
On a Fast Algorithm for Computing the Laplacian Eigenpairs via
Commuting Integral Operators

By

Xiaodong Xue
B.S. Mathematics (Nanjing University, China) 2001

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

APPLIED MATHEMATICS

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA,

DAVIS

Approved:

Committee in Charge

2007

i

On a Fast Algorithm for Computing the Laplacian Eigenpairs via Commuting

Integral Operators

Copyright 2007

by

Xiaodong Xue

Contents

1 Introduction 1

2 The Laplacian Eigenvalues and Eigenfunctions 5

2.1 Introduction . 5

2.2 Laplacian Eigenvalue Problem . 6

2.3 Computational Methods of the Laplacian Eigenpairs 11

2.3.1 Finite Difference Scheme [17]. 11

2.3.2 Finite Element Method [23]. 11

2.3.3 Integral Operator and Green’s Function 12

3 The Integral Operator commuting with the Laplacian 15

3.1 Introduction . 15

3.2 Properties of Laplacian Eigenfunctions and Their Computation 15

3.2.1 Integral Operators Commuting with Laplacian 16

3.2.2 Discretization of the Eigenvalue Problem 19

3.3 Examples . 20

3.3.1 1D Example . 20

3.3.2 2D Example . 25

3.4 Application to Image Approximation . 30

4 Fast Multipole Method and Eigenvalue Computation 35

4.1 Introduction . 35

ii

4.1.1 Potential and Multipole Expansion . 36

4.1.2 The O(N log N) Algorithm . 38

4.1.3 FMM: The O(N) Method . 40

4.2 Matrix Representations of FMM . 47

4.2.1 Hierarchical Data Structure . 48

4.2.2 Indexing of a Quad Tree . 49

4.2.3 Matrix-splitting Scheme . 51

4.2.4 The Low Rank Submatrices . 53

4.2.5 Low Rank Approximation Problem . 59

4.3 Fast Matrix-Vector Multiplication . 61

4.3.1 Column Bases and Row Bases . 62

4.3.2 Hierarchical Transformation of the Column Bases 63

4.3.3 Fast Matrix-Vector Multiplication Algorithm 68

4.4 Eigenvalue/Eigenvector Computation . 71

4.4.1 Preprocessing of the Eigenvalue Computation 71

4.5 Numerical Experiments . 77

4.5.1 Laplacian Eigenvalues on the Unit Disk in R2 77

4.5.2 An Example of Complicated and Large Domain: Japanese Islands 80

5 Conclusion 84

5.1 Summary . 84

5.2 Future Studies . 85

5.2.1 Improvement the Computational Cost 85

5.2.2 Investigate the Boundary Conditions . 85

5.2.3 Implement the Eigenvalue Problem in 3D 86

iii

Abstract

N. Saito recently proposed a new method to analyze and represent data recorded on a domain Ω

of general shape in Rd by expanding the data into a set of the eigenfunctions of Laplacian defined

over Ω. Instead of directly solving the Laplacian eigenvalue problem on Ω via the Helmholtz

equation (which can be quite complicated and costly), he found an integral operator commuting

with the Laplacian, which shares the eigenfunctions with the Laplacian.

After discretization, the eigenvalue problem for this integral operator is converted to that of

a symmetric kernel matrix. A conventional approach of computing selected eigenvalues of such

a matrix is, for instance, an implicitly re-started Lanczos method (IRLM), which costs O(kN2)

floating point operations where k is related to the number of the selected eigenvalues and the

distribution of the eigenvalues. This approach is prohibitively expensive for a large kernel matrix

that is often generated by a dense sampling of the domain.

The kernel function of this integral operator for a domain in R2, however, is of the special

form K(x,y) = − 1
2π log ‖x − y‖, i.e., the fundamental solution of the Laplacian. This kernel

function represents the potential at point x due to a charge located at point y. This fact allows us

to apply the ideas of Fast Multipole Method (FMM) and Hierarchical Semi-Separable (HSS) rep-

resentation to exploit the structure of the kernel matrix. In this thesis, we investigate a hierarchical

matrix-splitting scheme and the low rank property of the submatrices generated by the splitting

scheme. By doing so, we design a hierarchical matrix decomposition method that leads to a fast

algorithm of matrix-vector multiplication which costs O(N). By supplying our fast matrix-vector

multiplication routine to IRLM, we obtain an eigenvalue solver that costs O(kN).

iv

Acknowledgments

It is a pleasure to thank the many people who made this thesis possible.

I would like to express my deep and sincere gratitude to my supervisor, Professor Naoki Saito.

His broad knowledge and his logical way of thinking have been of great value for me. His overly

enthusiasm and integral view on research and his mission for providing “only high-quality work

and not less”, has made a deep impression on me. I owe him lots of gratitude for having me shown

this way of research.

I want to thank the other two thesis committee members: Professor Zhaojun Bai and Professor

Thomas Strohmer for their help and important suggestions and corrections.

My fellow students in Math Department all gave me the feeling of being at home at work.

Arthur Cheng, Peng Li, Yung-Ta Li, Ben-Shan Liao, Shuang Liu, Smith Noel, Shaowu Tian,

Ernest Woei, Jiadong Xu, Mike Yan, Wei Yu, Zhihua Zhang.

This research was supported and funded by NSF grant DMS-0410406 and ONR grants N00014-

00-1-0469, N00014-06-1-0615, and N00014-07-1-0166. I am also grateful for the Department of

Mathematics in the University of California at Davis for providing me an excellent work environ-

ment during the past years and Celia Davis, Richard Edmiston, Jessica Potts and Diana Coombe

for their cheerful assistance.

Finally, I would like to express my profound gratitude to my beloved parents, mother-in-law,

and my wife for their love, support, and absolute confidence in me.

v

1

Chapter 1

Introduction

There is an increasing need to analyze high dimensional data sampled on irregular grids (e.g.,

meteorological data sampled at weather stations) or objects defined on a domain of general shape

(e.g., cells in histological images). The related applications include the numerical solution of

partial differential equations, kernel methods in machine learning, surface reconstruction, and

terrain modeling (see e.g., [32] and the references therein).

Most of the currently available signal and image processing tools were designed and developed

for signals and images that are sampled on regular/uniform grids and supported on a rectangular

or cubic domain. For example, the conventional Fourier analysis using complex exponentials,

sines and/or cosines, have been the crown jewels for analyzing such data. Unfortunately, these

conventional tools cannot efficiently handle the data and objects that are irregularly sampled on a

general shape of domain.

Recently, Saito proposed a new technique that can analyze spatial frequency information of

such data and objects, filter the frequency contents if one wishes, and synthesize the data and

objects at one’s disposal [25]. This is a direct generalization of the conventional Fourier analysis

and synthesis. His new tool explicitly incorporates geometric configuration of the domain or

spatial location of the sensors.

Let us consider a bounded domain of general shape Ω ⊂ Rd, where typically d = 2 or 3.

Assume that the boundary Γ = ∂Ω consists of piecewise C2 surfaces (although one may be able

2

to weaken this assumption by more subtle arguments). We want to analyze the spatial frequency

information inside of the object (i.e., the data measured in Ω) without the annoying interference

of the Gibbs phenomenon due to the boundary Γ. We also want to represent the object compactly

for analysis, interpretation, discrimination, and so on, by expanding it into a basis that generates

fast decaying expansion coefficients.

There are at least two approaches to this problem. One is to extend (or extrapolate) a general

shape object smoothly to its outside, cut it by a circumscribed rectangle, and use the conventional

tools to analyze the extended object on this rectangle [27], [35, Chap. 4]. Although such approach

can analyze the spatial frequency contents of the object without being bothered by the boundary

and the Gibbs phenomenon, the resulting analysis is still affected by the extended part which is

smooth (in fact, harmonic) regardless of the smoothness of the object inside the original domain

Ω.

Saito [25], [26] proposed a method to use a genuine orthonormal basis tailored to a domain of

general shape. To do so, the eigenfunctions of the Laplacian defined on the domain were used. In

order to avoid the difficulties of computing the Laplacian eigenfunctions defined on a domain of

general shape, he used an integral operator that commutes with the Laplacian and therefore shares

the eigenfunctions with the Laplacian. The computation of the eigenfunctions of this integral

operator can be discretized into the eigenvalue computation of a kernel matrix.

In practice, to capture the data defined on a domain of large size or with complicated shape,

a considerable amount of the sampling data points are needed. The kernel matrix could be so

large that the eigenvalue computation is prohibitive. In this thesis, we design a fast algorithm to

compute the eigenpairs for large kernel matrices.

Motivated by the original ideas from fast multipole method (FMM, [24], [14], [13]) and hier-

archical semi-separable representation (HSS, [4]), we explore the special structure of the kernel

matrix of this integral operator and further investigate the hierarchical matrix-splitting scheme.

We design a hierarchical matrix decomposition to rapidly compute the matrix-vector multipli-

cation, which is the key to the fast eigenvalue computation using implicitly re-started Lanczos

method [20].

3

The organization of the rest of this thesis is as follows.

In Chapter 2, we briefly review the Laplacian eigenvalue problem and the current computa-

tional methods.

In Chapter 3, we review the new tool developed by Saito to compute the eigenpairs of the

Laplacian on a domain of general shape [25], [26]. We will discuss an integral operator commuting

with the Laplacian, which shares the eigenfunctions with the Laplacian. The new eigenfunctions

must satisfy a non-local boundary condition, which is neither the Dirichlet, nor the Neumann

boundary conditions. In Section 3.1, we discuss the properties and computation of these new

Laplacian eigenfunctions. In Section 3.2, we present two examples, in which we explicitly com-

pute the forms of our Laplacian eigenpairs for a unit interval (1D Example) and a unit disk (2D

Example). In Section 3.3, we show a promising application of our Laplacian eigenfunctions to the

image approximation on a domain of general shape.

In Chapter 4, we design a fast eigenvalue computation algorithm tailored for the special inte-

gral operator in R2. The task is to compute the eigenpairs of the kernel matrix constructed by the

sampling and discretizing the underlying domain. The kernel matrix is highly structured and can

be splitted into submatrices with low rank properties. The contribution of this thesis is to design a

hierarchical matrix decomposition method which leads to a fast matrix-vector multiplication.

In Section 4.1, we briefly review the important issues involved with FMM. In Section 4.2, we

investigate the matrix representations of FMM. After introducing the indexing method and matrix-

splitting scheme, we explore the low rank property of the submatrices in Section 4.2.4. In Section

4.2.5, we discuss an approach to handle these low rank submatrices by reviewing the famous

low rank approximation problem. In Section 4.3, we present our fast matrix-vector multiplication

based on our hierarchical decomposition of the original kernel matrix. In Section 4.3.1 and Section

4.3.2, some important properties of the low rank submatrices are investigated. In Section 4.3.3, we

present the algorithm of matrix-vector multiplication. In Section 4.3.4, we present the algorithm

of hierarchical decomposition. In Section 4.4, we describe the eigenvalue computation using our

fast matrix-vector multiplication. In Section 4.5, we present some numerical examples of the

eigenvalue computation.

4

In Chapter 5, we summarize this thesis in Section 5.1. Finally in Section 5.2, we discuss some

topics for the future study.

5

Chapter 2

The Laplacian Eigenvalues and

Eigenfunctions

2.1 Introduction

The Laplace operator or Laplacian is perhaps the most important of all partial differential opera-

tors. The Laplace operator acting on a function u(x) = u(x1, x2, . . . , xd) of class C2 in a domain

Ω ⊂ Rd is defined by

∆u = ∇ · ∇u =
d∑

k=1

∂2u

∂ xk
2
. (2.1)

In physics, it is used in modeling of heat flow and wave propagation, where the Laplacian forms

the spatial component of the heat operator ∂t−∆ and the wave operator ∂2
t −∆ respectively (see

e.g., [29]). Also, the Laplacian is central in electrostatics, Helmholtz equation, Laplace’s equation

and Poisson’s equation (see e.g., [9]). One of the important properties of Laplacian is that it

commutes with translations and rotations [9, p.67]. For any physical process whose underlying

physics is homogeneous (independent of position) and isotropic (independent of direction), the

Laplacian is likely to turn up. There are many interesting and important issues about the Laplacian.

In this chapter, we are going to review a few of them, which are related to the contents of the

following chapters.

2.2. Laplacian Eigenvalue Problem 6

Figure 2.1: Ω ⊂ Rd, with ν is the unit normal vector.

2.2 Laplacian Eigenvalue Problem

Consider a domain Ω ⊂ Rd of finite volume. Figure 2.1 displays a simple example of such Ω.

Laplacian Eigenvalue Problem on Ω is to find the pairs of (u, λ) satisfying the equation:

−∆u = λu in Ω, (2.2)

with one of the following boundary conditions (BCs):

(i) Dirichlet BC: u = 0, on ∂Ω;

(ii) Neumann BC:
∂u

∂ν
= ν · ∇u = 0, on ∂Ω;

(iii) Robin (Mixed) BC:
∂u

∂ν
+ au = 0, a ∈ R on ∂Ω.

(2.3)

where ν is a unit normal vector and ∂/∂ν indicates differentiation in the direction of the exterior

normal to ∂Ω.

If u 6= 0 in Ω satisfies the Laplacian eigenvalue problem with either of the above BCs, then u

is called an eigenfunction and the corresponding λ is called the eigenvalue.

Laplacian eigenvalues and eigenfunctions allow us to perform numerous analysis with the

2.2. Laplacian Eigenvalue Problem 7

given domain Ω. We will see that the eigenvalues of (2.2) reflect geometric information about Ω.

Also, the eigenfunctions can be used for spectral analysis of data defined (or living) on Ω.

Example 2.2.1 (Wave Equation and Heat Equation). Consider a bounded domain Ω ⊂ Rd, d ≥
2, d ∈ N. Let us first review the wave equation with both boundary conditions and initial condi-

tions

utt = c2∆u in Ω, (2.4)

with one of the three boundary conditions in (2.3), and with the initial conditions:

u(x, 0) = f(x), ut(x, 0) = g(x). (2.5)

The heat equation is of the form

ut = k∆u in Ω, (2.6)

with one of the three boundary conditions in (2.3) and the initial conditions in (2.5).

Use the method of separation of variables and set u(x, t) = T (t)v(x), which leads to the

following equations

From wave equation:
T ′′

c2T
=

∆v

v
= −λ.

From heat equation:
T ′

kT
=

∆v

v
= −λ.

(2.7)

Later in this thesis we will show that λ ≥ 0, for at least either (D), (N), or (R) in (2.3) is

satisfied. Regardless of whether we consider the heat or the wave equation, we reach a Laplacian

eigenvalue problem:

−∆v = λv in Ω

where v satisfies either (D), (N), or (R).
(2.8)

Lots of mathematics are involved to prove that the set of λ satisfying (2.8) is discrete, i.e.,

λ1, λ2, · · · , and there exist the corresponding eigenfunctions ϕ1, ϕ2, · · · that are mutually orthog-

onal. We will discuss about them later. But at this point, assuming the existence of the eigenpairs

2.2. Laplacian Eigenvalue Problem 8

{(λn, ϕn)}∞n=1, we can write the solutions for (2.4) and (2.6) as

wave equation: u(x, t) =
∑∞

n=1

[
An cos(

√
λnct) + Bn sin(

√
λnct)

]
ϕn(x)

heat equation: u(x, t) =
∑∞

n=1 Ane−λnktϕn(x)
(2.9)

where An and Bn are appropriate constants.

Before further discussion, let us review the famous Green’s Identities. For u, v ∈ C2(Ω), we

have Green’s identities:

∫

Ω
v∆u dx = −

∫

Ω
∇v · ∇u dx +

∫

∂Ω
v
∂u

∂ν
dS (G1)

∫

Ω
v∆u dx =

∫

Ω
u∆v dx +

∫

∂Ω

(
v
∂u

∂ν
− u

∂v

∂ν

)
dS, (G2)

where dx = dx1 dx2 . . . dxd and dS is a surface measure on ∂Ω. Now, let us briefly review

some important properties of the Laplacian eigenvalues and eigenfunctions.

Theorem 2.2.2 ([29, Sec. 10.1]). As in (2.8), let λk be the Dirichlet-Laplacian eigenvalues, let

νk be the Neumann-Laplacian eigenvalues, and let ρk be the Robin-Laplacian eigenvalues, where

k ∈ N. Then

λk > 0, νk ≥ 0, and ρk ≥ 0, if a ≥ 0.

Proof. Let u and v are corresponding eigenfunctions. Use Green’s first identity (G1):

∫

Ω
u∆v dx +

∫

Ω
∇u · ∇v dx =

∫

∂Ω
u

∂v

∂ν
dS,

Set v = u, ∫

Ω
u∆udx +

∫

Ω
|∇u|2 dx =

∫

∂Ω
u

∂u

∂ν
dS,

For the boundary condition (D),

∫

Ω
u(−λu) dx +

∫

Ω
|∇u|2 dx = 0 ⇒ λ =

∫
Ω |∇u|2 dx∫

Ω u2 dx
≥ 0.

2.2. Laplacian Eigenvalue Problem 9

But |∇u|2 6= 0. Since if so, u = const, then u ≡ 0, which conflicts with the fact that u is

eigenfunction. Therefore, λ > 0.

For the boundary condition (N),

ν =

∫
Ω |∇u|2 dx∫

Ω u2 dx
≥ 0.

