if the exterior\ ÐH Ñ<

system  is completely integrable. Let us assume, this time, that the idealH<

\ ÐH Ñ<  is closed. We know that the dimension of the characteristic subspace
fÐH Ñ 7  <<  of this ideal is  [ Theorem 5.6.2]. Let the linearly indepen-see 
dent vectors  be a basis of that subspace. According toY ß + œ <  "ß á ß 7+

the Cartan theorem 5.13.2,  is an involutive distribution, i.e., there arefÐH Ñ<

functions  such that . In this situation, we can- − ÐQÑ Y ß Y œ - Y+, +,
- ! -

+ , -A Ò Ó
choose,  as we have done in Theorem 2.11.1, a new basis set as vectors Z ß+

+ œ <  "ß á ß 7 ÐH Ñ Z ß Z œ ! of  such that . We shall now show thatf < + , Ò Ó
this property guaranties the existence of independent functions 1 Ð Ñß œ! x !
"ß á ß < Z Ð1 Ñ œ Ð.1 Ñ œ ! satisfying the relations . To this end, we+ Z

! !i
+

look for the solutions of the system of differential equations . OnZ Ð0Ñ œ !+

repeating our approach in Sec. 2.11, we start with  . It is knownZ Ð0Ñ œ !<"

that the  of the first order partial differential equationindependent solutions

@ Ð Ñ œ !
`0

`B<"
3

3
x
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can be determined through the method of characteristics as follows

2 Ð Ñ œ G ß 2 Ð Ñ œ G ß á ß 2 Ð Ñ œ G" " # # 7" 7"x x x

where  are constants. We then findG ß á ß G" 7"

! œ œ @ Ð Ñ œ Z Ð2 Ñ
`2 .B `2

`B .> `B

š š
š

3 3

3

<"
3

<"x

where . We thus writeš œ "ß á ß 7  "

Z Ð0Ñ œ @ Ð Ñ  â  @ Ð Ñ œ !
`0 `0

`B `B

Z Ð2 Ñ œ @ Ð Ñ  â  @ Ð Ñ œ !
`2 `2

`B `B
ã

Z Ð2 Ñ œ @ Ð Ñ  â  @ Ð Ñ
`2 `2

`B `B

<" <" <"
" 7

" 7

<"
" " 7

<" <"

" "

" 7

<"
7" " 7

<" <"

7" 7"

" 7

x x

x x

x x œ !.

Since , it is only possible to find a nontrivial solution to this homo-Z Á !<"

geneous system of equations if the Jacobian, or the functional determinant,
of the functions    vanishes0ß 2 ß á ß 2" 7"

`Ð0 ß 2 ß á 2 Ñ

`ÐB ß B ß á ß B Ñ
œ !

" 7"

" # 7
.

It is known that the general solution of the foregoing equation is

0 œ 0Ð2 ß 2 ß á ß 2 Ñ" # 7" . (5.13.2)

In the second step, let us apply the operator  on the function (5.13.2) toZ<#

obtain

      . (5.13.3)! œ Z Ð0Ñ œ @ œ @ œ Z Ð2 Ñ
`0 `0 `2 `0

`B `2 `B `2
<# <#<# <#

3 3
3 3š š

š
š

On the other hand, because of the relation , we findZ Z œ Z Z<" <# <# <"

Z Z Ð2 Ñ œ Z Z Ð2 Ñ œ Z Ð!Ñ œ !<" <# <# <" <#ˆ ‰ ˆ ‰š š

which means that the functions  become solutions of the equationZ Ð2 Ñ<#
š

Z Ð?Ñ œ !<" . We can thus write as in (5.13.2)

Z Ð2 Ñ œ L Ð2 ß 2 ß á ß 2 Ñ<#
" # 7"š š

and the equation (5.13.3) takes the form
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L Ð2 Ñ œ !ß ß œ "ß á ß 7  "
`0

`2
š ›

š
š › .

Hence, the number of independent variables reduces to  from . By7  " 7
repeating the same procedure as above we obtain 0 œ 0Ð5 ß 5 ß á ß 5 Ñ" # 7#

where . On applying the ope-5 œ 5 Ð2 ß 2 ß á ß 2 Ñß = œ "ß á ß 7  #= = " # 7"

rators , respectively, on the function , we see that  is de-Z ß á ß Z 0 0<" 7

pendent on  independent functions 7Ð7<Ñ œ < 1 − ÐQÑß œ "ß! A !!

á ß < as follows:

0 œ 0Ð1 ß 1 ß á ß 1 Ñ" # < . (5.13.4)

The functions are clearly determined by successively solving a sequence1!

of ordinary differential equations with ever decreasing number of dependent
variables. We can then write

Z Ð0Ñ œ @ œ Z Ð1 Ñ œ !ß + œ <  "ß á ß 7
`0 `1 `0

`1 `B `1
+ ++

3
3! !

!
! .

This relation would of course be valid for all functions in the form (5.13.4).
If we choose , we find0 œ 1"

Z Ð1 Ñ œ Z Ð1 Ñ œ !ß + œ <  "ß á ß 7ß œ "ß á ß <+ +
! " "

!$ "

implying that

Z Ð1 Ñ œ Ð.1 Ñ œ !+ Z
! !i + . (5.13.5)

Since the functions  are independent, the forms  must be1 .1 − ÐQÑ! ! A"

linearly independent so that one gets . According toH œ .1 • â • .1 Á !" <

Theorem 5.6.1 the relations (5.13.5) express the fact that the vectors ÖZ ×+

are also characteristic vectors of the ideal . We can now readily\ Ð.1 Ñ!

prove that . Let us assume that one of the genera-\ \ = \ÐH Ñ œ Ð Ñ © Ð.1 Ñ<
! !

tors of the ideal , say , does not belong to the ideal . On\ = = \Ð Ñ Ð.1 Ñ! ! !

referring to the statement on  249, we are thus compelled to assume that:Þ
iZ ++Ð Ñ Á ! Z Ð Ñ= \ =! !. However,  is a characteristic vector of the ideal  as
well and the condition  must be satisfied. In order to remove thisiZ+Ð Ñ œ !=!

contradiction, we have to take . Hence, all generators of = \ \ =! ! !− Ð.1 Ñ Ð Ñ
must belong to . This means that . Therefore, there\ \ = \Ð.1 Ñ Ð Ñ © Ð.1 Ñ! ! !

exists a regular matrix  such that the relations  are toÒ Ó œ 1E Ð Ñ E ." "
! !x =! "

be satisfied. Thus, the exterior system is completely integrable. 
We have to pay attention to the fact that the functions  and the1!

matrix  cannot be determined uniquely. Provided that the functionsÒE Ó"
!
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2 œ 2 Ð1 ß 1 ß á ß 1 Ñ Ð`2 Î`1 Ñ Á !! ! ! "" # <  are so chosen that the condition  det
is satisfied, the forms  become linearly independent and we find that.2!

i i iZ Z Z+ + +
Ð.2 Ñ œ .1 œ Ð.1 Ñ œ !

