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Abstract

Syndromic surveillance systems continuously monitor multiple pre-diagnostic daily streams of
indicators from different regions with the aim of early detection of disease outbreaks. The main
objective of these systems is to detect outbreaks hours or days before the clinical and laboratory
confirmation. The type of data that is being generated via these systems is usually multivariate
and seasonal with spatial and temporal dimensions. The algorithm What’s Strange About Recent
Events (WSARE) is the state-of-the-art method for such problems. It exhaustively searches for
contrast sets in the multivariate data and signals an alarm when find statistically significant rules.
This bottom-up approach presents a much lower detection delay comparing the existing top-down
approaches. However, WSARE is very sensitive to the small-scale changes and subsequently comes
with a relatively high rate of false alarms. We propose a new approach called EigenEvent that is
neither fully top-down nor bottom-up. In this method, we instead of top-down or bottom-up search,
track changes in data correlation structure via eigenspace techniques. This new methodology enables
us to detect both overall changes (via eigenvalue) and dimension-level changes (via eigenvectors).
Experimental results on hundred sets of benchmark data reveals that EigenEvent presents a better
overall performance comparing state-of-the-art, in particular in terms of the false alarm rate.
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1 Introduction
The goal of syndromic surveillance systems is to enable earlier detection of epidemics and a more timely
public health response, hours or days before clinical and laboratory confirmation comes out [15]. Two
kinds of events are usually required to be detected: man-made events such as bio-terrorist activities like
anthrax attacks [13] and natural events such as epidemic diseases like H1N1, avian influenza, SARS,
and West Nile Virus, etc. All kinds of events regardless of their type make some changes in the envi-
ronment. If we somehow manage to identify such changes in the early stages we can save many lives
and prevent the potential damages. The early event detection systems are developed for such purposes.
In these systems, multiple streams of pre-diagnostic health records [15, 38] such as daily counts of doc-
tor/hospital/emergency room visits, over-the-counter medication sales, work/school absences, animal
illness or deaths, internet-based health inquiries are being monitored simultaneously to trace the event
footprints.

Figure 1 demonstrates an example of a complex data stream in synonymic surveillance systems. As
it can be seen, this system measures 16 features aggregated daily within 8 different regions. Hence,
the system generates 128 time series. Our goal is to monitor this complex system and signal an alarm
when something strange occurs. One straightforward approach for monitoring such system is to monitor
each individual time series and then apply an anomaly detection technique (e.g. Control chart) on
each. This approach, however, imposes much higher false alarm rate. Because pre-diagnostic streams
of indicators are weak and noisy signals [4] and applying detectors on each individual signal results in
multiple hypothesis testing problem [48]. For instance, suppose that we reject null hypothesis when the
p− value ≺ 0.05, for a single hypothesis test, the probability of making a false discovery is equal to 0.05.
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Figure 1: A sample complex system in syndromic surveillance that generates 128 time series for 16
features and 8 spatial regions.

Now assume that we do the test for each of 128 time series. Probability of false alarm could be as bad
as: 1− (1− 0.05)128 = 1.00 >> 0.05.

Existing univariate methods include statistical process control based approaches [16, 46]; Time series
analysis and signal processing based approaches, including singular spectrum analysis(SSA) [32], Box-
Jenkins models [36]; Wavelet [50], Hidden Markov Model(HMM) [28, 35]; and regression [37]. The
univariate methods since only monitor a single variable are not proper techniques for handling the complex
data in synonymic surveillance. Besides, if we monitor each individual feature independently without
taking into account the correlation between them, we then likely confuse the measurements error and
noises with the events.

The other category of methods is multivariate methods that are able to monitor multiple streams.
These methods include Hotelling T2 [49], multivariate CUSUM and EWMA [30], principal component
analysis (PCA)[21], multivariate HMM [31], vector autoregression (VAR) [1, 9] and vector autoregression
moving average (VARMA) [8]. There is also a sub-group of multivariate methods that operates on
categorical data and looks for interesting rules via contrast set mining techniques. STUCCO [2] and
Emerging Patterns [7] are instances of such techniques. Multivariate temporal methods, despite of their
wide application in many areas, are not well-suited to syndromic surveillance and outbreak detection
problems where geographic dimension is widely involved.

The methods that take into account geographic dimension are twofold: spatial and spatiotemporal.
Spatial methods such as spatial scan statistics [22] do not capture the temporal fluctuations of the data
and only operate on spatial data. Spatiotemporal methods instead take into account both spatial and
temporal dimensions. Space-time scan statistics (STScan) is of this group that can operate both on
univariate count data [22, 23, 24, 26] and multivariate data [25]. Univariate STScan is not adequate
for syndromic surveillance for the same reason mentioned for univariate temporal methods. Multivariate
STScan also has some drawbacks that make it be inappropriate for the introduced problem. On one hand
they assume that the environment is static and do not consider seasonal effects and on the other hand
they are developed for retrospective and offline analysis. Therefore, this group of techniques is not also
suited to the problem.

There is another group of techniques such as PANDA [5] that use a causal Bayesian network to model
spatiotemporal patterns of outbreaks. These methods not only explicitly compute the probability of
events, but also are able to operate in real time settings through incremental updating of the Bayesian
network. However, the main criticism against these techniques is that tuning the primary parameters
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requires a deep prior knowledge that is not available most of the time. Therefore, these methods are
considered domain specific and their application has remained limited.

Among many existing techniques and algorithms, the most suited approach to the introduced problem
is WSARE [47, 48] that is able to handle multivariate data along spatial and temporal dimensions.
WSARE searches for surprising rules in data streams given some baseline reference. The baseline creation
strategy varies in different version of the algorithm. WSARE 2.0 uses raw historical data from selected
days, WSARE 2.5 uses all historical data that match the environmental attributes and WSARE 3.0
models the baseline distribution using a Bayesian network. Opposed to PANDA where Bayesian network
is created manually, WSARE 3.0 learns the Bayesian network from historical set. Therefore, is not as such
domain-dependent as PANDA. WSARE has been successfully applied and merited in many real world
problems such as in bioterrorism surveillance for 2002 Winter Olympics [12] and Israel influenza type B
outbreak and Walterton outbreak [18]. However, the main criticism about WSARE is its high rate of
false alarms [3]. WSARE opposed to other techniques, processes the data from bottom to up. Therefore,
instead of overall changes in the whole data, it tracks the changes in subgroup of data. Therefore, it is
sensitive to small changes and consequently presents lower detection delay, however, comes with more
false alarm rate.

