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Abstract Based on multiresolution analysis (MRA) structures combined with the unitary extension principle

(UEP), many frame wavelets were constructed, which are called UEP framelets. The aim of this letter is to derive general

properties of UEP framelets based on the spectrum of the center space of the underlying MRA structures. We first give

the existence theorem, that is, we give a necessary and sufficient condition that an MRA structure can derive UEP

framelets. Second, we present a split trick that each mother function can be split into several functions such that the

set consisting of these functions is still a UEP framelet. Third, we determine the minimal cardinality of UEP framelets.

Finally, we directly construct UEP framelets with the minimal cardinality. Based on a pair of multiresolution analysis

(MRA) structures, when their spectra intersect, we can always construct a pair of dual frame wavelets using mixed

extension principle (MEP). This pair of dual frame wavelets are called a pair of MEP bi-framelets. We also give the split

trick and find out the minimal cardinality of such MEP bi-framelets.
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1. Introduction

It is well known that multiresolution analysis (MRA) is one of the most important tools for constructing

and analyzing wavelets. Orthogonal MRAs can derive orthonormal wavelets [7,22,23], while frame MRAs can
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derive semi-orthogonal frame wavelets [1,2,18–21]. Recently, based on a kind of MRA structures, many authors

constructed tight frame wavelets, which are called UEP framelets, by using the unitary extension principle

(UEP) [6,8–12,14–30]. The characteristic of this type of MRA structure is that the integer-translations of the

scaling function form a Bessel sequence. In the theory of MRA structures {Vm, ϕ} of L2(Rd), the spectrum (or

the spectral support) Ω of the central space V0, which is defined by Ω := supp
∑
n∈Rd

|ϕ̂(ω + 2nπ)|2, plays a key

role. We rewrite the spectrum in the form

Ω = supp ϕ̂+ 2πZd, where ϕ̂ is the Fourier transform of ϕ.

In this letter we will derive general properties of UEP framelets based on the spectrum of the center space.

For convenience, we explain our main idea in the setting of dyadic dilation as follows.

Let {Vm, ϕ} be an MRA structure with the spectrum Ω. We consider the vector

u0(ω) = ( (τ0 χΩ)(ω + πν) )ν∈{0,1}d , (1.1)

where τ0 is a refinement filter and χΩ is the characteristic function of the spectrum Ω, and {0, 1}d are the set

of vertices of the cube [0, 1]d.

First, we will give the existence theorem of UEP framelets. This theorem provides a necessary and

sufficient condition under which an MRA structure can derive a UEP framelet system. This condition is that

the norm of u0(ω) satisfies ‖u0(ω)‖l2 ≤ 1 for a.e. ω ∈ Rd.

Second, we will derive a split trick for UEP framelets and show that if {ψµ}r1 form a UEP framelet, then

each ψµ can be split into several functions such that the set consisting of these functions is still a UEP framelet

derived by the same MRA structure. For example, we may only split ψr into two functions ψ
(1)
r and ψ

(2)
r such

that ψr = ψ
(1)
r +ψ

(2)
r and {ψ1, ..., ψr−1, ψ

(1)
r , ψ

(2)
r } still forms a UEP framelet. This split trick demonstrates the

intrinsic redundancy of UEP framelets.

Third, in order to determine the minimal cardinality σ of a UEP framelet, we consider the sequence of
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the translations of the spectrum Ω:

{Ω− πν}ν∈{0,1}d (1.2)

which contains 2d sets. If a point ω lies in γ sets of 2d sets in (1.2), we say ω ∈ Ωγ , i.e.,

Ωγ =

ω ∈ Rd,
∑

ν∈{0,1}d
χΩ(ω + πν) = γ

 .

Based on this definition of Ωγ , we will derive the following result.

If λ ∈ Z+ is such that the measure |Ωλ| > 0 and |Ωγ | = 0 (γ > λ), then the minimal value σ of the

cardinality for these UEP framelets derived by the MRA structure {Vm, ϕ} satisfies

σ = λ or σ = λ− 1.