`2 `2

`1 `1
! " "

! !

" "
Š ‹ .

Hence, we can write . But, it is easily verified that the relation=! "œ F"
! .2

E œ" #
! !F

`2

`1

#

"

must be satisfied.
The generalisation of the Frobenius theorem to ideals generated by

forms of diverse degrees is given below.
Theorem 5.13.5.   Let be a closed ideal of the exterior algebra\ AÐQÑ

generated by forms of various degrees. If the dimension of the characteristic
subspace  of   is , then there exist  functionally independentf \ \Ð Ñ 7  < <
functions  and the ideal  is contained in the1 Ð Ñ − ÐQÑß œ "ß á ß <! x A ! \!

closed ideal generated by forms ..1 − ÐQÑß œ "ß á ß <! A !"

Since  is closed, its characteristic subspace is an involutive distribu-\
tion in view of Theorem 5.13.2. Hence, the characteristic basis vectors Z+

œ @ ` ß + œ <  "ß á ß 7 Z ß Z œ !+
3

3 + , can be so chosen that . Thereby,Ò Ó
following the path leading to Theorem 5.13.4 we can determine independent
functions  satisfying the relations 1 Ð Ñß œ "ß á ß <! x i! Z Ð1 Ñ œ Ð.1 Ñ œ+ Z

! !
+

! Ð. Let  denote the completely integrable closed ideal generated by] .1 Ñ!

forms Then Theorem 5.6.4 implies that . Since.1 − ÐQÑ © .1 Ñ! !A ]" . \ Ð
the ideal  is generated by -forms, it is the largest ideal admitting] Ð ".1 Ñ!

f \Ð Ñ as its characteristic subspace. In this case, if  then there are= \−
suitable forms  so that one is able to write . Con-# = #! !− Ñ œ •AÐQ .1!

sequently, if we introduce -dimensional Ð7  <Ñ characteristic submanifolds
prescribed by the relations  obtained1 Ð Ñ œ - œ ß œ "ß á ß <! !x constant !
through integration of the following sets of ordinary differential equations

.B .B .B .B

@ @ @ .>
œ œ â œ œ @ à + œ <  "ß á ß 7

" # 7 3

+ + +
" # 7

3
+or     

which determine the integral curves of characteristic vector fields, then it is
quite clear that those manifolds are also a solution of the ideal .\ 

It is now obvious that a solution of a closed ideal  provided by\
Theorem 5.13.5 corresponds to a solution determined by maximal number
of independent functions . Hence, this approach cannot usually reveal all1!

solutions of the ideal . It might be quite possible that there exist submani-\
folds annihilating the ideal  whose dimensions are larger than  so\ 7  <
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that they can be determined by means of a smaller amount of functions, but
not solving the ideal . However, it is impossible to offer a systematic]
approach based on the above procedure to access such kinds of solutions
corresponding, most probably, to much more realistic situations. Unfortu-
nately, we can frequently produce only rather trivial solutions by applying
Theorem 5.13.5.

Example 5.13.2. We build an ideal of the exterior algebra  byA ‘Ð Ñ%

forms , .= A ‘ = A ‘" " # $ % " % # # # $ # %œ .B  B .B  .B − Ð Ñ œ B .B • .B − Ð Ñ
Since  and d , the ideal  is closed. œ .B • .B œ ÎB œ ! Ð ß Ñ= = = \ = =" # $ # # # " #

and its characteristic vectors must satisfy the relations

i
i
Z

" " # $ %

Z
# # # $ $ # " # $ %

Ð Ñ œ @  B @  @ œ !

Ð Ñ œ B Ð@ .B  @ .B Ñ œ Ð.B  B .B  .B Ñ

=

= -

from which we obtain

- œ @ œ !ß @ œ !ß @ œ  @# $ % "

and . Thus the basis vector of -dimensional characteristicZ œ @ Ð`  ` Ñ ""
" %

subspace can be chosen as . Therefore, the solution of the dif-Z œ `  `% " %

ferential equation

Z Ð0Ñ œ  œ !
`0 `0

`B `B
% " %

yields  and we have .0 œ 0ÐB  B ß B ß B Ñ 1 œ B  B ß 1 œ B ß 1 œ B" % # $ " " % # # $ $

Hence, -dimensional solution submanifolds are determined by " B  B œ" %

- ß B œ - ß B œ -" # # $ $ . We immediately observe that if we define the forms
.1 œ .B  .B ß .1 œ .B ß .1 œ .B œ .1  B .1 ß" " % # # $ $ " " # $ we can write =
= \ = = ]# # # $ " # " # $œ B .1 • .1 Ð ß Ñ § Ð.1 ß .1 ß .1 Ñ meaning that . However,
we can easily check that . For instance, forms like  does not\ ]Á 1Ð Ñ .1x #

belong to .\ = =Ð ß Ñ" #

Let us now search for a larger, say -dimensional solution submanifold#
of the same ideal. We designate the mapping  by functions 9 ‘ ‘À Ä B# % 3

œ 0 ÐBß CÑß 3 œ "ß á ß %3 . The exterior equations

9 =

9 =

‡ " # #
" $ % " $ %

‡ # #
# $ # $

œ  0  .B   0  .C œ !
`0 `0 `0 `0 `0 `0

`B `B `B `C `C `C

œ 0  .B • .C œ !
`0 `0 `0 `0

`B `C `C `B

Š ‹ Š ‹
Š ‹

can only be satisfied if we choose the functions  as solutions of the first0 3

order partial differential equations
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`0 `0 `0 `0 `0 `0

`B `B `B `C `C `C
 0  œ !ß  0  œ !ß

0  œ !
`0 `0 `0 `0

`B `C `C `B

" $ % " $ %
# #

#
# $ # $Š ‹ .

For a simple example, we choose to take . Then the solution is easily0 œ !#

found to be

0 œ 0ÐBß CÑß 0 œ !ß 0 œ 1ÐBß CÑß 0 œ -  0ÐBß CÑ" # $ %

where  and  are arbitrary functions and  is an arbitrary constant.0 1 - è

We know that if the ideal  is not closed, then a closed ideal con-\ =Ð Ñ!

taining  is its closure .¯\ \ = =Ð ß . Ñ! !