Here |∇u|2 = 0 is acceptable, i.e., u ≡ const 6= 0. Hence ν ≥ 0, where ν = 0 corresponds to

the eigenfunction φ0(x) ≡ const 6= 0.

For the boundary condition (R), we have

−ρ

∫

Ω
|u|2 dx +

∫

Ω
|∇u|2 dx =

∫

∂Ω
u(−au) dS

⇒ ρ =
a

∫
∂Ω |u|2 dS +

∫
Ω |∇u|2 dx∫

Ω |u|2 dx
≥ 0, if a ≥ 0.

To consider the eigenfunctions, we are going to use the fact that for any u, v ∈ C2(Ω), satis-

fying either one of the boundary conditions, i.e., (D), (N), or (R), we have

〈u,∆v〉 = 〈∆u, v〉 ,

where the inner product 〈f, g〉 ∆=
∫
Ω f(x)g(x) dx, where Ω ∈ Rd. Then, we have the orthogo-

nality of eigenfunctions.

Theorem 2.2.3 ([29, Sec. 10.1]). Suppose both u, v are real eigenfunctions satisfying

−∆u = λ1u, −∆v = λ2v

and satisfying either (D), (N), or (R). Then λ1, λ2 are reals, and if λ1 6= λ2, then 〈u, v〉 = 0.

2.2. Laplacian Eigenvalue Problem 10

Proof.

λ1〈u, u〉 = 〈λ1u, u〉

= 〈−∆u, u〉

= 〈u,−∆u〉

= 〈u, λ1u〉

= λ1〈u, u〉,

which implies (λ1 − λ1)‖u‖2
2 = 0. Since ‖u‖2 6= 0, λ1 = λ1 ⇔ λ1 ∈ R. Similarly,

λ1〈u, v〉 − λ2〈u, v〉 = 〈λ1u, v〉 − 〈u, λ2v〉

= 〈−∆u, v〉 − 〈u,−∆v〉

= 〈u,−∆v〉 − 〈u,−∆v〉

= 0

which implies (λ1 − λ2)〈u, v〉 = 0. Since λ1 6= λ2, 〈u, v〉 = 0.

More over, the Laplacian eigenfunctions with boundary conditions (D) or (N) are complete in

L2 sense.

Theorem 2.2.4 ([29, Chapter 11]). Both the Dirichlet-Laplacian (DL) and the Neumann-Laplacian

(NL) eigenfunctions are complete in the L2 sense, i.e., ∀ f ∈ L2(Ω),

∥∥∥f −∑N
n=1 cnϕn

∥∥∥
2
→ 0 as N →∞, where cn =

〈f, ϕn〉
〈ϕn, ϕn〉 .∥∥∥f −∑N

n=1 dnψn

∥∥∥
2
→ 0 as N →∞, where dn =

〈f, ψn〉
〈ψn, ψn〉 .

(2.10)

or 〈f, ϕn〉 = 0, ∀n ∈ N ⇔ f ≡ 0, a.e., and 〈f, ψn〉 = 0, ∀n ∈ N ⇔ f ≡ 0, a.e..

For the proof, the related arguments and discussions can be found in [29, Sec. 11.3, 11.5], [34,

Chap. 11] and [8, Sec. 3.3]. For more advanced treatments, see [7, Sec. 6.5].

2.3. Computational Methods of the Laplacian Eigenpairs 11

Remark 2.2.5. This theorem is important since {ϕn}, {ψn} are not useful if they are not complete.

In other words, if ∃f ∈ L2(Ω), such that ‖f−∑∞
n=1 cnϕn‖ > 0, then {ϕn} spans only a subspace

of L2(Ω).

2.3 Computational Methods of the Laplacian Eigenpairs

2.3.1 Finite Difference Scheme [17].

Its main idea is to discretize the equation −∆u = λu by the finite difference approximation

− 1
h2

[ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4uij] = λuij .

Here the domain Ω ⊂ R2 is cut into squares of side h, uij is the value of the eigenfunction

corresponding to λ at the lattice point (ih, jh). The convergence rate of this method is O(h2).

Moreover, it is slow and inaccurate if Ω is of a complicated shape with a large number of grid

points.

2.3.2 Finite Element Method [23].

Many people use this in practice. It is better for general Ω than the finite difference scheme. But

it is still very cumbersome. Here we briefly describe the idea of the finite element method.

From Equation −∆u = λu, it follows that for any function ϕ ∈ C2(Ω) with ϕ = 0 on the

boundary of Ω,

−
∫∫

Ω
ϕ∆udx = λ

∫∫

Ω
ϕudx.

By Green’s first identity (G1), this implies that

∫∫

Ω
∇ϕ · ∇udx = λ

∫∫

Ω
ϕ udx. (2.11)

We choose n linearly independent functions F1, ..., Fn which are the linear, quadratic or cubic

polynomials on every tetrahedral element of Ω and satisfy Fk = 0 on the boundary of Ω. Take

2.3. Computational Methods of the Laplacian Eigenpairs 12

their linear combination as approximation of the solution u, i.e.,

u ≈
n∑

i=1

Ui Fi, Ui ∈ R. (2.12)

Again, let ϕ = Fk. So

∫∫

Ω
∇ϕ · ∇udx =

n∑

i=1

aki Ui, k = 1, ..., n,

where

aki =
∫∫

Ω

n∑

j=1

(
∂Fk

∂xj

) (
∂Fi

∂xj

)
dx.

On the other hand, ∫∫

Ω
ϕudx =

n∑

i=1

bki Ui, k = 1, ..., n,

where

bki =
∫∫

Ω
Fk Fi dx.

From this and (2.11), one obtains that

n∑

i=1

aki Ui = λ
n∑

i=1

bki Ui, k = 1, ..., n.

Define the matrix A = (aki) and B = (bki). Then (2.11) can be written as

AU = λBU , where U = (U1, ..., Un)T .

So λ and U can be calculated. Furthermore, the eigenfunction u is obtained by (2.12).

2.3.3 Integral Operator and Green’s Function

As we all know, directly dealing with a partial differential operator L is more difficult than consid-

ering its inverse L−1, which is an integral operator and whose kernel is called Green’s function.

Let us review some basics about the Green’s function of the Laplacian ∆ (see e.g., [15], [9] and

2.3. Computational Methods of the Laplacian Eigenpairs 13

[29]).

First of all, we need to review the contents about fundamental solutions of the Laplacian. We

call K(x,y) a fundamental solution for the Laplace operator ∆, if K(x, y) satisfies

∆K(x,y) = δ(x− y), y is a point in Ω.

Here δ(·) is the Dirac delta function. By using the symmetric property of the Laplacian and

writing K(x, y) as K(r) with r
∆= |x − y|, it is not difficult to derive the form of fundamental

solutions of the Laplacian in any dimensional space (see e.g., [15, Chap. 4]):

K(r) ∆=

−1
2
|x− y| if d = 1,

− 1
2π

log |x− y| if d = 2,

|x− y|2−d

(d− 2)ωd
if d > 2,

(2.13)

where ωd
∆= 2πd/2

Γ(d/2) is the surface area of the unit sphere in Rd, and | · | is the standard Euclidean

norm. In this thesis, the notation log means the natural logarithm.

For a bounded domain Ω, the Green’s function G(x, y) for the Laplacian with Dirichlet bound-

ary condition is determined by the following properties:

1. G(x, y) = K(x, y) + v(x,y), for x ∈ Ω, y ∈ Ω, x 6= y, with K defined by (2.13), where

v(x, y) ∈ C2(Ω) is harmonic, i.e., ∆xv = 0.

2. G(x, y) = 0, for x ∈ ∂Ω, y ∈ Ω. In other words, v = −K on ∂Ω.

Assume we are given a particular Green’s function G for the underlying domain Ω. Then we

can integrate both sides of the Laplacian eigenvalue problem (2.2) as follows

∫

Ω
G(x, y) ·∆u dy = −λ

∫

Ω
G(x,y) · u(y) dy,

By applying the Green’s second identity and the properties of G on the righthand side of the

2.3. Computational Methods of the Laplacian Eigenpairs 14

above equation, we have

∫

Ω
G(x, y) ·∆u dy =

∫

Ω
∆G(x, y) · u dy = u(x).

Therefore, we have ∫

Ω
G(x, y) · u(y) dy = − 1

λ
u(x),

which can be solved by discretization of the integral. So, we can solve the Laplacian eigenvalue

problem in terms of the matrix by discretizing kernel function G(x, y) in Ω.

To construct G in general we have to find a harmonic v with v = −K on ∂Ω, which is again

a Dirichlet problem. In some cases G can be produced explicitly, e.g., when Ω is a halfspace or

a ball. But it could be extremely difficult when Ω has a complicated shape. In Chapter 3, we are

going to avoid such difficulties by introducing an integral operator commuting with the Laplacian.

15

Chapter 3

The Integral Operator commuting with

the Laplacian

3.1 Introduction

Recently, Saito [25] proposed a new method to compute Laplacian eigenfunctions using an easily

constructible integral operator commuting with the Laplacian. This chapter reviews this method.

The contents of this chapter mainly comes from his two paper [25], [26].

3.2 Properties of Laplacian Eigenfunctions and Their Computation

Consider an operator L = −∆ = − ∂2

∂ x1
2
− · · · ∂2

∂ xd
2

in L2(Ω) with appropriate boundary con-

dition (we will be more specific about it later). The direct analysis of L is difficult due to the

unboundedness (see e.g., [18]). A much better approach is to analyze its inverse L−1, which is

referred to as the Green’s operator because it is a compact and self-adjoint operator and conse-

quently we can have a good grip of its spectral properties. In fact, L−1 for a reasonable regular

boundary Γ has discrete spectrum (i.e., a countable number of eigenvalues with finite multiplicity)

except 0 spectrum [6, Chap. 6,7]. Moreover, thanks to this spectral property, L has a complete

orthonormal basis of L2(Ω), and this allows us to do eigenfunction expansion in L2(Ω) [6, 22].

3.2. Properties of Laplacian Eigenfunctions and Their Computation 16

The key difficulty is to compute such eigenfunctions. Directly solving the Helmholtz equation

on a general domain, i.e., finding non-trivial solutions of ∆φ = λφ that satisfy Bφ = 0 (where

B is an operator specifying the boundary condition) is quite tough. Unfortunately, computing the

Green’s function for a general Ω satisfying the usual boundary condition such as the Dirichlet or

the Neumann condition is also very difficult.

3.2.1 Integral Operators Commuting with Laplacian

Our idea to avoid those difficulties is to find an integral operator commuting with the Laplacian

without imposing the strict boundary condition a priori. Then, from the following well-known

theorem (see [10, pp.63-67]), we know that the eigenfunctions of the Laplacian is the same as

those of the commuting integral operator that is much easier to deal with.

Theorem 3.2.1. Let K and L be operator acting on L2(Ω). Suppose K and L commute and one

of them has an eigenvalue with finite multiplicity. Then, K and L share the same eigenfunction

corresponding to that eigenvalue, i.e., there exists a function φ ∈ L2(Ω) such that Kφ = µφ and

Lφ = λφ.

Here is the key step in our development. Let us replace the Green’s function G(x,y) (the

kernel of Green’s operator) by the fundamental solution of the Laplacian or the harmonic kernel

defined in (2.13). The price we pay for this replacement is to have rather implicit, non-local

boundary condition (which we will discuss shortly) although we do not have to deal with this

boundary condition directly. Let K be the integral operator with its kernel K(x,y):

Kf(x) ∆=
∫

Ω
K(x,y)f(y) dy, f ∈ L2(Ω). (3.1)

We now have the following theorem.

Theorem 3.2.2 (Saito [25]). The integral operatorK commutes with the Laplacian L = −∆ with

the following non-local boundary condition:

∫

Γ
K(x,y)

∂φ

∂νy
(y) ds(y) = −1

2
φ(x) + pv

∫

Γ

∂K(x, y)
∂νy

φ(y) ds(y), (3.2)

3.2. Properties of Laplacian Eigenfunctions and Their Computation 17

for all x ∈ Γ, where ∂/∂νy is the normal derivative operator at the point y ∈ Γ and ds(y) is the

surface measure on Γ.

Proof. Let L = −∆ and K be defined as (3.1). Then, for f ∈ C2(Ω) ∪ C1(Ω), we have

LKf(x) = −∆xKf(x) = f(x), x ∈ Ω,

which is referred to as ”Poisson’s formula” [15, p.99]. On the other hand, using the Green’s second

identity (see (G2) in Chap. 2), we have

KLf(x) = −
∫

Ω
K(x, y)∆yf(y) dy

= f(x)−
∫

Γ
K(x, y)

∂f

∂νy
(y) ds(y) +

∫

Γ

∂K

∂νy
(x, y)f(y) ds(y).

Thus, K and L commute if and only if

∫

Γ
K(x, y)

∂f

∂νy
(y) ds(y) =

∫

Γ

∂K

∂νy
(x, y)f(y) ds(y), x ∈ Ω. (3.3)

We now would like to move x ∈ Ω to the boundary Γ in Eq. (3.3). While we do not have any

problem in the left-hand side, we must treat the right-hand side carefully following Folland [9,

Chap. 2]. Let us consider the right-hand side at x + tνx ∈ Ω for x ∈ Γ with a sufficient small

t < 0 instead of x ∈ Ω. Thus, for x ∈ Γ, we have

∫

Γ

∂K

∂νy
(x + tνx, y)f(y) ds(y) = f(x)

∫

Γ

∂K

∂νy
(x + tνx, y) ds(y)

+
∫

Γ

∂K

∂νy
(x + tνx, y)(f(y)− f(x)) ds(y). (3.4)

The first term in the right-hand side is −f(x) thanks to the following

3.2. Properties of Laplacian Eigenfunctions and Their Computation 18

Lemma 3.2.3 (a variant of Lemma (3.19) in [9]).

∫

Γ

∂K

∂νy
(x, y) ds(y) =

−1 if x ∈ Ω;

−1
2

if x ∈ Γ;

0 if x /∈ Ω.

As for the second integral in Eq. (3.4), because ψ(y) ∆= f(y) − f(x) is continuous and

ψ(x) = 0 for x ∈ Γ, we can use Lemma (3.21) of Folland [9, p. 127] to conclude that as t → 0

the second integral in (3.4) approach to

∫

Γ

∂K

∂νy
(x, y)f(y) ds(y)− f(x)

∫

Γ

∂K

∂νy
(x,y)f(y) ds(y)

=
∫

Γ

∂K

∂νy
(x, y)f(y) ds(y) +

1
2
f(x), x ∈ Γ, (3.5)

where we used Lemma 3.2.3 again in the last equality. Therefore, we can finally have

∫

Γ
K(x, y)

∂f

∂νy
(y) ds(y) = −1

2
f(x) + pv

∫

Γ

∂K

∂νy
(x, y)f(y) ds(y), x ∈ Γ,

which is the same as (3.2). This completes the proof.

Consequently, we also have the following theorem (see e.g., [22, Sec. 4.5]).

Theorem 3.2.4. The integral operator K is compact and self-adjoint on L2(Ω). Thus, the kernel

K(x, y) has the following eigenfunction expansion (in the sense of mean convergence):

K(x,y) ∼
∞∑

j=1

µjφj(x)φj(y), (3.6)

and {φj}j∈N forms an orthonormal basis of L2(Ω).

We will use the basis {φj}j∈N to expand and represent the data supported on Ω.

3.2. Properties of Laplacian Eigenfunctions and Their Computation 19

3.2.2 Discretization of the Eigenvalue Problem

We want to analyze an object of general shape defined on a digitized image or 3D data set using

the Laplacian eigenfunctions. Therefore, we must discretize our eigenvalue problem in order

to compute the eigenfunctions and analyze such an object. In this subsection, we describe our

discretization strategy and assumptions on the data set.

Let us first assume that the whole data set consists of a collection of data sampled on a regular

grid, and that each sampling cell is a box of size
∏d

i=1 ∆xi. Let us also assume that an object of

our interest consists of a subset of these sampled values and the shape of the object Ω is defined

as a collection of the corresponding boxes (or pixels in 2D or voxels in 3D). Hence, let Ω be a

collection of boxes whose centers are {xi}, i = 1, . . . , N . Under these assumptions, we can

approximate the integral eigenvalue problemKφ = µφ, whereK is defined as (3.1), with a simple

quadrature rule with node-weight pairs (xj , wj) as follows

N∑

j=1

wjK(xi,xj)φ(xj) = µφ(xi), i = 1, . . . , N, (3.7)

where wj =
∏d

i=1 ∆xi. Let Ki,j
∆= wjK(xi, xj), φi

∆= φ(xi), and φ
∆= (φ1, . . . , φN)T ∈ RN .

Then, the equation (3.7) can be written in a matrix-vector format as:

Kφ = µφ, where K = (Kij) ∈ RN×N . (3.8)

Under our assumption, the weight wj does not depend on j, which makes K symmetric. Once

the matrix version of the eigenvalue problem, Kφ = µφ, is obtained, we can compute its eigen-

values and the corresponding eigenvectors. In the numerical experiments, we can use the con-

ventional technique to compute the eigenvalues and eigenvectors of such a matrix, i.e., a slow

algorithm of O(N3), where N is the number of samples in the discretization. This amount of

computation cost could be prohibitive when N is huge. Fortunately, we can considerably speed

up the eigenvalue/eigenvector computation up to O(N2) using a hierarchical matrix decomposi-

tion based on Fast Multipole Method (FMM, [24], [14], [13]) which will be presented in Chapter

3.3. Examples 20

4. In this chapter, all of the examples uses sufficient small size of data sets, where the O(N3)

eigenvalue computation is feasible.

