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L
inear algebra, the algebra of
vectors and matrices, has tradi-
tionally been a veritable work-
horse in image processing.
Linear algebraic methods such

as principal components analysis (PCA)
and its refinement known as independ-
ent components analysis (ICA) model
single-factor linear variation in image
formation or the linear combination of
multiple sources.

In this exploratory signal processing
article, we review a novel, multilinear
(tensor) algebraic framework for image
processing, particularly for the synthesis,
analysis, and recognition of images. In
particular, we will discuss multilinear
generalizations of PCA and ICA and pres-
ent new applications of these tensorial
methods to image-based rendering and
the analysis and recognition of facial
image ensembles.

MULTILINEAR VS LINEAR METHODS
Ordinary images result from the interac-
tion of multiple factors related to scene
structure, illumination, and imaging.
For example, facial images are deter-
mined by facial geometry (person,
expression), the pose of the head relative
to the camera, the lighting conditions,
and the camera employed.

Linear methods, including PCA and
ICA, are not well suited to the represen-
tation of multifactor image ensembles;
they are better treated using nonlinear
methods, specifically those based on
multilinear algebra [1].

Multilinear algebra involves the nat-
ural generalization of matrices.
Whereas matrices are linear operators
defined over a vector space, these gener-
alizations, referred to as tensors, define

multilinear operators over a set of vec-
tor spaces. Hence, multilinear algebra,
the algebra of higher-order tensors, sub-
sumes linear algebra and matrices/vec-
tors/scalars as a special case. Multilinear
algebra serves as a unifying mathemati-
cal framework suitable for addressing a
variety of challenging problems in
image science and visual computing.

The multilinear algebraic frame-
work can be applied to the synthesis,
analysis, and recognition of images.
Within this mathematical framework,
the image ensemble of interest is repre-
sented as a higher-order tensor, which
must be decomposed in order to sepa-
rate and parsimoniously represent the
constituent factors.

NOTATION
Throughout this article, we will denote
scalars by italic lowercase letters
(a, b, . . . ), vectors by bold lowercase let-
ters (a, b, . . .), matrices by bold upper-
case letters (A, B, . . .), and higher-order
tensors by calligraphic uppercase letters
(A,B, . . .).

LINEAR PCA AND ICA
The PCA of an ensemble of I images,
each comprising J pixels, is computed
by performing a singular value decom-
position (SVD) on a J × I data matrix
D. The columns of D represent images
obtained by subtracting the mean image
of the ensemble from each input image
and “vectorizing” it by consistently
arranging the J pixels into a column
vector. Regarding entire images as vec-
tors or points in a high, J-dimensional
space enables PCA to model the full sec-
ond-order image statistics of all pairs of
pixels in the image.

The matrix D has two associated
vector spaces, a row space and a col-

umn space. In a factor analysis of D, the
SVD orthogonalizes these two spaces
and decomposes the matrix as
D = U�VT ,  where the orthonormal
matrix U represents the column space,
� is a diagonal matrix whose nonin-
creasing, nonnegative entries are
referred to as the singular values of D,
and the orthonormal matrix V repre-
sents the row space.

The column vectors of U, or singu-
lar vectors, are also called the principal
component (or Karhunen-Loeve) direc-
tions of D. Optimal dimensionality
reduction in matrix PCA is obtained by
truncating the singular value decom-
position (i.e., deleting the singular vec-
tors associated with the smallest
singular values).

The ICA of multivariate data computes
second- and higher-order pixel statistics
by seeking a sequence of projections such
that the projected data appear as far from
Gaussian as possible [2]. ICA starts essen-
tially from the PCA solution and com-
putes an invertible matrix which
transforms the principal components into
independent components.

MULTILINEAR GENERALIZATIONS
In the multilinear approach, an image
ensemble is organized as a higher-order
data tensor that must be decomposed in
order to separate its constituent factors
and make them explicit.