Theorem 5.13.6. Let an ideal of the exterior algebra  be  andA \ÐQÑ
its closure be . If a mapping  is a solution of the\ \ \ 9¯ œ  . À W Ä Q
ideal , then it is likewise a solution of its closure .\ \̄

When , we have . If , then we get ¯ ¯= \ = = \ 9 = 9 =− ß . − œ ! Ð Ñ œ‡ ‡ .
.Ð Ñ œ !9 = \‡  according to Theorem 5.8.2. Thus the ideal  is also annihilat-¯
ed under this mapping. In other words, characteristic manifolds of an ideal
\  and characteristic manifolds of its closure are the same. 

Theorem 5.13.5 and 5.13.6 help us to specify some solutions of a sys-
tem of exterior equations generating an ideal that is not closed by means of
characteristic manifolds. Let us suppose that the dimension of the charac-
teristic subspace  of the closure  of the ideal  is . Then we can¯ ¯f \ \ \Ð Ñ 7  <
find in the usual way functions  enabling us to1 Ð Ñ − ÐQÑß œ "ß á ß <! x A !!

write . Hence the equations  produce -¯\ \§ © Ð Ð7  <Ñ] .1 Ñ 1 Ð Ñ œ -! ! !x
dimensional characteristic manifolds annihilating the ideal . But, since\
. §Î\ \ , we are required to enlarge the ideal in order to close it, and con-
sequently, to reduce the dimension of the characteristic subspace. Thus, we
are compelled to keep the completely integrable system, in which the ideal
\  is embedded, larger than it was necessary.

Even if an ideal  is not closed, it can be placed into a completely in-\
tegrable system if its characteristic subspace is -dimensional because of the"
fact that such a subspace constitutes trivially a Lie algebra.

Example 5.13.3. We construct an ideal of the exterior algebra A ‘Ð Ñ%

by the forms , . We= =" " # $ # % " $ " # %œ .B  B .B œ B .B • .B  B .B • .B
then have

. œ  .B • .B ß . œ  •
.B .B

B B
= = =" # $ # #

" %

" %
Š ‹ .

We obviously get . However, we can easily verify that we. − Ð ß Ñ= \ = =# " #
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find . Hence, the closure of  is . Thus, the¯. Â Ð ß Ñ Ð ß ß . Ñ= \ = = \ \ = = =" " # " # "

characteristic subspace of  is prescribed by the equations\̄

@  B @ œ !

B Ð@ .B  @ .B Ñ  B Ð@ .B  @ .B Ñ œ Ð.B  B .B Ñ

 Ð@ .B  @ .B Ñ œ Ð.B  B .B Ñ

" # $

% " $ $ " " # % % # " # $

# $ $ # " # $

-

.

whose solution yields  and . We thus- .œ œ ! @ œ @ œ @ œ @ œ !" # $ %

obtain  so that the characteristic subspace is the zero space. The idealZ œ !
generated by functions  is just . Hence, we can only1 œ B Ð Ð Ñ3 3 %] .B Ñ œ3 A ‘
get trivial information about the solution. On the other hand, the characteris-
tic subspace of  is prescribed by the equations\

@  B @ œ !

B Ð@ .B  @ .B Ñ  B Ð@ .B  @ .B Ñ œ Ð.B  B .B Ñ

" # $

% " $ $ " " # % % # " # $

,

-

whose solution is  and , . Thus the- œ  B @ @ œ B @ @ œ @ œ !% $ " # $ # %

characteristic subspace is -dimensional and is spanned by the vector " Z œ%

B `  ` Z Ð0Ñ œ !#
" $ %. The solution of the partial differential equation  is

readily obtained as  where we define 0 œ 0Ð1 ß 1 ß 1 Ñ 1 œ B  B B ß" # $ " " # $

1 œ B 1 œ B Ð ß Ñ Ð§# # $ % " #, . In this case, we can write .\ = = ] .1 ß .1 ß .1 Ñ" # $

Indeed, the relations

=

=

"

# " " " # $
% $ %

# #

œ

œ  .B • .B •  B .1 • .1
B B B

B B

.1  B .1 ß

.1  .1

" $ #

" #

can easily be verified. è

If we have managed to determine a resolvent mapping for an ideal,
new resolvent mappings may be created via an isovector field of that ideal.

   Theorem 5.13.7. Let  be an ideal of the exterior algebra  and\ AÐQÑ
9 À W Ä Q Z be a resolvent mapping for that ideal. If the vector field  is an
isovector field of the ideal, then the flow generated by  transforms  into aZ 9
"-parameter family of resolvent mappings.

If  is a resolvent mapping, then we have 9 9À W Ä Q k= =W œ œ !‡

for all . If we further assume that  is an isovector, this implies that= \− Z
£  for all . We denote the flow  generated byZ Z= \ = \ <− − Ð>Ñ À Q Ä Q
the isovector field  by  and define the -parameter fa-Z Ð>ÑÐ:Ñ œ Ð:Ñ "<Z />Z

mily of mappings  as follows9Z Ð>Ñ À W Ä Q

9 < 9 9Z ZÐ>Ñ œ Ð>Ñ ‰ œ ‰/>Z .

On utilising (5.11.14), we obtain
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9 = 9 = = =

= =

Z
‡ ‡ ‡ ‡

‡

Ð>Ñ œ Ð ‰ Ñ œ ‰ Ð Ñ œ ‰ Ð Ñ

œ œ / Ñ

/ / />Z >Z >Z

>

 ‘9 9

9 9

‡ ‡

‡ ‡Ð £Z

for all . However, due to the relation  we find .= \ = \ 9 =− / − Ð>Ñ œ !>£Z
Z

‡

Therefore, each member of the -parameter family of mappings  is" Ð>Ñ9Z

also a solution of the ideal .\ 
Example 5.13.4. We have already determined the isovector fields of

the ideal  of the exterior algebra  in Example 5.12.1.\ A ‘ÐB .C  C .DÑ Ð Ñ$

For a tangible example, let us choose . In this case the componentsJ œ BD
of the isovector field become

@ œ ß @ œ Dß @ œ !
BÐB  DÑ

C
B C D .