If u0(ω) in (1.1) is the unit vector for ω ∈ Ωλ, then σ = λ− 1. Otherwise, σ = λ.

Finally, we will directly construct a UEP framelet with the minimal cardinality σ. From this and the

above split trick, we will deduce that the set of cardinalities of all UEP framelets can be written in the form

[σ, ∞)
⋂

Z+.

For a pair of MRA structures, using the so-called mixed extension principle (MEP), many pairs of

dual frame wavelets known as MEP bi-framelets have been constructed, which are a generalization of quasi-

biorthogonal frame wavelets [18]. In Section 8, we will show that any pair of MRA structures can derive pairs

of MEP bi-framelets if their spectra intersect. We will also derive the corresponding split trick. We would like

to note that in [31] we also studied the split trick of quasi-biorthogonal frame wavelets, but the results obtained

in [31] are strictly for the quasi-biorthogonal frame wavelets and different from those obtained in this letter,

which are for the UEP framelets and the MEP bi-framelets. Finally, we will discuss the minimal cardinality

of mother functions, and directly construct a pair of MEP bi-framelets with the minimal cardinality. Since

MEP bi-framelets are a generalization of quasi-biorthogonal frame wavelets, an estimate of lower bounds of

cardinalities in [31] can be viewed as a corollary of Theorem 8.3 in this letter. More importantly, [31] did not
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show that this lower bound is in fact the same as the minimal cardinality.

2. MRA structures and extension principles

Let S be a d× d matrix whose entries are integer-valued and whose eigenvalues all have modulus greater

than 1. Let S∗ be the transposed matrix of S and let G , G∗ be quotient groups Zd/SZd, Zd/S∗Zd, respectively.

The orders of both G and G∗ are ρ = |detS|.

Let {Vm} be a sequence of subspaces of L2(Rd) such that

Vm ⊂ Vm+1 (m ∈ Z),
⋃
m∈Z

Vm = L2(Rd), and

f ∈ Vm ↔ f(S·) ∈ Vm+1 (m ∈ Z).

If there exists a function ϕ ∈ V0, lim
ω→0

ϕ̂(ω) = 1 such that V0 = span{ϕ(· − n)}n∈Zd and {ϕ(· − n)}n∈Zd is a

Bessel sequence, then {Vm, ϕ} is said to be an MRA structure [11].

We rewrite extension principles of [11] with the spectrum for frame wavelets and pairs of dual frame

wavelets into matrix versions. See [1–5, 13] for the concepts of general frames and wavelet frames.

For convenience, we introduce the following notation. For a set E, denote

E + 2πZd =
⋃
n∈Zd

(E + 2nπ).

If a set E satisfies E + 2πZd = E, then E is said to be a 2πZd-periodic set. Define its measure |E| as the

measure of the set E
⋂

[−π, π]d. Denote by χE the characteristic function of the set E and by f̂ the Fourier

transform of a function f . We say τ ∈ L∞(Td) if τ is a bounded 2πZd-periodic function.

Let {Vm, ϕ} be an MRA structure. Then the following set

Ω = supp ϕ̂+ 2πZd =
⋃
n∈Zd

(supp ϕ̂+ 2nπ)

is called the spectrum of the central space V0.
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(i) Let τ0 ⊂ L∞(Td) be the refinement filter corresponding to the scaling function ϕ and {τµ}r1 ⊂ L∞(Td).

Denote the (r + 1)× ρ matrix

Mr(ω) := ( (τµχΩ)(ω + 2πS∗−1ν) )µ=0,...,r; ν∈G∗ (2.1)

and let M∗r (ω) be the conjugate and transposed matrix of Mr(ω). Define {ψµ}r1 as ψ̂µ(S∗·) = τµϕ̂ (µ = 1, ..., r).