TENSORS
A tensor is a higher-order generalization
of a matrix (second-order tensor), vector
(first-order tensor), and scalar (zeroth-
order tensor). Whereas matrices define
linear mappings over a vector space, ten-
sors define multilinear mappings over a
set of vector spaces. The order of tensor
A ∈ RI1×I2×···×IN is N.Digital Object Identifier 10.1109/MSP.2007.906024
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TENSOR FLATTENING
The mode-n vectors or “fibers” of an Nth-
order tensor A are the In-dimensional
vectors obtained by varying index in from
1 ≤ in ≤ In while keeping the other
indices fixed.

Flattening tensors into matrices
enables us to express tensor operations
in terms of matrix operations. The mode-n
fibers are the column vectors of matrix
A(n) ∈ RIn×(In+1...IN I1 I2...In−1) that results
by mode-n flattening the tensor A. The
index order in+1, . . . , iN, i1, i2, . . . , in−1

reflects the left-to-right ordering of the
fibers in A(n). Mode-n flattening is illus-
trated in Figure 1 for the case N = 3.

MODE-N PRODUCT
The mode-n product of a tensor
A ∈ RI1×I2×...×In×...×IN by a matrix
M ∈ R Jn×In , is denoted by B = A ×n M.
It can be expressed in terms of the flat-
tened tensors as B(n) = MA(n) . Note that
the conventional SVD, given by
D = U�VT , can be rewritten as
D = � ×1 U ×2 V using mode-n
products.

N-MODE SVD
A tensor D of order N > 2 has N associ-
ated spaces. The N-mode SVD is a “gen-
eralization” of conventional (two mode)
SVD, which orthogonalizes these N
spaces, decomposing the tensor as fol-
lows [3], [4]:

D=Z×1 U1×2 U2 . . .×n Un . . .×N UN,

(1)

with Z referred to as the core tensor and
U1, . . . , UN as mode matrices. Mode
matrix Un contains the orthonormal vec-
tors spanning the column space of
matrix D(n) resulting from the mode-n
flattening of D. The core tensor governs
the interaction between the mode matri-
ces. It is analogous to the diagonal sin-
gular value matrix � in conventional
matrix SVD, although it does not have a
simple, diagonal structure.

This decomposition is illustrated in
Figure 2 for N = 3. In the figure,
D = Z ×1 U1 ×2 U2 ×3 U3 . Deleting
the last mode-1 singular vector of U1

incurs an approximation error equal to

the Frobenius norm of the (grey) subten-
sor of Z whose row vectors would nor-
mally multiply the singular vector in the
mode-1 product Z ×1 U1.

The N -mode SVD algorithm for
decomposing D according to (1) is a
multilinear extension of the convention-
al matrix SVD. For n = 1, . . . , N , we
compute matrix Un in (1) by computing
the SVD of the flattened matrix D(n) and
setting Un to be the left matrix of the
SVD. Finally, we can solve for the core
tensor as Z = D ×1 UT

1 ×2 UT
2 · · · ×n

UT
n · · · ×N UT

N .

MULTILINEAR PCA
The N-mode SVD is the basis of multilin-
ear PCA (MPCA). There is no trivial mul-
tilinear counterpart to dimensionality
reduction in the linear case. A useful
generalization in the tensor case involves
an optimal rank-( R1, R2, . . . , RN )
approximation that iteratively optimizes
each of the modes of the given tensor,
where each optimization step involves a
best reduced-rank approximation of a
positive semi-definite symmetric matrix
[3], [4]. This technique is a higher-order
extension of the orthogonal iteration for
matrices.

MULTILINEAR ICA
A multilinear ICA (MICA) algorithm was
proposed in [5]. Analogously to (1), mul-
tilinear ICA is obtained by decomposing
the data tensor D as the mode-n product
of N mode matrices Cn and a core tensor
S . Analogously to the case of MPCA,

optimal dimensionality reduction in
MICA is achieved by optimizing mode
per mode using a straightforward variant
of the N-mode orthogonal iteration algo-
rithm. The independent components for
each mode are computed iteratively
using alternating least squares, by solv-
ing for Cn while holding all the other
mode matrices fixed.

