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Abstract—We propose a new method for rapid 3D object indexing that combines feature-based methods with coarse alignment-based

matching techniques. Our approach achieves a sublinear complexity on the number of models, maintaining at the same time a high

degree of performance for real 3D sensed data that is acquired in largely uncontrolled settings. The key component of our method is to

first index surface descriptors computed at salient locations from the scene into the whole model database using the Locality Sensitive

Hashing (LSH), a probabilistic approximate nearest neighbor method. Progressively complex geometric constraints are subsequently

enforced to further prune the initial candidates and eliminate false correspondences due to inaccuracies in the surface descriptors and

the errors of the LSH algorithm. The indexed models are selected based on the MAP rule using posterior probability of the models

estimated in the joint 3D-signature space. Experiments with real 3D data employing a large database of vehicles, most of them very

similar in shape, containing 1,000,000 features from more than 365 models demonstrate a high degree of performance in the presence of

occlusion and obscuration, unmodeled vehicle interiors and part articulations, with an average processing time between 50 and

100 seconds per query.

Index Terms—Three-dimensional object recognition, hashing, indexing, pose estimation, approximate nearest neighbor.

Ç

1 INTRODUCTION

THREE-DIMENSIONAL object recognition is a well-studied
problem in computer vision. A comprehensive survey

can be found in [4]. Most research published until recently has
used either synthetic data, or real data obtained in controlled
environments (e.g., turntables), due to the relatively costly
3D sensors and the high price of acquiring data in real
settings. Most often, data consisted of complete views of
objects, with little noise affecting the measurements, and no
occlusion present. Typically, surface meshes are assumed to
be available for both the objects and the models in the
database. In a real practical situation, however, we are
interested in utilizing the raw 3D point clouds, rather than the
surface meshes, since most surface reconstruction methods
are slow and can create artifacts for noisy and partial
measurements. The ability to rapidly insert objects acquired
in the field into the model databases was another reason that
prompted us not to use surface meshes in the recognition
process.

Our research on 3D object recognition has been driven by

the need to achieve high degree of recognition rates with a

scalable method, using data acquired by 3D sensors in
uncontrolled environments and with databases of tens, or
hundreds of models. We have observed that under these
operating conditions, many state-of-the-art recognition tech-
niques proposed in the literature may not yield an adequate
performance. For example, for larger databases, alignment-
based recognition systems do not scale up well, because the
computation time is linear in the number of models. Feature-
based methods, employing surface descriptors and nearest
neighbor classifiers, will have an increased recognition error
when the similarity between the descriptors is reduced due to
the smaller radius of descriptors required to cope with
articulations in the data. The large number of features existing
in the database mandates efficient retrieval techniques.
Approaches based on feature dimensionality reduction with
PCA, or random projections, database compression with
feature editing, or approximate nearest neighbor algorithms
were proposed to alleviate the increased time in searching
large databases; however, some of the assumptions made do
not hold well. For example, PCA requires normality assump-
tions about the feature distribution, many approximate
nearest neighbor algorithms work well only for features with
small dimensionality (less than 20).

Recognizing objects in clutter was acknowledged early on
as an important problem and several effective algorithms
were proposed [19], [32]. On the other hand, effects produced
by articulation of parts were not addressed thoroughly,
though they have been presenting difficult challenges to
numerous approaches due to the drastic change in object
appearance induced by the articulations. While clutter can be
removed to some extent by scene segmentation techniques
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prior to recognition, the recognition algorithms must be
robust to articulations and (self-)occlusions in the target.

In real operating conditions, a 3D sensor views a scene
from a limited number of viewpoints, thus only a partial
region of an object is available for recognition. For instance,
typically, vehicles may be close to each other and to buildings,
or placed below foliage. Aerial or ground sensors may be able
to scan the vehicle only from a limited set of viewpoints:
Ground sensors are more stable than aerial sensors; however,
the top of vehicles may not be scanned well; aerial sensors can
view objects at a better elevation level; however, they may be
harder to control in the case of blimps, or may induce noise in
the data due to the vibrations of the craft in the case of
helicopters. Measurements can have nonlinear density
variation throughout the object, depending on the distance
and elevation of the 3D sensors with respect to the scene.
Some LADAR sensors have the ability of detecting objects
concealed under foliage, thus small pieces of the target
surface similar to “mouse-bites” may be missing throughout
the object. Missing data due to solid obscuration produced by
clutter objects located between the scene and the target is
another factor adversely impacting the quality of the
available data.

Sensed data is generally affected by noise mainly along
the viewing direction due to the manner in which the depth
information is measured. Blooming effects produced by
”scattering” the measurements at sharp discontinuities may
be inherent in the data. Discrepancies between the query
objects and the corresponding models from the database
have to be tolerated. For example, interiors of vehicles can
be imaged by seeing through windows, but may not be
present in the opaque corresponding model. Other rigid
changes in an object such as articulations, affect a large class
of 3D objects of interest: construction vehicles (cranes,
bulldozers), military vehicles (tanks), nature (people).
Articulated object recognition is challenging because the
changes in a single object due to articulations can be even
more significant than the differences between objects
having different identity. In Fig. 1, we illustrate a typical
instance of an object that has to be handled by our system
together with a point cloud model consisting of concate-
nated views rendered from a corresponding faceted model.
Note the dissimilarity between the target and the model.

1.1 Our Method

The paper focuses on indexing models from a database, i.e., on
pruning the database into a small set of candidates containing
the correct model type with a high probability. We assume
that the scene consists of a target object and additional
structured clutter, such as ground plane, vegetation, or other
objects. The output of model indexing can be fed into a fine

alignment-based verification module to determine a unique
model. We illustrate the approach on recognizing vehicles, a
very hard problem due to the significant similarity existing
between the models from the database.

Our proposed method belongs to the class of object
recognition using surface descriptors matching and builds
on the earlier work of Johnson and Hebert [18], [19]. The paper
extends an earlier work of Shan et al. [35]. The main
contributions of our method include:

1. computational framework in the joint 3D and
feature space which ensures a higher degree of
discriminability between similar models and en-
hanced robustness,

2. scalability of the approach with a large model
database maintaining at the same time a high
accuracy and speed,

3. the ability to handle obscuration of the data, clutter,
irregular sampling, and partial 3D views that occur
when measurements are acquired in uncontrolled
settings, and

4. extensive testing of the proposed approach with real
data and very large model databases of similar objects.

To our knowledge, no other research published in the
literature reported recognition results with real LADAR
3D data and large model database of similar objects.

In the first stage of our method, an approximate nearest
neighbor (ANN) algorithm using the Locality Sensitive
Hashing (LSH) algorithm is employed to find the most
similar descriptors from the database to each scene descrip-
tor. LSH is a stochastic method based on the theory of random
projections that was shown to be significantly faster
compared with other fast nearest neighbor search methods,
such as the dynamic space partitioning, and more robust to
the choice of the internal parameter settings in higher
dimensional spaces. The main idea in LSH is to hash features
into bins based on a probability of collision. Thus, features
that are far in the parameter space will have a high probability
of landing into different bins, while close feature will go into
the same bucket. See [17], [13] for more theoretical and
practical details. Existing recognition algorithms were shown
to be theoretically sublinear with the number of models in the
database; however, the databases used were relatively small
and the objects in the database very dissimilar. Due to the
small support of the features, errors of the LSH method and
the distortions in the descriptors produced by articulations
and other imperfections in the data, we employ a relatively
large number of candidate matches, Q ¼ 50� 100, for each
descriptor in the scene.

In the second stage, simple configurations of matches, for
example, doublets of matches are sampled from the
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Fig. 1. (a) Dense point cloud rendered from a faceted model. (b) Real data obtained by a LADAR sensor. (c) Overlap between the scene and the
model. Note the significant difference between the scene and the corresponding model in terms of blooming effects (see the right front side of the
vehicle), interiors, missing data in transparent regions corresponding to windows, clutter due to unmodeled interiors.



candidate correspondences using importance sampling.
Doublets that are mutually consistent are further used to
generate pose hypotheses between the scene and models.
Each doublet of scene-model matches is used to compute a
pose candidate. Since, in our case, the number of possible
pose candidate can be OðQ2Þ for each pair of scene features,
we employ importance sampling of matches based on a
similarity measure in feature space and we progressively
enforce geometric constraints between the descriptors base
points in order to retain only the best hypotheses.