If Mr(ω) satisfies

M∗r (ω)Mr(ω) = diag (χΩ(ω + 2πS∗−1ν))ν∈G∗ (2.2)

for a.e. ω ∈ Rd, then {ψµ}r1 is a tight frame wavelet which is called a UEP framelet with cardinality r.

(ii) Let {Vm, ϕ} and {Ṽm, ϕ̃} be a pair of MRA structures and

Ω′ = supp ϕ̂+ 2πZd, Ω′′ = supp ̂̃ϕ+ 2πZd.

We always assume that Ω = Ω′
⋂

Ω′′ is a set with a positive measure. Then Ω is called the spectrum of this

pair of MRA structures.

Let τ0 and τ̃0 be refinement filters corresponding to ϕ and ϕ̃, respectively, and {τµ, τ̃µ}r1 ⊂ L∞(Td) ×

L∞(Td). Denote M̃r(ω) := ( (τ̃µχΩ)(ω + 2πS∗−1ν) )µ=0,...,r; ν∈G∗ . Define {ψµ, ψ̃µ}r1 as ψ̂µ(S∗·) = τµ ϕ̂,

̂̃
ψµ(S∗·) = τ̃µ ̂̃ϕ (µ = 1, ..., r). If a pair of matrices Mr(ω) and M̃r(ω) satisfies

M∗r (ω)M̃r(ω) = diag (χΩ(ω + 2πS∗−1ν))ν∈G∗ (2.3)

for a.e. ω ∈ Rd, then {ψµ, ψ̃µ}r1 form a pair of dual frame wavelets [11] whenever the wavelet systems {ψµ,m,n}

and {ψ̃µ,m,n} are both Bessel sequences. Such a pair of dual frame wavelets {ψµ, ψ̃µ}r1 is called a pair of MEP

bi-framelets with cardinality r.

3. Some lemmas

Since the dilation matrix S is a matrix with the integer entries and G∗ = Zd/S∗Zd, for a fixed ν ∈ Zd,

when l ∈ G∗, we have

l + ν = S∗αl + βl, (αl ∈ Zd, βl ∈ G∗) (3.1)
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and βl = β(l) maps G∗ to G∗, one-to-one. The following two lemmas are proved easily.

Lemma 3.1. If (2.2) holds at a point ω0, then for each ν ∈ G∗, (2.2) holds at the point ων = ω0+2πS∗−1ν.

Define a 2πZd-periodic set

N := S∗−1[−2π, 0]d + 2πZd. (3.2)

Lemma 3.2. Let N be stated as (3.2). Then Rd =
⋃
l∈G∗

(N + 2πS∗−1l) and this is a disjoint union.

Denote by Im the identity matrix of order m.

Lemma 3.3. Let the l2-norm of the vector (a1, ..., am) be less than or equal to 1. Then there exists a

(m+ 1)×m matrix P such that its first row is (a1, ..., am) and P ∗P = Im.

Proof. Take am+1 such that (a1, ..., am, am+1) is a unit vector. Taking a unitary matrixB = (bij)i,j=1,...,m+1

such that b1,j = aj (j = 1, ...,m+1), we have B∗B = Im+1. Let P be a matrix consisting of the first m columns

of B. We then get P ∗P = Im. �

Lemma 3.4. For two m-dimensional vectors (a1
1, ..., a

1
m) and (a2

1, ..., a
2
m),

(i) there exist always two (m + 1) ×m matrices P and Q such that their first rows are (a1
1, ..., a

1
m) and

(a2
1, ..., a

2
m), respectively, and P ∗Q = Im;

(ii) if the inner product of these two vectors is equal to 1, then there exist two square matrices P and Q

of order m such that their first rows are (a1
1, ..., a

1
m) and (a2

1, ..., a
2
m), respectively, and P ∗Q = Im.

Proof. The proof of (ii) is obvious. Below we only prove (i).

Take a1
m+1 and a2

m+1 such that

m+1∑
k=1

a1
k a

2
k = 1.

