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Abstract

We propose a shift-invariant multiresolution representation of signals or images using dilations and
translations of the auto-correlation functions of compactly supported wavelets. Although these functions
do not form an orthonormal basis, their properties make them useful for signal and image analysis. Unlike
wavelet-based orthonormal representations, our representation has (1) symmetric analyzing functions, (2)
shift-invariance, (3) associated iterative interpolation schemes, and (4) a simple algorithm for finding the
locations of the multiscale edges as zero-crossings.

We also develop a non-iterative method for reconstructing signals from their zero-crossings (and slopes
at these zero-crossings) in our representation. This method reduces the reconstruction problem to that

of solving a system of linear algebraic equations.

EDICS: 4.8, 4.4

I INTRODUCTION

By analyzing the growth or decay from scale to scale of the coefficients of the orthonormal wavelet expansions,
it is possible to estimate the local behavior of signals. However, since the coefficients of the orthonormal
wavelet expansions are not shift-invariant, redundant representations (without subsampling at each scale,
e.g., [3], [22], [20], [21], or the continuous wavelet transforms [13]) are being used in order to simplify the

analysis of coefficients from scale to scale. In particular, the orthonormal wavelet expansion of a vector of
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length N without subsampling is not only shift-invariant but also contains all the wavelet coeflicients to
represent N circularly-shifted versions of the original signal [22], [2], [21].

The asymmetric shape of the orthonormal compactly supported wavelets presents another difficulty for
the analysis of signals. The symmetric basis functions are preferred since, for example, their use simpli-
fies finding zero-crossings (or extrema) corresponding to the locations of edges in images at later stages of
processing. There are several approaches for dealing with this problem. The first approach consists in con-
structing approximately symmetric orthonormal wavelets and gives rise to approximate quadrature mirror
filters [14]. The second consists in using biorthogonal bases [4], [23], so that the basis functions may be
chosen to be exactly symmetric.

Alternatively, a redundant (shift-invariant) representation using dilations and translations of the auto-
correlation functions of compactly supported wavelets (the auto-correlation shell), may be used for signal
analysis instead of the wavelets per se. The exact filters for the decomposition are the auto-correlations
of the quadrature mirror filter coefficients of the compactly supported wavelets and, therefore, are exactly
symmetric. The recursive definition of the auto-correlation functions of compactly supported wavelets leads
to fast iterative algorithms to generate the shift-invariant multiresolution representations.

One of the interesting features of this representation is its convertibility to the redundant expansion
(without subsampling) by the corresponding orthonormal wavelets on each scale, independently of other
scales. An algorithm for this conversion is discussed in detail in [21].

As an application of the proposed representation, we will also consider the reconstruction of signals from
zero-crossings (and slopes at zero-crossings), i.e., the conversion of the auto-correlation shell representation
into the zero-crossing-based representation. Such a representation is useful for nonlinear manipulation of
signals, for example, edge-preserving smoothing and interpolation. (See Mallat and Zhong [16], Mallat and
Hwang [15] as well as [19], [18] for other approaches.)

There is also a simple relation between the auto-correlation shell representation and the continuous

wavelet transform [13] which will be reported elsewhere.

II WAVELETS AND THEIR AUTO-CORRELATION FUNCTIONS

The auto-correlation functions of compactly supported scaling functions were first studied (as the so-called
fundamental functions) in the context of the Lagrange iterative interpolation scheme by Dubuc [10] and
Deslauriers and Dubuc [9] before compactly supported wavelets were developed in [7]. Later, applications of
the auto-correlation functions of compactly supported scaling functions and wavelets for signal representation

and analysis were developed by Ansari et al. [1] and Shensa [22], and, independently, in [21].



Let ®(z) be the auto-correlation function,

+o0
o) = [ " ¢wely —o)dy, 2.1

—00

where () is the scaling function which appears in the construction of compactly supported wavelets in [7].
The function ®(z) is exactly the “fundamental function” of the symmetric iterative interpolation scheme
introduced in [10], [9]. Thus, there is a simple one-to-one correspondence between iterative interpolation
schemes and compactly supported wavelets [1], [22], [21]. In particular, the scaling function corresponding to
Daubechies’s wavelet with two vanishing moments yields the scheme in [10]. In general, the scaling function
corresponding to Daubechies’s wavelet with M vanishing moments leads to an iterative interpolation scheme
which uses the Lagrange polynomial of degree 2M — 1 [9]. Additional variants of iterative interpolation
schemes may be obtained using the compactly supported scaling functions (e.g., “coiflets”) described in [8].