The methodological differences between our proposed method and WSARE are as follows. 1) WSARE
is a bottom-up rule-based approach while our method is a middle approach between bottom-up and top-
down that tracks both high level and dimension-based changes in the data subspace. 2) Our approach
takes into account both multi-linear and multi-way correlations in data while WSARE is not able to
capture such complexity; and 3) Our method is suitable only for alarming purposes and cannot explain
about subgroup of the data that cause the alarm, while WSARE can be used for both purposes. 4) The
statistical significance of the alarms in WSARE is computed via Monte Carlo simulation while in our
approach is computed by statistical process control techniques.

In overall, the main objective in syndromic surveillance systems is to detect events in a timely manner
before they turn into an epidemic. This early detection has important functions in both mortality saving
and prevention of economic losses. An estimation by DARPA shows that a two-day improvement in
detection time could reduce fatalities by a factor of six [33]. Another study states that improvements of
even an hour in detection can reduce the economic impact of by a hundred million of dollars [44]. To reach
this objective, any capable signal is required to be considered. However, this is somehow problematic,
since involving more signals results in more false alarms. In the recent years the emphasis of the developed
algorithms in syndromic surveillance has been focused more on the early detection and rate of false alarm
is rarely taken into account. This is while the recent studies show that the false alarm rate can have an
inverse effect as bad as delay in detection. A recent study concerning the warning system for tornado
events [41] reveals that tornadoes occurring in the regions with a high false alarms ratio kill and injure
more people. A statistically significant effect of false alarms is identified in this study: A one-standard-
deviation increase in the false alarm ratio increases expected fatalities by between 12% and 29% and
increases expected injuries by between 14% and 32%.

Besides, opposed to anomaly or outlier detection problems, which it is assumed that the process
occurs in an isolated and static environment in synonymic surveillance systems we deal with dynamic
and time-changing environment. In such environments, attributes such as day of the week, holiday,
weather, etc. affects the whole or part of the system behavior. Figure 2 illustrates an individual time
series corresponding to the feature V 1 and Zone1 in Figure 1. As it can be seen, in point A due to cold
weather and high rate of influenza rate, we have a higher count comparing point B. Such effects impose
another kind of complexity to the event detection problem in syndromic surveillance which is required to
be taken into account along with other issues.

In this paper, we propose a novel event detection methodology that considers both data complexity
and time-changing environmental issues in syndromic surveillance. The concentration of this work is to
reduce the false alarm rate of early event detection systems. Our contributions are as follows.

• To the best of our knowledge this is the first time that the tensor decomposition techniques [20] is
applied to the syndromic surveillance problem with space and time dimensions.

• We use the changes in data dimensions and data correlation structure as an effective criteria for
event detection.
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Figure 2: The environmental setting affects the data items.

• We introduce a novel and effective approach for baseline data creation that can infer baseline for
unseen environmental settings.

The rest of the paper is organized as follows. In section 2 we introduce the proposed solution and
our developed algorithm EigenEvent. The section 3 includes experimental evaluation, including the
introduction of the data set, performance evaluation and sensitivity analysis. The last section concludes
the exposition presenting the final remarks.

2 Proposed method

2.1 The idea
The fundamental idea that is used to develop the method relies on tracking changes in the subspace. This
is impossible unless we could match the recent data with a baseline reference. However, in streaming
settings, data itself is time-changing due to the effect of the dynamic environment on the data items.
Therefore, using a static baseline seems to be inappropriate for dynamic environments. We propose a
dynamic baseline set creation strategy which takes into account both seasonality and non-stationarity.
The main novelty of our method is that we not only track changes in the feature subspace, but in the
subspace of other dimensions.

Figure 3 demonstrates an illustrative example of our proposed method. Each day we receive a chunk
from a complex data stream. In the data stream model this can be translated to the sliding window with
fixed size of one day across the data stream. The window here is more complicated than a one-dimensional
window in temporal data processing. Each window is a two-dimensional matrix of Space×Features (top-
right matrix). Each cell in the matrix corresponds to the count of a feature in specific regions. With
respect to the sliding window environmental setting, we generate a dynamic baseline tensor with order
of Space× Features× Time (top-left tensor) which is being fed from the historical data. This baseline
tensor is built in each step or cycle of the algorithm run. The baseline tensor is composed of some
previously arrived sliding windows that are combined in a particular order. We decompose the recent
matrix and the baseline tensor to a lower-rank subspace and then match their pairwise eigenvectors and
eigenvalues. We signal an alarm if we observe any unexpected difference in the match.

Figure 4 illustrates the eigenspace of both baseline and recent matrix. The solid vector in this figure
corresponds to the baseline tensor. The direction of this vector corresponds to the principal eigenvector
corresponding to a dimension and the length of the vector corresponds to the principal eigenvalue. When
we receive a matrix we decompose it to the eigenvectors and eigenvalues and then match the obtained
principal eigenvalue and principal eigenvectors to the reference vector (solid vector). We signal an alarm
if the matrix eigenvector has a considerable difference in direction (eigenvector) or length (eigenvalue).
For instance, dashed lines in the figure correspond to those matrices that have close eigenvector to the
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Figure 3: Snapshot of the proposed solution at a hypothetical timestamp. We detect events through
tracking changes in the subspaces of baseline and recent data.

baseline eigenvector and have the close eigenvalue (vector length). Such matrices are considered normal
by EigenEvent. Dash-dot lines in the figure on the contrary are related to abnormal matrices that have
an unexpected eigenvector (unexpected vector direction) or unexpected eigenvalue (unexpected vector
length) with respect to the baseline.