By (ii), there exist square matrices B1 = (b1ij)i,j=1,...,m+1 and B2 = (b2ij)i,j=1,...,m+1 such that

b11j = a1
j , b21j = a2

j (j = 1, ...,m+ 1)

and B∗1B2 = Im+1. Forming two (m+ 1)×m matrices as

P = (b1ij)i=1,...,m+1; j=1,...,m and Q = (b2ij)i=1,...,m+1; j=1,...,m,

6



we get P ∗Q = Im. So (i) is proved. �

4. The existence theorem of UEP framelets

We derive a necessary and sufficient condition that an MRA structure can derive UEP framelets.

Theorem 4.1. Let {Vm, ϕ} be an MRA structure with the spectrum Ω and τ0 ∈ L∞(Td) be the

refinement filter. Then this MRA structure can derive UEP framelets if and only if

∑
ν∈G∗

|(τ0χΩ)(ω + 2πS∗−1ν)|2 ≤ 1 a.e. ω ∈ Rd. (4.1)

Proof. “Only if” part:

If {ψµ}r1 is a UEP framelet derived by MRA structure, then, by the definition, there exist wavelet filters

{τµ}r1 ⊂ L∞(Td) such that ψ̂µ(S∗·) = τµϕ̂ (µ = 1, ..., r) and (2.2) holds. Therefore, for a.e. ω ∈ Rd, if

{kj}L−1
0 ⊂ G∗ is such that

ω + 2πS∗−1kj ∈ Ω (j = 0, 1, ..., L− 1), ω + 2πS∗−1ν 6∈ Ω (ν ∈ G∗\{kj}L−1
0 ), (4.2)

the k0th,...,kL−1th column vectors of the matrix Mr(ω) are L orthogonal (r + 1)-dimensional unit vectors. So

r + 1 ≥ L. We add (r + 1 − L) column vectors such that the obtained matrix P is a unitary matrix of order

r + 1. Therefore, the first row of P :

(
τ0(ω + 2πS∗−1k0), τ0(ω + 2πS∗−1k1), · · · , τ0(ω + 2πS∗−1kL−1), aL(ω), aL+1(ω), · · · , ar(ω)

)
is a unit vector, where ai(ω) is the first entry of ith column of the matrix P (i = L, ..., r). Therefore, for a.e.

ω ∈ Rd, we have

L−1∑
j=0

|τ0(ω + 2πS∗−1kj)|2 ≤ 1.

From this, with (4.2), we get (4.1).

“If” part: If (4.1) holds, then the l2-norm of the ρ-dimensional vector

u0(ω) = {(τ0χΩ)(ω + 2πS∗−1ν)}ν∈G∗
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is less or equal to 1 for a.e. ω ∈ Rd, where ρ = |detS| is the order of S∗. We will use the unitary extension

principle to construct a frame wavelet with cardinality ρ.

Since τ0χΩ ∈ L∞(Td), by Lemma 3.3, we may take a (ρ + 1) × ρ matrix whose entries are bounded and

2πZd-periodic functions on Rd: P (ω) = (pµ,ν(ω))µ=0,...,ρ; ν∈G∗ such that its first row is u0(ω) and

P ∗(ω)P (ω) = Iρ (a.e. ω ∈ Rd), (4.3)

where Iρ is the identity matrix of order ρ.