In the third stage of the algorithm, the candidate poses are
evaluated using MLESAC [38] using the likelihood of
matches computed in the joint 3D-signature space. Preemp-
tive schemes [29] that dynamically prune incorrect hypoth-
eses are used to further speed up the evaluation of each pose
hypothesis. Combining 3D and local shape information at
matching level can significantly improve the recognition
performance for similar models in the database. After the
alignment parameters are selected for the candidate models,
the final indexing decision is based on the Maximum A
Posteriori Probability (MAP) rule that associates a probabil-
istic confidence measure with each returned model.

In Section 2, we present a brief review of the related
techniques proposed in the literature. The notations are
established in Section 3. Surface descriptor computation
using 3D measurements acquired by range sensors is
discussed in Section 4. The indexing of features using the
LSH method is described in Section 5. Generation and
evaluation of alignment hypotheses between the scene and
the models in the joint 3D-signature space is addressed in
Section 6. In Section 7, the object indexing based on
MAP criterion is described. Finally, experimental results
using real 3D data are presented in Section 8.

2 RELATED WORK

The literature on free-form 3D object recognition is vast [4].
A list of proposed techniques include, without being nearly
exhaustive, geometric hashing, feature-based methods,
alignment of 3D data using Iterated Closest Point (ICP),
surface descriptor matching.

Geometric hashing [22], [31] and its variants employ low-
dimensional object descriptions that combine (quasi-)invar-
iant coordinate representations with geometric coordinate
hashing to prune a model database while employing simple
geometric constraints. The time and space complexity of
creating geometric hash tables is, however, polynomial in the
number of feature points associated with each model.
Furthermore, since the (quasi-)invariant coordinate repre-
sentations are very low-dimensional (typically, two or three),
the hash tables can become crowded even with small model
databases and the runtime complexity can deteriorate to a
linear complexity that, again, does not scale with the size of
the database. Geometric hashing was shown to have poor
performance with noise and clutter [14]. Geometric hashing
algorithms that employ higher dimensional features (eight-
dimensional) have been proposed [23].

Feature-based recognition methods encode object regions
into points in a very high-dimensional space and define the
similarity between objects by measuring how close the scene
features are to stored model features. They have the
advantage of being able to handle large model databases
and changes due to pose variation without the need of explicit

alignment between the scene and model features. However,
their performance degrades in the presence of clutter and
articulations. Various surface descriptors were proposed in
the literature: global features (Spherical Attribute Image
(SAI) [8], curvedness orientation shape map on a sphere
(COSMOS) [9], shape distributions [30]), semilocal features
(spin-images [18], harmonic shape images [40], 3D shape
context [11], surface signatures [39], point signatures [6]). In
[30], the shape distributions were proposed to measure global
geometric properties of an object and compare 3D models
without pose registration and feature correspondence. The
method requires full scans of objects to be available. In
general, global features are more discriminative, but are more
affected by occlusion and clutter.

Features proposed employed Euclidean or geodesic
distance measures computed on the surface. Features using
geodesic distances, though potentially having a higher
discriminant power, are more affected by noise and surface
errors and usually require surface meshes to be available.

Alignment-based recognition methods recognize an object
by aligning it sequentially to the database models using
variants of the ICP algorithm [3], [36] and selecting the models
that yield the smallest alignment error. Though generally
very accurate, alignment techniques are not scalable to a very
large model database and require good initialization of the
pose between scene and the models in order for the
ICP algorithm to converge. Robust initialization can be done
by generating pose hypotheses using either RANSAC guided
by features [18], or triplets of points sampled from the
measurements [5]. Other initialization methods for finding
initial poses between scene and models, include clustering
[37], or Hough transformation [24]. Keselman et al. [21]
formulate the recognition problem in terms of graph-
matching of configuration of features. They use a low-
distortion graph embedding to map vertex-labeled graphs
to a set of vectors in a low-dimensional space and solve the
matching problem with the Earth Movers’ Distance (EMD).
The vertex-labeled graph encodes both the feature attribute in
the nodes and the global configuration in the edges. Though
promising, it is not clear whether the mapping is stable in the
presence of high percentage of outliers in the query.

Alternatively, feature-based methods can be used to prune
the database into a short list, that is used by the alignment
methods to make the final recognition system. Mori et al. use
2D shape signatures called shape contexts to find a short list of
candidate models [27]. Though the idea was used in the
context of2D recognition, it canbe easily extended to 3D object
recognition. A matching algorithm using global geometric
constraints is then applied to pick the best match. While
efficient, this approach has the risk of committing to a short list
of models prematurely and miss the correct match. Other
related methods include [24], [37], [21].

An effective 3D recognition approach based on using
rotationally invariant surface descriptors to guide the
generation of pose candidates between the scene and the
model features in order to explore more efficiently the space
of alignment parameters can be traced to Stein and Medioni
[37]. They introduced the splash feature to describe the local
surface of objects and obtained correspondences between
scene and model splashes using hashing. To compensate for
the exponential time required by hashing in higher (3 to 14)
dimensional spaces, the authors used very coarse bins that
lead to a very large number of potential correspondences.
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These correspondences were used subsequently to generate
hypotheses that were checked for mutual consistency using
distance and orientation constraints. The model correspond-
ing to the hypothesis yielding the smallest reprojection error
was finally chosen as the recognized instance of the target.
The high number of possible correspondences, due to
diminished feature discriminability, requires the generation
and verification of a large number of hypotheses and may
result in low recognition rates.

Johnson and Hebert in [18] proposed a richer, rotationally
invariant semilocal surface descriptor, the spin image, which is
a 2D histogram of the surface locations around a 3D point.
Spin-images are defined in a high-dimensional space (100-
300) and have a higher discriminant power compared with
splashes. In the first stage of the spin-image-based recogni-
tion system from [19], spin-images are computed at sampled
locations in the scene and compared with model spin-images
stored in a database. To reduce the time required for
searching in large databases, the authors resorted to
dimensionality reduction of the features using PCA and
employed the fast nearest neighbor method of Nene and
Nayar [28]. In the second stage, candidate poses between
scene and models are hypothesized using the spin image
correspondences and verified using RANSAC [10]. The
recognized model is determined as the model having the
best overlap with the scene.

Hypothesize and test methods compare favorably with
respect to geometric hashing approaches in terms of storage
requirements, having a constant, rather than polynomial
storage requirements. When the number of models increases,
a high degree of compression with PCA may not be possible,
due to the multimodality of the data, or other departures from
the normality assumption. Many fast nearest neighbor
algorithms can become very sensitive to the choice of
parameters, such as the radius used to locate the nearest
neighbor feature(s), with the sensitivity increasing with the
dimensionality of the space in which the search is performed.
For example, the fast nearest neighbor algorithm of Nene and
Nayar uses dynamic space partitioning to return the closest
features within a ball with radius �. A small value for � may
result in no correspondences returned, while a higher value
yields too many neighbors and a huge increase in the
computational cost. These effects become more prevalent in
higher dimensional spaces, d > 20, thus mandating the use of
dimensionality reduction for the features when dynamic
space partitioning methods are used.

In [32], a variant of the spin-image, the spherical spin-image,
which is robust to clutter and occlusion, is used for feature-
based object recognition in a similar framework with [18]. To
improve the speed of retrieving similar features from the
database, the authors used random projections to reduce the
dimensionality of features; however, the largest model
database tested contained only five models.

Three-dimensional object recognition and classification
using a part-based model representation offers increased
robustness to articulations of parts and better generalization
to objects which are not present in the database. Ruiz-Correa
et al. [33] employ surface shape signatures to encode the
relationship between parts and a support vector machine to
perform the final classification. Huber et al. [16] use K-means
clustering of spin-images computed for semantic parts
defined for each model and a nearest neighbor indexer to
perform the final classification of models.

3 NOTATION

Let M denote the number of models available in the
database, and denote by Nk the number of features stored
for model k ¼ 1; . . . ;M. The total number of features in the
database is

F ¼
XM
k¼1

Nk:

Let ����ku ¼ ðooooku; nnnnku; xxxxkuÞ, u ¼ 1; . . . ; F denote a surface descriptor
for model k. The model assignment of feature ����ku will be
represented by the indicator variable �u, with �u ¼ 1; . . . ;M.
The origin of the coordinate system for feature ����ku is ooooku 2 IR3,
the normal to the local surface is nnnnku 2 IR3, knnnnkuk ¼ 1, while
xxxxku 2 IRs is the signature corresponding to the surface
descriptor, characterizing the semilocal 3D shape informa-
tion around ooooku. Similarly, a surface descriptor for the scene is
����j ¼ ðooooj; nnnnj; xxxxjÞ, j ¼ 1; . . . ; N with N being the number of
features computed for the scene.

