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ABSTRACT

We present a new method for discrimination of data classes or data sets in a high-dimensional space. Our
approach combines two important relatively new concepts in high-dimensional data analysis, i.e., Diffusion Maps
and Earth Mover’s Distance, in a novel manner so that it is more tolerant to noise and honors the characteristic
geometry of the data. We also illustrate that this method can be used for a variety of applications in high
dimensional data analysis and pattern classification, such as quantifying shape deformations and discrimination
of acoustic waveforms.

Keywords: Shape discrimination, high-dimensional pattern classification, high-dimensional histograms, dimen-
sionality reduction, Diffusion Maps, Earth Mover’s Distance

1. INTRODUCTION

In many applications, we would want to automatically discriminate one class of signals or one set of data from
another. For example, sonar signal processing applications require the recognition of different classes of acoustic
waveforms reflected from different types of underwater objects. In medical image analysis, it is desirable to
automatically quantify shape deformations of a certain brain structure in order to track the development of
certain illnesses. Tracking the size and shape changes of the corpus callosum at different stages of cognitive
development in children is such an example.

The main challenge in these discrimination problems is the high-dimensional nature of the data, the curse of

dimensionality. The data points are often recorded in a high-dimensional ambient space, but the majority of the
points lie in a low-dimensional subspace of this ambient space. Sometimes the data may be in a low-dimensional
space but consist of a large number of points with high redundancy. In the first case, the multidimensional
scalings of a few data points completely obscure the intrinsic geometric structure of the data. In the second
case, it is quite inefficient to process all data points without considering the high redundancy in the data. A
solution to the high dimensionality problem is to find a low-dimensional representation for the data, i.e., to
perform dimensionality reduction, and then subsample the data in such a way that intrinsic geometric structures
are preserved.

In recent years, R. R. Coifman and S. Lafon introduced the method of Diffusion Geometry for dimensionality
reduction.1,2, 3 This method extends an earlier idea of using Laplacian eigenmaps for data representation by M.
Belkin and P. Niyogi4 and proves to be quite successful in achieving dimension reduction while preserving the
intrinsic geometries of the data.

In this paper, we propose a new method for discrimination of data classes or sets in high dimensions. The
first step in our discrimination approach is to utilize the techniques of Diffusion Geometry to project or embed
the data into a low-dimensional space. In this space the intrinsic geometries of the data are preserved and
highlighted. We then extract these highlighted geometric structures from the data to form discriminant features
for each data set.

Once discriminant features are found, the next step is to define a discriminant measure on the sets of dis-
criminant features. We want a measure that takes in any two sets of discriminant features and outputs a real
number on the scale from 0 to 1, where 0 means that the two data classes are the same and 1 means that they
are extremely different. For this purpose, we utilize the Earth Mover’s Distance in the framework of Y. Rubner
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and C. Tomasi5,6 as our discriminant measure. Under certain conditions, the Earth Mover’s Distance is a metric
between two distributions. In a probabilistic interpretation, the Earth Mover’s Distance is equivalent to the
Mallows distance on probability distributions.7 For our case, each set of discriminant features (hereafter to be
called a signature) can be viewed as a discrete probability distribution. So the Earth Mover’s Distance between
two signatures is essentially a distance between two discrete probability distributions.

The organization of this paper is as follows: we first review the important concepts and techniques of Diffusion
Geometry and Earth Mover’s Distance. Then we describe our proposed method for discrimination in Sec. 4,
following are illustrations of two applications in Sec. 5.1 and Sec. 5.2. One application is discrimination of
different classes of sonar signals, and the other is quantification of the differences between three different corpus
callosum shapes segmented from the sagittal view of three MRI scans.

2. REVIEW OF DIFFUSION MAPS

Reduction in the dimensionality of the data can be achieved by utilizing diffusion maps to embed the data into a
lower-dimensional space called diffusion space.1,2 These diffusion maps are constructed from the eigenfunctions
of a diffusion operator whose kernel is called a diffusion kernel. One way to construct a diffusion kernel from the
data is as follows:

Suppose the data set X belongs to a space having a natural dissimilarity measure d that gives a sense of
affinity between any two points in X. This is a reasonable assumption to make in practice. For example, if X
is a database of images, then d may be the L2 norm between two images. Or, if X belongs to a submanifold in
R

n, then d may be the usual Euclidean distance.