We define wavelet filters τµ(ω) (µ = 1, ..., ρ) by

τµ(ω + 2πS∗−1ν) = pµ, ν(ω) for ω ∈ N, ν ∈ G∗,

where the set N is stated as in (3.2). Then we have well defined {τµ}ρ1 on Rd (see Lemma 3.2). From this, we

deduce by (4.3) that for ω ∈ N ,

ρ∑
µ=0

(τµ χΩ)(ω + 2πS∗−1 ν1)(τµ χΩ)(ω + 2πS∗−1 ν2)

=

(
ρ∑

µ=0

pµ,ν1(ω) pµ,ν2(ω)

)
χΩ(ω + 2πS∗−1 ν1)χΩ(ω + 2πS∗−1 ν2) = δν1,ν2 χΩ(ω + 2πS∗−1ν1),

where δν1,ν2 = 0 (ν1 6= ν2) and δν1,ν2 = 1 (ν1 = ν2). Therefore, for ω ∈ N , the wavelet filters {τµ}ρ1 satisfy

(2.2) with r = ρ. Again, by Lemmas 3.1 and 3.2, we know that (2.2) holds with r = ρ for a.e. ω ∈ Rd. Let

ψ̂µ(S·) = τµϕ̂ (µ = 1, ..., ρ). Then {ψµ}ρ1 is a UEP framelet with cardinality ρ. �

For an MRA structure {Vm, ϕ}, its refinement filter τ0 is not determined uniquely by the scaling function

ϕ, but τ0χΩ is determined uniquely by ϕ.

5. A split trick for UEP framelets

From Theorem 4.1 and its proof, we know that for an MRA structure, if the condition (4.1) holds, then

it can derive a UEP framelet with ρ mother functions. In this section, we will further show that UEP framelets

possess the following important property.

8



Theorem 5.1. Let {Vm, ϕ} be an MRA structure with spectrum Ω and {ψµ}r1 be a UEP framelet derived

by it. Then we may split ψr into two functions ψr = ψ
(1)
r + ψ

(2)
r such that {ψ1, ..., ψr−1, ψ

(1)
r , ψ

(2)
r } is still a

UEP framelet derived by this MRA structure.

Proof. Step 1. Split ψr into ψr = ψ
(1)
r + ψ

(2)
r as follows.

Denote

A =

( ⋃
k∈G∗

(supp ψ̂r(S
∗·) + 2πS∗−1k)

)
+ 2πZd (5.1)

and Ã = A
⋂
N , where N is stated as in (3.2). Take a 2πZd−periodic set J ⊂ N such that

|J
⋂
Ã| > 0 and |(N \ J)

⋂
Ã| > 0. (5.2)

Define

I1 =
⋃
k∈G∗

(J + 2πS∗−1k), I2 =
⋃
k∈G∗

((N \ J) + 2πS∗−1k). (5.3)

By Lemma 3.2 and J ⊂ N , we have I1 + I2 = Rd.

Now we prove that

|I1
⋂

supp ψ̂r(S
∗·)| > 0 and |I2

⋂
supp ψ̂r(S

∗·)| > 0. (5.4)

By (5.3), we get that for ν ∈ Zd

I1 + 2πS∗−1ν =
⋃
k∈G∗

(J + 2πS∗−1(k + ν)).

Since k + ν = S∗n+ l (n ∈ Zd; l ∈ G∗) and J + 2πZd = J , by (5.3), we obtain that

I1 + 2πS∗−1ν =
⋃
l∈G∗

(J + 2πn+ 2πS∗−1l) =
⋃
l∈G∗

(J + 2πS∗−1l) = I1.

Similarly, we get I2 + 2πS∗−1ν = I2. Hence

Ii + 2πS∗−1ν = Ii (ν ∈ Zd; i = 1, 2). (5.5)

We assume that (5.4) is not valid. Then either |I1
⋂

supp ψ̂r(S
∗·)| = 0 or |I2

⋂
supp ψ̂r(S

∗·)| = 0.
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If |I1
⋂

supp ψ̂r(S
∗·)| = 0, by (5.1) and (5.5), we have |I1

⋂
A| = 0. By J ⊂ I1 and Ã ⊂ A, we get

|J
⋂
Ã| = 0. This is contrary to the first formula in (5.2). If |I2

⋂
supp ψ̂r(S

∗·)| = 0, similarly, we have

|(N \ J)
⋂
Ã| = 0. This is contrary to the second formula in (5.2). Therefore, (5.4) holds.