Let �k ¼ f����ku1
; . . . ; ����kuNk

g be the surface descriptors corre-
sponding to model k and denote by Z ¼ f����1; . . . ; ����Ng the
surface descriptors computed for the scene. Let Jk represent
the indices of the model k features in the flat database.
Features from the whole model database are expressed by
� ¼ f�1; . . . ;�Mg. The number of elements of a set A is jAj.

4 SURFACE DESCRIPTOR COMPUTATION FROM

RANGE DATA

4.1 Data Preprocessing

The scene consists of multiple views (looks) v ¼ 1; . . . ; Nv of a
scene, coregistered to the same coordinate system using
multiview matching algorithms. Automatic registration of
views is facilitated by the fact that many range sensors
provide GPS information for the data acquired which can be
used as initialization for the registration methods. We assume
that, for every look acquired by the range sensor, we have
available information about its location with respect to the
scene. In general, the size of the scene is relatively small
compared to the distance from the sensor to the scene, thus we
can make the simplifying premise that all the measurements
of that look were viewed under the same direction llllv defined
as llllv ¼ ðPPPPv � ~zzzzvÞ=kPPPPv � ~zzzzvk; , where ~zzzzv is the centroid of the
data within view v and PPPPv is the location of the sensor in the
scene coordinate system.

In order to access efficiently the measurements we have
employed a uniform voxelization of the data. Voxels are
allocated only at those locations in which there are measure-
ments present. The voxels can be accessed directly by
traversing a list of allocated voxels (lists have, in general,
faster insertion than vectors), or by traversing a 3D array
which stores pointers to the allocated voxels and NULL for
unallocated voxels. Other more memory efficient data
structures such as oct-trees or k-d trees [7] could have been
employed instead, however, for the typical scenes handled
which are around 10� 10� 3 m, we have found that a
3D array structure offers very fast access (no need to traverse
trees) with a relatively small memory penalty required.

Prior to feature estimation, scene has to be preprocessed
to remove nontarget clutter produced by vegetation, or
ground. For instance, ground can be removed by making
use of existing physical constraints: For example, laser
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scanners cannot penetrate below the ground; therefore, the
ground points have typically the lowest vertical coordinate.
Vegetation clutter can be removed because it violates
coherent surface constraints. Clutter removal can be carried
out using the eigenanalysis of the 3D scatter of measure-
ments and grouping regions into larger, coherent patches
that have consistent normals, or alternatively using tensor
voting [26]. The aspects related to target acquisition are not
discussed in the paper. Instead, we will assume that the
scene consists of the target plus residual clutter.

The density of points acquired by range sensors varies
nonlinearly within the scene due to:

. elevation of the sensor with respect to the scene.
Surfaces having normals close to being perpendicu-
lar to the corresponding viewing direction are
sampled with less points,

. combining the measurements from multiple views
results in data with higher density in the over-
lapping regions, and

. specularity of the surface depending on the material
reflectivity properties.

In order to mitigate the disparities between the density of
the point clouds in the scene and the models, which may
affect the corresponding features calculated, we employ a
simple, nonparametric density estimation based on counting
the number of measurements that lie within a 3D region. The
calculation is performed at every allocated voxel and the
density at a voxel V ðzzzzÞ having the 3D coordinate zzzz 2 IR3 is
calculated as

�V ðzzzzÞ ¼ 1=NV ðzzzzÞ; ð1Þ

where NV ðzzzzÞ is the number of 3D points zzzzk which lie within a
sphere with radiusRd centered at zzzz, the origin of the voxel. All
the measurements belonging to a voxel will have assigned the
same value of the density (1) computed at that voxel. In our
system, we have used Rd ¼ 0:2 m. More accurate techniques
using kernel smoothing can be employed to reduce the
existing artifacts; however, at a higher computational cost.

Besides the density compensation, another factor that can
improve the discriminability of the surface descriptors is
how well the scene local coordinate systems ðooooj; nnnnjÞ, of
descriptor ����j, j ¼ 1; . . . ; N are estimated under noise.
Typically, for many 3D sensors, the noise affecting the
measurements is much higher along the viewing direction
compared to the noise along the other two directions, i.e., is
heteroscedastic. Finding normals in heteroscedastic noise
requires solving an iterative generalized eigenproblem [25].

At a given location PPPPj, the normals are estimated by
employing the data within a radius w. A larger region can
improve the normal estimates under noise; however, it can be
affected by discontinuities in the surface. Iterative eigenvalue
methods, such as HEIV [25], though more accurate, are
relatively computationally intensive. Since the scenes consist
of tens of thousands of points, the use of HEIV would be too
slow. Therefore, we employ an approximation to the
HEIV algorithm by using the Generalized Total Least Squares
(GTLS) estimator and determining a dominant viewing
direction for each 3D region for which the estimation is
performed. The normal estimate n̂nnn is selected as the smallest
generalized eigenvalue of the eigenproblem

S yyyy ¼ ��v yyyy; S ¼
XNw

i¼1

ðzzzzi � ~zzzzÞðzzzzi � ~zzzzÞ>;

~zzzz ¼ 1

Nw

XNw

i¼1

zzzzi; kzzzzi � PPPPjk � w;
ð2Þ

where �v is the covariance associated with view v (computed
by rotating the covariance diagð�x; �y; �zÞ of the noise in
sensor coordinate system using llllv) and S is the scatter of the
measurements within the radius w of PPPPj. Normals can be
defined only at those locationsPPPPj satisfying�3j � 	�2j, where
�1j � �2j � �3j are the generalized eigenvalues of (2) and 	 ¼
0:1� 0:2 is a threshold on the aspect ratio of the eigenvalues.
The normals estimated using (2) have a gauge freedom about
the sign that can be resolved uniquely by enforcing the
additional constraint nnnn>llllv > 0.

4.2 Surface Descriptors Used

A large class of recognition algorithms proposed in the
literature characterize the surface of an object using surface
descriptors computed at sampled locations in the data. Since
the pose between the scene and the models is not known, the
surface descriptors are chosen to be rotationally invariant. For
example, spin-images require the definition of an object-
centric local coordinate system specified by an origin and the
normal direction to the local surface. To remove the degree of
freedom left, the 3D information within the support region of
the feature is integrated into the descriptor by “spinning” the
coordinate system around the normal. 3D shape context
descriptors [11] define a similar coordinate system; however,
the descriptors are not rotationally invariant, therefore, the
descriptors are calculated at sampled azimuth angles
between 0 and 360 degrees.

The surface descriptors for the models are computed at
locations sampled uniformly from the data. In general,
between 2,000 and 3,000 surface descriptors are estimated
for each model to ensure a dense enough representation of the
modelrequiredinthelaterstagesof therecognitionalgorithm.

Surface descriptors characterizing planar regions have
little discriminant power. In general, descriptors with a
smaller support radius are even more affected by the lack of
3D texture information. Uniform sampling of features in the
scene may be undesirable in this case, because it decreases the
percentage of scene descriptors that can uniquely identify the
correct model from the database. Instead, the scene features
can be computed at locations biased toward regions that have
multiple surface orientations, thus are rich in 3D texture.
Selection of salient locations is based on computing, at all
3D locationsPPPPj 2 IR3 for which normals can be estimated, the
eigenvalues �s1ðPjÞ � �s2ðPjÞ � �s3ðPjÞ of the scatter matrix

SðPjÞ ¼
1

NPj

X
i

ðzzzzi � PPPPjÞðzzzzi � PPPPjÞ>; kzzzzi � PPPPjk � ws; ;ws >> w;

ð3Þ

where NPj is the number of 3D measurements zzzzi having a
distance toPPPPj less thanws. The smallest eigenvalues �s3ðPjÞ of
the scatter (3) provide a good 3D saliency measure, similar to
the one used in the Harris corner detection [15]. Candidate
locationsPPPPj for which the normal can be estimated are sorted
in decreasing order of their 3D saliency measure. Subse-
quently, locations are selected in a greedy manner from the
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sorted list. In order to ensure a good coverage of the object
surface locations, unassigned locations PPPPk within a
distance D from already selected locations PPPPj are removed
from the candidate list.