Let us outline the derivation of the two-scale difference equation for the function ®(x). Let m(£) and

m1(€) be the 2m-periodic functions,

= L—1
=— Y hget, m1(§) = Z gre® = & Mmg (€ + ), (2.2)
V2 = f
satisfying the quadrature mirror (filter) condition,
[mo(&)[? + [ma (&) = 1. (2-3)

If we consider trigonometric polynomial solutions of (2.3), then from (2.2) and (2.3) it follows that

1 12
mo(&)* = 5 + 5 D_ aak—1c08(2k — 1)¢, (2.4)
k 1
where {ay} are the auto-correlation coefficients of the filter H = {hy }o<r<r—1,
L-1—k
ax =2 > Mhhyk, k=1,...,L—1, and ayp =0, k=1,...,L/2—1. (2.5)
1=0
Using the two-scale difference equation for the scaling function ¢,
L-1
o(z) = V2 ) hip(2z — k), (2.6)
k=0

it is easy to verify that

1 L2
®(z) = Z ag—1 (®(2z — 21 + 1) + ®(2z + 21 — 1)). (2.7)



Introducing the auto-correlation function of the wavelet 1,

+o0
Vo) = [ wlyhbly — o) dy, (28

—00

where

L—-1
P(z) =V2 Y gep(2z — k), (2.9)
k=0

we also have
L/2

1
U(z) = &(2z) — 5 D ay_1(®(2x —21+1)+ @2z + 21 — 1)). (2.10)
=1
By direct examination of (2.7) and (2.10), we find that both ® and ¥ are supported within the interval
[-L+1,L—1].

Finally, ®(z) and ¥(z) have vanishing moments,

+00
7= / 2"U(z)dz =0 for 0<m<L-1, (2.11)
—00
+00
® = / z™®(z)dz =0 for 1<m<L-1, (2.12)
and
+00
/ ®(z) de = 1. (2.13)

It is easy to verify (see [2]) that even moments of the coefficients ag;—; from (2.5) vanish, namely

L/2
> agk-1(2k—1)*"=0 for 1<m<M-1, (2.14)
k=1

where M = L/2 (for wavelets in [7]). Since L consecutive moments of the auto-correlation function ¥(z)

vanish (2.11), we have for small [¢|

A

U(¢) = 0(gh), (2.15)

where W(£) is the Fourier transform of ¥(z). Thus, ¥(£) may be viewed as the symbol of a pseudo-differential
operator which behaves like an approximation of the derivative operator (d/dz)”. Therefore, the operator of
convolution with ¥(z) behaves essentially like a differential operator in detecting changes of spatial intensity.
We display functions ®(z), ¢(z), ¥(z), 9(z), and the magnitudes of their Fourier transforms in Figures 1
and 2.

Let us briefly review the relation of the auto-correlation functions in (2.1) and (2.8) to the iterative
interpolation scheme. Let B, be the set of dyadic rationals m/2",m € Z and n = 0,1,2,.... Following
[10] and [9], let us consider the following problem: given values of f(z) on By, extend f to B, Bs,... in

an iterative manner. For € By, 11 \ By, Dubuc in [10] has suggested the following formula to compute the



value f(z),

L (F(z—3h)+ flz+3h)), (2.16)

fl@) = o (@~ ) + fla+h) — oo

where h = 1/2"T!. We illustrate a few steps of this iterative process applied to the unit impulse in Figure 3.

This interpolation scheme is generalized further in [9],

= > F(k/2)f(x+kh) for z € Bpy1\ By, (2.17)
kEZ

where h = 1/2"*1, and the coefficients F(k/2) are computed by generating the function satisfying

F(z/2) =Y F(k/2)F(z — k). (2.18)

kEZ

Using the Lagrange polynomials with L = 2M nodes, we have
Z L 1(0) (f(z — (2k — 1)R) + f(z + (2k — 1)h)), (2.19)

where {P; " (z)}_mt1<k<m is a set of Lagrange polynomials of degree L — 1 with nodes {—L + 1,—L +
3,....,L —3,L— 1}, ie.,

PL (z) = ﬁ z-@—1) (2.20)
Zk—1 g 2k =1 = (2= 1)
In this case, (2.18) reduces to
M
F(z) = F(2z) + Y PL75(0) (F(2z — 2k +1) + F(2z + 2k — 1)) . (2.21)