By (5.5), we know that the characteristic function χIi satisfies

χIi(·+ 2πS∗−1 ν) = χIi (ν ∈ Zd, i = 1, 2). (5.6)

Now we define

τ (1)
r = τrχI1 , τ (2)

r = τrχI2 , (5.7)

where τr is the wavelet filter of ψr. Then τ
(1)
r , τ

(2)
r ∈ L∞(Td). Again, define ψ

(1)
r and ψ

(2)
r by

ψ̂(1)
r (S∗·) = τ (1)

r ϕ̂, ψ̂(2)
r (S∗·) = τ (2)

r ϕ̂.

Since ψ̂r(S
∗·) = τr ϕ̂ and I1

⋃
I2 = Rd, we get

ψ̂(1)
r (S∗·) + ψ̂(2)

r (S∗·) = (τ (1)
r + τ (2)

r ) ϕ̂ = τr χI1
⋃
I2 ϕ̂ = τr ϕ̂ = ψ̂r(S

∗·).

So ψr = ψ
(1)
r + ψ

(2)
r . From (5.4), we know that ψ

(1)
r and ψ

(2)
r are both nonzero functions. In fact, from

ψ̂
(i)
r (S∗·) = ψ̂r(S

∗·)χIi , we get

|supp ψ̂(i)
r (S∗·)| = |supp ψ̂r(S

∗·)
⋂
Ii| > 0 (i = 1, 2).

Step 2. We prove that {τ1, ..., τr−1, τ
(1)
r , τ

(2)
r } satisfy (2.2).

Since {ψµ}r1 is a UEP framelet, {τµ}r1 satisfy (2.2). So we have(
r∑

µ=0

τµ(ω + 2πS∗−1ν)τµ(ω + 2πS∗−1l)

)
χΩ(ω + 2πS∗−1ν)χΩ(ω + 2πS∗−1l)

= δν,l χΩ(ω + 2πS∗−1ν) (ν, l ∈ G∗). (5.8)

By (5.6), (5.7), and I1 ∪ I2 = Rd, we have

2∑
i=1

τ (i)
r (ω + 2πS∗−1ν)τ (i)

r (ω + 2πS∗−1l)
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= τr(ω + 2πS∗−1ν) τ r(ω + 2πS∗−1l)χI1
⋃
I2(ω) = τr(ω + 2πS∗−1ν)τ r(ω + 2πS∗−1l).

From this and (5.8), we see that the filters {τ1, ..., τr−1, τ
(1)
r , τ

(2)
r } satisfy (2.2). Therefore, {ψ1, ..., ψr−1, ψ

(1)
r , ψ

(2)
r }

is a UEP framelet with cardinality r + 1, derived by the same MRA structure. �

6. The minimal cardinality of UEP framelets

Let {Vm, ϕ} be an MRA structure with the spectrum Ω and the refinement filter τ0. We always assume

that (4.1) holds. In this section we will determine the minimal cardinality σ of UEP framelets derived by this

MRA structure.

Define the test set

F :=

{
ω ∈ Rd,

∑
ν∈G∗

|(τ0χΩ)(ω + 2πS∗−1ν)|2 = 1

}
. (6.1)

Clearly, ω ∈ F means that the first row of the matrix Mr(ω) (see (2.1)) is a unit vector.

Definition 6.1. Let {Vm, ϕ} be an MRA structure with the spectrum Ω. Consider the set

{Ω− 2πS∗−1ν}ν∈G∗ =
{

Ω− 2πS∗−1ν0, Ω− 2πS∗−1ν1, · · · , Ω− 2πS∗−1νρ−1

}
,

where G∗ = Zd/S∗Zd is identified with {ν0, ν1, ..., νρ−1}. If a point ω lies in γ sets of 2d sets in {Ω −

2πS∗−1ν}ν∈G∗ , we say ω ∈ Ωγ , i.e.,

Ωγ =

{
ω ∈ Rd,

ρ−1∑
i=0

χΩ(ω + 2πS∗−1νi) = γ

}
.