The flow created by this vector field is found as the solution of the ordinary
differential equations

.B BÐB  DÑ .C .D

.> C .> .>
œ ß œ Dß œ !¯ ¯ ¯ ¯ ¯ ¯

¯
¯

under the initial conditions . Hence, the map-¯ ¯ ¯BÐ!Ñ œ Bß CÐ!Ñ œ Cß DÐ!Ñ œ D
ping  is determined by<Z Ð>Ñ

BÐ>Ñ œ ß CÐ>Ñ œ D>  Cß DÐ>Ñ œ D
BÐC  D>Ñ

C  B>¯ ¯ ¯ .

We shall now look for a -dimensional solution of the exterior equation"
= 9 9 9œ B .C  C .D œ ! B œ Ð?Ñß C œ Ð?Ñß D œ Ð?Ñ in the form . Then" # $

9 =‡ œ ! ends up in the equation

9 9
9 9" #

# $. .

.? .?
 œ !.

In this situation, the family of resolvent mappings  is de-9 < 9Z ZÐ>Ñ œ Ð>Ñ ‰
signated by

9 9
9 9

9 9

9 9 9 9 9

" "
Z

# $

# "

# # $ $ $
Z Z

Ð?à >Ñ œ Ð?Ñ ß
Ð?Ñ  > Ð?Ñ

Ð?Ñ  > Ð?Ñ

Ð?à >Ñ œ Ð?Ñ  > Ð?Ñß Ð?à >Ñ œ Ð?Ñ

 

.

The mapping described by , ,  is alsoB œ Ð?à >Ñ C œ Ð?à >Ñ D œ Ð?à >Ñ9 9 9" # $
Z Z Z

a solution of the exterior equation  for each . In fact, if we insert= œ ! >
these relation into that equation, we obtain
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 .
 

9 9 9 9
9 9 9 9 99

9 9
" # " #
Z Z

# # $ # $
Z Z

$

# "

.  > . .

.? .?  > .? .?
 œ  œ !

. Š ‹
As a simple example, let us take  where9 9 9" # # $ #

" # "œ  #- ? ß œ - ?ß œ - ?
- -" # and  are constants. The new family of solutions is then found to be

9 9 9" # $ #
Z Z Z

" # "
#

# "
# " "œ  ß œ Ð-  - >?Ñ?ß œ - ? è

#- Ð-  - >?Ñ?

-  #- >?
.

5.14. FORMS DEFINED ON A LIE GROUP

Let  be a finite -dimensional Lie group. We denote the exteriorK 7
algebra on this smooth manifold by . We consider the left and rightAÐKÑ
translations  and  on  defined by (3.3.1) and (3.3.2), respectively.P V K1 1

These diffeomorphisms give rise to the mappings  andP À ÐKÑ Ä ÐKÑ‡
1 A A

V À ÐKÑ Ä ÐKÑ − ÐKÑ‡ 5
1 A A = A. If a form  satisfies the relation

P Ð1‡2Ñ œ Ð2Ñ P œ‡ ‡
1 1= = = =  or  (5.14.1)

for all , it is called a . Because of the equality1ß 2 − K left-invariant form
P œ P ÐP Ñ œ P" " ‡ ‡

1 11 1" ", we infer that . Hence, it follows from (5.14.1)
that we obtain

= =Ð1‡2Ñ œ P Ð2Ñ‡
1" (5.14.2)

for a left-invariant form  and for all . If we take , (5.14.2)= 1ß 2 − K 2 œ /
leads to

= =Ð1Ñ œ P Ð/Ñ‡
1" (5.14.3)

for all . Consequently, all left-invariant -forms are generated by1 − K 5
forms  defined on the tensor product  at the identity= AÐ/Ñ − ÐKÑ Œ X ÐKÑ5 ‡

5
/

element . Thus, left-invariant -forms are produced by -forms in the/ − K " "
dual space . Since the dimension of the vector space  is ,X ÐKÑ X ÐKÑ 7‡ ‡

/ /

then there are exactly  linearly independent left-invariant -forms and the7 "
entire left-invariant -forms are expressible as their linear combinations. If"
we denote a basis of  by , we can then express a formX ÐKÑ ß ß á ß‡ " # 7

/ = = =
= AÐ/Ñ − ÐKÑ5  as follows

= = = = =Ð/Ñ œ • • â •
"

5x
3 3 â3

3 3 3
" # 5

" # 5
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where  are completely antisymmetric  coefficients.= ‘3 3 â3" # 5
− constant

According to the relation (5.14.3), any left-invariant -form is extracted5
from the foregoing form with constant coefficients. Similarly, right-invari-
ant forms are defined as

V œ‡
1= = (5.14.4)

for all  and we write . Hence, right-invariant forms1 − K Ð1Ñ œ V Ð/Ñ= =‡
1"

are also generated by  linearly independent -forms chosen from the dual7 "
space . The relation  [  (3.3.3)] leads of courseX ÐKÑ P ‰ V œ V ‰ P‡

/ 1 1 1 1 see
to . Therefore, if  is a left-invariant form we find thatV ‰ P œ P ‰ V‡ ‡ ‡ ‡

1 1 1 1 =

P ÐV Ñ œ V ÐP Ñ œ V‡ ‡ ‡ ‡ ‡
1 1 1 1 1= = =.

Thus  is a left-invariant form. In the same way, If  is a right-invariantV1
‡= =

form, then  turns out to be a right-invariant form.P‡
1=

Theorem 5.14.1. ( )If  is a left right  invariant form, then  is also a= =.
left right  invariant form.( )

According to Theorem 5.8.2, we obtain

P . œ .P œ .‡ ‡
1 1= = =

for all . Similarly, we get .1 − K V . œ .1
‡ = = 

Theorem 5.14.2. Let  and  be Lie groups and  be a LieK L À K Ä L9
group homomorphism. Then the pull-back operator 9 A A‡ À ÐLÑ Ä ÐKÑ
transports the left-invariant forms in  to the left-invariant forms in .L K

Let  be a left-invariant form. Since  is a group homomor-= A 9− ÐLÑ
phism, we readily obtain

P Ð Ñ œ Ð Ñ œ Ð Ñ œ‡ ‡ ‡
1 ÐÐ9 9 9 9 9‡ ‡ ‡ ‡

1 1Ñ 1Ñ= = = = =‰ P P ‰ ÐP Ñ œ9 9

[  . 188]. This implies that the form  is left-invariant. The samesee : 9‡=
property is also valid for right-invariant forms. 