3.3 Examples

In this section, we will show a few analytic examples to contrast our eigenfunctions with the

conventional basis functions to deepen our understanding of those eigenfunction-based represen-

tation.

3.3.1 1D Example

Consider a unit interval Ω = (0, 1). Then, the kernel of the commuting operator K becomes

K(x, y) = −|x−y|/2, and we can obtain the Laplacian eigenfunctions explicitly in the following

corollary of Theorem 3.2.1.

Corollary 3.3.1 (Saito [26]). The eigenfunctions of the integral operator K for the unit interval

Ω = (0, 1) satisfy the following Laplacian eigenvalue problem:

−φ′′ = λφ, x ∈ (0, 1);

φ(0) + φ(1) = −φ′(0) = φ′(1), (3.9)

which can be solved explicitly as follows.

• λ0 ≈ −5.756915 is a solution of the secular equation:

tanh
√−λ0

2
=

2√−λ0
, (3.10)

and the corresponding eigenfunction is:

φ0(x) = A0 cosh
√
−λ0(x− 1

2
), (3.11)

3.3. Examples 21

where A0 =
√

2
(

1 +
sinh

√−λ0√−λ0

)−1/2

≈ 0.7812598 is a normalization constant to have

‖φ0‖L2(Ω) = 1.

• λ2m−1 = (2m− 1)2π2, m = 1, 2, . . ., and the corresponding eigenfunction is:

φ2m−1(x) =
√

2 cos(2m− 1)πx; (3.12)

These are canonical cosines with odd modes.

• λ2m, m = 1, 2, . . ., is a solution of the secular equation:

tan
√

λ2m

2
= − 2√

λ2m
, (3.13)

and the corresponding eigenfunction is:

φ2m(x) = A2m cos
√

λ2m

(
x− 1

2

)
, (3.14)

where A2m =
√

2
(

1 +
sin
√

λ2m√
λ2m

)−1/2

is a normalization constant.

Proof. Let us directly derive the Laplacian eigenvalue problem from the integral eigenvalue prob-

lem, Kφ = µφ. We have

Kφ(x) = −1
2

∫ 1

0
|x− y|φ(y) dy

= −1
2

(∫ x

0
(x− y)φ(y) dy +

∫ 1

x
(y − x)φ(y) dy

)

= −1
2

(
x

∫ x

0
φ(y) dy −

∫ x

0
yφ(y) dy +

∫ 1

x
yφ(y) dy − x

∫ 1

x
φ(y) dy

)

= µφ(x).

Differentiating both side with respect to x, we get

∫ x

0
φ(y) dy −

∫ 1

x
φ(y) dy = −2µφ′(x). (3.15)

3.3. Examples 22

We can get the Laplacian eigenvalue problem by differentiating both sides of (3.15) with

respect to x again:

2φ(x) = −2µφ′′(x) ⇐⇒ −φ′′(x) = λφ(x), λ =
1
µ

.

To derive the boundary condition as (3.9), let us set x = 0 and x = 1 in (3.15), we have

φ′(0) = −φ′(1) =
1
2µ

∫ 1

0
φ(y) dy. (3.16)

Now, evaluating Kφ(x) = µφ(x) at x = 0, 1 yields

φ(0) = − 1
2µ

∫ 1

0
yφ(y) dy,

φ(1) = − 1
2µ

∫ 1

0
(1− y)φ(y) dy = − 1

2µ

(∫ 1

0
φ(y) dy −

∫ 1

0
yφ(y) dy

)
.

Adding these two equations and use (3.16), we obtain

φ(0) + φ(1) = − 1
2µ

∫ 1

0
φ(y) dy = −φ′(0) = φ′(1).

Let us now compute the solutions to this Laplacian eigenvalue problem with the boundary

condition (3.9). The characteristic equation for φ′′ + λφ = 0 is r2 + λ = 0. Therefore, we need

to consider the following three cases:

Case I λ < 0: The eigenfunction is of the form φ(x) = A cosh
√−λx + B sinh

√−λx where A,

B are some constants. Apply the boundary condition (3.9), we have

φ(0) + φ(1) = A
(
1 + cosh

√
−λ

)
+ B sinh

√
−λ

= −φ′(0) = −
√
−λB

= φ′(1) =
√
−λ

(
A sinh

√
−λ + B cosh

√
−λ

)
.

3.3. Examples 23

From these equalities, we have the following 2× 2 linear system for A and B:

1 + cosh
√−λ

√−λ + sinh
√−λ

sinh
√−λ 1 + cosh

√−λ

 ·

A

B

 =

0

0

 .

Thus, in order to have nontrivial eigenfunctions, the determination of this equation must be

zero. This leads to

0 =
(
1 + cosh

√
−λ

)2
− sinh

√
−λ

(√
−λ + sinh

√
−λ

)

= 2 + 2 cosh
√
−λ−

√
−λ sinh

√
−λ

= 4 cosh2

√−λ

2
− 2

√
−λ sinh

√−λ

2
cosh

√−λ

2

= 2 cosh2

√−λ

2

(
2−

√
−λ tanh

√−λ

2

)
.

The last equality is justified because cosh
(√−λ/2

) 6= 0. Therefore the second factor must be

zero, i.e., tanh
(√−λ/2

)
= 2/

√−λ, which is exactly (3.10). Let λ0 be the solution of this secular

equation, which can be found numerically as λ0 ≈ −5.756915. For this λ0, the relationship

between the constants A and B above must have:

A sinh
√
−λ0 + B(1 + cosh

√
−λ0) = 0 ⇐⇒ B =

sinh
√−λ0

1 + cosh
√−λ0

A.

Thus, we have

φ0(x) = A

(
cosh

√
−λ0x− sinh

√−λ0

1 + cosh
√−λ0

sinh
√
−λ0x

)

= A′
(
cosh

√
−λ0x + cosh

√
−λ0 cosh

√
−λ0x− sinh

√
−λ0 sinh

√
−λ0x

)

= A′
(
cosh

√
−λ0x + cosh

√
−λ0(1− x)

)

= A0 cosh
√
−λ0

(
x− 1

2

)
,

which is exactly (3.11). The constant A0 is the normalization constant so that ‖φ0‖L2(Ω) = 1.

3.3. Examples 24

Thus,

A0 =

(∫ 1

0

(
cosh

√
−λ0

(
x− 1

2
))2

dx

)−1/2

=
(

1
2

+
1
2

∫ 1

0
cosh 2

√
−λ0

(
x− 1

2
)

dx

)−1/2

=
√

2
(

1 +
sinh

√−λ0√−λ0

)−1/2

≈ 0.7812598.

Case II λ = 0: we have φ′′(x) = 0. Thus φ(x) = Ax + B. But the boundary condition (3.9)

leads to 2A + B = −A = A, i.e., A = B = 0. Therefore, λ = 0 is not an eigenvalue for this

problem.

Case III λ > 0: The eigenfunction is of the form φ(x) = A cos
√

λx + B sin
√

λx. Similarly to

Cast I, using the boundary condition (3.9), we have

φ(0) + φ(1) = A(1 + cos
√

λ) + B sin
√

λ

= −φ′(0) = −
√

λB

= φ′(1) =
√

λ
(
−A sin

√
λ + B cos

√
λ
)

From these equalities, we have the following 2× 2 linear system for A and B:

1 + cos
√

λ
√

λ + sin
√

λ

− sin
√

λ 1 + cos
√

λ

 ·

A

B

 =

0

0

 .

Again, the vanishing determinant of this equation leads to

0 =
(
1 + cos

√
λ
)

+ sin
√

λ
(√

λ + sin
√

λ
)

= 2 cos

√
λ

2

(
2 cos

√
λ

2
+
√

λ sin

√
λ

2

)

3.3. Examples 25

Thus, we have cos(
√

λ/2) = 0 or 2 cos(
√

λ/2) +
√

λ sin(
√

λ/2) = 0. From the former, we

can easily get the eigenvalues λ = λ2m−1 = (2m − 1)2π2 and the corresponding eigenfunctions

φ2m−1(x) =
√

2 cos(2m−1)πx, m = 1, 2, . . ., which is (3.12). From the latter, we get the secular

equation, tan(
√

λ/2) = −2/
√

λ, which is exactly (3.13). Considering the graph of periodic

asymptotes of tan(
√

λ/2) at λ = (2m− 1)2π2, we observe that the eigenvalues satisfying (3.13)

and λ2m−1 are interlacing. Thus, we naturally denote the eigenvalues satisfying (3.13) by λ2m,

m = 1, 2, . . ., which must be computed numerically. The corresponding eigenfunctions are

φ2m(x) = A

(
cos

√
λ2mx +

sin
√

λ2m

1 + cos
√

λ2m
sin

√
λ2mx

)

= A′
(
cos

√
λ2mx + cos

√
λ2m cos

√
λ2mx + sin

√
λ2m sin

√
λ2mx

)

= A′
(
cos

√
λ2mx + cos

√
λ2m(1− x)

)

= A2m cos
√

λ2m

(
x− 1

2

)
,

which is exactly (3.14). The constant A2m is the normalization constant so that ‖φ2m‖L2(Ω) = 1.

Thus,

A2m =

(∫ 1

0

(
cos

√
λ2m

(
x− 1

2
))2

dx

)−1/2

=
√

2
(

1 +
sin
√

λ2m√
λ2m

)−1/2

,

which completes the proof.

Fig. 3.1 shows these Laplacian eigenfunctions of the lowest five frequencies.

3.3.2 2D Example

Let us now consider the unit disk Ω in R2, where the kernel of our integral operator K becomes

K(x, y) = − 1
2π log ‖x − y‖2 for x, y ∈ Ω. Tailoring Theorem 3.2.2 for the unit disk, we have

the following corollary:

Corollary 3.3.2 (Saito [26]). The eigenfunctions of the integral operatorK for the unit disk in R2

3.3. Examples 26

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Figure 3.1: First five eigenfunctions of the Laplacian on the interval [0, 1] with the non-local
boundary condition (3.9).

satisfies the following Laplacian eigenvalue problem:

−∆φ = λφ, in Ω;

∂φ

∂ν

∣∣∣∣∣
Γ

=
∂φ

∂r

∣∣∣∣∣
Γ

= −∂Hφ

∂θ

∣∣∣∣∣
Γ

, (3.17)

where H is the Hilbert transform for the circle, i.e.,

Hf(θ) ∆=
1
2

pv
∫ π

−π
f(η) cot

(
θ − η

2

)
dη, θ ∈ [−π, π].

Moreover, these eigenfunctions are of the form:

φm,n(r, θ) =

Jm(βm−1,nr)
(
cos
sin

)
(mθ) if m = 1, 2, . . . , n = 1, 2, . . . ,

J0(β0,nr) if m = 0, n = 1, 2, . . . ,

where βk,` is the `th zero of the Bessel function of order k, i.e., Jk(βk,`) = 0. The corresponding

3.3. Examples 27

eigenvalues are

λm,n =

β2
m−1,n if m = 1, . . . , n = 1, 2, . . . ,

β2
0,n if m = 0, n = 1, 2,

(3.18)

Proof. In R2, we have K(x, y) = − 1
2π log ‖x− y‖2. Thus,

∇yK(x, y) =
1
2π

x− y

‖x− y‖2
2

.

Now, the normal derivative of K(x, y) at y ∈ Γ can be computed as

∂K

∂νy
(x,y) = νy · ∇yK(x, y) =

1
2π

(x− y) · νy

‖x− y‖2
2

.

When Ω is the unit disk in R2. Let x = eiθ, y = eiη be any two boundary points. Then, it is

easy to show that

|x− y|2 = 4 sin2

(
θ − η

2

)
, (x− y) · νy = (x− y) · y = −2 sin2

(
θ − η

2

)
,

which lead to
∂K

∂νy
(x, y) =

1
2π

(x− y) · νy

‖x− y‖2
2

= − 1
4π

. (3.19)

Recall the non-local boundary condition (3.3) as follows:

∫

Γ
K(x,y)

∂φ

∂νy
(y) ds(y) = −1

2
φ(x) + pv

∫

Γ

∂K(x, y)
∂νy

φ(y) ds(y) (3.20)

Let φ ∈ C2(Ω) ∩ C1(Ω) be represented in the polar coordinates as φ(r, θ). Plugging (3.19)

and the 2D kernel above into (3.20) and multiplying 2 on both sides, we get

− 1
π

∫ π

−π
log

∣∣∣∣2 sin
(

θ − η

2

)∣∣∣∣
∂φ

∂r
(1, η) dη = −φ(1, θ)− 1

2π

∫ π

−π
φ(1, η) dη. (3.21)

Note that the second term in the righthand side is a constant. Differentiating both sides in θ

3.3. Examples 28

leads to
∂φ

∂θ
(1, θ) =

1
2π

∫ π

−π

∂φ

∂r
(1, η) cot

(
θ − η

2

)
dη = H∂φ

∂r
(1, θ).

Note that H2 = −Id where Id is the identity operator. Thus, we have

∂φ

∂r
(1, θ) = −H∂φ

∂θ
(1, θ) = −∂Hφ

∂θ
(1, θ), (3.22)

which is exactly (3.17).

Finally, let us compute the eigenfunctions and the corresponding eigenvalues satisfying (3.17).

Using the separation of variables, the eigenfunction is of the form:

φ(r, θ) = Jm(
√

λr)
(

cos
sin

)
(mθ), m = 0, 1, (3.23)

If the boundary condition were the standard Dirichlet condition, then the eigenvalue λ could

be obtained by the condition Jm(
√

λ) = 0. However, our boundary condition is quite different

from the Dirichlet case: it must satisfy (3.17). Let us consider the following two cases.

Case I m > 0: By plugging (3.23) into (3.17), we have

∂φ

∂r
(1, θ) =

√
λJ ′m

(√
λ
)(cos

sin

)
(mθ) = −∂Hφ

∂θ
(1, θ)

= −Jm

(√
λ
) ∂

∂θ

(
sin
− cos

)
(mθ) = −mJm

(√
λ
)(cos

sin

)
(mθ).

From these, we have

√
λJ ′m

(√
λ
)

= −mJm

(√
λ
)
, m > 0. (3.24)

Now using the standard recursion formulas (see e.g., [1, Formula 9.1.27]):

For z ∈ C,

(i) 2J ′m(z) = Jm−1(z)− Jm+1(z)

(ii) J ′m(z) = Jm−1(z)− m

z
Jm(z)

3.3. Examples 29

By (ii) with z =
√

λ, we get

2J ′m(
√

λ) = 2Jm−1(
√

λ)− 2m√
λ

Jm(
√

λ) (3.25)

From (3.24), we get

2J ′m(
√

λ) = −2m√
λ

Jm(
√

λ) (3.26)

Therefore, combine (3.25) and (3.26), we find

Jm−1(
√

λ) = 0, m = 1, 2, . . . ,

which tells us that

λm,n = β2
m−1,n, where βm−1,n are zeros of Jm−1(x), m, n = 1, 2,

Case II m = 0: The eigenfunction is of the form φ(r, θ) = J0

(√
λr

)
, i.e., a radial function. In

this case, we need to go back to (3.21) because (3.17) simply says 0 = 0 and does not give rise to

a constraint. Now, substituting φ(r, θ) = J0

(√
λr

)
into (3.21), we have

− 1
π

∫ π

−π

∣∣∣∣2 sin
θ − η

2

∣∣∣∣
√

λJ0

(√
λ
)

dη = −J0

(√
λ
)− 1

2π

∫ π

−π
J0

(√
λ
)

dη = −2J0

(√
λ
)
. (3.27)

Since the integral

∫ π

−π
log

∣∣∣∣2 sin
θ − η

2

∣∣∣∣ dη = 2π log 2 +
∫ π

−π
log

∣∣∣∣sin
θ − η

2

∣∣∣∣ dη

= 2π log 2 + 2
∫ θ+π

2

θ−π
2

log |sinu| du

= 2π log 2 +
∫ π/2

−π/2
log |sinu| du,

where the last equality comes from the periodicity of the integrand.

We also know that
∫ π/2
0 log sinx dx = −π

2 log 2 via [12, Forumla 4.224.3], which immedi-

3.4. Application to Image Approximation 30

ately gives us ∫ π/2

−π/2
log |sinu| du = −π log 2.

Therefore, ∫ π

−π
log

∣∣∣∣2 sin
θ − η

2

∣∣∣∣ dη = 0 for any θ ∈ [−π, π].

So, (3.27) requires J0

(√
λ
)

= 0. Thus, we have λ0,n = β2
0,n, n = 1, 2, This completes

the proof.

Remark 3.3.3. This corollary suggests that out of the Laplacian eigenfunctions computed with

our formulation, those corresponding to J0, i.e., the radially symmetric eigenfunctions satisfy

the Dirichlet boundary condition, but the other eigenfunctions do not. Also, we note that there are

three eigenfunctions corresponding to each β0,n, namely, J0(β0,nr), J0(β0,nr) cos θ and J0(β0,n) sin θ.

It is also interesting to compare (3.18) with the eigenvalues λD
m,n of the Dirichlet Laplacian

and λN
m,n of the Neumann-Laplacian:

λD
m,n = β2

m,n, λN
m,n = α2

m,n, for m = 0, 1, . . . , n = 1, 2, . . . ,

where J ′m(αm,n) = 0.