APPLICATION TO IMAGE SYNTHESIS
An essential problem in computer graph-
ics is image synthesis or rendering. The
appearance of rendered surfaces is gener-
ally determined by a complex interaction
of multiple factors related to scene

[FIG1] Flattening a third-order tensor. The
tensor can be flattened in three ways to
obtain matrices comprising its mode-1,
mode-2, and mode-3 vectors.
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[FIG2] The N-mode SVD for N = 3.
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geometry, illumination, and imaging. In
particular, the bidirectional texture func-
tion (BTF) [6] captures the appearance of
extended, textured surfaces, including
spatially varying reflectance, surface
mesostructure (i.e., three-dimensional
(3-D) texture caused by local height vari-
ation over rough surfaces), subsurface
scattering, and other visually relevant
phenomena over a region of the surface.

The BTF is a function of six variables
(x, y, θv, φv, θi, φi), where (x, y) are sur-
face parametric (texel) coordinates and
where (θv, φv) is the view direction and
(θi, φi) is the illumination direction
(a.k.a. the photometric angles). Given
only sparsely sampled BTF data, the
problem of rendering the appearance of
a textured surface viewed from an arbi-
trary vantage point under arbitrary illu-
mination is a problem in image-based
rendering.

Linear PCA has conventionally been
the BTF representation method of
choice. A major limitation of PCA is that
it captures the overall variation in the
image ensemble without explicitly distin-
guishing what proportion is attributable
to each of the relevant factors—illumina-
tion change, viewpoint change, etc.

TENSORTEXTURES: MULTILINEAR 
IMAGE-BASED RENDERING
By contrast, our multilinear framework
for image-based rendering of textured
surfaces from sparsely sampled data pre-
scribes a more sophisticated, tensor
decomposition that further analyzes this
overall variation into individually encod-
ed constituent factors using a novel set
of basis functions. The resulting method
is referred to as TensorTextures [7].

Given an ensemble of sample images
of a textured surface, the TensorTextures
algorithm first learns (in an offline analy-
sis stage) a generative model that accu-
rately approximates the BTF. Then (in
the online synthesis stage) the learned
model serves in rendering the appear-
ance of the textured surface under arbi-
trary view and illumination conditions.

We define an image data tensor
D ∈ RT×I×V, where T is the number of
texels in each texture image sample and
where V and I are, respectively, the num-

ber of different viewing and illumination
conditions associated with the image
acquisition process.

Consider the synthetic scene of scat-
tered coins shown in Figure 3. Although
the coins in the treasure chest shown in
Figure 3(a) appear to have considerable
3-D relief as we vary the view direction
(images 1–3) and illumination direction
(images 3–5), this is in fact a
TensorTexture mapped onto a perfectly
planar surface. The TensorTextures
model has learned a compact representa-
tion of the variation in appearance of the
surface under changes in viewpoint and
illumination.

A total of 777 sample RGB images of
the scene were acquired from V = 37 dif-
ferent view directions over the viewing
hemisphere shown in Figure 3(b), each
of which is illuminated by a light source
oriented in I = 21 different directions
over the illumination hemisphere shown
in Figure 3(c).

We organize the ensemble of acquired
images as a third-order tensor D with
view, illumination, and texel modes, a
portion of which is shown in Figure 3(d)
(each tensor element is shown as a regu-
lar image rather than as a vector of tex-
els). We apply the N -mode SVD
algorithm to decompose this tensor as
follows:

D =
︷ ︸︸ ︷

Z ×1 Utexels
T

×2 Uillums ×3 Uviews,

(2)

the product of three orthonormal mode
matrices and a core tensor Z that gov-
erns the interaction between the differ-
ent modes. The column vectors of Uviews

span the view space, while its rows
encode an illumination and texel invari-
ant representation for each of the differ-
ent views. The column vectors of Uillums

span the illumination space, while its
rows encode a view and texel invariant
representations for each of the different
illuminations. The TensorTextures repre-
sentation T , a portion of which is illus-
trated in Figure 3(e), is the extended core
T = Z ×1 Utexels and it is efficiently
computed as T = D ×2 UT

illums ×3

UT
views.