The Lie algebra  of the Lie group  that consist of left-invariant vec-  K
tors is designated by the tangent space  and left-invariant -forms areX ÐKÑ "/

elements of the dual space . Hence, when we choose a basis X ÐKÑ Z ß‡
/ "

Z ß á ß Z œ X ÐKÑ ß ß á ß# 7 /
" # 7 in  , we can find a reciprocal basis  in  = = =

  = $‡ ‡ 3 3
/ 4 4œ X ÐKÑ ÐZ Ñ œ such that we get .

Theorem 5.14.3. A form  is left-invariant if and only if the= A− ÐKÑ5

function  is constant for every  left-invariant vector fields=ÐZ ß Z ß á ß Z Ñ 5" # 5

Z ß Z ß á ß Z" # 5 .
Let  be a left-invariant -form. We can thus write = = =5 P Ð1‡2Ñ œ Ð2Ñ‡

1

and . (5.7.1) then leads to.P ÐZ Ñ œ Z ß 3 œ "ß á ß 51 3 32 1‡2k k
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       (5.14.5)P ÐZ ß á ß Z Ñ œ .P ÐZ Ñß á ß .P ÐZ Ñ‡
1 1‡2 2 2 1‡2 2 2" 5 1 " 1 5k k k k k kˆ ‰= =

from which we obtain

k k k k k k= =2 2 2 1‡2 1‡2 1‡2" 5 " 5ÐZ ß á ß Z Ñ œ ÐZ ß á ß Z Ñ

since  are left-invariant vectors. If we take , then for everyZ ß á ß Z" 5 2 œ /
1 − K we find that

k k k k k k= =1 1 1 / / /" 5 " 5ÐZ ß á ß Z Ñ œ ÐZ ß á ß Z Ñ œ constant. (5.14.6)

Conversely, if the function  is constant for every  left-=ÐZ ß Z ß á ß Z Ñ" # 5 5
invariant vector fields , then (5.14.5) yieldsZ ß Z ß á ß Z" # 5

P Ð1ÑÐZ ß á ß Z Ñ œ Ð/ÑÐZ ß á ß Z Ñ‡
1 " 5 " 5/ / / /= =k k k k

whence we deduce that the relation , that is,  is a left-P Ð1Ñ œ Ð/Ñ‡
1= = =

invariant form. 
The left-invariant -forms engendering the dual  of the Lie algebra "    ‡

of the Lie group  are called  [German mathemati-K Maurer-Cartan forms
cian Ludwig Maurer (1859-1927)]. So Theorem 5.14.3 implies that the
function  remains constant for fields  and .= =    ÐZ Ñ − Z −‡

Theorem 5.14.4.  Let be a Lie group and  be aK )3 − ß 3 œ "ß á ß 7 ‡

basis for left-invariant -forms. In this case, the following Maurer-Cartan"
structure equations are satisfied

.) ) ) ) )5 5 3 4 5 3 4
34 34

"Ÿ34Ÿ7

œ  - • œ  - •
"

#
" . (5.14.7)

where  are real constants. The constants are the same as the- œ  - -34 43 34
5 5 5  

structure constants of Lie algebra . 
According to Theorem 5.14.1, if a basis form  is left-invariant, then)5

its exterior derivative  is likewise left-invariant. Therefore, in terms of.)5

basis in the dual space  we can write ‡

. ,) ) )5 5 3 4
34œ  • ß 3ß 4ß 5 œ "ß á ß 7

"

#

with constant coefficients . These numbers ought to satisfy naturally the,34
5

antisymmetry conditions . On the other hand, we get,34 43
5 5œ  ,

! œ .#) ) ) ) )5 5 3 4 3 4
34œ  , Ð. •  • . Ñ

"

#
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œ

œ

œ , ,
" "

# #

"

%
, Ð, • •  , • • Ñ

" "

% %
, , • •  , , • •

, • • œ , • •

34 67
5 3 6 7 4 3 6 7

67
4

34 67 43 67
5 3 6 7 4 5 3 6 7 4

34 67 3 4 67
5 3 6 7 4 5 3 6 7 4

) ) ) ) ) )

) ) ) ) ) )

) ) ) ) ) )[ ] .

Thus the coefficients  must satisfy the relations,34
5

$x

#
,  ,3 4 67 67 34 74 36 46 37

5 3 3 5 3 5 3 5
[ ], œ , , ,  , , œ !

dictated by the Jacobi identity. Let  be the reciprocalZ3 − ß 3 œ "ß á ß 7 
basis of the Lie algebra with respect to the forms , that is, the relations)3

)3 3
4 4ÐZ Ñ œ ß are to be satisfied. This basis vectors have to$ 3ß 4 œ "ß á ß 7 

verify the relations  where  are structure constants of theÒ ÓZ ß Z œ -3 4 34
5- Z34

5
5

Lie algebra  with respect to the basis  [  (3.3.9)]. In view of the  ÖZ ×3 see
relation (5.2.6), we can write . Consider a -form, . "34

5 5
3 4œ  ÐZ ß Z Ñ)

= = = =œ .B . œ .B • .B3 3ß4
3 4 3. The value of the form  on vector fields

Y ß Z − X ÐQÑ is given by

. ÐY ß Z Ñ œ Ð? @  ? @ Ñ œ Ð  Ñ? @= = = =3ß4 3ß4 4ß3
4 3 3 4 4 3.

On the other hand, the relation

Y ÐZ Ñ  Z ÐY Ñ œ Ð  Ñ? @  Ð@ ?  ? @ Ñˆ ‰ ˆ ‰= = = = =3ß4 4ß3 3
4 3 3 4 3 4

ß4 ß4

leads immediately to

. ÐY ß Z Ñ œ Y ÐZ Ñ  Z ÐY Ñ  Ð Y ß Z Ñ= = = =ˆ ‰ ˆ ‰ Ò Ó . (5.14.8)

Consequently, because of ,  we obtain) )5 5 5 5
3 43 4ÐZ Ñ œ ÐZ Ñ œ$ $

, . Ð ß Ñ œ Ð Ñ œ œ34 34 34 34
5 5 5 5 6 6 5

3 4 3 4 6œ  ÐZ ß Z Ñ œ Z Z - Z - -) ) )Ò Ó $6
5 . 