2.2 Proposed Algorithm: EigenEvent
In this section we describe our proposed algorithm, which is called EigenEvent. As it is presented in
Algorithm 1, the inputs are as follows: sliding window D with length of one day; t which is the sequence
number; e is a number corresponding to the environmental setting of the day. For instance, the envi-
ronmental setting 1214 is related to: day=weekend(1), weather=cold(2), flu=high(1), season=winter(4).
The algorithm as a result outputs a p-value indicating the statistical significance of the sliding window.
A very low p-value can be interpreted as an event signal.

2.2.1 Data Processing and Decomposition

The first phase is to transform the sliding window to the matrix format of Space× Feature (line 1). To
assess the abnormality of sliding window we need a baseline reference to match with. Two strategies can
be utilized, one is to compare the window with the previous data and another strategy is to compare the
window with previous data that have the same environmental setting. We use a combined strategy that
takes into account both (see section 2.2.4) and produce the dynamic baseline set according the context
corresponding to the window (line 2). As a result, baseline is presented as a tensor of Space×Feature×
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Figure 4: A simplified example showing how events can be detected by tracking changes in the eigenspace.
If the distance between the sliding window eigenvector and baseline eigenvector is higher than expected,
then the window is marked as abnormal. Also, if the ratio of window eigenvalue to the baseline eigenvalue
is higher than expected, the window is marked as abnormal as well.

Time. We then apply SVD [19] on window matrix and higher order SVD (HOSVD) [6, 20] on the baseline
tensor and for each dimension we take the principal eigenvector and eigenvalue.

Note that EigenEvent does not concern about the feature selection (selection of pre-diagnostic signals
that are required to be monitored). Feature selection, however, may be performed via standard feature
selection techniques or via domain experts or a combined technique. Nevertheless, feature selection is one
the most important steps in a data mining process that is required to be taken into account. Selection of
inappropriate signals may result in higher false alarm or more detection delay. The well-known over-fitting
problem may happen here as well. Leinweber in an article entitle stupid data miner tricks: overfitting
the S&P 500 names some of such problems. He finds a strong correlation between butter production in
Bangladesh and S&P 500 (stock market index) over a ten year period. This implies that the selection of
appropriate signals still is human-dependent and cannot be fully automated.

2.2.2 Subspace Matching

The next phase is the matching phase. If we denote the principal eigenvalue of baseline with λb, the
principal eigenvalue of window with λs, the principal eigenvector of baseline with Xb and the princi-
pal eigenvector of window with Xs, we can define the ratio of eigenvalues and Euclidean distance of
eigenvectors respectively as:

d1,t =
λs
λb

(1)

‖d2,t‖ = (Xs, Xb). (2)

We keep the historical distances in two vectors of vd1 and vd2 for eigenvalues and eigenvectors respec-
tively, such that at time t we have vd1 = (d1,1, d1,2, ..., d1,t−1) and vd2 = (d2,1, d2,2, ..., d2,t−1). Having
d1,t, d2,t, vd1 and vd2 we can compute the z-scores corresponding d1,t and d2,t as follows.

z1 =
d1,t − µvd1

σvd1
(3)

z2 =
d2,t − µvd2

σvd2
(4)

Where µvd1 and µvd2 denotes the mean and σvd1 and σvd2 denote standard deviation of vector vd1
and vd2 respectively.

Although z-scores alone can be used along with a threshold for alarming purpose, since most related
event detection algorithms in the literature outputs p-value, we may want to transform z-scores to the
corresponding p-value to ease the comparison task. We can use the following equation to derive the
p-value from the z-score:

P (z) =
1√
2π

∫ z

−∞
e

−t2

2 dt (5)
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2.2.3 Indicator Selection

As we already explained, HOSVD and SVD decompose the complex data into smaller subspaces (eigenspace).
Tensor and matrix decomposition methods are robust against the noises. However, in the case that we
have some missing values we need to use specific types of SVD [27].

We have three elements in the eigenspace that can be matched: principal eigenvector of spatial and
feature dimensions and the principal eigenvalue. We may observe three kinds of changes in the match.
The first kind includes an overall change in the system which is more related to the late days of outbreak
period when we have both infection and outbreak. This kind of event must be reflected in a significant
change in the ratio of eigenvalues (d1,t). The second kind of change occurs when an event agent (e.g.
Virus) begins to spread over the geographical space. This type of event also is reflected in the changes in
the spatial eigenvector pairwise distance (d2,t). The third kind is the change in the feature values. This
event type can be reflected in the eigenvectors corresponding to feature dimension. However, as we show
later due to the noisy properties of the feature dimension, this kind of indicator is not such helpful.

We propose a new strategy that is able to detect both overall and dimension-based changes in the
system. We monitor the system using a combination of indicators, including eigenvalue and different
eigenvectors and the compute the p-value corresponding to each combination for each sliding window.
Then we take the minimum p-value as the algorithm output (line 9). Suppose that we have three p-values
of 0.01, 0.12 and 0.43 corresponding to the pairwise match between the principal spatial eigenvector, the
principal feature eigenvector and the principal eigenvalue respectively. The EigenEvent algorithm reports
the minimum p-value (0.01) as the output. These above mentioned p-values indicate three facts about
the system: 1) No overall change has occurred in the system, because p-value corresponding Eigenvalue
is considerably high; 2) No significant change is occurring in the feature values; 3) A significant change
is occurring in the spatial dimension. We may infer that data items despite of showing normal behavior
in the features are showing different behavior in geographical space and hence we probably are in the
outbreak phase. The minimum p-value selection strategy lets us to detect all above kinds of changes and
subsequently makes the algorithm sensitive to changes in both overall system behavior and the dimension
level.