This special case of (2.17) is called the “Lagrange iterative interpolation.” The original scheme (2.16) of
Dubuc corresponds to L =4 in (2.19).
We have
F(z) = ®(x), (2.22)

where F'(z) is the fundamental function defined in (2.18) and ®(xz) is the auto-correlation function of the

scaling function ¢(z). Using the two-scale difference equation (2.7), we obtain

®(k/2) = ®(k) + = Zagl 1 (@(k—20+1)+®(k+2-1)), (2.23)
leN

and, therefore,

3(k/2) = ax/2. (2.24)



In other words, the two-scale difference equation for the function ® in (2.7) may be rewritten as

(x/2) = > ®(k/2)®(x — k). (2.25)

kEZ

For any polynomial P of degree smaller than L, the Lagrange iterative interpolation of the sequence
f(n) = P(n), n € Z, via (2.19) is precisely the function f(z) = P(z) for any z € R.

If the number of vanishing moments M =1 and L = 2 (the Haar basis), then we have

l+z for —1<z<0,
Prpar(@) =49 1—2 for0<z<1, (2.26)

0 otherwise,

and the interpolation process corresponds to linear interpolation.

Using expressions (3.49)—(3.52) of [2], the relation (2.4) may be rewritten as

, 1 1 (2M-1) M (=1)k1 cos(2k — 1)¢
[mo(©)] _§+§[(M—1'4M 1] = (2k—1) (M —k)! (M +k—1)" (2:27)
If M — oo, then
2 0 k 1
g (€) - ;2:: cos(2k — 1)¢, (2.28)

which is the Fourier series of the characteristic function of [—7/2,7/2]. This implies that the corresponding

auto-correlation function is

Do (z) = sinc(z) = s WI, (2.29)
T

and the interpolation process corresponds to band-limited interpolation. (It turns out that in this case the
scaling function coincides with its auto-correlation function.) Thus, we have a family of symmetric iterative
interpolation schemes parameterized by the number of vanishing moments 1 < M < oc.

In what follows, we will need to compute the derivatives of the auto-correlation functions in (2.1) and

(2.8). We note that the derivative of the function f(z) in (2.19) is computed via
Z re (f (z + kh) — f(z — kh)), (2.30)
where h = 1/2", x € B, m < n, and

TR = /:):o oz — k)%(p(m) dz. (2.31)



The coefficients 7, may be computed (see [2]) by solving

L/2
e =272k + 5 > an—1(rop—oi41 +roksa—1)| and Y kry = -1, (2.32)
=1 keZ

where the coefficients ag;_1 are given in (2.5). If the number of vanishing moments of the wavelet M > 2,
then equations (2.32) have a unique solution with a finite number of non-zero ry, namely, 7, # 0 for
—L+2<Ek<L—-2andr,=—r_.

We will use the iterative interpolation scheme and the procedure for computing the derivative in Sec-

tion IV to find zero-crossings of signals and the slopes at the zero-crossings.

III AUTO-CORRELATION SHELL: A SHIFT-INVARIANT MULTIRESOLUTION REP-
RESENTATION

Let us assume that the finest scale of interest is described by the N = 2" dimensional subspace Vo C L?(R)
and consider only circulant shifts on Vy. We refer to the set of functions {U; ()}, <j<no, 0<k<n—1 and
{®nok(T)} g y_q @S a shell of the auto-correlation functions of orthonormal wavelets (an auto-correlation

shell for short), where ng(< n) describes the coarsest scale of interest and

B k(x) = 27920279 (z — k), U, (z) = 27920277 (2 — k)). (3.33)

Let us describe a fast algorithm to expand a function f € Vo = span{pgx;k € Z}, f = ZkN:_Ol $900,k-

Let the coefficients {py} and {gx} be those of the two-scale difference equations (2.7) and (2.10) which we

write as

2-1/2 for £k =0, 2712 for k=0, (3.34)
Px = ar = .
273/ 2a‘ k| otherwise, —pg  otherwise.