We can now prove the following theorem.
Theorem 5.14.5.  The structure constants of an -dimensional Lie7

group vanish if and only if it is locally isomorphic to the group .‘7

Ð3ÑÞ K Let the Lie group  be isomorphic to the group . We have‘7

seen in Example 3.3.1 that the structure constants of  are zero. The rela-‘7

tion (3.4.3) then requires that the structure constants of  are also zero soK
that  becomes an Abelian group.K

Ð33ÑÞ K Let the structure constants of the Lie group  be zero. Therefore,
(5.14.6) gives . .)5 œ !ß 5 œ "ß á ß 7 According to the Poincaré lemma,
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there are  smooth functions  on the domain  of a local chart7 À Y Ä Y* ‘5

ÐY ß Ñ œ . :: ) * such that see . 5 5  [ 334]. We can choose those functions *5

as coordinate functions. Since the forms  are left-invariant, we obtain)5

P Ð1‡2Ñ œ Ð2Ñ œ Ð2Ñ œ .2‡ 5 5
1) )5 5 .*

for all .  are coordinates of 1ß 2 − K 1 œ Ð1Ñß 2 œ Ð2Ñ 15 5 5 5* * ß 5 œ "ß á ß 7
and . Furthermore, we can readily write 2 Ð1‡2Ñ œ Ð1‡2Ñ œ ÐP 2Ñ œ5

1* *5 5

*5 ‰ P Ð2Ñ œ P Ð2Ñ1
5
1 . Then, on making use of Theorem 5.8.2 we get

P Ð1‡2Ñ œ P Ð1‡2Ñ œ P P Ð2Ñ œ P P Ð2Ñ

œ . P Ð2Ñ ‰ P œ .P Ð2Ñ œ .2
`P Ð2Ñ

`2

‡ ‡ 5 ‡ 5 ‡ 5
1 1 1 1 1 1

5 5 6
1 11 2

5
1

6

)5 . . .*

ˆ ‰ ¸ .

If we compare the two expressions which we have found for ,P Ð1‡2Ñ‡
1)

5

then we deduce that

`P Ð2Ñ `P Ð2Ñ

`2 `2
.2 œ .2 œ

5 5
1 1

6 6
6 5 5

6  or  .$

It is quite easy to integrate these differential equations to obtain

P Ð2Ñ œ Ð1Ñ  25 5 5
1 K . (5.14.9)

K *5 5Ð1Ñ Þ are arbitrary functions  Since the functions  are to be determined
up to a constant, we can impose the restriction *5Ð/Ñ œ !ß 5 œ "ß á ß 7
without loss of generality. Because , we get P Ð/Ñ œ 1 P Ð/Ñ œ Ð1Ñ œ 11

5 5 5
1 *

and when we evaluate the expression (5.14.9) for , we end up with the2 œ /
relation . Hence, we find that . LetK *5 5 5 5 5

1Ð1Ñ œ 1 Ð1‡2Ñ œ P Ð2Ñ œ 1  25

us next define the smooth function  and the* œ Ð ß á ß Ñ À Y Ä* * ‘" 7 7

elements  and . We thusg hœ Ð1 ß á ß 1 Ñ − œ Ð2 ß á ß 2 Ñ −" 7 7 " 7 7‘ ‘
conclude that

* * *Ð1‡2Ñ œ  œ Ð1Ñ  Ð2Ñg h . (5.14.10)

This implies that the Lie group  is locally isomorphic to the group .K ‘7 

V.  EXERCISES

5.1. We define on the manifold  with the coordinate cover  the fol-‘% ÐBß Cß Dß >Ñ
 lowing exterior forms

= A ‘" B " %œ C > .B  / .C  > .D  ÐC  DÑ .> − Ð Ñßcos
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= A ‘

= A ‘

= A ‘

# $ # %

$ C $ %

% # $ % %

œ B .B • .D  ÐC  D Ñ .B • .>  D .C • .D − Ð Ñß

œ / .C • .D • .>  C .B • .C • .D  B .B • .D • .> − Ð Ñß

œ ÐB  > Ñ .B • .C • .D • .> − Ð ÑÞ

tan sinh

cos

 Evaluate the exterior forms , ,= = = = = = = = = =" $ " # $ $ " # # %• ß •  •  • 
 , , . The vector.   • . •  . • . .  .Ð • Ñ= = = = = = = = = = =# $ # " " # " " $ " #

 fields  are given byY ß Z − X Ð Ñ‘%

Y œ C  D  ß Z œ B  >
` ` ` ` `

`B `D `> `C `D
.

 Find the forms , , , , , ,i i i i i i i iY Z Y Z Y Z Y Z
" # $ % " # % #= = = = = = = =Ð.  Ñ  Ð. Ñ

 , £ , £ , £ , £ , £ £ ..Ð Ñ  Ð. Ñ i i i iY Y Z Y Z Y Y Z Y Z
# # " # $ % #= = = = = = = =

5.2.  Consider an exterior form  and a vector= A ‘œ D .B  B .C  B .D − Ð Ñ" $

 field . Evaluate the forms £ , £ £ ,Z œ C `  D `  B` − X Ð ÑB C D Z Z Z
$‘ = =

 £ £ £ ,  £ £ £ £  and £ .Z Z Z Z Z Z Z Z= = =exp Ð> Ñ
5.3. Determine vector fields  in such a way that they satisfy theZ − X Ð Ñ‘%

 relations  ,  ,  ,  . ThisÐ+Ñ œ ! Ð,Ñ œ ! Ð-Ñ œ ! Ð.Ñ œ !i i i iZ Z Z Z
" # $ %= = = =

 amounts to say that they will be characteristic vectors of those forms. Forms
  are defined in Exercise .= = = =" # $ %ß ß ß 5.1
5.4. 5.1 Express the forms  in Exercise  in terms of bases induced by= = = =" # $ %ß ß ß
 the volume form .. œ .B • .C • .D • .>
5.5. Let  and  be reciprocal basis vec-Ö × X ÐQÑ ÖZ × X ÐQÑß 3 œ "ß á ß 7§ §)3 ‡

3

 tors. Verify the equality

          
if  

if  
iZ 3 3 <

<" 3 3 3 3
<

3
" 5

" <" <" 5
Ð • â • Ñ œ

!ß 3 Á 3 ß < œ "ß á ß 5

Ð"Ñ • â • • • â • ß 3 œ 3
) )

) ) ) )œ
5.6. We define the mapping  by the relations9 ‘ ‘À Ä$ %

B œ ? @ß C œ ? @ß D œ A  #ß > œ ?Acos sin .