We have chosen spin-images as local surface descriptors,
although other similar surface descriptors (e.g., shape
contexts) could have been used as well. With shape
contexts, the size of the database would be however be
much larger, since local coordinate systems have to be
sampled at various azimuth angles. We have found that
spin-images offer a good balance between the discriminant
power of the features, the storage space required and the
computational complexity of enforcing geometric con-
straints between features. Spin-images were also shown to
be tolerant to occlusions and clutter.

Spin-images are defined as 2D histograms of in-plane and
out-plane distances of all the 3D points within a radius r of a
local coordinate system ðoooo; nnnnÞ, where oooo 2 IR3 is the origin and
nnnn; knnnnk ¼ 1 is one of the directions [19]. Since only one
direction is specified, there is a gauge of freedom left about
the angle around nnnn. For a point zzzz 2 IR3, kzzzz� ooook � r we find
the projection ẑzzz of zzzz onto the plane specified by ðoooo; nnnnÞ. The in-
plane distance kẑzzz� ooook is unsigned, while out-plane distance
zzzz� ẑzzz is signed. Note that by construction the descriptor is
rotationally invariant. To ensure that the descriptors com-
puted for scene and models are invariant to density, the in-
plane and out-plane distances of each point zzzz are weighted by
the density (1), computed for the voxel to whom zzzz belongs,
when added to the 2D histogram. Previous research
accounted for different mesh resolutions by weighting the
3D points in the histogram by the area of the triangles forming
the mesh, or employed mesh simplification [20]. Alterna-
tively, sampling points from the mesh surface can achieve a
similar effect for balancing the mesh resolution. However,
recovering the mesh structure for the queries is affected by
noise in the data, is more computationally intensive than
fitting planar patches and can lead to artifacts in the surface.

The feature discriminability depends on several factors:
1) Larger support regions yield features that are more
discriminant; however, less resilient to obscuration, clutter,
and articulation of parts. 2) Smaller bins in the histogram
yield features that are again more discriminant, but can
tolerate less noise. Depending on the 3D data and the
operating conditions, the spin image internal parameters
(radius r, number of rows and columns of the 2D histogram)
have to be adjusted.

5 FEATURE INDEXING USING LSH

Searching a large model database for the nearest neighbors in
a high-dimensional space may be extremely time consuming.
Locality-sensitive hashing (LSH) is a state-of-the-art techni-
que introduced by Indyk and Motwani [17] to alleviate this
problem. LSH is a probabilistic solution for the approximate
nearest neighbor problem. The method is based on sampling
K times the feature space with hyperplanes aligned with the
coordinate axes. Assuming that feature vectors xxxxk 2 IRs are
translated such that they belong to a bounding box centered
at the origin (hence, coordinates xk;i � 0), we generate
K random pairs ðu; guÞ, whereu ¼ 1; . . . ; s is a random integer
coordinate index and gu is a float value between 0 andGu, the
largest value of features along axis u, i.e. 0 � xk;u � Gu, 8k.

For a feature point xxxxk in the database, the Boolean test
whether xk;u

�
> gu is used to compute a hash code into a second

level of hashes which stores the corresponding index k for fast
online retrieval. The previous procedure is repeated L times,
therefore each point will belong to L tables. At run time, we
determine for a query pointXXXX theL first-level,K-dimensional
hash codes and retrieve all the points within the correspond-
ing second-level hash tables.

The unique property of LSH is that it relates the probability
of collision to the L1 distance between two vectors [13]. In
other words, if two vectors are close in distance, they will
have high probability of landing in the same bucket of the
hash table. The problem of finding the nearest neighbors then
boils down to searching only the vectors in the bucket that
have the same hash code as the query.

The probability of collision as the function of the L1

distance has the following form

Pc ¼ 1� 1� ð1� d=dcÞK
� �L

; ð4Þ

where dc is a constant related to the maximum distance
between any two vectors in the set under the consideration,
d is the actual distance between two vectors. Fig. 2 plots the
curves of the function in (4) with different K and L.

Intuitively, increasing K reduces the probability of
collision, and increasing L increases the probability. A large
probability of collision will result in numerous possible
candidates returned for a query point and a sharp increase
in the execution time. A detailed discussion of the influence
of the two parameters on the execution time and the
accuracy of the approximate neighbors returned is done in
Section 8.2. It can also be seen that the probability of
collision drops down quickly as the distance increases. In
our case, this prevents the matching of features from model
objects that are not similar, and is one of the key factors
contributing to the efficient pruning.

Methods for tuning the LSH parameters K and L in order
to maximize the performance of LSH were also proposed [12].
A similar approach is presented in Section 8.2. To reduce the
dependency of the LSH on the two parameters, Bawa et al.
proposed recently the LSH forest [2] which was shown by the
authors to improve the retrieval performance on skewed data
distributions without the need to retune the algorithm.

ThedownsideofLSHisthat itmayintroducesomeerrors in
the closest features returned comparatively with the nearest
neighbor method. In our approach, this can be tolerated
because of the extra geometric constraints that are used.

Feature indexing using LSH returns for each scene
descriptor ����j, j ¼ 1; . . . ; N , a set of features �j ¼
f�����u1

u1 ; . . . ; ����
�uq
uq g, with q � Q the number of similar features
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Fig. 2. LSH probability of collision with variousK andL. (a) ParameterK is

varied andL ¼ 20. (b) ParameterL is varied andK ¼ 5. dc is set to 1; 000.



extracted from the database and Q the maximum number
of features allowed. Let Ij ¼ fu1; . . . ; uqg be the set of
indices of the model features and � ¼ f�1; . . . ;�Ng, be
the available putative correspondences between the scene
and the models according to the similarity in the
signature space, where �j ¼ ð����j;�jÞ.

6 SCENE TO MODEL ALIGNMENT USING

3D-SIGNATURE CONSTRAINTS

We have shown how LSH can be used to find the
approximate nearest neighbors �j for each scene surface
descriptor ����j using only feature information. In this section,
we will show how the space of possible correspondences �
can be pruned using geometric constraints. We will address
two important factors that influence the speed of finding
correct alignment hypotheses between the scenes and the
database models. The first factor is related to the generation
of candidate alignment candidates between the scenes and
the models and is discussed in Section 6.1. The second
factor regards the evaluation of hypotheses using the
likelihood computation in the joint 3D-signature space
and is discussed in Section 6.2. Efficiency is achieved by
using preemptive evaluation schemes that employ only
sections of the data at a time.

6.1 Doublet-Based Hypothesis Generation and
Pruning

A candidate alignment between the scene and a model can be

determined by sampling two surface descriptors ����j1 and ����j2
from the scene and sampling candidate matches ����

�u1
u1 , ����

�u2
u2 from

�j1 , respectively, �j2 such that they belong to the same model,

�u1
¼ �u2

. The sizeof the total space of alignment parameters�

between the scene and the models, assuming that the models

are analyzed independently is 6M. Moreover, the alignment

parameters cannot be found by analyzing each model

sequentially since the approach will not be scalable. Data-

driven alignment hypothesis generation can speed up finding

good solutions by more efficiently exploring the pose space.

We propose the use of feature saliency for scene descriptors and

the binning of descriptors to ensure a good coverage of the

scene. The generation of doublets of matches can be further

improved by using the signature similarity of the candidate

matchesanduseofsimplemutualconsistencychecks toprune

the incorrect matches prior to evaluation.
In the feature-based pruning with LSH, we have employed

only feature information. As mentioned previously, though
the spin image is a rich descriptor, the maximum number of
model candidates Q employed depends on the feature
discriminability, imperfections in the data, or errors due to
the LSH algorithm. Enforcing simple geometric constraints
between configurations of candidate matches was proposed
in the literature before to prune inconsistent matches, without
recovering alignment information. For example, Stein and
Medioni use distance constraints, orientation constraints, and
direction constraints between pairs of splashes in the scene and
in the model [37]. A slightly different approach was followed
by Johnson and Hebert in [18].

The approach we use is similar to [37] and is illustrated
in Fig. 3. Four constraints are sequentially tested:

1. Distance between the signatures origins has to be
small, jd� d0j � �maxðd; d0Þ.

2. The angles must obey the following constraints:
ja� a0j < 
,

3. jb� b0j < 
, and
4. jc� c0j < 
.

We have used � ¼ 0:1� 0:2 and for computational efficiency
reasons we employ cosine values for the angle constraints.
The threshold of the cosine angles depends on the noise
affecting the scene and how reliable the normals are
estimated. In our recognition system, we employ 
 ¼
0:1� 0:2 for the angle-based doublet pruning.