2.2.4 Dynamic Baseline Tensor

There should be a criterion to estimate the abnormality of the recent data. As is mentioned before,
two types of common criteria includes comparing with the previous data and comparing with only the
previous data that match the current environment settings. Both of these criteria are vulnerable. The
first criteria fails when data contains seasonal effects and second one fails when there is no enough
historical data matching the recent environmental setting. To solve this problem a typical inference
usually is performed, for instance, a causal Bayesian network is constructed in WSARE 3.0 [47, 48] so
that when there is no enough historical data, baseline is inferred from the constructed Bayesian network.
This approach, however, only make inference about the days their corresponding environmental settings
cannot be found in the baseline set. In the rest of the time it compares the recent window with the
previous data that match the current environment settings. This approach can be vulnerable as well,
since the correlation of the current window with the recent data is ignored. We introduce another way
of baseline set selection which is a combination of both ideas. We assume that the recent data is not
only related to the previous data and data with the same environmental settings, but also to data with
the most repeated environmental settings. In fact, our baseline tensor is a combination of previous data,
data with the same environmental setting and data from most frequent environmental settings. The main
advantage of this approach is that it does not fail when deal with an unseen environmental setting.

The function BaselineTensorUpdate in Algorithm 1 receives six inputs, including B (current baseline
tensor); H (whole data, historical tensor); t (instant number); e (the recent environmental setting); EV
(vector of all environmental settings seen yet); and C (recent matrix) and outputs the updated baseline
tensor B. It first checks that whether the tensor B is empty. In the case that B is empty, C is added to
B. Then we search in historical tensor H for data that match the recent environmental setting. Next, it
rewrites the first k matrices of tensor B with the matched items.

An illustrative example of the procedure is demonstrated in Figure 5. The figure is a snapshot of
the system at four hypothetical days between days 50 to 53. From the figure we also can observe four
distinct environmental settings, which are shown with different colors and that their corresponding name
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Algorithm 1 EigenEvent
//D: Recent data (Right top table in figure 3)
//C: Recent data in the format of matrix Space× Features
//t: instant (e.g. t=3 means after 3 days of monitoring started)
//e: Recent data Env. Setting (e.g. 1214={day=weekend, weather=cold, flu=high, season=winter})
//EV: Environmental setting vector (e.g. [1214,1321,3214,1456])
//H: Historical Tensor
//vd1: vector of principal Eigenvalue distances (d1,1, d1,2, ..., d1,t−1)
//vd2: vector of principal spatial Eigenvector distances (d2,1, d2,2, ..., d2,t−1)
//B: Current generated Baseline tensor (Tensor Space× Time× Features in Figure 3)
//P-value: Statistical Significance of the recent data (e.g. Signal an alarm when p− value ≺ 0.05)

Require: D, t, e
Ensure: P-value
1: Matrix C ← D
2: Tensor B ← BaselineTensorUpdate(B,H, t, e, EV,C)
3: HOSVD(B): Xb ← principal spatial Eigenvector, λb ← principal Eigenvalue
4: SVD(C): Xc ← principal spatial Eigenvector, λc ← principal Eigenvalue
5: d1 = λb

λc

6: ‖d2‖ = (Xc, Xb).
7: p1= p-value of d1 given vd1
8: p2= p-value of d2 given vd2
9: P − value←Min[p1, p2]

10: if e then exists in EV
11: vd1

add←− d1
12: vd2

add←− d2
13: end if
14: H

add←− C
15: EV

add←− e

16: function BaselineTensorUpdate(B,H,t,e,EV,C)
17: if B is empty then B

add←− C
18: else
19: k=0
20: for i=1 to t-1 do
21: if EV(i) == e then
22: k = k + 1
23: B(k)← H(i)
24: end if
25: end for
26: end if
27: Return B
28: end function

Figure 5: A Sample of dynamic baseline tensor creation process between day 50 to day 53. Each plate rep-
resents a daily matrix of Space×Features in historical set. The dynamic baseline tensor is a combination
of such matrices in a particular order. e also denotes the environmental setting of the day.
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is demonstrated in the guide table. Each cube in the figure represents a baseline tensor and each plate
inside the cubes is a Space × Features matrix from the historical set. At day 50 the baseline tensor is
composed of 20 matrices such that 9 of matrices are from setting c4, 4 matrices from setting c2 and 7
matrices from setting c1. We also assume that the context c1 is the dominant environmental setting
with 20 times occurrence. The dominant context is the most frequent setting in all the history. For this
reason, all baseline tensors, in Figure 5, include 20 matrices, given that the length of the baseline tensor
is equal to the number of occurrences of the dominant context.

Now let’s explain how a dynamic baseline set is generated. At day 50, we receive a matrix with
setting c1. We search in historical tensor H for a match with c1 setting, but we do not find, so the
function BaselineTensorUpdate returns input B unchanged. On day 51, we again receive a matrix with
the setting c1. We again search for a match in H. This time we find one match, because one day before
(day 50) the setting has been c1. Therefore, we rewrite the first k elements of B Tensor with k found
matrices. In this case since we find only one match, k is equal to 1. At day 52 we receive a matrix
corresponding with environmental setting c2. We search in H for a match and suppose that we find 13
matrices. Hence, k will be equal to 13, so we rewrite the first 13 elements of the baseline tensor with
the matched 13 matrices. As it can be observed at day 52, setting c2 has been the dominant setting
versus c3 and c4 settings, however, still c1 dominates c2 (c1 setting has more repeats comparing c2),
therefore, the baseline tensor is composed of matrices with most dominant settings with preference to
the recent data. Finally, on day 53, we receive a matrix with setting c1. We search in H for a match
and we find 20 matrices (k = 20), thus we rewrite first 20 elements of the baseline tensor with matrices
corresponding c1 settings. At this moment, the whole baseline tensor is filled with only matrices with
setting c1. This procedure repeats and repeats. However, the size of baseline tensor always stays fixed
to the repeat count of the most repeated environmental settings.

2.2.5 Updating Step

In this step we update the vector of distances (line 11-12). We add the distances to the vectors if their
corresponding contexts has been already seen. If we have a matrix with an unseen environmental setting,
we do not add the computed distance to the vector of distances. Because an inference for this setting is
approximate and adding the distance obtained from this approximation is not adequate for keeping. We
finally update historical tensor and vector of environmental settings.