For ǫ > 0, let wǫ(x,y) := e−(d(x,y)/ǫ)2 . It will soon become clear that this wǫ gives the notion of local geometry
to X. That is, it defines the notion of a local neighborhood at each point x ∈ X via the affinity between x and
other points, and the value of the parameter ǫ specifies the size of this neighborhood. By renormalizing wǫ to
be row stochastic (to have sum 1 along the y direction), we obtain the diffusion kernel

k(x,y) :=
wǫ(x,y)

pǫ(x)
,

where pǫ(x) :=
∑

y∈X wǫ(x,y). The corresponding diffusion operator is

Af(x) :=
∑

y∈X

k(x,y)f(y).

The kernel k is non-negative and row-stochastic, therefore it can be viewed as a transition matrix of a Markov
process on X. The operator A is an averaging operator, since it is positivity-preserving (if f ≥ 0 then Af ≥ 0)
and preserves constant functions. In other words, the action of the operator A can be interpreted as ‘diffusion’ of
information, and the Markov chain specifies fast and slow directions of propagation and accumulation. Observe
that the probability of transition between two points is high if they have strong affinity, thus information flows
and accumulates in regions of high affinity.

One main idea in the framework of diffusion geometry is to take larger powers of the operator A. This can
be interpreted as running the Markov process forward in time, or equivalently, letting information diffuse for
longer time. Since information flows with respect to the affinity between points, as time passes, information
accumulates in regions of high affinity. This is essentially how the local geometry in the data is captured in
the diffusion geometry framework. Now, for t > 0, let k(t) denotes the kernel of At. Note that k(t)(x,y) is the
probability of transition from x to y in t steps. The diffusion distance between two points x and y is defined as

Dt(x,y)2 := ‖k(t)(x, ·) − k(t)(y, ·)‖2
L2(X,dµ/v2) =

∑

z∈X

(k(t)(x, z) − k(t)(y, z))2

(v(z))2
,

where the “weight” (v(z))2 := pǫ(z)
P

z
′∈X

pǫ(z′) penalizes discrepancies on regions of low affinity more than those of

high affinity.



On an intuitive level, the diffusion distance Dt(x,y) measures the affinity between two points based on the
transition probabilities in the Markov chain. Dt(x,y) is small if there is a large probability of transition from
x to y and vice versa. Notice also that in its definition, Dt(x,y) takes into account all incidences relating x

and y. Hence, it is robust to noise perturbations. Consequently, it is a great measure to use for extracting local
geometric features from high-dimensional data containing low-dimensional geometric structures.

An approximation to Dt(x,y) may be more practical in practice. This is done by considering the spectral
decomposition of the kernel k. For this purpose, conjugate k by v to obtain a symmetric kernel:

k̃(x,y) := v(x)k(x,y)
1

v(y)
=

wǫ(x,y)
√

pǫ(x)
√

pǫ(y)
.

This new kernel shares the same spectrum as k, and its eigenfunctions are obtained via conjugation by v. The
operator with kernel k̃:

Ãf(x) :=
∑

y∈X

k̃(x,y)f(y)

is symmetric and positive semi-definite. Moreover, it is compact with ||Ã|| = 1 achieved by eigenfunction v, i.e.,
Ãv = v. Therefore, Ã has a discrete, non-increasing, non-negative spectrum: λ0 = 1 > λ1 ≥ λ2 ≥ · · · ≥ 0, and
the kernel k̃ has spectral decomposition

k̃(x,y) =
∑

j≥0

λjφj(x)φj(y)

where {φj} is an orthonormal set of eigenfunctions of Ã forming a basis of L2(X).