The upper bound on the number of hypotheses that can be
generated exhaustively for two randomly chosen scene
descriptors is Q2. Let 1� P� be the probability of the inliers
in the scene, defined as the probability that a scene feature has
a correspondent within the indexed model features Ij which
is validated also by the 3D geometry. The minimum number
of doublets of scene features Nd that have to be sampled can
be found from the known condition

1� ð1� P�Þ2
� �Nd

< Pfail:

For Pfail ¼ 0:01 and P� ¼ 0:9, we obtain that Nd � 200. The
maximum number of hypotheses Nmax

h ¼ NdQ
2 and under

the previous conditions with Q ¼ 50 would yield Nmax
h ¼

500; 000 which is clearly impractical. We show next how the
number of hypotheses to be generated can be reduced using
feature saliency and signature similarity between features.

Ideally, we want to select scene descriptors ����j1 and ����j2

such they are not close and do not belong to the same
surface or, equivalently, their base points satisfy

kooooj1
� ooooj2k � dmin jnnnn>j1nnnnj2 j � �max: ð5Þ

Bucketing of features into 3D bins was used previously as a
simple and effective way of maximizing the probability of
sampling features from different locations in the scene. We
have employed bins with a side equal to 0.5 m.

Feature saliency is another useful information that can be
used to guide the selection of scene descriptors. Feature
saliency for a descriptor ����j can be defined from the histogram
of models IDs k to whom the features from the set �j belong.
When a scene descriptor has putative descriptors belonging
to different models in the database (i.e., the histogram is flat) it
means that it is likely to have a small discriminant power. On
the other hand, when there are relatively few models present,
the scene feature has a higher discriminant power, i.e., is
salient. One possible feature saliency measure is the entropy
of the histogram of model IDs k, which is similar to the
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Fig. 3. Two sets of correspondences in addition to having similar surface

signatures, are required to be geometrically consistent: d � d0, a � a0,
b � b0, c � c0. These constraints are applied sequentially to prune pose

hypotheses without recovering the alignment parameters.



measures used in [34] in the context of shape-based histogram
matching. Scene features are selected according to this
entropy measure using importance sampling.

Let ����j1 and ����j2
be two scene descriptors obeying constraints

(5). One approach to limit the number of hypotheses to be
generatedis tosamplemodelcandidate featuresguidedbythe
distance between the scene and model signatures. The
candidate correspondences �j are assumed to be sorted in
the decreasing order of their similarity with the descriptor ����j.
Though LSH employs the L1 norm, the signature similarity
can be measured using other distances, such asL2,�2, etc. For
example, the probability of a match in the signature
space psð����j; �����uu Þ can be defined by employing a normal kernel

KðyyyyÞ ¼ 1

ð2Þp=2
expð�0:5kyyyyk2Þ; ð6Þ

where p is the number of degrees of freedom of vector yyyy.
Using (6), we have

psð����j; �����uu Þ ¼ K½H
y
j ðxxxxj � xxxx�uu Þ�; ð7Þ

where H
y
j is the pseudoinverse of Hj, the square of the

covariance matrix Cj, defined as Cj ¼ H>j Hj. Estimating Cj

is very hard, due to the high-dimensionality of the signature
space, thus instead of (7), we can use the approximation

psð����j; �����uu Þ ¼ K½��1
s ðxxxxj � xxxx�uu Þ�; ð8Þ

where �s is the standard deviation of features in the signature
space. We discuss the estimation of �s in Section 7.

Assuming independence between features, the probabil-
ity of a doublet of matches p½ð����j1

; ����
�u1
u1 Þ; ð����j2

; ����
�u2
u2 Þ� is

��u1
;�u2
psð����j1

; ����
�u1
u1 Þpsð����j2 ; ����

�u2
u2 Þ; ð9Þ

with ��u1
;�u2

being the Dirac function ��u1
;�u2
¼ 1 if �u1

¼ �u2
,

and 0 otherwise. The importance sampling of candidate
hypotheses, given two scene descriptors ����j1

; ����j2 can be carried
out using (9). The importance sampling depends on the
scale �s: A value that is too small leads to the elimination of
large section of the possible matches and can hinder finding
good alignment hypotheses. Likewise, a value that is too large
will lack any selectivity yielding a performance similar to
uniform sampling. Note that the distribution of residuals in
the signature space can depart from the independent and
identically distributed (i.i.d.) assumptions made in (8).

A compromise between the exhaustive evaluation of all the
possible combinations and the importance sampling when a
scale in signature space is not available at this stage of the
algorithm is illustrated in Fig. 4. This method does not rely on
any knowledge about the scale and is based on determinis-
tically generating and testing hypotheses using matches
sorted according to the similarity between the scene and
model signatures, while ensuring that the pair of model
features belongs to the same model. The number of
hypotheses that are generated for a pair ����j1

; ����j2 is limited to
a maximum value nt, while the number of consistent
hypotheses for a model is limited to nm � nt. In Fig. 4, for
example, assuming that nm hypotheses can be generated
using features solely from block ða; 1Þ for the model denoted
by dark gray, only hypotheses for the model represented by
light gray are subsequently searched in ða; 1Þ, ða; 2Þ, ðb; 1Þuntil
the terminating conditions are met. In this manner, the
number of hypotheses generated is drastically limited and the

performance is superior compared to uniform sampling of
hypotheses.

The doublet of scene-model matches is sufficient to
estimate the alignment between the scene and a given model.
Denote an alignment hypothesis by !!!!hk ¼ f����j1 ; ����j2 ; ����

k
u1
;

����ku2
; ����hkg, where ����hk 2 IR6 is the minimum pose representation

from the scene to model k. Also, let ðRh
k; tttt

h
kÞbe the rotation and

translation corresponding to ����hk . We have employed the
algorithm of Arun et al. [1] based on SVD to recover the
rotation and translation between the scene and the model.
Other estimators based on Horn’s method using quaternions
were shown to give identical results.

Application dependent criteria can be used to further
prune the hypotheses !!!!kh. For example, in the case of vehicle
recognition, one can assume that vehicles cannot be upside
down, hence jRh

kð2; 2Þj > 
 > 0, with Rh
kði; jÞ, 0 � i; j � 2

being the ði; jÞth entry of the rotation matrix Rh
k .

6.2 Hypothesis Evaluation Using MLESAC

In Section 6.1, we have shown how alignment hypotheses
between the scene and the models can be generated from
doublets of matches. We discuss next how these alignment
hypotheses can be further pruned using the evidence
gathered by using more support in the data. We associate
with each alignment hypothesis !!!!hk , a likelihood measure
Lð� j!!!!hkÞ, h ¼ 1; . . . ; Hk, where Hk is the number of hypoth-
eses generated for model k. Note that not all models will have
hypotheses generated, due to the constraints imposed by
feature competition in the signature space. The likelihood of
hypothesis !!!!kh ¼ f����j1 ; ����j2 ; ����

k
u1
; ����ku2

; ����hkg, belonging to model k
can be estimated using joint 3D-signature space constraints.

For each descriptor match ð����j; ����kuÞwe define the indicator
variable �sj;u

�sj;u ¼
1; if ð����j; ����kuÞ is an inlier in signature space
0; otherwise:

�
ð10Þ

We define �oj;u an indicator variable specifying whether the

origins of the scene descriptor ����j and ����ku are consistent

according to the alignment parameters ����hk . Let ôj be the

warped origin ooooj using the rigid transformation ����hk , i.e.,

ôj ¼ Rh
kooooj þ tttthk . The indicator �oj;u is defined as

�oj;u ¼
1; ifkôj � ooookuk � �o

0; otherwise;

�
ð11Þ

where �o is a user selected threshold that separates the
outliers from the inliers. Experimentally, we have determined
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Fig. 4. Hypothesis generation using sorting of matches according to their
signature similarity. For illustrative purpose, it is assumed that the
features candidates belong to only two models. Each list of feature
candidates �j is divided into blocks of features a; b; c, respectively, 1, 2, 3.
Candidate matches are selected by starting the hypothesis generation
and evaluation within blocks ða; 1Þ, then ðb; 1Þ, ða; 2Þ, ðb; 2Þ, etc. Candidate
doublets are generated for a model k until the number of consistent
hypotheses is equal to nm, or until the number of all the hypotheses is
equal to nt. Arrows denote pair of features which belong to the same
model.



that �o ¼ 0:5 m offers a good separation of inliers from the
outliers. Similarly to (11), we define