Fig. 3.2 shows our Laplacian eigenfunctions of the lowest 25 frequencies (or the smallest 25

eigenvalues λ’s). Fig. 3.3 shows the Dirichlet Laplacian eigenfunctions (by separation of vari-

ables) of the lowest 25 frequencies using the codes in [30]. These eigenfunctions can be viewed

as “modes” of the vibration of the domain if the domain is interpreted as a “drum” although our

eigenfunctions do not satisfy the Dirichlet boundary condition.

3.4 Application to Image Approximation

In this section, we discuss the image approximation capability of our Laplacian eigenfunctions

given image data on a domain with irregular shape. We will compare the performance with that of

3.4. Application to Image Approximation 31

Figure 3.2: First 25 eigenfunctions of the Laplacian on the unit disk with the non-local boundary
condition (3.20).

Figure 3.3: First 25 eigenfunctions of the Dirichlet Laplacian on the unit disk.

3.4. Application to Image Approximation 32

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(a) χΩ

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(b) χΩ · Barbara

Figure 3.4: The characteristic function of the Japanese Islands (a) and the Barbara image overlaid
over the islands.

the standard wavelet-based methods.

We use a coarsely digitized image of the island of Japan, as shown in Fig. 3.4(a), which was

obtained by the google image search. We then define the characteristic function χΩ(x) to indicate

the shape of the islands. As for the data living on this domain Ω, we multiply the standard Barbara

image with χΩ, which is shown in Fig. 3.4(b). The number of sample forming the data on the

islands is 1625. We compute the Laplacian eigenfunctions defined on Ω from the kernel matrix of

1625× 1625. We display the first 25 eigenfunctions in Fig. 3.5.

We then compute the 1625 expansion coefficients relative to this Laplacian eigenbasis, sort

them in terms of their magnitudes, and approximate the data using the top 200 coordinates. In other

words, we performed 200-term nonlinear approximation using the Laplacian eigenfunctions. The

result is shown in Fig. 3.6(a) and the reconstruction error (or the residual) is shown in Fig. 3.6(b).

Note that the display dynamic range of these two figures is different. We note that the scarf region

of the Barbara image was not captured by these 100 terms of the Laplacian eigenfunctions. To

capture the high frequency features, we need more terms.

We also approximate the same image using the top 200 coefficients computed by the standard

2D wavelet basis called “Symmlet8” [5]. Note that this comparison is not really fair in the sense

that the input image to the 2D wavelet transform is whole rectangular image shown in Fig. 3.4(b),

i.e., not only the islands, but also the outer ocean part. The approximation and its residual error

are shown in Fig. 3.7. In this case, most of the top 200 wavelet coordinates are used to capture the

3.4. Application to Image Approximation 33

Figure 3.5: The first 25 Laplacian eigenfunctions over the islands of Japan.

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(a) 200-term Approx

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(b) Error

Figure 3.6: The 200-term approximation and the residual error using the Laplacian eigenfunctions.

3.4. Application to Image Approximation 34

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(a) 200-term Approx

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(b) Error

Figure 3.7: The 200-term approximation and the residual error using the standard 2D Wavelets
(Symmlet 8).

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(a) 200-term Approx

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(b) Error

Figure 3.8: The 200-term approximation and the residual error using the 1D Wavelets (Symmlet
8).

boundary of the island and cannot afford to capture the internal structure within the domain. Note

that the 200 wavelet coefficients are simply not enough to capture the boundary of the domain

precisely for this image.

To be fairer, we organize these 1625 data points in a one-dimensional array in a column scan-

ning order in Fig. 3.4(b), and apply the 1D wavelet transform using the Symmlet 8 filter. Then,

the 200-term approximation and its residual error are computed. The results are shown in Fig. 3.8.

In this case, there is not blurred boundary shape because we explicitly use the geometric infor-

mation. However, observe the stripe-shape artifacts in the approximation. This is because we

deconstructed the 2D spatial coherency of the original data by putting them into the 1D array.

35

Chapter 4

Fast Multipole Method and Eigenvalue

Computation

4.1 Introduction

Fast Multipole Method (FMM) was introduced by V. Rokhlin [24] as an O(N) numerical method

for solving an integral equation for 2D Laplace’s equation. This method was further developed

and made famous by Rokhlin and Greengard as they applied FMM to N -body problems (see

e.g., [13, 14].

The algorithm allows the product of a specially structured dense matrix of size N ×N with a

vector of length N to be evaluated approximately in O(N) or O(N log N) operations, when direct

multiplication requires O(N2) operations. For extremely large problems, the gain in efficiency and

memory can be very significant, and enables the use of more sophisticated modeling approaches

that may have been discarded as computationally infeasible in the past.

Originally this method was developed for the fast summation of the potential fields generated

by a large number of particles (point charges), such as those arising in gravitational or electrostatic

potential problems. First, we are going to review the theoretical background of FMM in a finite

2D domain, which is the fundamental motivation of our fast eigenpairs computation.

4.1. Introduction 36

4.1.1 Potential and Multipole Expansion

We are interested in a two-dimensional physical model which consists of a set of N charged

particles with potential obtained as the sum of pariwise interactions from Coulomb’s law. Suppose

that a point charge of unit strength is located at point (x0, y0) = x0 ∈ R2. Then, for any x =

(x, y) ∈ R2 with x 6= x0, the potential due to this charge is described by

φx0(x, y) ∆= − log ‖x− x0‖. (4.1)

It is well known that φx0 is harmonic in any region not containing the point x0. Moreover,

for every harmonic function u, there exists an analytic function w : C → C such that u(x, y) =

Re(w(x, y)). In the following, we will work with analytic functions in complex domain. Let

x0 + iy0 = z0 ∈ C and x + iy = z ∈ C, we have

φx0(x) = Re(− log(z − z0)).

We will refer to the analytic function log(z) as the potential due to the unit charge located in

the origin.

Lemma 4.1.1 ([13]). Let a point charge of intensity q be located at z0. Then for any z such that

|z| > |z0|,
φz0(z) = q log(z − z0) = q

(
log z −

∞∑

k=1

1
k

(z0

z

)k
)

. (4.2)

Proof. Note that log(z − z0) = log(z) + log(1− z0
z) and | z0

z | < 1. The lemma follows from the

expansion

log(1− w) = −
∞∑

k=1

wk

k
,

which is valid for any w with |w| < 1.

This provides us with a method of computing the multipole expansion due to a collection of

charges.

4.1. Introduction 37

Theorem 4.1.2 (Multipole expansion, [13]). Suppose that m charges of strengths {qi, i =

1, . . . , m} are located at points {zi, i = 1, . . . , m}, with |zi| < r. Then for any z with |z| > r,

the potential φ(z) induced by the charges is given by

φ(z) = Q log(z) +
∞∑

k=1

ak

zk
, (4.3)

where

Q =
m∑

i=1

qi and ak =
m∑

i=1

−qiz
k
i

k
. (4.4)

Furthermore, for any p ≥ 1,

∣∣∣∣∣φ(z)−Q log(z)−
p∑

k=1

ak

zk

∣∣∣∣∣ ≤ 1
p + 1

α
∣∣∣r
z

∣∣∣
p+1

≤
(

A

p + 1

)(
1

c− 1

)(
1
c

)p

,

(4.5)

where

c =
∣∣∣z
r

∣∣∣ , A =
m∑

i=1

|qi|, and α =
A

1− | rz |
. (4.6)

Proof. By using the preceding Lemma 4.1.1 and the fact that φ(z) =
∑m

i=1 φzi(z), we can imme-

diately get (4.3). To obtain the error bound, observe that

∣∣∣∣∣φ(z)−Q log(z)−
p∑

k=1

ak

zk

∣∣∣∣∣ ≤
∣∣∣∣∣∣

∞∑

k=p+1

ak

zk

∣∣∣∣∣∣
.

Substituting expression (4.4) for ak into the above, we get

∣∣∣∣∣∣

∞∑

k=p+1

ak

zk

∣∣∣∣∣∣
≤ A

∞∑

k=p+1

rk

k|z|k ≤
A

p + 1

∞∑

k=p+1

∣∣∣r
z

∣∣∣
k

=
a

p + 1

∣∣∣r
z

∣∣∣
p+1

=
(

A

p + 1

)(
1

c− 1

) (
1
c

)p

.

which is the required result.

Let us consider the computational efficiency of multipole expansion. In order to compute the

potential at the points {z̃j}n
j=1 (we will call them “targets”) due to the charges at the points {zi}m

i=1

4.1. Introduction 38

(we will call them “sources”) as in Theorem 4.1.2, we could use

m∑

i=1

φzi(z̃j) for all j = 1, · · · , n.

This clearly requires O(mn) operations. Now suppose we compute {ak}p
k=1 from m “sources”

with intensities q1, q2, . . . , qm, using (4.4) in Theorem 4.1.2. It requires O(mp) operations. Then

the evaluation of the potentials at the n “targets”, using (4.5) in Theorem 4.1.2, requires O(np)

operations. Therefore, by applying the multipole expansion, the amount of computation can be

reduced to O(m) + O(n), which is significantly smaller than O(mn) for large m and n.

The p term in Theorem 4.1.2 is very important to the approximation of potential. If c = 2 in

(4.6), then the error bound will be

∣∣∣∣∣φ(z)−Q log(z)−
p∑

k=1

ak

zk

∣∣∣∣∣ ≤ A

(
1
2

)p

, (4.7)

and if we want to obtain the relative precision ε, p must be of the order − log2(ε).

4.1.2 The O(N log N) Algorithm

To simplify the explanation of this algorithm, let us assume for the moment that the particles

are almost uniformly distributed in a square domain. We want to compute the potential for each

particle due to the rest of the particles with charge intensities. If we have N particles in total, then

the naive computational cost will be O(N2). But using multipole expansion, we can reduce this

cost.

In order to use multipole expansion systematically, we apply the well-known tree data structure

quad tree. In our case, the quad tree will partition the square by recursively subdividing it into

four squares, as shown in Fig. 4.1. At refinement level 0, we have the entire domain. Refinement

level `+1 is obtained recursively from level ` by subdivision of each square (we call them parents)

into four equal squares (we call them children). We will call each square of level ` a “node” of

level `.

4.1. Introduction 39

level 0

level 2

level 1

level 3

Figure 4.1: Quad tree: successive refinement of a square domain.

Definition 4.1.3. Two nodes are said to be near neighbors if they are at the same refinement level

and share a boundary point. A node is a near neighbor of itself.

Definition 4.1.4. Two nodes are said to be well separated if they are at the same refinement level

and are not near neighbors.

Definition 4.1.5. Each node i has its own interaction list, consisting of the children of the near

neighbors of i’s parent which are well separated from i. See details in Fig. 4.2.

The basic idea is to consider the clusters of particles at each level of quad tree and compute

the interaction between well separated clusters by means of multipole expansion. Notice that

in Theorem 4.1.2, the value of c control the decaying of the error bound in (4.5). Followed by

Definition 4.1.4, if “targets” node and “source” node are well separated, we will have c ≥ 2,

which allows us to apply multipole expansion.

At level 0 and 1, there are no pairs of well separated nodes. At level 2, there are total sixteen

nodes. Each node i of level 2 has its own interaction list (see Fig. 4.2). Then the multipole

expansion can be used to compute the interactions between the well separated nodes with error

4.1. Introduction 40

bound ε, i.e., the number of expansion terms will be p = log2(
1
ε).

level 2 level 3

: interaction list of box i

: near neighbors of box i

Figure 4.2: Steps of the algorithm.

It remains to compute the interactions between particles contained in each node i with those

contained in i’s near neighbors, and this is where recursion enters the picture. As in Fig. 4.2, at

level 3, the nodes (white boxes) have been already considered (or finished) at level 2, shown in

the left part. For each node i of level 3, we seek its interaction list and apply multipole expan-

sions to compute the interactions. The near neighbors cannot be computed by means of multipole

expansion. Then we should move on to next finer level.

The recursion will be stopped after roughly log N levels of refinement. The amount of work

at each level is of order O(N), since each particle contributes to p expansion coefficients. At the

finest level, we will have O(1) particles per node and compute the interactions directly. Therefore,

it will cost O(N) operations. In summary, the computational cost of this algorithm will roughly

be of order O(N log N).

4.1.3 FMM: The O(N) Method

In order to develop an O(N) algorithm, we need several analytic results concerning multipole

expansion and local expansion. The theorems are drawn from [13] and [14]. Here we provide the

detailed proof and some important comments.

4.1. Introduction 41

Theorem 4.1.6 (Translation of a multipole expansion, [13]). Suppose that

φ(z) = a0 log(z − z0) +
∞∑

k=1

ak

(z − z0)k
(4.8)

is a multipole expansion of the potential due to a set of m charges of strength q1, q2, . . . , qm, all

of which are located inside the disk D of radius R with center at z0. Then for z outside the disk

D1 of radius (R + |z0|) and center at the origin,

φ(z) = a0 log(z) +
∞∑

l=1

bl

zl
, (4.9)

where

bl = −a0z
l
0

l
+

l∑

k=1

akz
l−k
0

(
l − 1
k − 1

)
, (4.10)

with
(

l
k

)
the binomial coefficients. Furthermore, for any p ≥ 1,

∣∣∣∣∣φ(z)− a0 log(z)−
p∑

l=1

bl

zl

∣∣∣∣∣ ≤

A

1−
∣∣∣∣
|z0|+ R

z

∣∣∣∣

∣∣∣∣
|z0|+ R

z

∣∣∣∣
p+1

(4.11)

with A defined in (4.6).

In [13], there is a hint for the proof. A detailed one is provided as follows.

Proof. First of all, by Lemma 4.1.1

log(z − z0) = log(z)−
∞∑

k=1

1
k

(z0

z

)k
(4.12)

Second, by Newton’s Binomial series
1

(1− z)s
=

∞∑

n=0

(
s− 1 + n

s− 1

)
zn, we have

1
(z − z0)k

=
1
zk
· 1

1−
(z0

z

)k
=

1
zk

∞∑

n=0

(
k − 1 + n

k − 1

)
zn
0

zn
,

4.1. Introduction 42

By letting l = n + k, we get

1
(z − z0)k

=
∞∑

l=k

(
l − 1
k − 1

)
zl−k
0

zl
. (4.13)

Now substitute (4.12) and (4.13) into (4.8), we get

φ(z) = a0 log(z)− a0

∞∑

k=1

(z0

z

)k
+

∞∑

k=1

ak

∞∑

l=k

(
l − 1
k − 1

)
zl−k
0

zl

= a0 log(z)−
∞∑

l=1

a0z
l
0

l
· 1
zl

+
∞∑

k=1

∞∑

l=k

akz
l−k
0

(
l − 1
k − 1

)
1
zl

= a0 log(z) +
∞∑

l=1

(
−a0z

l
0

l
+

l∑

k=1

akz
l−k
0

(
l − 1
k − 1

))
1
zl

= a0 log(z)−
∞∑

l=1

bl

zl

where bl is defined in (4.10).

Similarly as Theorem 4.1.2, let c =
∣∣∣z
r

∣∣∣, where r = |z0| + R in this case. Therefore, by

applying Theorem 4.1.2, we immediately prove (4.11).

Observation 4.1.1. As shown in Fig. 4.3, the multipole expansion contributed by the particles in

a parent node of level `−1 can be constructed by merging the multipole expansion contributed by

the particles in each child node of level ` by using the translation of the multipole expansion. In

other words, once we compute the multipole expansion based on each child node, we first translate

it to the center of their parent and then add the translated expansions together.

Theorem 4.1.7 (Conversion of a multipole expansion into a local expansion, [13]). Suppose

that m charges of strengths q1, q2, . . . , qm are located inside the disk D1 with radius R and center

at z0, and that |z0| > (c + 1)R with c > 1. Then the corresponding multipole expansion (4.8)

converges inside the disk D2 of radius R center at origin. Inside D2, the potential due to the

charges is described by a power series:

φ(z) =
∞∑

l=0

bl · zl, (4.14)

4.1. Introduction 43

(a) (b)

i

a

c

b

d

0

D1

D

Z0

Z

R

Figure 4.3: Translation of multipole expansion. (a) The multipole expansion centered at z0, the
center of the disk D can be translated to the multipole expansion centered at origin, which is the
center of the parent disk D1; (b) The merging procedure. For node i, the multipole expansion
contributed by the particles inside each of the nodes a, b, c, d can be translated to the expansion
centered at the center of their parent, then add the four translated expansions together to construct
the multipole expansion for their parent.

where

b0 = a0 log(−z0) +
∞∑

k=1

ak

zk
0

(−1)k, (4.15)

and

bl = − a0

l · zl
0

+
1
zl
0

∞∑

k=1

ak

zk
0

(
l + k − 1

k − 1

)
(−1)k, for l ≤ 1. (4.16)

Furthermore, an error bound for the truncated series is given by

∣∣∣∣∣φ(z)−
p∑

l=0

bl · zl

∣∣∣∣∣ <
A(4e(p + c)(c + 1) + c2)

c(c− 1)

(
1
c

)p+1

, (4.17)

where A is defined in (4.6) and e is the base of natural logarithms.

The proof of this theorem was provided in [14]. See the Fig. 4.4 for graphic explanation.