Notice that v(x) = φ0(x) which is the stationary distribution of the Markov chain, and ψj(x) :=
φj(x)
v(x) and

ϕj(y) := v(y)φj(y) are left and right (respectively) eigenfunctions of the operator A, and

k(x,y) =
∑

j≥0

λjψj(x)ϕj(y).

Therefore, the kernel of the operator At is

k(t)(x,y) =
∑

j≥0

λt
jψj(x)ϕj(y).

Consequently, since {φj} are orthonormal, the diffusion distance can be written as

Dt(x,y)2 =
∑

j≥1

λ2t
j (ψj(x) − ψj(y))2.

The non-increasing property of the spectrum implies that for any δ > 0, by taking s(δ, t) := max{j ∈ N :
|λj |

t > δ|λ1|
t}, the diffusion distance can be approximated to a relative accuracy δ by

Dt(x,y)2 ≈

s(δ,t)
∑

j=1

λ2t
j (ψj(x) − ψj(y))2.

From this, the diffusion maps are defined as

Ψt : x →











λt
1ψ1(x)
λt

2ψ2(x)
...

λt
s(δ,t)ψs(δ,t)(x)











.



These diffusion maps can be viewed as coordinates in a s(δ, t)-dimensional Euclidean space characterized by
the parameters ǫ, t, and δ. We shall call this space a diffusion space.

Via the diffusion maps we have an embedding of the data into the diffusion space denoted by R
s(δ,t). Moreover,

the usual Euclidean distance in this diffusion space is an approximation to the diffusion distance. The key point
here is that the diffusion maps give a low-dimensional representation of the data that highlights the underlying
intrinsic geometries in the data.

3. REVIEW OF EARTH MOVER’S DISTANCE

The definition of the Earth Mover’s Distance (EMD) is based on the solution to a discrete optimal mass trans-
portation problem. Basically, EMD represents the minimum cost of moving earth (or sand) from some source
locations to fill up holes at some sink locations. In other words, given any two distributions, one can be viewed
as a distribution of earth and the other a distribution of holes, then EMD between the two distributions is the
minimum cost of rearranging the mass in one distribution to obtain the other. In the continuous setting, this
problem is known as the Monge-Kantorovich optimal mass transfer and has been well studied over the past 100
years. (For an introductory reading on the problem, see Ref. 8.) The importance here is that EMD can be
applied to measure the discrepancy between two multidimensional distributions.

In the discrete setting, the optimal mass transfer problem can be formulated as a linear optimization problem
as follows:5,6 Suppose we have a source mass distribution P = {(p1, wp

1
), · · · , (pm, wpm

)} and a sink distribution
Q = {(q1, wq

1
), · · · , (qn, wqn

)} in some high-dimensional space R
s. Notice that in this setting P and Q can be

viewed as two signatures (as defined in Ref. 5) containing m and n clusters with representatives pi, qj ∈ R
s and

weights wpi
≥ 0, wqj

≥ 0, respectively. Suppose the cost of moving one unit of mass from pi to qj is cij , and fij

denotes the amount of mass flow from pi to qj . The optimal mass transfer problem is to find the flow F = [fij ]
that transfers the maximum allowable amount of earth to fill up the holes with minimum total transportation
cost, i.e.,

min
F

COST(P,Q,F ) :=

m
∑

i=1

n
∑

j=1

cijfij ,

subject to

(i) fij ≥ 0, for all i, j;

(ii)
∑n

j=1 fij ≤ wpi
, for all 1 ≤ i ≤ m;

(iii)
∑n

i=1 fij ≤ wqj
, for all 1 ≤ j ≤ n; and

(iv)
∑n

i=1

∑n
j=1 fij = min

(

∑

i wpi
,
∑

j wqj

)

.

Constraint (i) ensures that one can only move earth from P to Q, not vice versa; (ii) that the amount of earth
moved from P is no more than the sum of the weights wpi

; (iii) that the amount of earth received at Q is no
more than the sum of the weights wqj

; and (iv) that the maximum allowable amount of earth is moved.