We use these coefficients as symmetric filters P = {pk}—L+1§k§L—1 and Q = {Qk}—L+1§k§L—1 with only
L/2 + 1 distinct non-zero coefficients. Although these filters do not form a quadrature mirror filter pair,
their role and use in the numerical algorithms is similar. For the shift-invariance, we now apply P and @)

without subsampling at each scale, i.e.,

L—1
_ -
S%: Z plSi_Fijlla (335)
l=—L+1
) L—1 -
Di= Y @S| g (3.36)
l=—L+1

Starting from the original discrete signal {s) }o<k<n—1, we apply (3.35) and (3.36) recursively to obtain the

auto-correlation shell coefficients {D7 }1<j<n,, 0<k<n—1 and {S;° bo<k<n-1



We obtain the following relation between the original discrete signal and the auto-correlation shell

coefficients:

Proposition 1 For any function f € Vy, f(z) = EkN:_Ol sVp(z—k), the coefficients {S,Jc} and {Di} computed
via (3.35) and (3.36) satisfy the following identities

N-1 N-1
> Si®or =Y 5i®jk, (3.37)
k=0 k=0
N-1 N-1
> Di%ox = iU, (3.38)
k=0 k=0

where ®; 1 and Y} are defined in (3.33).

Proof: Using the coefficients py, in (3.34), we write v/2|mg(¢)|* = ¢!, . pre'*é. Substituting this into the

Fourier transform of (3.35), we obtain

' g
§1(¢) = 5°(¢) 27 [ Imo 20" (3:39)
=1
We then take the Fourier transform of the left hand side of (3.37), use (3.39) and the identity ®(¢) =

172, |mo(274€)|?, to obtain

$(©B(6) = 2(6) 27 ] Ima(2 19" B(e) = () 28(2), (3.40)
=1
which is exactly (3.37) in the Fourier domain. The relation (3.38) may be derived similarly. O
This proposition plays an essential role in our approach to the reconstruction of signals from zero-crossings
in Section IV.
Let us now construct an algorithm for reconstructing the original signal directly from the auto-correlation
shell coefficients. Since py = —gy, for k # 0 in (3.34), adding (3.35) and (3.36) yields a simple reconstruction

formula
1

V2

Given the auto-correlation shell coefficients {Di}ISJ’Sno, o<k<nN—1 and {Sy°}o<k<n-_1, (3-41) leads to

S]‘Z;ilz (Si+Di)’ j:]-a"'anOak:O""’N_]" (341)

no ) i
sp = 27m0/2gn0 4 N"9=i2 Dl k=0,...,N—1. (3.42)
j=1

Examples of representation of signals in the auto-correlation shell are presented in Figures 4 and 5.
Remark 1. It is easy to adjust the auto-correlation shell to “life on the interval.” (See [5] for a more

delicate construction for wavelets.) Since our filter coefficients py are obtained by evaluating the Lagrange



polynomials at the origin z = 0 (see (2.19)), it is natural to adjust the filter coefficients for the edges by

simply generating them by evaluating these polynomials at the desired points. For example, for the lowpass

0,%,1, %,0,—} based on Daubechies’s QMF with L = 2M = 4, the adjusted

filter coefficients 21/2{— 16, 160 Lr 169

lowpass filter coefficients for the left edge are 21/ 2{%, 1, %2,0 16, , 16} These coefficients are convolved
with the leftmost 7 points of the signal to obtain the 2nd leftmost point of the next scale.
Remark 2. Representations using the auto-correlation functions of compactly supported wavelets can
also be viewed as a way to obtain a “continuous” multiresolution analysis. Another approach to make the
connection between continuous and discrete multiresolution analyses is developed in [11], where the starting
point is a continuous version of the multiresolution analysis.
Remark 3. Representations using the auto-correlation functions of compactly supported wavelets should
be compared with those using the approximation of the Laplacian of a Gaussian function (the so-called
Mexican-hat function) by the Difference of two Gaussian functions (the so-called DOG function) as

d2

@G(w; o) = aG(azx;0) — G(z;0), (3.43)

where

G(z;0) = ! e /207, (3.44)

- V270

and a = 1.6 as was suggested in [17]. It follows from (2.7) and (2.10) that
U(z) = 29(2z) — ®(z), (3.45)
which should be compared with (3.43).