3 Evaluation

3.1 Data set
Validation of event detection algorithms is basically a difficult task due to the type of required data
[3, 39, 48]. To evaluate the algorithms, the event occurrence period is required to clearly be labeled in
the data. This requires a knowledge expert to look into the data and specify the event period manually,
making this task infeasible. Benchmark data sets that are already used for change detection and anomaly
detection are not appropriate for our research purpose, because, on one hand, most of the time they do
not have seasonality property and on the other hand do not contain multi-way property. We recently [10]
proposed a semi-automatic for labeling events in unlabeled data which is based on ensemble detectors
and background knowledge from web. However, this approach also needs to have access to some sort of
background knowledge which is not available in this domain.

We use a benchmark data set used in [47] including 100 data sets of a simulated disease outbreak.
These data sets are generated using a Bayesian network simulator namely CityBN which generates tem-
poral fluctuations based on a variety of factors such as weather and food conditions [48]. The structure
and parameter of this Bayesian network are manually adjusted. As is mentioned by the authors, this
simulator produces extremely noisy data sets that are a challenge for any detection algorithm. This data
set is publicly available online in [45].

Table 1 shows the characteristic of the original data sets. As it can be seen, this data is multi-way.
It contains two dimensions of space and time and multiple variables. It also contains seasonal effects,
because features are under influence of some environmental settings. Cardinality of each attribute is also
specified in the table. As it can be seen, we have 9 distinct spatial regions and 730 temporal instants
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Table 1: Characteristic of CityBN Data sets
Field Type Cardinality Sample Record#1 Sample Record#2
XY Spatial 9 SW NE

Daynum Temporal 730 73779 74508
Age Feature 3 senior child

Gender Feature 2 female male
Action Feature 3 purchase evisit

Reported symptom Feature 4 nausea respiratory
Drug Feature 4 nyquil vomit-b-gone

Flu Level in season Environmental 4 high decline
Day of week Environmental 3 weekday sat
Weather Environmental 2 cold hot
Season Environmental 4 winter sumer

Figure 6: Evaluation Strategy: Alarms in days with black color represents false alarms and in white days
represents true alarms. Detection delay is also specified for each day inside the plates

(days). We also have 16 (3+2+3+4+4) distinct time series and 4 × 3 × 2 × 4 possible environmental
settings.

3.2 Performance
Receiver operating characteristic (ROC) curve [14] measures the trade-off between sensitivity and speci-
ficity. ROC curve is widely used method for evaluation of anomaly detection and classification methods.
However, ROC curve, even though summarizes the overall ability of the algorithm, does not evaluate the
timeliness of detection which is critical in syndromic surveillance. An algorithm with the lowest false
positive and the highest true positive rate that detect outbreaks with heavy delay is inappropriate for
syndromic surveillance applications. In fact a system with this characteristic is more helpful for retrospec-
tive applications than the prospective applications like what is required in syndromic surveillance. One of
the proper metrics for evaluation of algorithms is Activity Monitoring Operating Characteristic (AMOC)
curve [11] that evaluates the trade-off between specificity (false alarms) and timeliness (detection time).
AMOC curve is widely used for evaluation of methods in syndromic surveillance [4, 17, 40, 48]. Therefore,
in this work we use AMOC curve for evaluation of our algorithm.

We use the same evaluation strategy as [48]. Assume that the agent release occurs at timestamp t.
A true alarm corresponds to a case where the alarm is raised in a period between t+ 1 and t+ 14. The
alarms before or after this period are considered false positives. The detection delay is also defined as
the temporal difference between the first alarm in the above period and the release time. In reality, the
data of each day is processed tomorrow of that. Therefore, is not possible to detect event on the day
of release. Thus, the optimum detection is tomorrow of the release (detection delay=1). This one day
delay is also considered in CityBN simulation. Figure 6 demonstrates that how we define false alarms
and detection delay. If we signal an alarm in a period of 14 days after release it is marked as true alarm
and if we signal an alarm before or after this period, it is marked as a false alarm. Detection delay is also
specified in the figure as numbers in the plates. If we signal an alarm tomorrow of the release, we get
only one-day delay which is the optimum condition. For any alarm after this period we define detection
delay equal to 14 (as [48]).

10



Figure 7: AMOC Curve for EigenEvent vs. WSARE

The outputs of both WSARE and EigenEvent are p-values indicating the statistical significance of
recent data. Depending on the desired confidence level, we may signal an alarm. For instance, given a
threshold as 0.05 we signal an alarm if the p-value corresponding to the recent data goes lower than 0.05.
To assess the algorithms performances we use variable p-value threshold from 0.020 to 0.250 with the
step of 0.001 (totally 231 p-values). Each data set has temporal size of 730 days. We use the first 365
days for training the primary baseline and the next 365 days for evaluation of the algorithms. Baseline
set is also incrementally updated whenever a new window arrives after day 365. Note that agent release
in all 100 data sets occurs in the second year and is guaranteed that the first year do not contain any
release. A sliding window moves across the data from day 366 to day 730 and match each window with
the baseline. If the match outputs a p-value below the threshold, then an alarm is raised. After we
reached to day 730, we compute the number of false alarms and detection delays. We finally average the
detection delay and false alarms for all 100 data sets and plot the AMOC Curve. In the AMOC curve,
the x-axis indicates the number of false alarms per month and the y-axis measures the detection time in
days. The optimal detection is one day detection delay with zero false alarm. The closer to the point
(0,1) the better detection algorithm is.

The results are shown in Figure 7. Although the curve corresponding EigenEvent seems different
comparing WSARE, if we rotate the AMOC curve 90 degrees anticlockwise we observe the same pattern
similar to WSARE 3.0. The difference is that EigenEvent performs better in terms of false alarm rate
and performs worse in terms of detection delay. The intersection between the curves makes the overall
comparison difficult. For instance, in a desired false positive rate from 2.8 to 3.3, EigenEvent is the
best method both in terms of false alarm rate and detection delay. Nevertheless, to specify which of the
algorithms are better in overall we need to compute the area under the AMOC curve [34], average delay
and average false positive rate (see Table 2). Obtained area under AMOC curve implies that EigenEvent
outperforms all versions of WSARE. Its average false positive is considerably lower than all versions of
WSARE. However, in terms of detection delay as was expected presents one more day delay. To have
a separate look on both numbers of false alarms and detection delay, we also compute the average false
alarms and detection delay for 231 p-values (from 0.020 to 0.250 with the step of 0.001). The results
are presented in table 4 and 5 respectively. As it can be seen from the first table, EigenEvent in terms
of false alarms, beats other methods in the majority of data sets. Regarding the detection delay even
though is not the best, has detected events tomorrow of release in half of the data sets.