Once the optimal flow F ∗ from P to Q is found, EMD is then defined as the total cost normalized by the
total flow:

EMD(P,Q) :=
COST(P,Q,F ∗)
∑m

i=1

∑n
j=1 f

∗
ij

=

∑m
i=1

∑n
j=1 cijf

∗
ij

∑m
i=1

∑n
j=1 f

∗
ij

.

Notice that the normalization factor is the total weight of the smaller signature (due to constraint (iv)). This
normalization ensures that smaller signatures are not favored in the case when two signatures have different total
weights. Furthermore, EMD is symmetric, i.e., EMD(P,Q) = EMD(Q,P ) for any two distributions P and Q.



4. OUR PROPOSED METHOD

In this section, we describe how diffusion maps and Earth Mover’s Distance can be applied to do discrimination
tasks. Our approach quantitatively determines the similarity or dissimilarity between classes of data of high
dimensional nature. We first describe in details our proposed method, and then give some examples of application.

Given X1, · · · , Xm data sets or classes, our approach for discrimination involves the following steps:

1. Signature construction in diffusion space.

i. Construct diffusion maps Ψt on X = ∪m
j=1Xj and embed X into a diffusion space R

s(δ,t) using Ψt.

ii. Denote Yj := Ψt(Xj), the set of (embedded) points in diffusion space R
s(δ,t) corresponding to Xj .

For each Xj (j = 1, · · · ,m), construct its signature SGj by applying Lafon-Lee’s Coarse-Graining
algorithm3 to Yj .

2. Computation of discriminant measure.

i. Compute Earth Mover’s Distance between pairs of signatures SGi and SGj (i, j = 1, · · · ,m), then
define this to be the discriminant measure between the data classes Xi and Xj .

A signature is essentially a high-dimensional version of a histogram. As mentioned in Sec. 3, each signature
SGj consists of kj clusters of points. Each cluster has a representative sgj,ℓ and carries a weight wsgj,ℓ

≥ 0

(ℓ = 1, · · · , kj). For our case, each sgj,ℓ belongs to the diffusion space R
s(δ,t) since the signatures are constructed

in the diffusion space. In short, the objective of Step 1 is to construct for each data class Xj a signature
SGj := {(sgj,ℓ, wsgj,ℓ

) | sgj,ℓ ∈ R
s(δ,t), wsgj,ℓ

≥ 0, ℓ = 1, · · · , kj} that characterizes Xj in the diffusion space

R
s(δ,t).

In Step 1.i we construct the diffusion maps on the union ∪m
j=1Xj in order to embed all data points into the

same diffusion coordinate system. The Lafon-Lee’s Coarse-Graining algorithm appearing in Step 1.ii is based
on the well-known k-means clustering algorithm. (For additional information on k-means algorithm, see e.g.,
Ref. 9). The main idea is to group the points in Yj into kj clusters by minimizing an objective cost functional.
In general, the number kj is determined based on the specific application at hand. The objective functional E is
the sum over all clusters of the within-cluster sums of point-to-cluster-centroid squared diffusion distances, more
precisely

E({Sℓ}
kj

ℓ=1) :=

kj
∑

ℓ=1

∑

x∈Sℓ

||Ψt(x) − c(Sℓ)||
2, (1)

where Sℓ denotes the ℓth cluster, Ψt(x) is the diffusion coordinates of x, and c(Sℓ) is the cluster centroid (called
geometric centroid) of cluster Sℓ. For a cluster Sℓ, the geometric centroid of Sℓ is defined as a weighted sum

c(Sℓ) :=
∑

x∈Sℓ

φ0(x)

φ̃0(Sℓ)
Ψt(x),

where φ̃0(Sℓ) :=
∑

x∈Sℓ
φ0(x), and φ0 is the stationary distribution of the Markov chain as described in Sec. 2.