TensorTextures characterizes how
viewing parameters and illumination
parameters interact and multiplicatively
modulate the appearance of a surface
under variation in view direction (θv, φv),
illumination direction (θi, φi), and posi-
tion (x, y) over the surface. Hence, to
render an image d, we compute

d = T ×2 lT ×3 vT, (3)

where v and l are, respectively, the view
and illumination representation vectors
associated with the desired view and illu-
mination directions. These will in gener-
al be novel directions, in the sense that
they will differ from the observed direc-
tions associated with the sample images
in the ensemble.

APPLICATION TO IMAGE ANALYSIS
AND RECOGNITION
People possess a remarkable ability to
recognize objects from their appear-
ance, especially human faces despite
considerable variation of (expressive)
facial geometries, head poses, and light-
ing conditions. A highly researched
class of methods in computer vision are
known as appearance-based methods.
They have been applied to images of
arbitrary objects, but have attracted the
greatest attention in the context of
human facial images. Given a database
of suitably labeled training images of
numerous individuals, the approach
aspires to learn parsimonious appear-
ance-based representations of the image
ensemble, which may be used for facial
image compression and/or for facial
image recognition [8].

Linear PCA has been at the core of
the dominant appearance-based meth-
ods, such as the well-known “eigenfaces”
face recognition method [9]. As stated
earlier, however, PCA can model only
single-factor variations in image ensem-
bles. Hence, this linear method and its
variants adequately address face recogni-
tion only under tightly constrained con-
ditions—e.g., frontal images, fixed
lightsources, fixed expression—where
person identity is the only factor that is
allowed to vary.



TENSORFACES: MULTILINEAR
FACIAL IMAGE ANALYSIS
AND RECOGNITION
By contrast, our multilinear approach
confronts the fact that facial images
result from the interaction of multiple
factors, among them different facial
geometries and expressions, viewpoints,
and illumination conditions. The result-
ing method, referred to as TensorFaces
[1], yields significantly better recognition
rates relative to the standard, linear
methods when applied to appearance-
based face recognition under uncon-
strained conditions.

Figure 4 illustrates our technique
using gray-level facial images of 75 sub-
jects. Each subject is imaged from 15
different viewpoints (θ = −35◦ to +35◦
in 5◦ steps on the horizontal plane
φ = 0◦) under 15 different illuminations
(θ = −35◦ to +35◦ in 5◦ steps on an
inclined plane φ = 45◦ ). Figure 4(b)
shows the set of 225 images for one of
the subjects, with viewpoints arrayed
horizontally and illuminations arrayed
vertically. Each image has 8,560 pixels.
The image set was rendered from a 3-D
scan of the subject shown boxed in
Figure 4(a). The 75 head scans shown in
the figure were acquired using a
Cyberware 3030PS laser scanner and are
part of the 3-D morphable faces database
created at the University of Freiburg.