Theorem 4.1.8 (Translation of a local expansion, [13]). For any complex z0, z, and {ak}, k =

4.1. Introduction 44

z0

R

0

R

wR

D1

D2

i

(a) (b)

z

Figure 4.4: Conversion of multipole expansion into a local expansion. (a) the multipole expan-
sion centered about z0, the center of the circle D1 can be converted to an expansion centered at
origin, the center of the circle D2, which is well separated from D1; (b) For node i, the multipole
expansion based on the particles inside each of the nodes (white boxes) can be converted to a local
expansion about i. Notice that the set of the nodes (white boxes) is the interaction list of node i.

0, 1, 2, . . . , n,
n∑

k=0

ak(z − z0)k =
n∑

l=0

(
n∑

k=l

ak

(
k

l

)
(−z0)k−l

)
zl. (4.18)

Proof. The equation (4.18) is an immediate consequence of Maclaurin’s theorem.

n∑

k=0

ak(z − z0)k =
n∑

k=0

ak

k∑

l=0

(
k

l

)
(−z0)k−lzl

=
n∑

l=0

n∑

k=l

ak

(
k

l

)
(−z0)k−lzl

which finish the proof.

Observation 4.1.2. Assume we have a local expansion on node i of level 2, which is constructed

by converting the multipole expansion based on each nodes of i’s the interaction to the local

expansion on i and then adding these local expansions together. Therefore, in the level 3, for any

child of i, we translate the local expansion on parent i to this child, which is contributed by all the

4.1. Introduction 45

i

i

(a) (b)

Figure 4.5: Conversion of multipole expansion into a local expansion and translation of a local
expansion. (a) For node i, the multipole expansion based on the particles inside each of the nodes
(white boxes) can be converted to a local expansion about node i. Notice that the set of the white
boxes is the interaction list of node i. (b) The local expansion centered about the node i, which is
contributed by all the particles outside of i and i’s near neighbors, can be translated to the local
expansion for its children.

particles outside i’s near neighbors. By doing this, for the nodes of level 3, we only need to take

care of the particles inside their parents and the parents’ near neighbors.

Now it is time to improve the previous O(N log N) algorithm in Sec. 4.1.2 by using the analy-

sis in this section. In the O(N log N) algorithm, all of the particles will be accessed in every level

of refinement. The FMM, i.e., O(N) algorithm, will avoid such computation load. Here, we sim-

ply indicate the modifications on O(N log N) which lead to the FMM implementation (see [2]).

Initialization

Given N particles distributed in a square domain. Construct a quad tree with L + 1 lev-

els, which contains the refinement information of this domain. The indices of levels will be

0, 1, 2, . . . , L − 1, L (see Sec. 4.1.2 for the details of quad tree). Assume that, on average, s

4.1. Introduction 46

particles per box in the finest level, we will have 4L · s = N , or equivalently, L = log4(N/s).

Upward Pass

In O(N log N) algorithm, we proceed from coarsest level to finest level by forming multipole

expansions for every node. In the FMM, we will start with the finest level, construct multipole

expansions for each node of level L. Then the multipole expansion for all nodes in the coarser

levels will be constructed by the merging procedure described in Observation 4.1.1.

Downward Pass

In O(N log N) algorithm, for each node i in level ` ∈ {2, 3, . . . , L} under consideration, we

directly add the multipole expansions from the nodes of i’s interaction list to the potential due

to the particles outside of i’s near neighbors. But in FMM, we convert each of these multipole

expansions into a local expansion about i’s center, using Theorem 4.1.7, then add them together.

After these calculations are completed, we have a local expansion for each node i in every

level. Then beginning at the coarsest level, which in fact is level 2, we translate these local ex-

pansions to the children in level 3, as explained in Observation 4.1.2, and add to the children’s

local expansion. After this recursion process reaches the finest level, a local expansion of each

box i will be the potential due to all of the particles outside i’s near neighbors. The near neighbor

interactions can be computed directly.

Let us count the approximate amount of operations needed in the above procedure.

In Upward Pass, to form the multipole expansions for each node in the finest level, we need

about Np operations, where p is the number of terms in the multipole expansion (see Theo-

rem 4.1.2). Then for the translations for the higher levels, we need about (N
s)p2 operations.

In Downward Pass, to convert the multipole expansions about all nodes of the interaction list

of each node in an arbitrary level, we need about 27(N
s)p2 operations. Then for the translations

from the parent to its children, we need about (N
s)p2 operations. For the evaluation of a local

4.2. Matrix Representations of FMM 47

expansion in the finest level and computing potential directly from the near neighbor, we need

about Np and 9Ns respectively.

Therefore, the total count will be approximately

Np + 29
(

N

s

)
p2 + Np + 9Ns

where if s = p, this yields 40Np.

4.2 Matrix Representations of FMM

The 2D kernel introduced in Chapter 3 is

K(x,y) = − 1
2π

log ‖x− y‖, (4.19)

where − log ‖x − y‖ denotes the potential at point x due to a charge of unit strength located

at point y. Let us consider this kernel in complex domain, as explained in Sec. 4.1.1. Assume

x = (x, y), y = (x0, y0). Let z = x + iy, z0 = x0 + iy0. Then the kernel in (4.19) will be

K(x, y) = − 1
2π

Re(log(z − z0)),

which can be simply written as K(x,y) = − 1
2π

log |z − z0| for convenience.

We will investigate the following numerical computation for the eigenvalue problem in a com-

plex domain, which is equivalent to R2.

Given a set of N particles located at N distinct points, i.e., S = {z1, z2, . . . , zN} ⊂ C. For

any set of reals {q1, q2, . . . , qN}, where qi is the charge strength of the particle located at zi,

we want to compute the potential for each particle at zi due to the rest of particles located at

{zj}N
j=1,j 6=i.

In terms of matrix-vector multiplication, we can rephrase this problem as follows:

Φ = Pq, (4.20)

4.2. Matrix Representations of FMM 48

[0,1]

[0,1/2)

[0,1/4) [1/4,1/2)

[0,1/8) [1/8,1/4) [1/4,3/8) [3/8,1/2)

[1/2,1]

[1/2,3/4) [3/4,1]

[1/2,5/8) [5/8,3/4) [3/4,7/8) [7/8,1]

level 0

level 1

level 2

level 3

Figure 4.6: Binary tree structure induced by a uniform subdivision of the interval [0, 1].

where P with size of N × N , whose diagonal entries are 0’s; and Pij = log |zi − zj |, for i 6= j;

q ∈ RN×1. Therefore, by computing the matrix-vector multiplication, we will get the potential

vector Φ, which contains the potentials at each point due to the others.

Now the problem is to compute the matrix-vector multiplication rapidly. The basic idea of fast

matrix-vector multiplication was introduced in [4], where the 1D case is completely explained.

In this thesis, we further investigate the structure of a 2D kernel matrix P and the algorithm of

matrix-vector algorithm.

4.2.1 Hierarchical Data Structure

One of the important properties of d-dimensional Euclidean space Rd is that it can be subdivided

into rectangular domains: intervals for d = 1, squares for d = 2, and cubes for d = 3. In

practice, we often deal with finite domains. For example, a finite domain in 2D can be enclosed by

a bounding square. Assign the bounding square to level 0 in the hierarchical refinement scheme.

Then the square can be evenly divided into 4 squares, which are tagged as to level 1. Repeating

this procedure, we generate a sequence of squares in level 2, level 3, and so on. Even though this

subdivision can be repeated forever, in practice we would stop at a refinement level L, which is

determined by some criterion, e.g., the number of particles in each square of level L must be less

than a finite number. Such a data structure is called quad tree. Sometimes people call binary tree

for d = 1 and 2d tree for general d. See the binary tree as shown in Fig. 4.6 and quad tree in

Fig. 4.1.

Notice that the 2d tree structures of our interest do not depend on the distribution of the parti-

4.2. Matrix Representations of FMM 49

[0,1]

[0,1/2)

[0,1/4) [1/4,1/2)

[0,1/8) [1/8,1/4) [1/4,3/8) [3/8,1/2)

[1/2,1]

[1/2,3/4) [3/4,1]

[1/2,5/8) [5/8,3/4) [3/4,7/8) [7/8,1]

level 0

level 1

level 2

level 3

0

0 0

0 0 0 0

1

1

11

1

1 1

Figure 4.7: Ordinary Indexing Scheme on a Binary Tree Structure.

cles (or the sampling scheme of dataset). For example, in 2D, given the bounding square of level

0, we can do the homogeneous subdivision and stop at a particular level L, where L could be

controlled by the size of whole dataset (e.g., if we want to have at most s particles in each square

of level L, and if there are N particles in total, then L ≥ log4
N
s).

To avoid the confusion, we will call each component of 2d tree as a node.

4.2.2 Indexing of a Quad Tree

To implement the matrix vector product Pq in (4.20) efficiently, we want to apply the ideas of

the multipole expansion and the local expansion discussed in Sec. 4.1.2 and Sec. 4.1.3. Recall

that the efficiency of FMM comes from the approximations based on the well separated (see

Definition. 4.1.4) subregions of a domain in terms of the Euclidean distance. And we also know

that the 2d tree structure is a subdivision of a domain into d-dimensional cubes (nodes), which is

convenient for grouping particles based on the Euclidean distance.

In a 2d tree, to index a node in an arbitrary level `, we must know its index I` as one of the

children of its parent, its parent’s index I`−1 as one of the children of its grandparent, and so on.

Therefore, we can index any node in level ` by a vector of length `, denoted by

I = (I1, I2, · · · , I`), with Ij ∈ {0, 1, 2, · · · , 2d − 1}, j = 1, 2, · · · , `. (4.21)

For example, in Figure 4.7 and Figure 4.8, we have binary tree indexing and quad tree index-

ing, respectively. It is still not convenient to trace one particular node by their indices in the vector

4.2. Matrix Representations of FMM 50

0 1

2 3

(a) L = 1

0 1

2 3

0 0

0 0

1

1 1

1

22

2 23

3 3

3

(b) L = 2

Figure 4.8: An ordinary indexing scheme of the quad tree.

0

3

1

2

0

632

1 4 5

7

1410 11

8 9 12

15

13

(a) L = 2

0 1

2 3

0

8

4

12

1110

9

1 5

13

14 15

2 3 6 7

0 1

2

5

763

4

37

1514

32

1110

8 9 12 13 24

18

16

43 46

45444140

34 35 38 39

33 36 49

58

56

50

26

48

17

19

25

27

51

52

31

29

23

2120

22

28

30

60

59

57

54

62

61

55

53

6342 47

(b) L = 3

Figure 4.9: New indexing scheme of the quad tree.

form I because every entry of I has to be accessed.

Therefore, let us apply a new indexing scheme: Given any index I = (I1, · · · , I`), define a

new index D as

D
∆= (Dglobal = `, Dlocal =

∑̀

j=1

4`−j · Ij). (4.22)

where Dglobal records the level of the node and Dlocal can be considered as an identity number of

the node of level Dglobal. With this indexing scheme, we can distinguish any pair of nodes of 2d

tree only by accessing two values: Dglobal and Dlocal. For example, in Figure 4.9(a), the square

12 of level 2 has index D = (2, 12) and the square 3 of level 1 has index D = (1, 3).

4.2. Matrix Representations of FMM 51

As shown in Figure 4.9, there are some interesting properties to be observed. In a quad tree,

given a child node (c) with index D(c) = (D(c)
global, D

(c)
local), and its parent node (p) with index

D(p) = (D(p)
global, D

(p)
local), we have the following relationships:

D
(p)
global = D

(c)
global − 1;

D
(p)
local =

⌊
D

(c)
local

4

⌋
;

D
(c)
local = 4 ·D(p)

local + i, where i ∈ {0, 1, 2, 3}.

(4.23)

We can generalize (4.23) to formulas in a 2d tree as follows:

D
(p)
global = D

(c)
global − 1;

D
(p)
local =

⌊
D

(c)
local

2d

⌋
;

D
(c)
local = 2d ·D(p)

local + i, where i ∈ {0, 1, · · · , 2d − 1}.

(4.24)

Remark 4.2.1. This indexing scheme can help us construct the original kernel matrix and split it

into submatrices. We will discuss about our matrix-splitting scheme in next section.

4.2.3 Matrix-splitting Scheme

Construction of the original kernel matrix

Using the indexing method in the previous section, we obtain a sequence of the nodes (from

the finest level, say level L), where the indices are in the ascending order. We will use this

sequence to construct the original kernel matrix. For example, Fig. 4.9(a) displays a square domain

equipped with a quad tree with L = 2. Then the sequence used for construct the kernel matrix is

{0, 1, 2, . . . , 15} and the original kernel matrix will have an abstract form shown in Fig. 4.10.

4.2. Matrix Representations of FMM 52

1 151413121110987654320

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 4.10: The construction of the original kernel matrix.

Splitting of the original kernel matrix

In Fig. 4.10, we already have a splitting form of the original kernel matrix. But we need to

refine such splitting form according to our indexing scheme in a quad tree. Recall the definitions

of the near neighbors and the interaction list from Sec. 4.1, the rules of our matrix-splitting scheme

are

• Every submatrix generated by the splitting scheme should correspond to a pair of nodes

from the same level of the quad tree;

• The two nodes in such a pair must either be near neighbors or belong to each other’s inter-

action list.

Let us explain how to apply these splitting rules by an example. A square domain equipped

with a quad tree with L = 3 is displayed in Fig. 4.9(b). By applying the splitting rules, we obtain

the splitted kernel matrix shown in Fig. 4.11.

4.2. Matrix Representations of FMM 53

1 151413121110987654320

1

15

14

13

12

11

10

9

8

7

6

5

4

3

2

0

Figure 4.11: The splitted original kernel matrix generated by our matrix-splitting scheme.

4.2.4 The Low Rank Submatrices

So far, we have discussed the idea of the original FMM, the quad tree structure, the matrix form

of FMM, the indexing of a quad tree, and the matrix-splitting scheme. In this section, we will

investigate some particular submatrices of the matrix P in (4.20).

Interaction List and Multipole Expansion

Given a square shape domain Ω with a quad tree structure as shown in Figure 4.12 (a), where

the finest level is level 2. For the simplicity, assume that a S collection of point charges uni-

formly distributed in Ω. Then by applying the indexing scheme in the previous section, we get the

corresponding division of matrix P as shown in Figure 4.12 (b).

Denote the submatrices by Bi,j , i, j = 0, . . . , 15. Let us just pick one of them, say B3,7,

corresponding to two dark squares in Figure 4.12 (a), where the two corresponding subsets of S

are S3 and S7.

Furthermore, assume S3 = {z3,1, z3,2, . . . , z3,m3}, S7 = {z7,1, z7,2, . . . , z7,m7}. Then the

4.2. Matrix Representations of FMM 54

0

3

1

2

0

632

1 4 5

7

1410 11

8 9 12

15

13

(a) A square domain with a quad tree

1 151413121110987654320

1

15

14

13

12

11

10

9

8

7

6

5

4

3

2

0

(b) The matrix P

Figure 4.12: A simple example.

submatrix of P will be written as:

B3,7 =

log |z3,1 − z7,1| log |z3,1 − z7,2| · · · log |z3,1 − z7,m7 |
log |z3,2 − z7,1| log |z3,2 − z7,2| · · · log |z3,2 − z7,m7 |

...
...

...
...

log |z3,m3 − z7,1| log |z3,m3 − z7,2| · · · log |z3,m3 − z7,m7 |

.

Recall Theorem 4.1.2 about the multipole expansion. Since the two subsets S3 and S7 are

well separated (in fact, S7 is one of the interaction list of S3), we can write each element of B3,7

into the form of multipole expansion. Assume the center of S3 is z3, then by Lemma 4.1.1 and

Theorem 4.1.2, we get

log |z3,i − z7,j | ≈ log |z7,j − z3|+
p∑

k=1

−|z3,i − z3|k/k

|z7,j − z3|k , (4.25)

where p ∈ N, which controls the accuracy of the approximation. Note that p depends on the

separateness of S3 and S7, but not on the size of B3,7. Generally, p ¿ m3, m7. See the detail

discussion about p in Sec. 4.1.1.

4.2. Matrix Representations of FMM 55

Therefore, we get the approximation of B3,7 as

B3,7 ≈

−|z3,1 − z3| · · · −|z3,1 − z3|p/p 1

−|z3,2 − z3| · · · −|z3,2 − z3|p/p 1
...

...
...

...

−|z3,m3 − z3| · · · −|z3,m3 − z3|p/p 1

︸ ︷︷ ︸
M2,3: m3× p+1

·

1
|z7,1−z3|

1
|z7,2−z3| · · · 1

|z7,m7−z3|
...

...
...

...

1
|z7,1−z3|p

1
|z7,2−z3|p · · · 1

|z7,m7−z3|p

log |z7,1 − z3| log |z7,2 − z3| · · · log |z7,m7 − z3|

︸ ︷︷ ︸
p+1×m7

, (4.26)

where “≈” is derived in the sense of of Forbenius norm. Notice that this form is derived exactly

from Theorem 4.1.2 about multipole expansion, where the first matrix on the right hand side

of (4.26), denoted by M2,3, consists of the multipole expansion coefficients based on the leaf node

3.

From the equation (4.26), we can conclude that the submatrix B3,7 can be approximated by a

linear combination of p + 1 column vectors, which means the rank of B3,7 could be as small as

p + 1. Here let us specify the “rank” of a matrix as follows: Given a matrix A ∈ Rm×n, let its

singular values be σ1 ≥ σ2 ≥ . . . ≥ σm. If there exist an integer 1 ≤ k ¿ m, such that σk is very

small, say σk < 10−8, then this matrix has low rank property.