With Yj and kj fixed, minimization of the functional E in Eq. (1) is done via the following steps which
guarantee convergence towards a local minimum:

0) Randomly partition the points in Yj into kj clusters {S
(0)
ℓ }1≤ℓ≤kj

in a uniformly distributed manner,

1) For p > 0, update each ℓth partition (1 ≤ ℓ ≤ kj) according to

S
(p)
ℓ = {x ∈ Yj | ℓ = arg min

i
||Ψt(x) − c(S

(p−1)
i )||2}.



2) Repeat Step 1 until convergence.

To determine the number kj , the number of clusters to form for each data set Xj , the common rule of thumb
is to apply the so-called Elbow Criterion.10 For each k = 1, · · · , Nj = |Xj | (where | · | denotes set cardinality,
i.e., Nj = |Xj | is the number of points in Xj), suppose {S∗

ℓ }
k
ℓ=1 is the minimizer of the functional E in Eq. (1).

Let Ek := E({S∗
ℓ }

k
ℓ=1) the total energy of the clustering {S∗

ℓ }
k
ℓ=1. This number Ek can be viewed as the best

clusters-fitness over all sets of k clusters. The best clusters-fitness Ek decreases as k increases, i.e., {E1, · · · , ENj
}

is a decreasing sequence. However, as k increases, the rate of decrease in the sequence {Ek} stabilizes, i.e., the
‘first derivative’ of Ek approaches a constant which equals to 0 in most cases. If we plot {Ek} against the number
of clusters k, we will see a kink (or elbow) in the plot at k = k′ where the rate of decrease in {Ek} begins to slow
down significantly. The Elbow Criterion says that we choose kj = k′ as the number of clusters to form for Xj .
However, in our applications, we modify this condition and choose kj to be the smallest number at which the
rate of decrease in {Ek} stabilizes or when the ratio |Ekj

− Ekj
− 1|/|Ekj+1 − Ekj

| is the greatest. In Figure 5
we plot the first 11 best clusters-fitness for the experimental data CC2 which we will discuss in more details in
our numerical example in Sec. 5.2. According to the Elbow Criterion, the number of clusters to form for this
data set is 3. But under our version of the Elbow Criterion, the number of clusters to form is 8.

Suppose {Sℓ}
kj

ℓ=1 are the clusters obtained from coarse-graining the set Yj . We construct the signature SGj

for the data set Xj by setting sgj,ℓ = c(Sℓ) and wsgj,ℓ
= |Sℓ|

|Yj |
. In other words, we let the geometric centroids

be the cluster representatives and the percentage (or density) of points in the clusters be the weights. For an
example, we display in Figure 6 the signature of the shape CC2 to be discussed in Sec. 5.2.

Remarks: (1) Geometric centroids do not necessarily belong to the set of embedded data points Yj . There-
fore, in applications where the cluster representatives are required to be points in Yj , we may designate the
diffusion centers to be the cluster representatives. The diffusion center of a cluster Sℓ, denoted u(Sℓ), is defined
to be the point in Sℓ closest to the geometric centroid c(Sℓ) in the diffusion distance. More precisely,

u(Sℓ) := Ψt(x
∗), x∗ = arg min

x∈Sℓ

||Ψt(x) − c(Sℓ)||
2.

(2) We shall illustrate in our numerical examples that embedding the data points into the diffusion space not
only performs dimensionality reduction but also re-arranges the data so that points with similar local geometric
properties are close to each other in the diffusion space. Therefore, when we coarse-grain each data set in the
diffusion space, points with similar local geometric properties are assembled into the same cluster. Consequently,
the clusters forming the signature for a data set can be viewed as a (subsampled) low-dimensional representation
of the data that preserves the intrinsic geometry in the data. Furthermore, two different clusters (hence two
different cluster representatives) belonging to two different signatures are close in the diffusion space if the local
geometry of the points in both clusters are similar, otherwise they are far apart.

To complete Step 2.i in our method, i.e., to compute the Earth Mover’s Distance between two signatures SGj1

and SGj2 , we take advantage of the observation described in Remark 2 above and define the cost for transferring
one unit of mass from location sgj1,ℓ1 to location sgj2,ℓ2 to be one half of the squared diffusion distance between

the two cluster representatives, i.e., cij = 1
2 ||sgj1,ℓ1 −sgj2,ℓ2 ||

2. Using squared distances as costs for mass transfer
places high penalty on matching points that are far away and favor matching points that are closer. That is, we
want the EMD between two data sets to be small if their local geometric properties are similar, otherwise the
EMD is large.