IV ON RECONSTRUCTING SIGNALS FROM ZERO-CROSSINGS

Since the auto-correlation functions of compactly supported wavelets may be viewed as pseudo-differential
operators of even order, and essentially behave like the derivative operators of the same order, the zero-
crossings in this representation correspond to the locations of edges at different scales in the signal. Dubuc’s
iterative interpolation is naturally associated with such a representation and allows us to define zero-crossings
for multiresolution representations of discrete signals. By using the iterative interpolation, we locate the
zero-crossings and compute slopes at these points within the prescribed numerical accuracy. To reconstruct
the signal, we set up a system of linear algebraic equations, where the entries of the matrix are computed
from the values of the auto-correlation function and its derivative at the integer translates of zero-crossings.
The original signal is then reconstructed within the prescribed accuracy by solving this linear system.
Reconstructing a signal from its zero-crossings by solving a linear system of equations has been proposed

by S. Curtis and A. Oppenheim [6]. Their method requires a solution of a linear system where the unknowns



are the Fourier coefficients and, therefore, the linear system is dense. It also requires multiple threshold-
crossings rather than zero-crossings, and moreover, the quality of the reconstruction strongly depends on the
choice of the thresholds. We would like to note that in our approach we take advantage of the multiresolution
properties of the auto-correlation shell which allows us to set the linear system directly for the unknown
signal rather than the coefficients of its expansion.

Remark 4. We note that our approach may be modified to produce the maxima-based representation of
Mallat and Zhong [16] by considering [*__ ¥(y) dy instead of ¥(z) and the corresponding two-scale difference
equation. Using the symmetric iterative interpolation, we have better numerical control than by using the
approaches developed by Mallat and Zhong [16] and by Hummel and Moniot [12].

Remark 5. We would like to emphasize that our zero-crossing-based representation is not aimed at data
compression. It should be used for nonlinear manipulations of signals such as edge-preserving smoothing by
retaining zero-crossings whose slopes are significant. (See also Mallat and Zhong [16], Mallat and Hwang
15.)

Let us now describe our procedure for the zero-crossing computation. Using the symmetric iterative
interpolation scheme mentioned above, we compute the zero-crossing locations of the set of functions
{Z,JCV:_OI Di@(x — k)}1<j<n, Within the prescribed numerical accuracy, e.g., € = 107 1*. To compute the
location of a zero-crossing, we recursively subdivide the unit interval bracketing the zero-crossing until the
length of the subdivided interval bracketing that zero-crossing becomes less than the accuracy e. The iter-
ative interpolation scheme allows us to zoom in as much as we want around the zero-crossing. This process
requires at most O(—L log, €) operations per zero-crossing. Once the zero-crossing is found, the computa-
tion of the slope is merely the convolution of the 2(L — 2) points around the zero-crossing with the filter
coefficients {rj}_ro<i<r—2 in (2.30).

We now address the following problem: Given the coarsest subsampled coefficients {S42, kJO<k<2n—m0_1;

and the zero-crossings and the slopes at these zero-crossings {zi,, where N is the

Vin}1<j<no, 0<mend—17
number of zero-crossings of the function Zsz_l Di@(w — k), reconstruct the original vector {Sg}ongN—l-
Proposition 1 provides a simple mechanism for defining a linear system which relates the unknown signal
{s?} and the values of the function ®(z) and its derivative at the integer translates of zero-crossings.

It follows from Proposition 1, that any zero-crossing coordinate mfc satisfies

N-1 ) ) N-1 )

3 Dol —k) =Y 00, u(ad,) =0, (4.46)
S DId(zd, — k)= Y s 2790 (aF) = v, (4.47)
k=0 k=0

10



where 1 < j < ng, 0 <m < NJ — 1. Similarly, we have

N-1 N-1
3 SPOBo(20) = 3 80Pk (200) = S, (4.48)
k=0 k=0

for [ =0,1,..., N, — 1, where N, = 2",
We rewrite (4.46),(4.47), and (4.48) in a vector-matrix form as

As=w, (4.49)

where s € R" is a shorthand notation for the original signal {s%}, v € R?=*"s is a data vector including

the slopes and available coarsest subsampled coefficients, i.e.,
— 1 1 1o ng no Qno no T
U—(0,1)0,...,O,UN;_l,...,O,’UO ,...,O,UN:,O_I,SO S0y ey SN ong ) s (4.50)

and A is a (2N, + N;) x N matrix and has the following structure:

Al
A2
A= , (4.51)
Ao
Sno
and A7 is a 2NJ x N submatrix whose entries are
(AT)opy = Tju(z]), (A)oppry =279 («}), k=0,...,NI—1,1=0,...,N—1, (4.52)
and S™ is a N; x N submatrix where
(8™ ki = Py 1 (270F), k=0,...,Ng, [ =0,...,N —1. (4.53)

Since the auto-correlation function ¥; () is compactly supported, the matrix A is sparse by construc-
tion. It is easy to check that the support of the function U ;(z) is 2/71(L —1). Thus, the number N 4 of

non-zero entries of the matrix A is as follows:

no no
Ng =) 2N] 27"HL—1)+ N, 2™*tH(L —1) =2(L — 1) [Z 2 2N7 + N] : (4.54)

=1 =1

The number of zero-crossings usually decreases as the scale j increases. As a result, the number of the

11



non-zero entries of the matrix A is essentially O(NN). The sparsity of this matrix enables one to solve the
system (4.49) efficiently.