�nj;u ¼
1; if jn̂nnn>j nnnnkuj � �n

0; otherwise

�
ð12Þ

with n̂nnnj ¼ Rh
knnnnj and �n ¼ 0:9 a threshold chosen depending

on the expected normal dissimilarity. Let

�j;u ¼ �sj;u�oj;u�nj;u ð13Þ

be an indicator variable that is one if a match is an inlier in the
joint 3D-signature space, and zero otherwise. Specifying the
thresholds �o and �n which separate the inliers from the
outliers in the 3D space is much easier than estimating the
threshold �s in the signature space. The threshold �s and the
standard deviation �s associated with the probability of a
scene-model match (7) can be estimated using residuals
analysis for the inliers in the joint3D-signature space.Sincewe
do not know the alignment parameters such a residual
analysis cannot be performed. Instead, we define a local scale
�sj for each ����j from the approximate nearest-neighbors �j. In
this case, (10) can be expressed quantitatively as �sj;u ¼ 1, iff
u 2 Ij. Gaussian kernels (6) are not robust, hence we employ a
truncated kernel to limit the influence of the outliers. The
probability of a match conditioned on the alignment ����hk can be
written as

pð����j; ����ku j ����hkÞ ¼ �j;uK½��1
o ðôj � ooookuÞ� þ ð1� �j;uÞ� ð14Þ

with �j;u defined in (13) and � ¼ K �o

�o

� �
. In (14), �o is the

standard deviation of the errors associated with the
mismatch of the origins after warping. Under normality
assumption, kôj � ooookuk

2 / �2
o�

2
3, where �2

p is a �2 distribution
with p degrees of freedom. From �o, we choose �o such that:

�2
o ¼ �2

o=�
2
3;�; ð15Þ

where �2
p;� is the �th quantile of a �2

p distribution. We have
employed �o ¼ �o=3 which corresponds to using �2

3;0:975 in
(15). The smaller � is, the flatter the distribution of the
inliers and the less penalty is given to the mismatches of the
origins of the signatures.

The likelihood of correspondences conditioned on the
hypothesis ����hk is

Lð���� j ����hkÞ ¼
YN
j¼1

pð����j;�j j ����hkÞ: ð16Þ

Maximizing Lð���� j ����hkÞ is equivalent to

max
h¼1;...;Hk

YN
j¼1

pð����j;�jj����hkÞ ¼ max
h¼1;...;Hk

YN
j¼1

max
u2Ij;�u¼k

pð����j; �����uu j����h�uÞ:

ð17Þ

An efficient computational scheme for evaluating (17)
using preemption was proposed in [29]. In a preemption
scheme, the hypotheses are evaluated on partial sets of
measurements and the worst hypotheses are gradually
eliminated. See the referenced paper for more details.

The hypotheses ����hk can be sorted in decreasing order of
their likelihood Lð� j ����hkÞ. In order for a hypothesis to be
considered reliable, we enforce two additional consistency
constraints: 1) The minimum number of inliers in the scene
must be larger than a minimum threshold given as a

percentage of the number of scene descriptors N . 2) The
overlap area between the warped scene and the hypothesized
model must be larger than a minimum coverage area. Since
warping can be computationally intensive, we first select the
best hypotheses for a model that satisfy 1) and yield distinct
alignment hypotheses. The surviving alignment hypotheses
are subsequently refined by employing all the inliers in the
joint space for pose computation similar to performing one
iteration of the ICP algorithm. The condition 2) is verified
efficiently by voxelizing the models and counting the
percentage of voxels containing warped scene features
(3D points or basis points of the surface descriptors).

Let ����0
k be the best alignment hypothesis between the

scene and model k. Though it is possible to retain multiple
alignment candidates for a model, we will assume in the
following that only the best hypothesis is retained. Note
that only a fraction of the database models will have
alignment hypotheses generated that obey all the con-
straints. Let G denote the indices k of the models that
contain valid alignment hypotheses ����0

k. Ideally, when
feature constraints are strong, the cardinality of the set G
should be small. The larger the cardinality of G, the more
uncertainty there is about the identity of the target.

7 OBJECT INDEXING USING MAP CRITERION

In Section 6.2, we have discussed how to generate
alignment hypotheses between the scene and the models
using 3D-signature constraints. We discuss next how the
posterior probabilities of a model can be estimated and used
in a Maximum A Posteriori (MAP) criterion to index the
models from the database.

7.1 Global Signature Scale Estimation

Recall that, in Section 6.2, we have employed the signature
constraints by using only the LSH indexed features �j for each
scene descriptor ����j during the likelihood computation.
However, the signature similarity scores were not used inside
the likelihoods because they require the specification of a
threshold �s separating the inliers from the outliers and of a
scale�s that parameterizes the local distribution of the inliers.
Estimating �s and �s can be done by analyzing the matches
ð����j; �����uu Þ that are inliers in the joint 3D-signature space.

Let �k
j denote the subset of model features �j that belong

to model k and satisfy the 3D constraints

kôj � ooookuk � �o; jn̂nnn>j nnnnkuj > �n;

ôj ¼ R0
kooooj þ tttt0k; n̂nnnj ¼ R0

knnnnj; u 2 Jk;

i.e., are inliers in the joint 3D-signature space. Let qjk ¼ j�k
j j

be the number of inliers belonging to model k correspond-
ing to ����j.

The global scale of features �s can be obtained by
analyzing the signatures between scene descriptors ����j and
the inliers �k

j , j ¼ 1; . . . ; N , k 2 G. We select �s to be the
maximum mode of the distribution of the residuals
kxxxxj � xxxxkjik. The maximum mode can be obtained using
mode-seeking techniques such as mean-shift. Experimen-
tally, we have established that for the vehicle database used
and the scenes available the distribution of residuals
approximates a �2

p distribution, where p, the number of
degrees of freedom can be estimated from the rank of the
covariance matrix of the residuals.
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7.2 Posterior Computation in the Joint Space

The a posteriori probability of a model, given the scene
descriptors Z, model descriptors � and the alignment
parameters �0, of the models k 2 G can be obtained using
Bayes rule

pðkjZ;�;�0Þ ¼ pðZ;�jk;�
0Þpðkj�0Þ

pðZ;�j�0Þ
¼ pðZ;�jk;�

0ÞpðkÞ
pðZ;�j�0Þ

:

ð18Þ

We make the simplifying assumption that a priori prob-
ability of a model pðkÞ is uniform, thus

pðk jZ;�;�0Þ / pðZ;� j k;�0Þ ¼ pðZ;�k j ����0
kÞ: ð19Þ

Assuming independence among the scene feature de-
scriptors, (19) can be written as

pðZ;�k j ����0
kÞ ¼

YN
j¼1

pð����j;�k j ����0
kÞ: ð20Þ

Using a mixture model, we have

pð����j;�k j ����0
kÞ ¼ 
j;kpð1Þð����j;�k j ����0

kÞ þ ð1� 
j;kÞpð2Þð����j;�k j ����0
kÞ;
ð21Þ

where 
j;k is the mixing probability of the inlier component
pð1Þð����j;�k j ����0

kÞ and pð2Þð����j;�k j ����0
kÞÞ is the outlier component.

Note the relationship between (21) with (14). We have

pð1Þð����j;�k j ����0
kÞ ¼

X
u2Jk

�j;up
ð1Þð����j; ����ku j ����0

kÞ; ð22Þ

where �j;u is an indicator variable that is one if feature ����j
is assigned to ����ku and zero otherwise. We enforce the
additional constraint that a feature can be assigned to at
most one feature from a model, thus

P
u2Jk 
j;u � 1.