5. NUMERICAL EXAMPLES

5.1 Discrimination of sonar signals

In this section we show that our proposed method can be applied to discriminate classes of sonar signals. In
Figure 1 we plot three classes of sonar signals. These are recorded waveforms of underwater acoustic near-field
scattering experiments. More precisely, we illuminate an aluminum cylindrical casing containing some material
inside by sending an acoustic pulse (sinusoid of one period) to the casing and recording the reflected waveforms



from the casing. Each reflected waveform is recorded at 270 time samples. The sampling frequency of the
reflected waveforms is set to 500 kHz. The transducer used can generate a pulse (sinusoid) of different duration
(frequency). In fact, it generated pulses of 10 kHz to 80 kHz with 2 kHz increment. So, in principle, one should
have 36 waveforms per object. Three sets of experiments were conducted. In each set, the same casing with
different material inside was used, say, material 1, 2, and 3. Some recordings suffered from severe noise, which
were eliminated. For these three data sets, the following frequency sources/recordings were eliminated: 22, 26,
42, 44, 46, 50, 58, 70, and 72 (kHz). Thus, each data set consists of 27 waveforms, each is stored as a vector of
length 270.

We treat each waveform as a point in the high-dimensional Euclidean space R
270. We then embed all points

into a three-dimensional diffusion space, with the parameter ǫ set to be approximately the average of the smallest
Euclidean distances between points, i.e.,

ǫ =
1

N

N
∑

i=1

min
ℓ:xi 6=xℓ

||xi − xℓ||,

where N is the total number of points in all data sets combined. For this example ǫ = 0.6. The time parameter
is set to t = 1 in all of our examples. Increasing the time parameter t will capture the larger scales in the data,
however, in our examples we are interested more in analyzing the data at the local scale which is already set by
the value of ǫ. After embedding all waveforms into a three-dimensional diffusion space, we see that each class of
waveforms is embedded in a curve (see Figure 2).

Next we construct a signature for each signal class. Since each signal class consists of only 27 data points,
coarse-graining in Step 1.ii is unnecessary. We treat each embedded point as a single-point cluster. Thus, the
signature of each data class contains 27 clusters, with the cluster representatives being the diffusion coordinates
of the data points, i.e., sgj,ℓ = Ψ1(xj,ℓ) where xj,ℓ is the ℓth signal in class j (j = 1, 2, 3). Following our method,

all clusters shall have the same weight: wsgj,ℓ
= 1

27 (j = 1, 2, 3, ℓ = 1, · · · , 27). Then we define the cost for
transferring one unit of mass from location sgj1,ℓ1 to location sgj2,ℓ2 to be one half of the squared diffusion

distance between the two points, i.e., cij = 1
2 ||sgj1,ℓ1 − sgj2,ℓ2 ||

2 = 1
2 ||Ψ1(xj1,ℓ1)) − Ψ1(xj2,ℓ2)||

2. The Earth
Mover’s Distances (normalized to unit largest distance) between the embedded signal classes are displayed in the
left column of Table 1.

Since the waveforms can be treated as points in Euclidean space R
270, it is possible for us to measure the

EMD between the signal classes without embedding the data in to a diffusion space. This allows us to see
the advantage of the diffusion geometry. The weights and costs are defined in the same way as above. The
(normalized) EMD between the signal classes without the embedding step are displayed in the right column of
Table 1. The difference in the EMD values from the two experiments shows that embedding the waveforms into
a diffusion space helps to distinguish the difference between all three signal classes. Without embedding into a
diffusion space, the EMD between class 1 and class 2 is very close to that between class 1 and class 3.