The main reason for the differences in the performance is related to the methodological differences
between EigenEvent and WSARE. EigenEvent opposed to WSARE is not a bottom up approach and
subsequently is less sensitive to the small-scale changes and subsequently, presents less false positive rate.
EigenEvent due to its less sensitivity to the small-scale changes reacts slower to the events. However,
EigenEvent have this ability to track changes in the dimensions, for this reason does not suffer from
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Table 2: False positive rate (per month), Detection delay (in days), Area under AMOC Curve and
Runtime (in seconds) Averaged for 100 data sets of CityBN

Method False positive Detection delay AUAMOC
WSARE 2.0 4.052439 2.163983 12.859000
WSARE 2.5 2.739062 2.192338 9.885192
WSARE 3.0 2.877031 1.929134 8.648379
EigenEvent 1.866439 2.839827 8.027842

Table 3: Runtime (in seconds) Averaged for 100 data sets
Method Runtime

WSARE 2.0 59.2
WSARE 2.5 105.3
WSARE 3.0 838.4
EigenEvent 16.8

the high false alarm rate problem of bottom-up approaches and heavy delay problem of the top-bottom
approaches.

3.3 Runtime
Since in syndromic surveillance systems, data are often required to be processed in daily scale, compu-
tational efficiency receives less attention. In the unlikely case where data size becomes very huge and
processing of data requires run-time of more than 24 hours (the process scale) then we have to come up
with computational efficiency issues. Although, computational efficiency is not the claim in this research
work, runtime in Table 3 indicates the superiority of EigenEvent over all versions of WSARE. EigenEvent
requires only 16.8s to deliver the result. This is three times faster than WSARE 2.0, 6 times faster than
WSARE 2.5 and 50 times faster than WSARE 3.0. The majority of this difference is related to two
factors; WSARE exhaustively search the whole space while EigenEvent only tracks the changes in the
correlation structure. The second factor is related to the method the approaches compute the p-value of
alarms. WSARE exploits Monte Carlo simulations for computing the p-value while EigenEvent computes
the p-value using statistical process control techniques which is lighter.

In each time step, Eigenevent requires to perform a tensor decomposition and a matrix decomposition.
The offline tensor decomposition (OTA) [42] of the baseline tensor requires O(T

∏M
i=1 ni) where T is

the temporal size of the tensor, M is the order of the tensor which in our case is equal to 3 (three
dimensions of space, features and time) and ni(1 ≤ i ≤M) is the dimensionality of the ith mode (reshaped
matrix in dimension i). The matrix decomposition of the recent data also requires O(N2) for one-rank
matrix decomposition. Therefore, in each step we require O(T

∏M
i=1 ni) + O(N2). Some approximation

techniques are developed for reducing the computation time of the first term. For instance, [42] proposed
three different techniques including dynamic tensor analysis (DTA), streaming tensor analysis (STA)
and window-based tensor analysis (WTA) that perform tensor decomposition more efficiently with much
lower computation time. For instance, DTA requires computation time of 2

∑M
i=1 rin

2
i +

∑M
i=1 ni

∑M
j=1 nj

where ri is the core size for each mode which in our case is equal to 1. Therefore, assuming the tensor
with three dimensions (as our case study) we require only 2

∑3
i=1 n

2
i +

∑3
i=1 ni

∑3
j=1 nj which is a

tremendous improvement over OTA. For low-order tensor (i.e. M ≤ 5) as is pointed out in [42], the
diagonalization which is the main cost can be performed via faster approximation approaches. However,
since computation efficiency is not the main concern in this part of our research we do not test all the
available techniques.
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Figure 8: Effect of indicators on the performance

3.4 Leading Indicators
As we mentioned before, EigenEvent algorithm tracks the deviation of sliding window eigenspace from
the baseline tensor eigenspace for change detection. Now the question is that what elements of the
eigenspace we should take for the match. Should we opt for eigenvectors corresponding to the spatial
dimension or to the feature dimension. Should eigenvalue be used along eigenvector or eigenvector alone
is enough. We examine five circumstances: the first condition is the default setting in the Algorithm (The
optimum selection in line 9 of Algorithm 1), and the rest are different combination of eigenvectors and
eigenvalues. Figure 8 illustrates the AMOC curve for these different combinations. As it can be seen, by
using only spatial eigenvector (without considering eigenvalue) we experience the same result but with
more half-day average delay. In fact, involving of Eigenvalue in the change detection process provides
earlier detection. We also study a condition where whole eigenspace is used. In this case we take into
account both spatial and features eigenvectors along the eigenvalue. This leads to half-day delay earlier
detection, but with 1.5 more false alarms. Excluding spatial eigenvector from the eigenspace matching
also leads to lower performance both in terms of delay and false alarms. This result reveals that how the
spatial dimension is important. In fact, temporal methods that exclude the spatial dimension loose lots of
information. The reason is that feature signals are very noisy and detection of pattern of such noisy data
comes with high false discovery. Instead, the spatial dimension is more stable and tracking changes in
this dimension can be a better indicator for tracking particular events such as disease outbreaks (our case
study), because, one of the key signatures of disease outbreak is movement in the space. This movement
changes the constant patterns in the spatial dimension and subsequently this appears in the principal
spatial eigenvector.

3.5 Baseline Selection
We compare three scenarios for baseline creation: 1) from historical set without respect to the environ-
mental setting; 2) from historical set with respect to the environmental setting; and 3) Dynamic baseline
tensor (our strategy). In the first scenario we compare the recent data with historical data without con-
sidering the environmental setting. For instance, we compare the recent data with data of last one week
or the last eight weeks. In the second scenario we take reference data from the matched environmental
setting of the day. For instance, if the environmental setting of recent day is 4112 we search in historical
set for those Space×Features matrices whose corresponding environmental setting is 4112. In the third
scenario (our method), we create the baseline tensor from matched environmental setting, but we give
more importance to the most dominant environmental setting and more recent data.