Remark 4.2.2. Actually, we can intuitively get the low rank property by considering the smooth-

ness of the kernel function log |z − z0| when z and z0 are far away enough from each other.

Remark 4.2.3. Notice that at the level 2 of a quad tree, node 7 is one of the interaction list of node

3, see Def. 4.1.5. Therefore, given a node, say node i, all of the submatrices generated from that

node and its interaction list have low rank property. Furthermore, from (4.26), we can see that these

submatrices share the same column bases M2,3, which does not depend on the sampling locations

4.2. Matrix Representations of FMM 56

1 15141312111098765432

1

15

14

13

12

11

10

9

8

7

6

5

4

3

2

0

0

Figure 4.13: The kernel matrix P with low rank submatrices (the blank boxes) for L = 2.

in the nodes in the interaction list. This observation in fact is guaranteed by Theorem 4.1.2, which

will be used later as an important key to our eigenvalue computation.

Remark 4.2.4. For any pair of near neighbors in the finest level of a quad tree, the corresponding

submatrix does not have low rank property. In our experiments, we have to store them for the

eigenvalue computation. Therefore, to save storage space for the huge dataset, it is recommended

to apply a quad tree with deep levels where the number of the points in each node at the finest

level is small.

Therefore, based on these considerations, we have the kernel matrix P shown in Figure 4.13,

where the blank submatrices are the ones with low rank; the dotted submatrices are the ones with

full rank.

Hierarchical Structure and Translation of Multipole Expansion

Assume that we have the same domain as the previous simple example, but the quad tree has one

more level, i.e., the finest level is level 3 now. Figure 4.9(b) shows the indexing scheme applied

on this quad tree.

We already know that the submatrices corresponding to two well-separated nodes have the low

rank property. Therefore, if we assign a dot to the submatrices with full rank and blank boxes to

4.2. Matrix Representations of FMM 57

1 151413121110987654320

1

15

14

13

12

11

10

9

8

7

6

5

4

3

2

0

Figure 4.14: The kernel matrix P with low rank submatrices (the blank boxes) for L = 3.

the submatrices with low rank, we can get the kernel matrix P shown in Figure 4.14.

In Fig. 4.14, all of the blank boxes correspond to the low rank submatrices constructed by

pairs of nodes who belong to each other’s interaction list; all of the dotted boxes correspond to

the full rank submatrices constructed by pairs of near neighbor nodes of the finest level. We can

generalize such structure to the case of a quad tree with n levels. Therefore, thanks to the indexing

scheme and the low rank properties, we obtain a matrix-splitting method.

There are important relationships among the low rank submatrices. For example, in Fig. 4.14,

there are 12 blank boxes in P corresponding to the nodes in the interaction list of node 0 of level

3; there are also 12 blank boxes in P corresponding to its parent node, node 0 of level 2. To

investigate the relationships of these low rank submatrices between child node and parent node,

we will apply some ideas from FMM.

First, let us describe how to apply the translation of multipole expansion. Recall Theorem 4.1.6

4.2. Matrix Representations of FMM 58

as follows:

Suppose that

φ(z) = a0 log(z − z0) +
∞∑

k=1

ak

(z − z0)k
(4.27)

is a multipole expansion of the potential due to a set of m charges of strength q1, q2, . . . , qm, all

of which are located inside the disk D of radius R with center at z0. Then for z outside the disk

D1 of radius (R + |z0|) and center at the origin,

φ(z) = a0 log(z) +
∞∑

l=1

bl

zl
, (4.28)

where

bl = −a0z
l
0

l
+

l∑

k=1

akz
l−k
0

(
l − 1
k − 1

)
, (4.29)

with
(

l
k

)
the binomial coefficients. Furthermore, for any p ≥ 1,

∣∣∣∣∣φ(z)− a0 log(z)−
p∑

l=1

bl

zl

∣∣∣∣∣ ≤

A

1−
∣∣∣∣
|z0|+ R

z

∣∣∣∣

∣∣∣∣
|z0|+ R

z

∣∣∣∣
p+1

(4.30)

where A is some constant.

As explained in Figure 4.3 and Observation 4.1.1, the multipole expansion coefficients for a

child can be transformed to the multipole expansion coefficients for its parent by applying formula

(4.29). In our numerical computation, we will call the column basis of the low rank submatrices

the matrix of the multiple expansion coefficients. Let us choose a particular pair of parent and its

children to show this.

For a parent node in level 2 with index D = (2, 0), the matrix M2,0 is called the matrix of

its multipole expansion coefficients. Then for its four children, M3,i, i = 0, 1, 2, 3 are called

the matrices of their multipole expansion coefficients. Thus, after we get the matrices M3,i, i =

0, 1, 2, 3 in the similar manner as (4.26), which are in fact the matrices of the multipole expansion

coefficients for the children, we can compute a transform matrix Ri for each M3,i by using (4.29).

4.2. Matrix Representations of FMM 59

Then the matrix M2,0 can be computed by

M2,0 =

M3,0R0

M3,1R1

M3,2R2

M3,3R3

=

M3,0

M3,1

M3,2

M3,3

R, with R =

R0

R1

R2

R3

. (4.31)

Notice that if we simply use p terms for all the approximation of low rank submatrices, the

size of R will be 4p× p.

Remark 4.2.5. By knowing the translation of multipole expansions from children to parent, we

find the transformation from the column bases of children’s low rank matrices to the column

bases of parent’s low rank matrices, which is a basic hierarchical property for the original kernel

matrix equipped with a quad tree structure. We will come back to this property combined with the

symmetric property when we introduce our matrix decomposition algorithm.

Remark 4.2.6. In the numerical computation, we do not use exact column bases, which consist

of the multipole expansion coefficients, since the approximation accuracy (which depends on the

term p) cannot be precisely controlled (see the error term in Theorem 4.1.2 and Theorem 4.1.6.

To deal with these low rank submatrices, we should necessarily review some important issues

about low rank matrix approximation problem, which has received much attention in the past

decade and important to our matrix decomposition algorithm.

4.2.5 Low Rank Approximation Problem

Given a matrix A ∈ Rm×n, m > n, find a matrix B ∈ Rm×n of rank at most k that minimizes

‖A−B‖2
F

∆=
∑

i,j

(Aij −Bij)2 (4.32)

To solve the optimal B, one can use the Singular Value Decomposition (SVD) of a matrix. We

start with a well known lemma.

4.2. Matrix Representations of FMM 60

Lemma 4.2.7. For any matrix C ∈ Rm×n, given U ∈ Rm×m and V ∈ Rn×n are unitary matrices,

then ‖C‖2
F = ‖UT CV ‖2

F .

The proof is base on the fact that ‖C‖2
F = tr(CT C) = tr(CCT).

Assume the SVD of matrix A is A = UΣV T , where U ∈ Rm×m, V ∈ Rn×n are both unitary,

Σ ∈ Rm×n with nonnegative reals (σ1, σ2, . . . , σn) on the diagonal and zeros off the diagonal.

Using Lemma 4.2.7, given the unitary matrices U and V from the SVD of A, we have

‖A−B‖2
F = ‖UT AV − UT BV ‖2

F (4.33)

= ‖Σ− UT BV ‖2
F , (4.34)

which implies that UT BV must be a diagonal matrix in order to minimize the Frobenius norm of

Σ− UT BV , since Σ only has values on its diagonal.

So, we set B = USV T , where S ∈ Rm×n with zeros off the diagonal. Because we are

looking for a matrix B whose rank is at most k < n, the diagonal entries of S should be set

to (s11, . . . , skk, 0, . . . , 0). Therefore, we only need to find what values of sii, i = 1, . . . , k can

minimize (4.32). We can keep working on (4.33) as follows:

‖A−B‖2
F = ‖Σ− UT BV ‖2

F

= ‖Σ− S‖2
F =

n∑

i=1

(σi − sii)2

=
k∑

i=1

(σi − sii)2 +
n∑

i=k+1

σ2
i .

Therefore, to minimize the Frobenius norm of A−B, is equivalent to minimize

k∑

i=1

(σi − sii)2,

which means that sii = σi. Therefore, the solution to the low rank matrix approximation problem

is matrix B = USV T , where S has zeros everywhere except sii = σi for i = 1, . . . , k.

Remark 4.2.8. The low rank approximation problem is related to the truncated form of SVD. The

4.3. Fast Matrix-Vector Multiplication 61

minimizer of ‖A−B‖F is B = USV T . Because there are only k non-zero entries on the diagonal

of S, we can write B as B = Ũ S̃Ṽ T , where S̃ ∈ Rk×k is a diagonal matrix with sii = σi for

i = 1, . . . , k; Ũ ∈ Rm×k contains the first k columns of U and Ṽ ∈ Rn×k contains the first k

columns of V .

Therefore, we can approximate the matrix-vector multiplication by truncating the SVD of the

matrix based on the following inequality:

‖Ax−Bx‖2
2 ≤ ‖A−B‖2

2‖x‖2
2 ≤ ‖A−B‖2

F ‖x‖2
2.

Let B be the truncated form of the SVD of A, i.e., B = Ũ S̃Ṽ T . From the Lemma 4.2.7, we

can get

‖Ax−Bx‖2
2 ≤

n∑

i=k+1

σ2
i · ‖x‖2

2 ≤ (n− k)σ2
k+1 · ‖x‖2

2.

So, given the full SVD of low rank matrix A, in order to get B, we can set up a threshold

ε > 0 and throw away the singular values smaller than ε, say σk < ε < σk+1. By doing so, we

can speed up the computation of Ax from the cost of direct computation O(mn) to O(k(m+n)),

the cost of Bx. Meanwhile, the approximation error can be controlled by ε.

4.3 Fast Matrix-Vector Multiplication

From the last section, we know that for a low rank submatrix, the truncated SVD (TSVD) will

supply a good approximation and guarantee the fast matrix-vector multiplication. But if we only

use TSVD for every low rank submatrix in the original kernel matrix P (see e.g., Fig. 4.14), the

cost will be at least O(N log N); see the similar situation happened in Sec. 4.1.2. To achieve

O(N) complexity, we need several important ideas that we will describe below (see [4] for 1D

case).

4.3. Fast Matrix-Vector Multiplication 62

1 15141312111098765432

1

15

14

13

12

11

10

9

8

7

6

5

4

3

2

0

0

=

φ P q

φ0

φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

φ9

φ10

φ11

φ12

φ13

φ14

φ15

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

q14

q15

Figure 4.15: The matrix-vector multiplication.

4.3.1 Column Bases and Row Bases

Let us start with the simple example introduced in Sec. 4.2.4. In Fig. 4.15, we have the form of

matrix-vector multiplication. Notice that we chop the vector φ and q into segments corresponding

to the size of nodes of level 2. We will follow the notations used in Sec. 4.2.4. Bi,j denotes the

submatrix corresponding to the two nodes i and j, where i, j = 0, 1, . . . , 15. For example, the

green submatrices will multiply the green segment of q, the blue submatrices will multiply the

blue segment of q, and φ1 =
15∑

j=0

B1,jqj .

In Fig. 4.15, the green submatrices are Bi,7, where i = 0, 1, 2, 3, 8, 9, 10, 11, 14, 15, which in

fact correspond to the interaction list of node 7. So the cost of computation on Bi,7q7 could be

4.3. Fast Matrix-Vector Multiplication 63

reduced if they share the same row bases, which is true based on Sec. 4.2.4. Also, since the kernel

matrix is symmetric, we have Bi,j = BT
j,i. Therefore, the submatrix Bi,j can be approximated by

Bi,j ≈ UiWi,jU
T
j , (4.35)

where Wi,j ∈ Rp×p; Ui ∈ Rmi×p is the column bases of Bi,j ; Uj ∈ Rmj×p is the column bases

of Bj,i, and the approximate rank of Bi,j is p. Here we assume the size of Bi,j is mi ×mj .

Therefore, for the computation in Fig. 4.15, assume we have computed all Ui, i = 0, 1, . . . , 15,

compute

Gj
∆= UT

j qj , j = 0, 1, . . . , 15.

We store Gj’s and use them later for computing the approximation

Bi,jqj ≈ UiWi,jGj .

Thus, we can save a lot by introducing the computation of Gj (see Sec. 4.1.2 for the similar

situation). But to improve the speed from O(N log N) to O(N), we must use some techniques

related with the hierarchical levels. Notice that log N is constantly proportional to the number of

levels of the quad tree. Therefore, if the computational cost for each level is about O(N), the total

algorithm will cost O(N log N).

4.3.2 Hierarchical Transformation of the Column Bases

Thanks to Sec. 4.2.4, we know that the column bases of the children can be transformed into the

column bases of their parent. In Fig. 4.16, we use a particular part of original kernel matrix from

Fig. 4.14 to show how to do the transformation.

Let us set B
(`)
i,j to be the submatrix corresponding to the two nodes i and j of level `. Therefore,

in Fig. 4.16, the green block will be denoted by B
(2)
1,8 , the four red blocks are the four submatrices

in level 3: B
(3)
4,27, B

(3)
5,27, B

(3)
6,27, B

(3)
7,27. The four blue blocks are: B

(3)
12,32, B

(3)
12,33, B

(3)
12,34, B

(3)
12,35.

The index information can be found in Fig. 4.9(b).

4.3. Fast Matrix-Vector Multiplication 64

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

Figure 4.16: A part of kernel matrix P as in Figure 4.14.

Let us apply the formula (4.35) on these submatrices:

B
(2)
1,8 ≈ U

(2)
1 W

(2)
1,8 U

(2)T

8 ;

B
(3)
j,27 ≈ U

(3)
j W

(3)
j,27U

(3)T

27 , j = 4, 5, 6, 7;

B
(3)
12,k ≈ U

(3)
12 W

(3)
12,kU

(3)T

k , k = 32, 33, 34, 35.

From Sec. 4.2.4, we know that we can compute transformation matrices R
(2)
1 , and R

(2)
8 corre-

sponding to U
(2)
1 , and U

(2)
8 , respectively, so that the transformations can be written as

U
(2)
1 =

U
(3)
4

U
(3)
5

U
(3)
6

U
(3)
7

R
(2)
1 =

U
(3)
4 R

(2)
1,4

U
(3)
5 R

(2)
1,5

U
(3)
6 R

(2)
1,6

U
(3)
7 R

(2)
1,7

; (4.36)

We also have

U
(2)T

8 =
(
R

(2)T

8,32 U
(3)T

32 , R
(2)T

8,33 U
(3)T

33 , R
(2)T

8,34 U
(3)T

34 , R
(2)T

8,35 U
(3)T

8,35

)
, (4.37)

via transposition.

4.3. Fast Matrix-Vector Multiplication 65

Therefore, the submatrix B
(2)
1,8 can be written as

B
(2)
1,8 ≈

U
(3)
4 R

(2)
1,4

U
(3)
5 R

(2)
1,5

U
(3)
6 R

(2)
1,6

U
(3)
7 R

(2)
1,7

W
(2)
1,8

(
R

(2)T

8,32 U
(3)T

32 , R
(2)T

8,33 U
(3)T

33 , R
(2)T

8,34 U
(3)T

34 , R
(2)T

8,35 U
(3)T

8,35

)
.

In the matrix-vector multiplication, we need to compute B
(2)
1,8q

(2)
8 , where q

(2)
8 is the segment

of q corresponding to the node 8 of level 2, which can be written as

B
(2)
1,8q

(2)
8 ≈

U
(3)
4 R

(2)
1,4

U
(3)
5 R

(2)
1,5

U
(3)
6 R

(2)
1,6

U
(3)
7 R

(2)
1,7

W
(2)
1,8

·
(
R

(2)T

8,32 U
(3)T

32 , R
(2)T

8,33 U
(3)T

33 , R
(2)T

8,34 U
(3)T

34 , R
(2)T

8,35 U
(3)T

8,35

)

q
(3)
32

q
(3)
33

q
(3)
34

q
(3)
35

, (4.38)

where the segment q
(2)
8 is further divided into four parts corresponding to the four children in level

3. Let us define

G
(`)
j

∆= U
(`)T

j q
(`)
j . (4.39)

4.3. Fast Matrix-Vector Multiplication 66

So, (4.38) can be simplified as

B
(2)
1,8q

(2)
8 ≈

U
(3)
4 R

(2)
1,4

U
(3)
5 R

(2)
1,5

U
(3)
6 R

(2)
1,6

U
(3)
7 R

(2)
1,7

W
(2)
1,8 G

(2)
8 ,

where G
(2)
8 =

∑

j=32,33,34,35

R
(2)T

8,j G
(3)
j . Generally, we have the formula for G

(`)
k as follows:

G
(`)
k =

∑

j∈k’s Children

R
(`)T

k,j G
(`+1)
j . (4.40)

Fast Computation Technique: Begin with the finest level L, compute all possible G
(L)
j , then

go on with the coarser levels, use formula (4.40) to compute all possible G
(`)
k , until finish up to the

level 2, the coarsest level with low rank submatrices. Notice that this technique applies the similar

idea as the Upward Pass of FMM; see Sec. 4.1.3 for details.