5.2 Quantification of shape deformations

In this example, we show that our proposed method can be applied to quantify the difference between two
shapes. Our method can also be applied in the same manner to quantify how much one shape has evolved or
deformed from another. In this example, each shape is represented by its boundary which is given as a set of
points in R

2. In Figure 3 we plot the segmented boundaries of three sagittal-viewed MRI scans of the corpus
callosum structure in the brain. The number of data points in shape CC1, CC2 and CC3 are 656, 649 and 630,
respectively.

We embed all data points into a two-dimensional diffusion space, then coarse-grain to reduce the dimension-
ality in the data. The number of clusters kj to form for each data set is determined by our version of the Elbow
Criterion, with an additional constraint that 0 < kj ≤ 20. Signatures for each shape are then constructed using
geometric centroids and percentage of point densities as cluster representatives and weights. The cost of mass
transfer is again defined as one half of the squared diffusion distance between any two cluster representatives.

In this example, a careful selection of the parameter ǫ is required. In general, any closed curve in R
2 is

embedded onto a circle in any diffusion space. However, when ǫ is small enough, the spectrum decay is stagnated,



and the eigenvectors corresponding to the top two eigenvalues starts to deviate from sine and cosine functions.
So if the curves are different, the diffusion coordinates will show some differences. In Figure 4, we plot the
diffusion coordinates for the three corpus callosum shapes. The value for ǫ is 0.7. Observe that the embeddings
corresponding to CC1 and CC3 are very similar but not exactly the same while the one corresponding to CC2
is very different from the others.

The advantage of embedding the data points into a diffusion space before clustering them to form signatures
is highlighted in this example. In the diffusion space, closeness is determined by the local geometry in the data.
In this example, two embedded points are close in the diffusion space if they are close along the curve in the
ambient space, instead of being close in terms of the ambient Euclidean distance. To illuminate this aspect,
we plot in Figure 7 the results of coarse-graining in the diffusion space and standard k-means clustering in the
ambient space. The points of shape CC3 are grouped into six clusters by each algorithm. Recall that coarse-
graining is performed in the diffusion space. The plot on the left of Figure 7 displays the clusters of points in the
ambient space corresponding to the clustering results from coarse-graining in the diffusion space. Each cluster
is displayed at a different gray level. We can see that subsampling in the diffusion space preserves the local
geometry of the original data, i.e., the ordering of points along the curve is preserved. Comparing this to the
result of the standard k-means clustering, we see that the clusters are completely determined by the ambient
Euclidean distance, not by the geometry of the curve. As a consequence, if we construct signatures for the data
in the ambient space, the clusters that we would obtain carry no geometric information of the data. And thus,
we would not be able to say that the EMD between two signatures indicates how different the two curves are
geometrically, as is the case when the signatures are constructed via coarse-graining in the diffusion space.

One drawback in the proposed method is the nonuniqueness of the solution of the Coarse-Graining algorithm.
The clustering result depends on the clusters initialization at Step 0 in the computation for a minimum of the
functional E in Eq. (1). If we apply the Coarse-Graining algorithm twice on the same set of data, we may obtain
different clustering results, hence we get two different signatures for the same data set. Consequently, if we repeat
our proposed method on the same sets of data the second time, the EMD values between the data sets may change.
However, although the EMD values may change, the discriminative implications from these values do not change.
For an example, we repeated applying our method on the three shapes CC1, CC2, and CC3 one hundred times.
Each time we collect a set of three EMD values (the EMD between the three pairs of shapes: EMD(CC1,CC2),
EMD(CC1,CC3) and EMD(CC2,CC3)). And every time, the EMD values imply that the shapes CC1 and
CC3 are very similar, but not the same, and the shape CC2 is very different from both shapes CC1 and CC3.
We have plotted the 100 sets of EMD values in Figure 8. One specific set of three EMD values (normalized
to unit largest value) is EMD(CC1,CC2) = 0.9958, EMD(CC1,CC3) = 0.0085, EMD(CC2,CC3) = 1. Overall
100 sets, the average of these values are AVG EMD(CC1,CC2) = 0.9971, AVG EMD(CC1,CC3) = 0.0089,
AVG EMD(CC2,CC3) = 1.