We select an ensemble of training
images from the dataset of Figure 4
comprising the 36 dash-boxed images
for each person. Our facial image data
tensor D, a portion of which is illustrat-
ed in Figure 4(c), has dimensions
8, 560 × 6 × 6 × 75 (each tensor ele-
ment is shown as a regular image rather
than as a vector of pixels). Applying mul-
tilinear analysis to D, using the N-mode
SVD algorithm with N = 4, we obtain

D =
︷ ︸︸ ︷

Z ×1 Upixels
T

×2Uillums ×3 Uviews

×4 Upeople, (4)

where the 8, 560 × 6 × 6 × 75 extend-
ed core tensor T = Z ×1 Upixels , called
TensorFaces, governs the interaction
between the factors represented in the
three mode matrices: The 6 × 6 mode

matrix Uillums spans the space of illu-
mination parameters, the 6 × 6 mode
matrix Uviews spans the space of view-
point parameters,  and the 75 × 75
mode matrix Upeople spans the space of
people parameters. The 8, 560 × 2, 700
mode matrix Upixels orthonormally
spans the space of images, but it need
never be computed in practice.
TensorFaces is  computed as
T = D ×2 UT

illums ×3 UT
views ×4 UT

people .

This facial image database comprises
36 images per person that vary with
viewpoint and illumination. PCA repre-
sents each image with one coefficient
vector while each person is represented
by a set of 36 coefficient vectors, one for
each image in which the person appears.
The length of each PCA coefficient vector
is 6 × 6 × 75 = 2, 700.

By contrast, each image in the multi-
linear analysis is represented with a set

[FIG3] An example of TensorTextures. The chest contains a TensorTexture mapped onto a
planar surface (a). Images are acquired from several different view directions over the
viewing hemisphere (b) and, for each viewpoint, under several different illumination
conditions over the illumination hemisphere (c). The ensemble of acquired images is
organized in a third-order tensor with view, illumination, and texel modes (d). Although
the contents of the texel mode are vectors of RGB texel values, for clarity they are
displayed as two-dimensional images. (e) A partial visualization of the 37 × 21
TensorTextures bases of the coins image ensemble.
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[exploratory DSP] continued

of coefficient vectors representing the
illumination, viewpoint, and person
modes that generated the image.
However, each person, regardless of view-
point, illumination, and expression, is
represented by a single coefficient vector
of dimension 75 relative to the set of bases
defined by the TensorFaces T . This many-
to-one mapping is useful for face recogni-
tion. Recognition can be accomplished
using a multilinear projection algorithm
[10], which projects an unlabeled test
image into multiple constituent mode
spaces to simultaneously infer its person,
illumination, and viewpoint mode labels.

We applied the MPCA and MICA algo-
rithms in face recognition experiments
with 16,875 images captured from the
University of Freiberg 3-D Morphable
Faces Database. Using the bases illustrat-

ed in Figure 4(d), which were computed
from a training ensemble of 2,700 images,
MICA yields better recognition rates
(98.14%) than PCA (eigenfaces) (83.9%),
conventional ICA (89.5%) and even multi-
linear PCA (93.4%) in scenarios involving
the recognition of test subjects whose
faces were imaged in previously unseen
viewpoints and illuminations.

CONCLUSION
We have presented a multilinear algebra-
ic framework for image sythesis, analysis,
and recognition, which employs a tensor
(N-mode) extension of the conventional
matrix SVD. This leads to a multilinear
generalization of PCA and a novel multi-
linear generalization of ICA. We have
also discussed important applications
that benefit, such as image-based render-

ing (specifically the multilinear synthesis
of images of textured surfaces for varying
viewpoint and illumination), as well as
multilinear analysis and recognition of
facial images under variable face shape,
view, and illumination conditions. These
new multilinear algebraic (tensor) meth-
ods outperform their conventional linear
algebraic (matrix) counterparts.
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[FIG4] A facial image dataset. (a) 3-D scans of 75 subjects, recorded using a Cyberware 3030PS laser scanner as part of the University of
Freiburg 3-D morphable faces database. (b) Facial images for a subject [boxed head in (a)], viewed from 15 different viewpoints
(across) under 15 different illuminations (down). In our recognition experiments, the 36 dash-boxed images served as training images
and the 81 solid-boxed images served as test images. (c) A portion of the fourth-order data tensor D for the image ensemble formed
from the dash-boxed images of each subject in (a); only four of the subjects are shown. (d) A partial visualization of the MICA
representation of D.
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