Also, we can immediately compute

F
(`)
i,j

∆= W
(`)
i,j G

(`)
j . (4.41)

Then let us take a look at B
(2)
1,8q

(2)
8 again:

B
(2)
1,8q

(2)
8 ≈

U
(3)
4 R

(2)
1,4F

(2)
1,8

U
(3)
5 R

(2)
1,5F

(2)
1,8

U
(3)
6 R

(2)
1,6F

(2)
1,8

U
(3)
7 R

(2)
1,7F

(2)
1,8

,

which suggests that we can separate B
(2)
1,8 into four blocks according to the four children. Fig. 4.17

shows a sliced form of all submatrices B
(2)
1,j for j = 0, 1, . . . , 15 according to the four children of

node 1 of level 2. Notice that φ can also be separated according to all of the leaves in the finest

4.3. Fast Matrix-Vector Multiplication 67

3 , 5

3 , 7

3 , 6

3 , 4

1 151413121110987654320

Figure 4.17: The separated form of the part of kernel matrix P as in Figure 4.16.

level, and our computation in fact amounts to computing φj for j = 0, 1, . . . , 4L − 1 one after

another.

Now let us consider how to compute φ
(3)
j for j = 4, 5, 6, 7. Notice that for the full rank

submatrices corresponding to j’s near neighbors, we directly compute the products, which does

not effect our fast algorithm on those low rank submatrices. Therefore, for the simplicity, we will

ignore the results from near neighbors. Thus, we have

φ
(3)
j ≈ U

(3)
j

 ∑

i∈j’s I.L.

F
(3)
j,i + R

(2)
1,j

∑

k∈1’s I.L.

F
(2)
1,k

 , j = 4, 5, 6, 7, (4.42)

where “I.L.” stands for “interaction list”.

It is interesting to generalize (4.42) for a quad tree with L levels. Let us focus on the node j of

level L, whose parent’s index, grandparent’s index, and so on, are denoted by pL−1, pL−2, . . . , p2

respectively. We get the following important formula for φ
(L)
j :

φ
(L)
j ≈ U

(L)
j

∑

i∈j’s I.L.

F
(L)
j,i + R

(L−1)
pL−1,j

 ∑

k∈pL−1’s I.L.

F
(L−1)
pL−1,k + R(L−2)

pL−2,pL−1

·

 ∑

m∈pL−2’s I.L.

F (L−2)
pL−2,m + · · · + R(3)

p3,p4

[∑

s∈p3’s I.L.

F (3)
p3,s + R(2)

p2,p3

∑

t∈p2’s I.L.

F
(2)
p2,t

]
· · ·

 .

(4.43)

4.3. Fast Matrix-Vector Multiplication 68

Let us define

Ψ(2)
j =

∑

k∈j’s I.L.

F
(2)
j,k , j = 0, 1, . . . , 15; (4.44)

Ψ(`)
j =

∑

k∈j’s I.L.

F
(`)
j,k + R

(`−1)
bj/4c,jΨ

(`−1)
bj/4c , j = 0, 1, . . . , 4` − 1, ` = 3, 4, . . . , L, (4.45)

where bj/4c is in fact the index of j’s parent in level `− 1; see Sec. 4.2.2.

Therefore, we can rewrite (4.43) as

φ
(L)
j ≈ U

(L)
j Ψ(L)

j , j = 0, 1, . . . , 4L − 1;

Ψ(`)
j =

∑

k∈j’s I.L.

F
(`)
j,k + R

(`−1)
bj/4c,jΨ

(`−1)
bj/4c , j = 0, 1, . . . , 4` − 1, ` = 3, 4, . . . , L;

Ψ(2)
j =

∑

k∈j’s I.L.

F
(2)
j,k , j = 0, 1, . . . , 15.

(4.46)

Now, we are ready to give a formal description of the algorithm. Notice that we use U , R and

W as already computed, we will discuss about computing them after this algorithm.

4.3.3 Fast Matrix-Vector Multiplication Algorithm

Initialization

Given all of the information about U , R, and W . The quad tree structure is already contained

in these matrices. Assume that the finest level is L. To compute φ = Pq, we will work on

the each segment φ
(L)
j for j = 0, 1, . . . , 4L − 1. In the algorithm, we do not need hierarchical

segments of φ and q, which means that we only work on their finest segments, i.e., φj and qj , for

j = 0, 1, . . . , 4L.

Upward Pass

Step 1

Comment [Compute G
(L)
j for all the nodes in the finest level L.]

do j = 0, 1, . . . , 4L − 1

4.3. Fast Matrix-Vector Multiplication 69

Compute G
(L)
j = U

(L)T

j qj .

enddo

Step 2

Comment [For the coarser levels, compute G
(`)
k .]

do ` = L− 1, . . . , 2

do k = 0, 1, . . . , 4` − 1

Compute G
(`)
k =

∑

j∈k’s Children

R
(`)T

k,j G
(`+1)
j .

enddo

enddo

Downward Pass

Step 3

Comment[Compute Ψ(`)
k for ` = 2, 3, . . . , L.]

do ` = 2, 3, . . . , L

do k = 0, 1, . . . , 4` − 1

First compute the needed F
(`)
k,j from k’s interaction list, using (4.41).

Then compute Ψ(`)
k via (4.44) for ` = 2 and (4.45) for ` > 2.

enddo

enddo

Step 4

Comment [Compute φj at the finest level L.]

do j = 0, 1, . . . , 4L − 1

Compute φj = U
(L)
j Ψ(L)

j .

enddo

4.3. Fast Matrix-Vector Multiplication 70

Step 5

Comment [Update φj at the finest level L by adding the result from j’s near neighbors (include j

itself).]

do j = 0, 1, . . . , 4L − 1

For every j, there are several full rank submatrices generated by j

and its near neighbors. Directly compute the multiplication and add

the result to φj .

enddo

Let us investigate the complexity of this algorithm. The complexity of the algorithm does not

depend on the distribution of the data points on a given domain. Hence, for the simplicity, we

assume that there are N points uniformly distributed in a square domain and we are given a quad

tree with the finest level L. Therefore, on the finest level, each node contains s points, where

N = 4L ·s. We also set a constant low rank p for the low rank submatrices. Therefore, the column

size of U
(`)
j for any ` will be p. The size of R

(`)
i,j for any pair of parent i and child j will be p× p.

Of course, the size of any W
(`)
i,j will be p× p. In practice, the size of these matrices could be very

different, but here we want it as simple as possible to analyze the complexity of the algorithm.

Table. 4.3.3 gives the analysis of the complexity of the algorithm. Since we know 4L =
N

s
, the

total computational cost is in order of

pN + p2 ·
(

N

s

)
+ 28p2

(
N

s

)
+ pN + 9N

which will be 40pN when we set p = s. In practice, p could be much smaller than s. From this

analysis of complexity, we can conclude that this algorithm is an O(N) algorithm, which in fact

is a matrix-vector-multiplication version of original FMM.

4.4. Eigenvalue/Eigenvector Computation 71

Table 4.1: A brief analysis of the complexity of the algorithm for matrix-vector multiplication.

Step Cost Explanation

1 O(pN) Each U
(L)
j has size of p× s, qj has length s

2 O(p2 · 4L) For level `, the cost of computing G
(`)
j for j =

0, 1, . . . , 4` − 1 is O(p2 · 4`+1).

3 O(28p2 · 4L)

In a particular level `, for every node, there are at most
27 nodes in its interaction list, so the cost for all F

(`)
i,j is

O(27p2 · 4`); And additionaly the cost for the second part
of (4.45) is O(p2 · 4`).

4 O(pN) Each Ψ(L)
j has length p.

5 O(9N)
At the finest level L, there are at most 9 near neighbors for
each node including itself, so direct computation will cost
O(9s) for each node.

4.4 Eigenvalue/Eigenvector Computation

To compute selected eigenvectors and the corresponding eigenvalues of original kernel matrix

P , the best software to use is ARPACK [19], the collection of Fortran77 subroutines designed

to solve large scale eigenvalue problems. It is most appropriate for a large structured matrix

A where structured means that a matrix-vector product w ← Av requires O(N) floating point

operations rather than the usual O(N2) operations. Therefore, in our case, the ARPACK is the

best choice since we can supply a fast routine to compute matrix-vector products. One can also

use a MATLAB routine “eigs”, which calls the ARPACK subroutines in the background.

Recall that our fast matrix-vector multiplication algorithm is derived from a hierarchical matrix

decomposition method. It is also important, however, to develop a fast algorithm to produce the

decomposition of the original kernel matrix.

4.4.1 Preprocessing of the Eigenvalue Computation

The task of the preprocessing is to compute the matrices U , R, and W using the low rank sub-

matrices of P . As discussed before, for any pair of well separated nodes i and j on level `, the

4.4. Eigenvalue/Eigenvector Computation 72

corresponding submatrix can be approximated by

B
(`)
i,j ≈ U

(`)
i W

(`)
i,j U

(`)T

j .

For example, let us consider the node 4 of level 3. We are interested in computing U
(3)
4 , which

is the column basis of both the red blocks and green blocks in Fig. 4.18. So the naive way of

computing U
(3)
4 is to use all of these blocks.

Remark 4.4.1. We do not directly apply the formula in (4.26) for U
(3)
4 for several reasons. One

reason is that the high order polynomials should be avoided in numerical computation. Another

reason is that the value p is hard to predict based on the error analysis in original FMM (see

Sec. 4.1), which is also the reason why we investigate the matrix representation of the FMM.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

Figure 4.18: The separated form of the part of kernel matrix P as in Figure 4.16.

Thanks to the hierarchical property of the column basis discussed in Sec. 4.2.4, we know

that only using the red blocks is already enough to compute U
(3)
4 . Therefore, we can apply QR

factorization on the matrix consist of the red blocks. Let us denote this particular matrix by C, with

size m×n, where m < n. We know that the computational cost of ordinary QR of C is O(m2n).

There are several advanced algorithms for computing U
(3)
4 from C in a fast manner, such as

pivoted Gram-Schmidt with reorthogonalization (PGSR) [11, 3], and randomized approximation

method (RAM) [21]). The computational cost of the PGSR is O(pmn), and of the RAM is about

log(p)mn, where p is the desired approximated rank (see Sec. 4.2.5). For both of them, when n is

large, the computation is still expensive.

4.4. Eigenvalue/Eigenvector Computation 73

In our case, we do not have to use the matrix C to compute U
(3)
4 . We can use a smaller matrix,

say, T ∈ Rm×h with p ≤ h ¿ n. It is straightforward that there exists a submatrix of C that

can be used to compute U
(3)
4 . RAM [21] provide a delicate approach to find such submatrix from

a general low rank matrix, which will not be applied in our task. In fact, because of our special

kernel function, we can simply obtain T that is not a submatrix of C, but meanwhile it can be used

to compute the column basis of C. Our method is to use the data points in the node 4 of level 3

and a particular set of data points. We will explain how to obtain this particular set of data points

as follows.

The matrix C is constructed by m data points in node 4 of level 3 and n data points from

the nodes of the node 4’s interaction list. Therefore, the information of the column basis of C is

carried by the the nodes of the node 4’s interaction list. Therefore, the particular set of data points

for constructing matrix T must be chosen from the nodes of the node 4’s interaction list.

Thanks to Theorem 4.1.2, which we rephrase as follows: given a set of points S = {z1, z2, . . . , zm}
located within a disk D, with radius r. The potential at a point z outside of disk due to S can be

written as

φ(z) = Q log(z) +
∞∑

k=1

ak

zk
,

where the multipole expansion coefficients ak =
∑m

i=1

−qiz
k
i

k
only depend on the set S. The

accuracy of the truncated p terms of multipole expansion is

∣∣∣∣∣φ(z)−Q log(z)−
p∑

k=1

ak

zk

∣∣∣∣∣ ≤
(

A

p + 1

)(
1

c− 1

)(
1
c

)p

, (4.47)

where c =
∣∣∣z
r

∣∣∣, and A is a constant. It is obvious that p and c control the accuracy of the multipole

expansion. For the same p, the approximated potentials on the far away points, i.e., those for large

c’s, will be more accurate than the ones on the points with smaller c’s.

Therefore, when choosing the data points for T from the nodes of node 4’s interaction list,

the points not far away, i.e., the points with smaller c’s, are more important than the far away

ones. For example, in Fig. 4.19, we have the red squares denote for the interaction list of node 4

4.4. Eigenvalue/Eigenvector Computation 74

0 1

2 3

0

8

4

12

1110

9

1 5

13

14 15

2 3 6 7

0 1

2

5

763

4

37

1514

32

1110

8 9 12 13 24

18

16

43 46

45444140

34 35 38 39

33 36 49

58

56

50

26

48

17

19

25

27

51

52

31

29

23

2120

22

28

30

60

59

57

54

62

61

55

53

6342 47

Figure 4.19: The index matrix for the quad tree with 4 levels. The red squares are the interaction
list of node 4 of level 3. The blue dots are called the reference points for node 4 of level 3, which
are sampled on the inner boundary of the interaction list of node 4 of level 3.

of level 3. In the matrix form of Fig. 4.18, these red squares correspond to the red submatrices.

We can see that these red squares have different distances from node 4. The squares of j =

0, 2, 8, 9, 12, 13, 16, 18, 24 are nearer than the squares of j = 10, 11, 14, 15, 26. In particular,

those blue dots on the boundaries of some of the red squares are the points as near as possible,

which still belong to the node 4’s interaction list.

We will refer to the boundary segments of the nodes in the interaction list that are closest to

the node of the interest as the inner boundary of interaction list. We will choose the sampling

points on the inner boundary of interaction list as the particular data points for constructing matrix

T . We will call these sampling points as the reference points.

These reference points can be simply chosen as those on a regular grid along the inner bound-

ary of the interaction list. Assume F = {r1, r2, . . . , rh} is the set of reference points for node 4

of level 3, and S = {z1, z2, . . . , zm} is the set of data points in node 4 of level 3. Therefore, we

4.4. Eigenvalue/Eigenvector Computation 75

will have a particular matrix of size m× h:

T
(3)
4 =

log |z1 − r1| log |z1 − r2| · · · log |z1 − rh|
log |z2 − r1| log |z2 − r2| · · · log |z2 − rh|

...
...

...
...

log |zm − r1| log |zm − r2| · · · log |zm − rh|

. (4.48)

To decide the value of h, we must predict p at first. In (4.47), if the user specifies the upper

bound of the error to be ε > 0, we can approximately have

(
1
c

)p

< ε,

where c ≈ 2 for the separated nodes in the interaction list. Therefore, for ε ≥ 10−12, we can

roughly have p < 40. Empirically, we fix the value of h slightly greater than 40. One important

fact is that the constant value of h is not related to the level of the quad tree.

Now we are ready to describe the preprocessing algorithm for eigenvalue computation. As-

sume that the finest level is level L.

Step 1. Compute U
(L)
j , j = 0, 1, 2, . . . , 4L − 1.

For each node j, construct the particular matrix T
(3)
j as in (4.48) and obtain U

(L)
j by applying

truncated SVD on T
(3)
j . The column size of U

(L)
j is p.

Step 2. Compute W
(L)
i,j , i, j = 0, 1, . . . , 4L − 1, i belongs to j’s interaction list.

Since we have

B
(L)
i,j = U

(L)
i W

(L)
i,j U

(L)T

j ,

where U
(L)
· have orthonormal columns. So in order to obtain W

(L)
i,j , we do the multiplications as

follows

W
(L)
i,j = U

(L)T

i B
(L)
i,j U

(L)
j .

4.4. Eigenvalue/Eigenvector Computation 76

Step 3. Compute R
(`)
j , ` = L− 1, L− 2, . . . , 2, j = 0, 1, . . . , 4` − 1.

Recall the hierarchical property of U
(`)
j . Consider the example used in Sec. 4.3.2, we have

B
(2)
1,8 ≈

U
(3)
4

U
(3)
5

U
(3)
6

U
(3)
7

·R(2)

1 W
(2)
1,8 R

(2)T

8

U
(3)T

32

U
(3)T

33

U
(3)T

34

U
(3)T

35

.

So, for example, to compute R
(2)
1 , we first construct the particular matrix T

(2)
1 by using h

reference points for node 1 of level 2. We know that T
(2)
1 can be written as

T
(2)
1 ≈

U
(3)
4

U
(3)
5

U
(3)
6

U
(3)
7

R
(2)
1 M,

where M is some matrix, which is not important. So, we can multiply out those U
(3)
j by using their

orthonormal property, and then apply the TSVD on the result to get R
(2)
1 , which has orthonormal

columns.

Step 4. Compute W
(`)
i,j , i, j = 0, 1, . . . , 4` − 1, i and j are well separated (i.e., i belongs to j’s

interaction list).

After computing U ’s and R’s, we can easily get W
(`)
i,j by matrix multiplication in a similar

way as Step 2.

We supply a brief analysis of the complexity of these steps below. As before, we assume that

the data is uniformly distributed and the finest level is level L. The total number of data points is

4.5. Numerical Experiments 77

N . Each node of level L has s data points. So, we have N = 4L · s.

Step Cost Explanation

1 O(N) Each U
(L)
j needs O(h2 · s).

2 + 4 O(pN2)
The matrix multiplication is the price of this algorithm.

The constant hidden by the big-O is very small.

3 O(N)

At a particular level k, the main cost to compute R
(k)
j for

j = 0, 1, . . . , 4k − 1 is the multiplication, which costs

O(phN) for each level.