Maximizing (20) implies maximizing pð����j;�k j ����0
kÞ, j ¼

1; . . . ; N over the space of possible matches. Assuming
that the outlier component pð2Þð����j;�k j ����0

kÞ is uniform and
for a given mixing probability 
j;k, we have

max
ui2Jk

pð����j; f����ku1
; . . . ; ����kuNk

g j ����0
kÞ ¼

max
�j;u

X
u2Jk

�j;up
ð1Þð����j; ����ku j ����0

kÞ ¼ pð1Þð����j; ����ku0
j ����0

kÞ;

where

u0 ¼ arg max
u2Jk

pð����j; ����ku j ����0
kÞ ¼ arg max

u2Jk
pð�̂���j; ����ku j ����0

kÞ ð23Þ

and �̂���j ¼ ðôj; n̂nnnj; x̂xxxjÞ is the feature ����j warped through the
rigid transformation ðR0

k; tttt
0
kÞ corresponding to ����0

k. Assuming
independence between 3D and signature information and
Gaussian distribution of residuals

pð1Þð����j; ����ku j ����0
kÞ ¼ K½��1

o ðôj � ooookuÞ�K½��1
s ðxxxxj � xxxxkuÞ�: ð24Þ

Evaluating (23) is linear in the number of features for a
model, thus to be computationally efficient we restrict the
computation on the subset �k;j ¼ f����ku1

; . . . ; ����kuNk;j
g, Nk;j ¼

j�k;jj satisfying

kôj � ooookuik � �o; jn̂nnn>j nnnnkui j � �n;

kxxxxj � xxxxkuik � �s; u ¼ 1; . . . ; Nk;j:
ð25Þ

The outlier component is, assuming whitening of the 3D

and signature components,

pð2Þð����j;�k j ����0
kÞ ¼

�ð52Þ�ð
pþ2

2 Þ

pþ3

2 ð�2
3;�Þ

3=2ð�2
p;�Þ

p=2
; ð26Þ

where p is the number of degrees of freedom of the

signature residuals between the scene and the models and

�ð�Þ is the gamma function.
The mixing probabilities 
j;k can be found using the

EM algorithm as suggested in [38]. Let yj;k denote an indicator

variable that is one when scene feature ����j is assigned to

model k. We have:

pðyj;k ¼ 1 j 
j;kÞ

¼

j;kp

ð1Þð����j; ����ku0
j ����0

kÞ

j;kpð1Þð����j; ����ku0

j ����0
kÞ þ ð1� 
j;kÞpð2Þð����j;�k j ����0

kÞ
:
ð27Þ

The refined 
j;k can be found by taking the expected values

of pðyj0;k ¼ 1 j 
j0;kÞ for the features ����j0 within a radius � of ����j,

kooooj0 � oooojk � �. In our algorithm, we start with 
j;k ¼ 1=2 and

perform one EM iteration to find the mixing probabilities.
To remove the scale, we ensure that

XM
k¼1

pðkjZ;�;�Þ ¼ 1; ð28Þ

and the indexed models I ¼ f�k1
; . . . ; �kT g are returned

such that

XT
i¼1

pð�ki jZ;�;�0Þ > �;

pð�k1
jZ;�;�0Þ � . . . � pð�kM jZ;�;�0Þ;

ð29Þ

where � is the confidence level sought in the indexing

decision. In practice, we limit the number of indexed

models T to the minimum between the value obtained in

(29) and T0 selected as a fraction of the number of models M

from the database.

8 EXPERIMENTAL RESULTS

8.1 Experimental Settings

We have applied the 3D object indexing method proposed

on vehicle indexing, a very challenging problem due to the

high degree of similarity existing between different types of

vehicles. In Fig. 5, several models used in our database are

presented (the models are displayed in faceted form for

clarity of presentation; recall that we do not use the faceted
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Fig. 5. Example of several similar vehicles employed in our database.

Top row: Chevrolet Cavalier 1993, Dodge Avenger 1997, Ford Taurus

1994; Bottom row: Honda Accord 1990, Mitsubishi Galant 1992, Nissan

Altima 1993.



models directly into our system). Note the similarity
between their 3D shapes.

Most 3D object recognition results published in the
literature employed complete scans of small objects to
produce models that were subsequently used to recognize
the same instances from scenes. Therefore, there was little, or
no difference between the objects and the corresponding
models from the database apart from changes induced by
limited views of the objects available, obscuration produced
by clutter, etc. Obtaining complete scans of real vehicles can
be very difficult due to the large size of the objects requiring
expensive specialized hardware. Moreover, one cannot make
the assumption that the same sensor will be used to acquire
the scene data, thus differences in resolution and quality of
the data can be expected between the objects and the models
from the database.

Three-dimensional models of large objects are produced
from high quality 2D images using specialized software and
expert users to reconstruct the 3D structure of the objects.
Though faithful replicas of the original objects can be
produced, not all the characteristics of the real objects can
be modeled. For example, the 3D models can be opaque, thus
the interiors of the vehicles can be missing, whereas in real
operating conditions, laser scanners can acquire interiors by
penetrating through the windows. Unmodeled articulations
of parts can reveal new structures in the real objects not
present in the corresponding model. For example, an opened
hood for a car may reveal the engine block, which is not
necessarily present in the model, even if the model has
articulating parts.

The experimental results presented next employed vehicle
models that were provided through a research contract. Some
of the models provided have articulations, however for the
indexing we used models placed in a default configuration.
We have employed other sources for 3D models such as De
Espona or Viewpoint, however, the results are not reported
here. The experiments were performed on a PC with 2 GHz
Intel processor and with 2 GB of memory.

The 3D models employed consist of surface meshes that
are given in standard formats (VRML, 3D Studio Max). For
each model, we have rendered a total of eight views
sampled at 45 degrees azimuth angles around the object
and at an elevation close to the expected elevation of the
sensor in a particular experimental setting. For instance,
airborne 3D sensors can acquire the data at elevations close

to 45 degrees, while ground 3D sensors will acquire the data
at very small elevations, below 20 degrees.

Between 2,000 and 3,000 spin-images per model were
generated, depending on the size of the object, by uniformly
sampling locations from the combined point clouds. Spin-
images were computed using 10� 10 signature histogram
and with a radius r ¼ 1:5 m. We have experimentally found
that larger support regions for the features yield a worse
performance due to the increased effect of obscuration and
clutter. The bin size selected for the features offers a good
balance between the tolerance to noise and the corresponding
discriminant power.

The performance of the proposed indexer was compared
with two other methods: 1) 1-NN indexer using the LSH for
finding the nearest neighbor model feature to each scene
feature. The posterior of each model k, p1�NNðkjZ;�Þ, is
computed as the ratio between the number of scene features
having the nearest neighbor model feature coming from
model k and the total number of scene features. 2) A doublet-
based indexer. Random doublets are generated as discussed
in Section 6.1. The posterior pdoubletðkjZ;�Þ can be computed
by the ratio between the number of doublets that come from
model kobeying the geometric constraints from Fig. 3 and the
total number of geometrically consistent doublets that were
generated.

The effect of noise affecting the measurements was
analyzed using synthetic data generated using a scene
generator which places models into a virtual environment.
We have employed a model database containing 89 vehicle
models: 54 civilian vehicles and 35 military vehicles. The
database consists of more than 180,000 features. Scene point
clouds are rendered using a realistic sensor simulator and
variable noise levels. We have generated hundreds of queries
and the plots of the average recognition rate versus the
number of models retrieved are presented in Fig. 6. Note that
at small noise all three indexers have a comparable
performance, however, at higher levels of noise the 1-NN
and the doublet-based indexers break down.

8.2 HighLift Data Collection

In the Highlift data collection, a laser scanner is placed on a
cherry picker at a height of approximately 50 m above the
ground. Due to the relatively low height of the sensor with
respect to the ground, the 3D measurements are acquired at a
low elevation angle e ¼ 10	 � 20	. Each scene consists of
multiple vehicles with different articulations present, such as
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Fig. 6. Average recognition rate versus the number of models retrieved for the synthetic example. Normal noise with different standard deviation �

was added along the viewing viewing direction. (a) � ¼ 5 cm, (b) � ¼ 10 cm, and (c) � ¼ 15 cm. Dashed line denotes the performance of the 1-NN

indexer in which the neighbors are computed using the LSH algorithm. Dash-dotted line curve denotes the performance of a doublet-based indexer,

while the continuous line denotes the performance of the proposed algorithm.



doors and hoods opened. The effective elevation for a target
depends on the distance between the target and the sensor.

A total of 88 queries, covering at least three sides of the
target, were selected from the Highlift data collection and
used for testing the 3D object indexing algorithm proposed.
Each query contains a single target object in addition to
clutter. Examples from the 88 queries are given in Fig. 7.
Although three sides of the targets should be visible, due to
calibration errors of the sensor, low elevation angle, partial
obscuration, some data from the object surfaces may be
missing. We define the obscuration level of the data by the
percentage of the missing data with respect to the ideal
viewing conditions. Thus, 0 percent obscuration indicates
that all three vehicle sides are visible, while 20 percent
obscuration means that 20 percent of the three sides are
missing. The obscuration level is evaluated manually.
Highly obscured query data which are not used for
evaluation because they lack distinctive features.