  Find the pulled back forms , , ,  [  Exercise ],Ð+Ñ 9 = 9 = 9 = 9 =‡ " ‡ # ‡ $ ‡ % see 5.1
  determine the range ,  evaluate the inverse mappingÐ,Ñ Ð Ñ Ð-Ñ§e 9 ‘%

 ,  find the vectors ,  and ,  If9 e 9 ‘ 9 9 9" $
‡ ? ‡ @ ‡ AÀ Ð Ñ Ä Ð.Ñ ` ` ` Ð.Ñ

 , then evaluate the forms   and .= 9 = 9 =œ .B • .C • .D Ð Ñ Ð Ñ‡ ‡
` `ˆ ‰ ˆ ‰i i9 9‡ ? ‡ @

5.7. A mapping  is described by the relations , ,9 ‘ ‘À Ä ? œ C @ œ BC# $ #

  The vector fields  and the form  are givenA œ B Þ Y ß Z − X Ð Ñ − Ð Ñ$ # # $‘ = A ‘
 as follows:

Y œ C  B ß Z œ   C ß œ ? .? • .@  @A .@ • .AÞ
` ` ` `

`B `C `B `C
 # =

 Evaluate the quantities , , , , ,9 = 9 9 9 = = 9 9‡ ‡
‡ ‡ ‡ ‡Y Z Ð ÑÐY ß Z Ñ Ð Y ß Z Ñ

 , , , .i i i iY Z Y Z
‡ ‡ ‡ ‡Ð Ñ Ð Ñ Ð Ñ Ð Ñ9 = 9 = 9 = 9 =9 9‡ ‡

5.8. Determine all mappings  satisfying the relations 9 ‘ ‘À Ä ß " Ÿ 5 Ÿ % Ð+Ñ5 %
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 ,  ,  ,   where the forms 9 = 9 = 9 = 9 = =‡ " ‡ # ‡ $ ‡ % "œ ! Ð,Ñ œ ! Ð-Ñ œ ! Ð.Ñ œ ! ß
  are those given in Exercise = = =# $ %ß ß 5.1
5.9. Show that the form  is= A ‘œ D .B • .C  CD .C • .D  C .B • .D − Ð Ñ# $

 closed. Determine a form  such that  .H A ‘ = H− Ð Ñ œ ." $

5.10. We define the isomorphisms ,  by9 ‘ A ‘ < A ‘ A ‘À Ä Ð Ñ À Ð Ñ Ä Ð Ñ$ " $ ! $ $ $

9 =

< =

Ð Ñ œ œ ? .B  ? .C  ? .D

Ð0 Ñ œ œ 0 .B • .C • .D

U U B C D

0

,

  where  and . Verify that  U œ Ð? ß ? ß ? Ñ − 0 − Ð Ñ Ð+Ñ œB C D
$ ! $‘ A ‘ =U V†

  ,  , = = = = = = = = =U V U V U V U V U U•‡ œ ‡ • ß Ð,Ñ œ ‡Ð • Ñ Ð-Ñ œ ‡ . ‡ Ð.Ñ‚ div

  and show that  curl   if .= = = =curl U U U Uœ ‡ . Ð/Ñ œ ! . • œ !U U†
5.11. Verify the following relations in :‘$

   Ð+Ñ Ð Ñ œ Ð Ñ  Ð ÑU V W U W V U V W‚ ‚ † †
   Ð,Ñ Ð Ñ œ Ð Ñ œ Ð ÑU V W V W U W U V† ‚ † ‚ † ‚
   Ð-Ñ Ð01Ñ œ 1 0  0 1f f f
   curl curlÐ.Ñ Ð Ñ œ   Ð Ñ  Ð Ñf † ‚ ‚ †f †fU V U V V U V U U V
  U U UÐ/Ñ Ð0 Ñ œ 0  0 div div † f
  curl div divÐ0 Ñ Ð Ñ œ Ð Ñ  Ð Ñ  Ð Ñ  Ð ÑU V V U U V V U U V‚ †f †f
  UÐ1Ñ Ð Ñ œ ! Ð 0 Ñ œ Ð 0 1Ñ œ ! div curl , curl , divf ! f ‚f
5.12. If  is a Riemannian manifold and , show thatQ Z ß Z − X ÐQÑ" #

div div divÒ ÓZ ß Z œ Z Ð Z Ñ  Z Ð Z ÑÞ" # " # # "

5.13. Let  and . Verify the relation= A− ÐQÑ Z ß Z ß á ß Z − X ÐQÑ5
! " 5

. ÐZ ß Z ß á ß Z Ñ œ Ð"Ñ Z ÐZ ß Z ß á ß Z ß Z ß á ß Z Ñ

 Ð"Ñ Ð Z ß Z Z ß Z ß á ß Z ß Z ß á ß Z ß Z ß á ß Z Ñ

= =

=

! " 5 3 ! " 3" 3" 5

3œ!

5
3

!Ÿ3Ÿ4Ÿ5

34
3 4 ! " 3" 3" 4" 4" 5

" ˆ ‰
" Ò Óß .

5.14. Let  and . Verify the relation= A− ÐQÑ Z ß Z ß á ß Z − X ÐQÑ5
" 5

£

£ .

Z " 5

Z " 5 " 3" 3 3" 5

3œ"

5

ˆ ‰
"

=

= =

ÐZ ß á ß Z Ñ œ

Ð ÑÐZ ß á ß Z Ñ  ÐZ ß á ß Z ß Z ß Z Z ß á ß Z ÑÒ Óß

5.15. When , verify the validity of the operator identityY ß Z − X ÐQÑ

£ £Y Z Z Y Y ZY ßZ‰  ‰  œ .ß ‰i i i i iÒ Ó Ò ÓÞ

5.16.   Provided that , , show that a function  can be1 − ÐQÑ .1 Á ! 0 − ÐQÑA A! !

 expressed in the form  if it meets the condition .0Ð:Ñ œ J 1Ð:Ñ .0 • .1 œ !ˆ ‰
  is a smooth function.J
5.17. Let us assume that . Show1 ß 1 ß á ß 1 − ÐQÑß .1 • .1 • â • .1 Á !" # < ! " # <A
 that if a function  satisfies the relation ,0 − ÐQÑ .0 • .1 • â • .1 œ !A! " <
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 then it is expressible in the form .  is a smooth func-0 œ J 1 ß 1 ß á ß 1 Jˆ ‰" # <

 tion of its arguments.
5.18. Let us assume that  and . If we can1 ß á ß 1 − ÐQÑ .1 • â • .1 Á !" < ! " <A
 write for a function  the relation  with2 − ÐQÑ .2 œ 0 .1  â  0 .1A! " <

" <

 functions , then show that the relations 0 ß á ß 0 − ÐQÑ 2 œ 2 1 ß á ß 1" <
! " <A ˆ ‰

 and  must be valid.0 œ ß 3 œ "ß á ß <
`2

`1
3 3

5.19. Show that  if ..‡.0 œ  ‡ 0 œ  Ð 0 Ñ 0 − ÐQÑJ J . A!

5.20. Show that  if .. 0 ‡Ð.1Ñ œ .0 • ‡Ð.1Ñ  Ð0 1Ñ 0 ß 1 − ÐQÑˆ ‰ J . A!

5.21. Let  and . We define the i œ Z • â • Z − ÐQÑ − ÐQÑ" 5 5 56Ë = A interior
 product of the form  with  in such a manner that the following relation= i
 would be satisfied for all vectors : Z ß á ß Z − ÐQÑ5" 56 Ë

Ð ÑÐZ ß á ß Z Ñ œ ÐZ ß á ß Z ß Z ß á ß Z Ñ3i = =5" 56 " 5 5" 56 .