Figure 9 and 10 compares the obtained performance through these different strategies. Figure 10
illustrates the comparison of the first scenario versus the third scenario and Figure 9 compares the
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Figure 9: Dynamic baseline vs. Environmental matching baseline

Figure 10: Dynamic baseline vs. Historical baseline
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performance of the second scenario versus the third scenario. The results reveal that our dynamic
tensor creation strategy outperforms the first and second scenarios. The reason of this good performance
is related to this that our approach makes a batter inference for unseen environmental setting. This
approach is also robust to the noises and therefore provides a higher quality baseline reference.

4 Conclusion and future works
We propose a novel approach based on eigenspace techniques for early detection of events from complex
data streams in syndromic surveillance. The purpose of this work is to reduce the false alarm rate of
the state-of-the-art early detection methods. The experimental evaluation results on benchmark data
sets shows that the proposed approach provides a better overall performance versus state-of-the-art.
Our approach while maintains the detection delay in a reasonable level improves the false alarm rate
to a considerable extent. While top-down approaches look for changes in higher level feature space and
bottom-up approaches track changes in the low-level feature space, we introduce a novel methodology
based on eigenspace and tensor decomposition techniques that track changes both in high level and the
dimension level. The overall changes in the system appear in the eigenvalue and a change in the dimensions
appears in the eigenvectors. Such dimension-based strategy is very helpful in some applications such as
disease outbreak where the spatial dimension gets very important. However, using such methods makes
sense when data contains further dimensions (e.g. Space and time). In other words, the competitive
part of our approach is its dimension-based change tracking which is valid only for multidimensional
(multiway) data.

A challenge to the future research is to utilize EigenEvent in a real-world problem and evaluate its
performance in the practice. This was one of our main limitations in this research. Unfortunately, there
is no public real-world data available with ground truth for syndromic surveillance research. Most of
bio-surveillance programs also correspond to the governmental sections where gaining data in most of
the time is impossible. Even if we access to real data, the period of outbreaks or events is not specified
in that. There is a recent developed simulator [29] that simulate multivariate syndromic time series and
outbreak signatures. However, since this simulator does not support the spatial dimension as the future
work we are going to adapt it for this purpose and perform more experiments based on the new simulated
data sets. We also intend to study the computational performance of the algorithm using incremental
and streaming tensor decomposition techniques [43] which are more appropriate for large-scale data sets.

Complements.

The MATLAB code and data sets are available online via http://fanaee.com/research/EigenEvent.
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Table 4: Number of False Alarms per year for 100 datasets averaged for 231 p-values (0.020,0.021,...,
0.250)