We have employed a model database containing 89 vehicle
models consisting of 180,000 features (same as used for the
synthetic example above).

The accuracy and speed of the LSH method depends on
two parameters: K (size of the first-level hash code) and L
(number of hash tables). To find the best values for the K
and L, we have employed a method similar to [12]. For a
scene feature i we compute the nearest neighbor using
a sequential search and the LSH method. Let dNNi denote
the L2 distance between the signatures of the scene and
the nearest neighbor obtained with a sequential method
and dLSHi the distance between the signatures of the scene
feature and of the LSH indexed model feature. For a given
K and L the following criterion is sought to be minimized:

J ðK;LÞ ¼ 1

m

Xm
i

dLSHi

dNNi
; ð30Þ

where m is the number of features used for optimization. To
speed up finding the minimum of (30), we evaluate the cost
function at coarse values for K and L. For K, we use a range

of ½20; 200� with an increment �K ¼ 5, while for L 2 ½2; 30�
with step �L ¼ 2 resulting in 585 LSH tables being
generated. Twenty-seven queries were selected from the
Highlift data collection, covering a large spectrum of the
vehicles encountered. For each target, around 500 features
were generated resulting in m ¼ 13; 500 scene features
generated and used for LSH optimization.

From Fig. 8, it can be seen that a larger number of hash
tables L and using smallerK the error (30) produced by LSH
is reduced, however, the computational time required is
increased. This effect can be understood with respect to the
probability of collision (4). For small K, we will have a lot of
collisions in creating the LSH tables, therefore, the number of
possible neighbors returned for a query point will increase,
thus also the chance that one of them will be very close to the
correct nearest neighbor. IncreasingK, on the other hand, will
result in less collisions, thus fewer possible neighbors
returned and faster execution time. However, the error
measure (30) may also increase, unless the number of
tables L is also increased due to the fact that many of the
hash tables will be empty (for very low collision probability,
even close neighbors will end up in separate hash tables). The
effect of L on the error and execution time is evident. The
larger the number of tablesL is, the slower the algorithm will
typically be, because more data points are retrieved.

We seek solutions for the parameters such that J � 1þ �,
were �denotes the level of errors that is tolerated. From all the
solution obeying the error constraints, we select the ones
resulting in the fastest processing time. In Table 1, we have
displayed the best projected processing time depending on
the level of errors in the neighbors returned by LSH. We have
selected K ¼ 65 and L ¼ 18 resulting in a speedup of almost
20 times compared with using the sequential search within
the database.

The average timing for the Highlift collection is 50 seconds
per query. Note that a significant amount of time is spent in
generating doublets and computing the approximate nearest
neighbors using LSH. A large number of doublets are simply
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Fig. 7. Examples from the 88 queries from Highlift collection used for testing.

Fig. 8. Optimization of the LSH parameters K and L. (a) The error
function J ðLÞ computed for fixed K. (b) Computational time required in
seconds.

TABLE 1
LSH Error � versus Computation Time

for the Highlift Data Collection



discarded because they do not obey the geometric constraints
due to the significant target and corresponding model
differences.

The average recognition rates versus the number of
models retrieved for three indexing algorithms using the
88 Highlift queries are shown in Fig. 9. With T0 ¼ 20 model
picks, the indexing performance is 96.59 percent on the
qualified queries and 87.06 percent over the entire collection
(including discarded queries). Note the significant improve-
ment of the proposed method.

8.2.1 Influence of Obscuration

To investigate thoroughly the influence of various operating
conditions such as obscuration, clutter, and articulations a
very large number of queries would be required. Obscuration
is a very important factor that can affect drastically the
performance of any recognition system. A systematic evalua-
tion of the indexing algorithm proposed under different types
and levels of obscuration is presented in the following. Since
data acquisition can be very expensive and time consuming,
we have employed an obscuration simulator using real
queries generated in the Highlift data collection.

In practical situations, two types of obscuration present
interest: 1) solid obscuration, that is produced by solid
objects occluding the target, such as walls, or other objects;
2) “see-through” obscuration which is the produced by
vegetation (bushes, foliage of trees). The former type affects
only few large regions from the target, while the latter is
more localized and affects more locations in the target. As
before, we define the level of the obscuration with respect
with the ideal viewing conditions when no occlusion is
present. The only assumption we make is that under these
ideal viewing conditions, three sides of the vehicles are
available on average. To account for the sensor resolution,
the scene is voxelized and the obscuration level measured
by the percentage of the voxels containing no measure-
ments with respect to the ideal viewing conditions.

To simulate see-through obscuration, we remove small
regions from the queries throughout the surface. Given the
level of obscuration desired and a radius of the regions to be
removed the simulator selects randomly voxelized locations
from the query and removes the measurements within a
radiusRo < 0:5 m. The process is repeated until the obscura-
tion level sought is achieved. Under a given radiusRo, a large
level of obscuration results in more holes in the data.

Solid obscuration can be generated using the previous
see-through simulator, but with larger radius Ro � 1 m, or
by sweeping the targets along the X;Y ; Z directions until
the level of the obscuration desired is reached.

The performance on see-through obscuration is relatively
high for up to 35 percent of obscuration. The performance
deteriorates more gracefully as obscuration level increases,
compared to the performance of solid type obscurations, as
shown in Tables 2 and 3. This indicates that the indexer can
perform well in actual sensing environment where targets
hiding behind foliages and “mouse-bite” type of data may
be collected by modern sensing technologies.

8.3 Montana Data Collection

In the Montana data collection, we have available a number
of 536 queries which were selected to ensure at least three
sides of the vehicles were present, as discussed in
Section 8.2. The data was acquired by placing a LADAR
sensor into a helicopter which scans the targets in multiple
passes. All the scans are registered using GPS information
associated with each point. The noise affecting the
measurements is higher compared with the Highlift data
collection due to the vibrations of the aircraft. We do not
have precise information about the noise level of the
LADAR sensors used, however, we have estimated that
the equivalent standard deviation of the noise is 10 cm for
the Montana data, compared with 7.5 cm for the Highlift
collection. The viewing elevation angle is close to 45 degrees
which ensures that the top of the objects are better scanned
compared with the Highlift collection. As before, the targets
present can have articulations, the interiors can be visible,
clutter and ground are present. An illustration of few
queries from the Montana data collection is given in Fig. 10.

We have employed a database of 366 models consisting
of 201 sedans, 53 SUV, jeep and wagons, 17 minivans,
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Fig. 9. Plots of the average recognition rates function of the number of
models retrieved from the database for the 88 queries selected from the
Highlift data collection. The dashed line denotes the performance using
1-NN indexer computed with LSH, the dashed-dotted line describes the
doublet-based indexer, while the continuous line denotes the proposed
indexer.

TABLE 2
Indexing Performance for Different Levels of See-Through

Obscuration and T0 ¼ 20 Models Returned

TABLE 3
Indexing Performance for Different Levels of Solid

Obscuration and T0 ¼ 20 Models Returned



12 buses and vans, nine construction vehicles, 47 trucks and
pickups, and 27 military vehicles. The database consisted of
more that 1,000,000 features. The models used for the
Highlift data collection are a subset of the models used for
the Montana experiment. The database was extended to
show both the scalability of the algorithm proposed and
also due to the larger variety of models encountered in this
data collection. The curve of recognition rates function of
the number of models retrieved for the proposed method is
presented in Fig. 11. The average time per query is about
100 seconds on a 2 GHz machine. It can be seen that at a
four fold increase in the database, the processing time is
doubled compared with the time used for the previous
example. The error is 5 percent with 60 models returned,
three times as many as for the Highlift experiment. The
relatively large number of models returned (up to one sixth
of the database size, depending on the discriminability of a
particular model), is due to the high number of similar
models existing in this database (more than 200 sedans) and
the noise affecting the measurements.

To our best knowledge, no result published in the literature
reported results on such a large number of similar models in
the database and with so many queries used for testing.

9 CONCLUSION

We have described a new 3D object indexing method that
employs approximate nearest neighbor search using the
Locality Sensitive Hashing and the joint 3D-signature
estimation for generation and evaluation of alignment
hypotheses between scene and database models. We have
applied the approach for a challenging problem of recogniz-
ing vehicles, a very difficult problem due to the high degree of
similarity between the objects. We have shown that our
algorithm can cope with challenging 3D data covering only

portions of targets under challenging conditions due to:

obscuration of the data, discrepancies between scenes, and

available models.
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