 Show that this interior product is well defined and prove the operator equality
 .3 3 3h i h i• œ ‰
5.22. For  and  verify the equalityh i− ÐQÑ − ÐQÑË Ë5 6

3 3 3 3 3 3 3Ø Ùh i h i i h h iß
Ð5"Ñ 6 5= = = =œ Ð"Ñ .  Ð"Ñ .  . .

5.23. Assume that  and .  Show thati œ Z • Z − ÐQÑ 0 ß 1ß 2 − ÐQÑ Ð+Ñ" # # !Ë A

3 3 3 3i i i iÐ.0 • .1 • .2Ñ œ Ð.0 • .1Ñ .2  Ð.1 • .2Ñ .0  Ð.2 • .0 Ñ .1.

  We define the mapping   by the relationÐ,Ñ Öß × À ÐQÑ‚ ÐQÑ Ä ÐQÑA A A! ! !

Ö0 ß 1× œ Ð.0 • .1Ñ3i .

 We also name this mapping [  707] as the [Frenchsee Poisson bracket :Þ
 mathematician Siméon Denis Poisson (1781-1840)]. Show that this mapping
 is bilinear and antisymmetric. Prove the identity

˜ ™ ˜ ™ ˜ ™Ö0 ß 1×ß 2  Ö1ß 2×ß 0  Ö2ß 0×ß 1 œ Ð.0 • .1 • .2Ñ3Ø Ùi iß

 and then demonstrate that the condition  should be satisfiedØ Ù !i iß œ
 [ Exercise ] in order for this bracket to satisfy the Jacobi identity, andsee 4.17
 consequently,  endowed with the  to form a Lie algebra.A!ÐQÑ Öß ×product 
  Show further that the bracket satisfies the equalityÐ-Ñ

Ö0 ß 12× œ Ö0 ß 1×2  Ö0 ß 2×1.

5.24. Let the vectors  and  be characteristic vectors of an exterior formY Z
 . Show that . Thus, prove that characteris-= A = =− ÐQÑ Ð Ñ œ ‰ Ð. Ñi i iÒ ÓY ßZ Y Z

 tic vector fields of a form  constitute a Lie subalgebra if and only if the=
 condition  is satisfied for every pair of characteristic vectorsi iY Z‰ Ð. Ñ œ !=
  and .Y Z
5.25.  5.1Let  be the forms given in Exercise . Determine the= = = =" # $ %ß ß ß
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 characteristic and isovector fields of the ideals , ,MÐ ß Ñ MÐ ß ß Ñ= = = = =" # " # $

 . Find maximal solutions annihilating these ideals.MÐ ß ß Ñ= = =" # %

5.26. We define the forms  as .= = A ‘ = =" # " % " #ß − Ð Ñ œ C .B  D .>ß œ D .C  C .D
 Show that the ideal  is closed. Determine its characteristic andMÐ ß Ñ= =" #

 isovector fields. Find the maximal solution annihilating this ideal.
5.27. Determine the characteristic subspaces and isovector fields of ideals

MÐC .B  B .C  C .DÑß

M Ð"  C Ñ .B  B .Cß B .D ß

MÐC .B  BD .Cß .C • .DÑ

ˆ ‰# $

 of . Find  maximal solutions annihilating these ideals.A ‘Ð Ñ$

5.28. Q  is a Riemannian manifold with a metric tensor . Show that any submani-Z
 fold  of  can be made a Riemannian manifold equipped with a metricR Q
 tensor  defined by the relation  for all pair of vectorsZ Z Zw wÐY ß Z Ñ œ ÐY ß Z Ñ
 .Y ß Z − X ÐRÑ © X ÐQÑ
5.29. We consider a -dimensional manifold  with a coordinate cover % Q ÐB ß 0 À3 3

  and define the following -forms3 œ "ß #Ñ "

= ! "

! ! " "

3 3 4 3 3
4

4 45 4
3 3 5 3 3 4

œ .0  0  ß

œ .B ß œ .B

 where  and  are given functions.! ! " "45 45
3 3 " # 3 3 " #

4 4œ ÐB ß B Ñ œ ÐB ß B Ñ

   Let  be a submanifold with the coordinate cover . Show thatÐ+Ñ W ÐB ß B Ñ" #

 the requirements  that a resolvent mapping  must satisfy9 = 9‡ 3 œ ! À W Ä Q
 give rise to the first order partial differential equations

`0

`B
 0 œ

3

4 54 4
3 5 3! "

 determining the functions .0 œ 0 ÐB ß B Ñ3 3 " #

   Show that the ideal  is closed if only the relationsÐ,Ñ Ð ß Ñ\ = =" #

.  • œ !ß

.  • œ !

! ! !

" " !

4 4 5
3 5 3

3 4 3
4

 are satisfied and these relations conduce to the integrability conditions

` `

`B `B
   œ !ß

`

`B `B
   œ !

`

! !
! ! ! !

" "
" ! " !

48 47
3 3

7 8 58 47 57 48
3 5 3 5

4
3

5 4
5
3

4 65 5 64
6 3 6 3 .

   Show that if the conditions for the ideal  to be closed areÐ-Ñ Ð ß Ñ\ = =" #

 satisfied, then there exist functions  so that one can writeH A4
3 4 !ß ? − ÐQÑ
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= H3 3 4
4œ .?

 and solutions of the differential equations are found as

? ÐB ß B ß 0 ß 0 Ñ œ3 " # " # constant.

5.30.  K − ÐKÑ Y Z is a Lie group, is a left-invariant form, and  are left-= A"

 invariant vector fields. Show that

. ÐY ß Z Ñ œ  Ð Y ß Z Ñ= = Ò Ó .