We end this section with a final remark. The proposed method is not invariant under scaling, rotation
or translation. For shape comparison applications, one could apply first as a preprocessing step some rigid
registration to correct any variations in rotation and translation. On the other hand, detection of scalings are
desirable in many applications. For example, any shrinking or growth of the corpus callosum should be detected
in the diagnosis of agenesis of the corpus callosum. Therefore, the proposed method is applicable in this case.
However, if one’s problem should be scale invariant, then the proposed method should not be considered.

6. CONCLUSIONS

We have proposed a novel application of diffusion maps combined with Earth Mover’s Distance to produce
a dissimilarity measure for discrimination of various different classes of data. In our examples, the proposed
method successfully distinguished different classes of acoustic waveforms corresponding to reflected sinusoidal
signals targeted at different types of underwater objects. This promises applicability of our proposed method
to detection of underwater mines via classification of sonar signals. We have also shown that our proposed
method can be applied to quantify deformations of shapes, although with some restrictions. Such applications
are extremely useful in medical image analysis where deformations or changes of a certain brain structure reveal
much about certain medical conditions of the patient.



class 1 class 2 class 3

Figure 1. Sonar signal recordings of sinusoidal reflections from three different underwater objects. The vertical axis
corresponds to sampling frequencies and the horizontal axis corresponds to recording time.
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Table 1. EMD between signal classes with waveforms embedded into a diffusion space (left) and between signal classes
with waveforms treated as points in R

270 (right). In each case, the EMD values are normalized so that the largest of the
three values is 1.

class 1 class 2 class 3

class 1 0 1 0.57

class 2 0 0.88

class 3 0

class 1 class 2 class 3

class 1 0 1 0.83

class 2 0 0.87

class 3 0



Figure 2. Embedding of all waveforms into three-dimensional diffusion space.

Figure 3. Three corpus callosum shapes segmented from sagittal view of three MRI scans. The shapes are overlaid to
portray differences between them.

Figure 4. Diffusion coordinates of the three sets of points describing the three corpus callosum shapes.



Figure 5. Best clusters-fitness as a function of number of clusters k. The data set used to generate the values Ek is shape
CC2. According to the Elbow Criterion, the number of clusters to form for shape CC2 is 3. According to our version of
the Elbow Criterion, the number of clusters to form is 8.

Figure 6. Signature of shape CC2 in diffusion space. This signature has eight clusters, each displayed at a different gray-
level. The cluster representatives (which are the same as the geometric centroids) are indicated by an ‘x’. Each cluster is
numbered from 1 to 8. The signature’s cluster representatives and weights are SG = {((−2.4, 2.8), 16

649
), ((−0.9, 0.5), 216

649
),

((−0.4, 0.08), 65

640
), ((−0.07, 0.02), 78

649
), ((0.3,−0.05), 52

649
), ((1.1,−0.2), 167

649
), ((3.2,−0.9), 24

649
), ((−2.6,−6.4), 31

649
)}.

Figure 7. Result of coarse-graining in the diffusion coordinate system (left) and result of standard k-means clustering in
the ambient space (right). Points of shape CC3 are grouped into six clusters by both algorithms. Different clusters are
displayed at different gray-level intensities. Left: clustering results of coarse-graining in the diffusion coordinate system.
Each cluster consists of adjacent points forming a segment on the original closed curve. The boundary of each segment is
marked by a white dot, so there are two boundary points per cluster. Right: clustering results of standard k-means in
the original coordinate system. The boundary points of each cluster are displayed as white dots. Four of the six clusters
are consisted of two parallel segments, so there are four boundary points in each of these four clusters.



Figure 8. Plot of 100 sets of Earth Mover’s Distances between the three corpus callosum shapes. Each set consists of
three EMD values: EMD(CC1,CC2), EMD(CC1,CC3), and EMD(CC2,CC3). The horizontal axis is the set number and
the vertical axis are the EMD values. The EMD between each pair of shapes is plotted using a different marker.