Whether we can solve the linear system (4.49) depends on the condition number of the matrix (4.51),
which is affected by the distribution of locations of zero-crossings. If there are very few zero-crossings (which
means that the signal is zero over a significant part of its support) as, for example, in the expansion of the unit
impulse {32 = 0o,k } With only 2L zero-crossings at each scale, then we need to use additional constraints for
solving the linear system (4.49). There might be several approaches to introduce these additional constraints.
One approach (which might be sufficient in some applications) would be to consider the generalized inverse
of (4.51). Another possible approach (that we have experimented with) is to introduce a heuristic constraint
that the distance between the adjacent zero-crossings at the j-th scale does not exceed 2/t1(L — 1). The

latter constraints may be expressed as

Cd=0, (4.55)

where d € RV Ns ig a vector of the auto-correlation shell coefficients including the subsampled coarsest
averages, i.e.,

d=(D},...,DN_1,...,DF° ..., DR SF0 S50 ..., S% oue)T, (4.56)

and C is an (Nng + N;) dimensional square matrix of the form

ct o --- .- 0
0 C?
, (4.57)
c™ 0
0 0o o0
where the submatrix C7 is a N dimensional diagonal matrix as
) 1 if Di must be zero,
(C?)k = (4.58)
0 otherwise.
(4.55) may be expressed in terms of the original signal s by using the transformation matrix T' € R (NVno+Ns)xN
from s to d:
Cd=Bs=0, (4.59)
where B € RINM0+Na)XN and B = C T.
The problem may now be stated as follows:
Minimize | A s—wv| subjectto B s=0. (4.60)

12



Using the method of Lagrange multipliers, we obtain the least square solution
5=(ATA+)\B"B)'ATv. (4.61)

We note that our formulation is completely linear except for the process of zero-crossing detection. It is
clear from (4.49) and (4.60), that the slope information is essential for signal reconstruction since if there
is no slope information, we have only the trivial solution, s = 0. Previously, this fact was examined only
empirically [12].

Let us show two examples of the reconstruction using our method. The accuracy threshold € has been
set to 1071* in both cases. As a first example, we have used the signal shown in Figure 4 in Section III.
The relative L? error of the reconstructed signal compared with the original signal is ~ 5.7 x 10713 In this
case, there was no need to use the constraints.

Next we have applied our algorithm to the unit impulse {d32 }o<k<63- Now the constraints described
above play an important role: the relative L? error with the constraints is ~ 7.4 x 10715 whereas the error

of the solution using the generalized inverse without the constraints is ~ 3.2 x 1074,
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Figure Captions

Figure 1. Plots of the auto-correlation function ®(z) and Daubechies’s scaling function ¢(z) with L =
2M = 4. (a) ®(z). (b) ¢(z). (c) Magnitude of the Fourier transform of ®(z). (d) Magnitude of the

Fourier transform of ¢(x).

Figure 2. Plots of the auto-correlation function ¥(z) and Daubechies’s wavelet ¢(z) with L = 2M = 4.
(a) ¥(z). (b) ¥(z). (c) Magnitude of the Fourier transform of ¥(z). (d) Magnitude of the Fourier
transform of ¥(z).

Figure 3. The Lagrange iterative interpolation of the unit impulse sequence with the associated quadrature
mirror filter of length L =4, i.e., a; = 9/8 and a3 = —1/8. Black nodes at z = 0 indicate 1 and white
nodes at £ = £1 have value 0. Shaded nodes have values other than 0 or 1. Note that the values
of nodes existing at the j-th scale do not change at the (j — 1)-th scale and higher. The result of

repeating this procedure converges to ®(z) as j — —oo.

Figure 4. The expansion of the signal in the auto-correlation shell using the auto-correlation functions of
Daubechies’s wavelet with L = 2M = 4. The top row is the original signal. Note that the locations of

edges in the original signal correspond to the zero-crossings in this representation.

Figure 5. The average coefficients on different scales (The top row is the original signal).
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