dataset WS2.0 WS2.5 WS3.0 EigenEv dataset WS2.0 WS2.5 WS3.0 EigenEv
1 70.013 51.8571 57.8485 37.8398 51 54.9827 36.1602 41.013 24.7835
2 0 0 0 0 52 89.7922 51.29 59.9481 51.697
3 0.4416 2.2251 1.8182 1.4545 53 89.2078 62.1991 61.2727 46.3074
4 70.4719 54.3896 53.5368 30.71 54 49.0952 31.7403 33.4762 10.4805
5 69.5974 40.5108 39.5758 29.0823 55 47.4156 42.1991 48.3896 29.2381
6 93.7792 59.0779 62.0346 37.7056 56 108.3766 73.5108 71.3333 40.5498
7 72.5628 50.5584 62.1082 35.3203 57 59.6017 36.7489 38.3117 20.0866
8 89.5628 71.039 79.2771 50.0303 58 25.1299 20.4589 22.1948 13.7706
9 26.3506 17.684 18.4632 8.2468 59 90.4372 41.8658 41.6797 40.0779
10 70.0563 53.8831 49.5584 34.7532 60 79.0996 51.2208 52.3074 50.7013
11 89.6104 63.2251 53.2771 48.3636 61 70.4329 44.29 50.4286 29.316
12 89.3896 71.3333 75.1342 48.4805 62 31.5455 19.1645 19.7879 9.342
13 82.8442 51.0996 49.0346 40.0346 63 59.3463 42.632 45.2511 33.2597
14 35.7013 25.2597 25.4762 17.632 64 72.6407 48.4892 51.9221 37.29
15 80.7619 44.6926 43.6407 34.7879 65 29.2251 19.684 20.2857 9.2684
16 58.8745 42.7056 42.5195 25.7273 66 3.2771 2.3723 3.987 0.8312
17 5.5714 4.2208 6.6753 1.3939 67 39.8398 22.6537 22.9351 10.2468
18 62.0433 42.0606 44.0346 16.2338 68 30.5844 13.4286 15.8052 7.4286
19 55.1472 38.7532 45.6017 32.9567 69 9.0476 8.0087 10.5931 2.9004
20 31.8225 31.3896 30.4675 17.3463 70 1.0952 0 0 0
21 17.3074 9.9221 11.8831 8.3117 71 7.961 7.7489 9.5281 2.7186
22 42.4502 22.3506 20.9091 11.1775 72 9.974 9.645 7.7835 2.9697
23 10.9913 7.2251 8.6667 0.9524 73 35.7749 28.3939 27.0476 16.6667
24 29.4199 20.2338 26.2035 10.1255 74 18.5801 13.7706 13.0563 6.3853
25 35.1905 25.3377 22.7706 14.5455 75 78.0433 44.7316 56.9134 35.2424
26 84.2597 54.7229 57.4589 50.0909 76 73.1082 48.8095 48.6753 52.2165
27 9.987 9.8052 11.2641 4.4372 77 8.8615 8.2944 8.3983 0.2381
28 20.3896 16.4632 14.7316 3.1732 78 29.5238 21.5108 12.5455 10.697
29 0 0 0 0 79 76.4675 53.1732 55.961 50.9437
30 93.2468 65.0736 69.4156 48.4199 80 48.5152 23.4459 23.5325 15.3074
31 47.8701 35.5108 36.8398 32.8528 81 4.2338 10.303 9.1645 4.5801
32 74.7013 60.7835 70.7576 40.3939 82 38.316 22.0779 21.9481 10.3377
33 0 0 0.6537 0 83 85.9004 57.8052 57.1775 40.6797
34 71.7229 40.6623 40.9437 20.0866 84 8.3074 4.7965 4.5152 0.7749
35 88.7706 54.7489 48.5152 52.1472 85 20.303 14.8095 12.4978 3.1255
36 61.2468 50.4719 40.6407 39.8268 86 77.6061 42.0996 49.8745 35.7532
37 31.0866 15.4719 12.961 16.8918 87 22.5671 18.0173 22.4459 8.658
38 31.6104 23.2771 27.3247 18.7662 88 8.3723 6.5238 7.0303 1.316
39 95.3203 65.1385 73.9913 46.8831 89 57.5108 40.0606 51.1212 21.7229
40 33.3939 18.9307 23.9177 15.8874 90 67.71 46.0433 58.1385 24.2381
41 65.0909 39.8918 39.2208 31.29 91 67.7749 48.6797 43.1169 20.7056
42 77.7359 43.7273 49.8528 24 92 68.316 55.5541 56.2035 34.9221
43 30.9264 20.4719 20.5887 10.4762 93 66.987 48.7013 47.1039 28.5022
44 63.0303 46.039 48.8918 36.4416 94 28.697 24.1688 27.7056 9.7576
45 81.7879 47.7792 49.3506 45.2771 95 69.4632 48.1169 47.2944 33.2814
46 84.7749 65.7662 67.8355 41.4589 96 34.0216 16.8528 18.2121 12.4502
47 8.3377 11.1688 9.684 0.5108 97 4.0996 6.1818 7.5498 1.619
48 43.6234 19.7879 29.7489 15.4242 98 34.0476 18.4372 15.0087 14.7403
49 26.5195 14.1861 18.1169 15.4286 99 56.0909 30.987 42.8485 22.7186
50 33.4329 31.6797 35.3117 16.5671 100 66.7922 46.4242 50.5844 28.9394
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Table 5: Detection Delay (in days) for 100 datasets averaged for 231 p-values (0.020,0.021,..., 0.250)
dataset WS2.0 WS2.5 WS3.0 EigenEv dataset WS2.0 WS2.5 WS3.0 EigenEv
1 1.3463 2 1.3463 2 51 1 1 1 3.5325
2 1.0433 1 1 1.2987 52 1 1 1 2.0693
3 2 2 2 12.9394 53 3.7835 8.7532 7.7706 4.8312
4 1 1 1 1 54 1 1 1 1
5 1 1 1 2.7273 55 1 1 1 1
6 4.7056 6.2035 5.2511 6.0346 56 1 1 1 1
7 1 1 1 1.5065 57 1 1 1 1
8 1.2251 1 1 1.6104 58 1 1 1 1
9 1.5628 1.2771 1.1688 1 59 5.0909 4.4892 6.1212 11.0606
10 1 9.1905 1 1 60 3.039 2 1.5628 5.4286
11 1 1 1 1.5974 61 1.9957 2 2 2
12 1 1 1 1 62 1 1 1 1
13 4.2078 1 1 7.8139 63 1 2 1 1
14 1 1 1 1 64 4.5065 13.9913 1.7316 2.026
15 2.3593 1 1 1.7316 65 4.0779 7.6364 10.4156 8.4502
16 1.039 1 1 1.0996 66 2 1.3463 2 1.5758
17 1 1 1 1.5065 67 2.8095 1 1 1.3506
18 1 1 1 1.026 68 1 1 1 1
19 1.3074 1 1.2338 2 69 1 1 1 3.8139
20 1 1 1 1 70 1 1 1 2.5931
21 1 1 1 1 71 1 1 1 1
22 1 1 1 1 72 6.5368 3 3 11.5455
23 1 1 1 1 73 4 7.5758 6.3463 5.3333
24 1 1 1 1 74 1.2597 1 1 1
25 1 1 1 1 75 1 2.1255 1 1
26 2.5541 2 1.2035 5.0649 76 1.2121 2 1 1.2251
27 1.4329 1 1 1 77 1.9091 1 1 2.2468
28 1 1 1 1 78 10.0779 7.4632 13.7403 11.2294
29 1 1 1 1 79 4.2554 8.1039 4.961 8.7532
30 8.6883 2.0823 2 4.2338 80 1 1 1 1
31 1 1 1 1 81 1 1 1 1
32 5.4242 1.2597 1 2.3506 82 1.4502 1 1 1
33 1 1 1 1 83 6.6753 4.5022 7.355 5.6147
34 1 1 1 1 84 1.3463 1 1 1
35 3.6883 1.329 1.8788 5.6623 85 1 1 1 1
36 2.2597 6.4935 7.1126 10.1082 86 1.7835 2 2 1.974
37 1 1 1 1 87 2.9134 2.645 1 4.0823
38 1 1 1 1 88 1 1 1 3.0823
39 5.7186 6.4242 10.0649 10.7273 89 1 1 1 1
40 1.0476 1 1 1 90 1 1 1 1
41 1 1 1 1 91 2.1732 1.0866 1 7.1602
42 1.5628 1 1 1 92 6.8095 3.4762 5.1429 11.1602
43 1 10.0779 1 1 93 1.5628 1.3463 1 2.329
44 2.329 1 1 1.961 94 1.2468 1.329 1.1299 1.9827
45 6.3074 2.3853 2.039 1 95 1.4502 1 1 1
46 4.5281 1 1 6.8831 96 1 1 1 1
47 7.3506 10.2944 7.9913 12.9957 97 1 1 1 1
48 1.2727 1 1 1.3593 98 3.645 1 1 1.3377
49 4.8268 3.3463 2.3463 1 99 1 1 1 1
50 1 1 1 1 100 1 1 1 1.9567
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