4.5 Numerical Experiments

4.5.1 Laplacian Eigenvalues on the Unit Disk in R2

Recall the 2D example discussed in Sec. 3.3.2. Consider the unit disk Ω ⊂ R2, where the kernel

function is of the form K(x, y) = − 1
2π log ‖x− y‖ for x, y ∈ Ω. In this experiment, we used a

regular grid on the square domain covering the disk domain Ω, as shown in Fig. 4.20.

a

b
c

Figure 4.20: A regular grid is applied on the square domain covering the unit disk. The points a,
b, and c are the centers of the three discretization cells.

As explained in Sec. 3.2.2, our sampling data points on the unit disk consist of a subset of

the centers of all of the cells in the regular grid. This subset is required to contain the centers

4.5. Numerical Experiments 78

that are located inside of the unit disk. For example, in Fig. 4.20, the centers a and b belong to

our sampling data points, but not the center c. In the experiment, we fixed the location and size

of the square domain, and let the density of the regular grid change. By doing so, we obtained

the sampling data points on the unit disk equipped with different cell size, i.e., (∆h)2, where ∆h

is the side length of each cell box in the regular grid. Assume that our sampling data points are

{xi}, i = 1, . . . , N . Then we approximated the integral eigenvalue problem Kφ = µφ, where K
is defined as (3.1), with a simple quadrature rule as follows:

(∆h)2
N∑

i=1

K(xi,xj)φ(xj) = µφ(xj), j = 1, . . . , N. (4.49)

Let Ki,j
∆= K(xi, xj). Our first task was to compute the largest 5 eigenvalues of K using our

fast algorithm. Our second task was to compare the computed Laplacian eigenvalues with their

true values. In fact, the computed λ’s have the form of

λ̃ =
1

(∆h)2 · µ ;

see the proof of Corollary 3.3.2 for the details. Also, by the proof of Corollary 3.3.2, the true

values of λ’s are given by

λm,n =

β2
m−1,n if m = 1, . . . , n = 1, 2, . . . ,

β2
0,n if m = 0, n = 1, 2,

, (4.50)

where βk,` is the `th zero of the Bessel function of the first kind of order k, whose values are

tabulated in many places, e.g., [1, Table 9.5]. The values of the lowest five frequencies, i.e., the

smallest five λ’s, are listed in below:

λ0 = 5.7831, λ1 = 5.7831, λ2 = 5.7831, λ3 = 14.6819, λ4 = 14.6819.

We did four experiments base on four different values of ∆h. In each experiment, we com-

4.5. Numerical Experiments 79

puted the relative error of the eigenvalues, i.e., ei = |λ̃−λ|
λ for i = 1, . . . , 5, and recorded

the computational times. Our algorithm contained two steps: the first step is the preprocess-

ing of the eigenvalue computation; the second step is the computation of the eigenvalues using

“eigs”(MATLAB) by supplying our fast matrix-vector multiplication routine. The total computa-

tional time Ttotal (in seconds) and the time spent by “eigs” Teigs (in seconds) were recorded. The

difference Ttotal − Teigs is in fact the time spent by the preprocessing.

We also examined the accuracy of our algorithm for the matrix-vector multiplication during

each experiment. We chose an arbitrary unit vector v ∈ RN and computed the approximation of

Kv, denoted by K̃v. The L2 error MVE = ‖Kv − K̃v‖2 and the computational time TMVP (in

seconds) of K̃v were recorded. In these experiments, we fixed a threshold ε = 1.0e − 12 for the

truncated SVD part of our algorithm, where O(ε) is exactly the upper bound of MVE. We display

the results discussed above in Table. 4.5.1 and Table. 4.5.1 .

Table 4.2: The experiments of computing the smallest five eigenvalues of the Laplacian defined
on a unit disk.

∆h N e1 e2 e3 e4 e5

0.1 316 2.77e− 02 2.77e− 02 3.44e− 02 8.22e− 02 8.56e− 02
0.05 1264 4.01e− 03 4.01e− 03 1.00e− 02 1.70e− 02 2.20e− 02
0.01 31428 1.81e− 04 1.81e− 04 5.66e− 04 9.21e− 04 1.08e− 03

0.005 125676 7.52e− 05 7.52e− 05 1.73e− 04 1.59e− 04 4.22e− 04

Table 4.3: The accuracy and computational cost of our algorithm of matrix-vector multiplication.

∆h N MVE TMVP Teigs Ttotal

0.1 316 1.0561e− 14 9.0e− 02 1.5 1.9
0.05 1264 8.4889e− 13 1.2e− 01 2.4 2.9
0.01 31428 1.3333e− 11 3.7e− 00 112.2 210.2

0.005 125676 6.5331e− 11 6.3e− 00 199.2 1999.7

From these tables, we can observe that our algorithm of matrix-vector multiplication is fast

and accurate. But the relative error for the computed eigenvalues (compared with their analytic

values) is not small. The reason is that our experiments were not designed to compute these

4.5. Numerical Experiments 80

analytic eigenvalues, since at least the boundary conditions, e.g., (3.17), are not explicitly imposed

in our computation. The effect of the boundary conditions on the eigenvalue computation will be

investigated during our near future research.

4.5.2 An Example of Complicated and Large Domain: Japanese Islands

In previous sections, we prescribed our algorithm based on an ideal assumption that a square

domain and uniformly distributed data points are given. But in practice, we often face to either a

domain with complicate shape or arbitrarily distributed data points. In fact, our algorithm can be

easily modified to handle these situations.

Recently we obtained a digital map called “Japan Engineering Geomorphologic Classification

Map” (JEGM) [31]. The number of sampling points in this map is 387,924 over the Japanese

Islands. Each point is associated with a vector of length 11 representing a type of geological

layer, an elevation, a slope, etc. In other words, this is a vector-valued dataset. The coordinate of

each point is specified by four values because each point here approximately represents a square

region of 1km × 1km. These four values are the longitudes and the latitudes of South West

corner and North East corner of each square. The corresponding kernel matrix therefore would be

387, 924× 387, 924, which is just too huge to handle with usual eigenvalue solvers.

Figure 4.21: Real Challenge: The number of sampling points in this map is 387,394 over the
Japanese Islands.

4.5. Numerical Experiments 81

Figure 4.22: A simple domain (the dark region) with a quad tree with L = 3.

3 4644383623221918161412762

3

46

44

38

36

23

22

19

18

16

14

12

7

6

2

5352

53

52

Figure 4.23: Split the kernel matrix by assigning dots to the submatrices corresponding to the near
neighbors and blank boxes to the submatrices corresponding to the interaction list.

We can easily get the center of each square by knowing the South West corner and North East

corner. We plot these 387,924 centers in Fig. 4.21. Obviously, the shape of the domain is very

4.5. Numerical Experiments 82

complicated. As usual, we apply a quad tree to the domain, then throw away the nodes which

contains no data points, and construct the kernel matrix using the rest of the nodes. The matrix

splitting scheme is not as straightforward as the example used before in Sec. 4.2.4, since we do

not have a complete tree now.

Let us use a simple example to explain the matrix splitting scheme for the incomplete quad tree

structure. In Fig. 4.22, we apply a quad tree (L = 3) on a domain (the dark region). To construct

the kernel matrix, only the nodes that contain the data points are used. By assigning the dots to the

near neighbors and blank boxes for the low rank submatrices, we obtain the splitted kernel matrix

shown in Fig. 4.23. The basic rule of our splitting scheme is that any of the submatrices generated

by this scheme should correspond to either two near neighbor nodes or two nodes that belong to

each other’s interaction list. For example, for the submatrix B
(2)
0,4 (see Sec. 4.3 for the details about

the notations) that corresponds to the nodes {2, 3} and the nodes {16, 18, 19} in level 3, we assign

a blank box to it because the node 4 of level 2, the parent node of {16, 18, 19}, belongs to the

interaction list of node 0 of level 2, the parent node of {2, 3}.

The fast algorithm we developed in the previous sections still work for this splitted kernel

matrix, and the hierarchical property of the column basis explained in Sec. 4.3.2 still exists. Let

us denote the column basis of B
(2)
0,4 as U

(2)
0 . Then the formula (4.36) implies a particular form

U
(2)
0 =

U
(3)
2

U
(3)
3

R

(2)
0 =

U
(3)
2 R

(2)
0,2

U
(3)
3 R

(2)
0,3

 , (4.51)

Another interesting aspect of this simple domain is the non-connected component correspond-

ing to the nodes {52, 53} of level 3, whose interaction lists do not contain any sampling data

points. Therefore, there is no need to compute the column basis U
(3)
52 or U

(3)
53 . For the parent level,

we compute the column basis U
(2)
13 using the directly constructed matrix T

(2)
13 (see Sec. 4.4), not

the hierarchical transformation as in 4.51.

From the above analysis, we designed a robust matrix-splitting scheme to handle a non-

complete quad tree. Then, we computed the eigenvectors corresponding to the lowest nine fre-

quencies (i.e., the largest nine eigenvalues of the kernel matrix) and displayed them in Fig. 4.24.

4.5. Numerical Experiments 83

Figure 4.24: The first 9 Laplacian eigenfunctions over the islands of Japan.

We sub-sampled the data points for display purpose in this figure because of the large number of

the original data points.

84

Chapter 5

Conclusion

5.1 Summary

In this thesis, we have designed a fast and accurate algorithm for computing the eigenvalues and

eigenvectors of a special kernel matrix K ∈ RN×N associated with the kernel function

K(x, y) = − 1
2π

log ‖x− y‖, x, y ∈ R2, (5.1)

which was proposed by Saito as the kernel of a particular integral operator that commutes and

shares the eigenfunctions with the Laplace operator [25], [26].

The core of our algorithm is to apply the famous eigenvalue computation algorithm “implicitly

re-started Lanczos method” by providing a fast algorithm of the matrix-vector multiplication, Kv

for arbitrary v ∈ RN . The function − log ‖x − y‖ in (5.1) can be considered as the potential

at point x due to a charge of unit strength located at point y, which allows us to apply the cele-

brated fast multipole method (FMM, [24], [14], [13]). We have described a locally singular value

decomposition after exploring the low rank properties of the submatrices of K. Thanks to the hi-

erarchical semi-separable representation (HSS, [4]), we could further investigate the hierarchical

structure of K and design a hierarchical matrix decomposition that can speed the matrix-vector

multiplication considerably.

5.2. Future Studies 85

5.2 Future Studies

5.2.1 Improvement the Computational Cost

In Chapter 4, we discussed the computational cost of our algorithm, which is in the order of N2,

where N is the size of the dataset. The natural next step is to speed up this algorithm further to the

order of Nα, where 1 ≤ α < 2. Our fast matrix-vector multiplication is based on the hierarchical

matrix decomposition and the major cost of the decomposition comes from the fact that we need

to access every elements in the original kernel matrix of size N × N , which implies the order

of N2 operations. Therefore, a possible way of improving the algorithm is to avoid accessing all

the elements in the kernel matrix by introducing a further approximation when doing the matrix

decomposition. The recent work of Martinsson, Rokhlin, and Tygert on a randomized algorithm

to approximate matrices [21] could be a helpful source for our further investigation.

5.2.2 Investigate the Boundary Conditions

Our algorithm is in fact tailored for the highly structured kernel matrix constructed by the sam-

pling points on the underlying domain. The sampling points are not required to be on the regular

grids because in practice we are often given arbitrarily distributed points or we need to choose the

sampling points from the domain. Also, the boundary condition (see Sec. 3.2.1) are not explicitly

imposed in our computation, compared with the conventional Laplacian eigenfunctions satisfying

either the Dirichlet or the Neumann boundary condition. Therefore, to better understand the be-

havior of the eigenvectors computed by our algorithm is important for their further application.

Since these conventional Laplacian eigenfunctions are used in numerous application and yet diffi-

cult to be computed on a complicated domain, it is also interesting to investigate whether we can

synthesize the conventional Laplacian eigenfunctions using Saito’s eigenfunctions and to compare

the mathematical and numerical properties of these two kinds of eigenfunctions.

5.2. Future Studies 86

5.2.3 Implement the Eigenvalue Problem in 3D

In this thesis, our algorithm is designed for the particular 2D kernel function (5.1). For the eigen-

value problem in 3D with the kernel function defined as

K(x, y) =
1

4π‖x− y‖ , x,y ∈ R3.

To implement the computation, 3D FMM [28] is a natural candidate. 3D FMM, however, is

not easy to implement due to its complicated data structure involving an octree. Therefore, we

should first look at simpler approaches such as the “best matrix decomposition” of Bremer [16] or

the randomized algorithm to compute low rank approximation of the kernel matrix [21], [33].

Bibliography

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover Publications,

Inc., New York, 1972. 9th printing.

[2] R. K. Beatson and L. Greengard. A short course on fast multipole methods (lectures), 1997.

[3] P. A. Businger and G. H. Golub. Linear least squares solutions by Householder transforma-

tions. Numer. Math., 7:269–276, 1965.

[4] S. Chandrasekaran, M. Gu, and T. Pals. A fast ULV decomposition solver for hierarchically

semiseparable representations. SIAM J. Matrix Anal. Appl., 28(3):603–622, 2006.

[5] I. Daubechies. Ten Lectures on Wavelets, volume 61 of CBMS-NSF Regional Conference

Series in Applied Mathematics. SIAM, Philadelphia, PA, 1992.

[6] E. B. Davies. Spectral Theory and Differential Operators, volume 42 of Cambridge Studies

in Advanced Mathematics. Cambridge Univ. Press, 1995.

[7] L. C. Evans. Partial Differential Equations. AMS, 1998.

[8] G. B. Folland. Fourier Analysis and Its Applications. Brooks/Cole Publishing Co., 1992.

[9] G. B. Folland. Introduction to Partial Differential Equations. Princeton Univ. Press, 2nd

edition, 1995.

[10] B. Friedman. Principles and Techniques of Applied Mathematics. John Wiley & Sons, Inc.,

New York, 1990. Republished by Dover Publications, Inc. in 1990.

87

BIBLIOGRAPHY 88

[11] G. H. Golub. Numerical methods for solving linear least squares problems. Numer. Math.,

7:206–216, 1965.

[12] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Academic Press,

6th edition, 2000.

[13] L. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems. MIT Press,

Cambridge, MA, 1988.

[14] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys.,

73:325–348, 1987.

[15] F. John. Partial Differential Equations. Number 1 in Applied Mathematical Sciences.

Springer-Verlag, New York, 4th edition, 1982.

[16] J. C. Bremer Jr. Adaptive Multiscale Analysis of Graphs and Applications. PhD thesis, Dept.

Math., Yale University, May, 2007.

[17] M. A. Khabou, L. Hermi, and M. B. H. Rhouma. Shape recognition using eigenvalues of the

dirichlet laplacian. Pattern Recognition, 40:141–153, 2007.

[18] E. Kreyszig. Introductory Functional Analysis with Applications. Wiley Classics Library.

John Wiley & Sons, Inc., New York, 1989.

[19] R. Lehoucq, D. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of Large-Scale

Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA,

1997.

[20] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of Large-

Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM Publications,

Philadelphia, 1998.

[21] P. G. Martinsson, V. Rokhlin, and M. Tygert. A randomized algorithm for the approximation

of matrices. Technical Report 1361, Yale University, 2006.

BIBLIOGRAPHY 89

[22] D. Porter and D. S. G. Stirling. Integral Equations: A Practical Treatment from Spectral

Theory to Applications. Cambridge Univ. Press, New York, 1990.

[23] M. Reuter, F. E. Wolter, and N. Peinecke. Laplace-beltrami spectra as shape-dna of surfaces

and solids. Computer-Aided Design, 38:342–366, 2006.

[24] V. Rokhlin. Rapid solution of integral equations of classical potential theory. J. Comput.

Phys., 60:187–207, 1985.

[25] N. Saito. Geometric harmonics as a statistical image processing tool for images defined on

irregularly-shaped domains. In Proc. 13th IEEE Workshop on Statistical Signal Processing,

pages 425–430. IEEE, 2005.

[26] N. Saito. Data analysis and representation on a general domain via eigenfunctions of Lapla-

cian. Applied and Computational Harmonic Analysis, 2007. To appear.

[27] N. Saito, K. Yamatani, and J. Zhao. Generalized polyharmonic trigonometric transform: A

tool for object-oriented image analysis and synthesis. Technical report, Dept. Math., Univ.

California, Davis, 2007. In preparation.

[28] K. E. Schmidt and Michael A. Lee. Implementing the fast multipole method in three dimen-

sions. J. Stat. Phys., 63:1223–1235, 1991.

[29] W. A. Strauss. Partial Differential Equations: An Introduction. Brooks/Cole Publishing Co.,

1992.

[30] L. N. Trefethen and D. Bau, III. Numerical Linear Algebra. SIAM, Philadelphia, 1997.

[31] K. Wakamatsu, S. Kubo, M. Matsuoka, K. Hasegawa, and M. Sugiura. Japan Engineering

Geomorphologic Classification Map. University of Tokyo Press, 2005.

[32] H. Wendland. Scattered Data Approximation. Cambridge Monographs on Applied and

Computational Mathematics. Cambridge Univ. Press, 2005.

BIBLIOGRAPHY 90

[33] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert. A fast randomized algorithm for the

approximation of matrices. Technical Report 1386, Yale University, 2007.

[34] R. Young. An Introduction to Hilbert Space. Cambridge Univ. Press, 1988.

[35] J. Zhao. Efficient Approximations: Overcoming Boundary Effects. PhD thesis, Dept. Math.,

Univ. California, Davis, 2006.