Now, define

λ := max
{
γ ∈ Z+ : |Ωγ | > 0

}
,

which we call the order of this MRA structure.

Theorem 6.2. Let {Vm, ϕ} be an MRA structure with the spectrum Ω and can derive UEP framelets. If

the order of this MRA structure is λ, then the minimal cardinality of these UEP framelets is σ = λ or σ = λ−1.

Moreover, σ = λ− 1 if and only if Ωλ ⊂ F , where sets Ωλ and F are stated in Definition 6.1 and (6.1).
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Proof. Let {ψµ}r1 be a UEP framelet with cardinality r, derived by the MRA structure.

Step 1. We prove that the cardinality r ≥ λ− 1.

Since {Vm, ϕ} is an MRA structure of order λ, by Definition 6.1, we have |Ωλ| > 0. Denote the wavelet

filters of the framelet {ψµ}r1 by {τµ}r1. Then we know that {τµ}r1 satisfy

M∗r (ω)Mr(ω) = diag (χΩ(ω + 2πS∗−1ν))ν∈G∗ (a.e.ω ∈ Rd), (6.2)

where Mr(ω) is stated in (2.1). By the definition of Ωλ, we know that for ω ∈ Ωλ, there exist exactly λ nonzero

entries in the diagonal matrix diag (χΩ(ω + 2πS∗−1ν))ν∈G∗ . This implies that the rank of the matrix Mr(ω) is

greater than or equal to λ on Ωλ. Since |Ωλ| > 0 and Mr(ω) is a (r + 1)× ρ matrix, we obtain r ≥ λ− 1.

Step 2. We prove that if the cardinality r = λ− 1, then Ωλ ⊂ F .

For ω ∈ Ωλ, by Definition 6.1, we deduce that there exists {kj}λ−1
j=0 ⊂ G∗ such that

χΩ(ω + 2πS∗−1kj) = 1, j = 0, ..., λ− 1, χΩ(ω + 2πS∗−1ν) = 0, ν ∈ G∗\{kj}λ−1
j=0 . (6.3)

Suppose r = λ− 1. Then for ω ∈ Ωλ, the k0th, ..., kλ−1th column vectors of the matrix Mλ−1(ω) ( see (2.1) )

form a square matrix: D(ω) = ((τµχΩ)(ω + 2πS∗−1kj))µ,j=0,...,λ−1. By (6.2) and (6.3), we have

D∗(ω)D(ω) = Iλ (ω ∈ Ωλ). (6.4)

Since D(ω) is a square matrix, by (6.4), we know that D(ω) is a unitary matrix on Ωλ. This implies that the

first row of the matrix D(ω) is the unit vector on Ωλ, i.e.,

λ−1∑
j=0

(|τ0|2χΩ)(ω + 2πS∗−1kj) = 1 (ω ∈ Ωλ).

By (6.3), we have
∑
ν∈G∗

(|τ0|2χΩ)(ω + 2πS∗−1ν) = 1 (ω ∈ Ωλ). By (6.1), we know that Ωλ ⊂ F .

In Section 7, we will construct a UEP framelet with the cardinality λ in the case of Ωλ 6⊂ F , and will

construct a UEP framelet with the cardinality λ−1 in the case of Ωλ ⊂ F . This completes the proof of Theorem

6.2. �
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Corollary 6.3. For an MRA structure which can derive UEP framelets, the relationship among the order

λ, the minimal cardinality σ, and ρ = |detS| is

1 ≤ σ ≤ λ ≤ ρ.

Example 6.4. Let ϕ be a function and ϕ̂ = χ[−π/2, π/2]d . Denote Vm = span{ϕ(2m · −n)}n∈Zd (m ∈ Z).

Then {Vm, ϕ} is an MRA structure with dilation matrix S = 2 Id. The spectrum of V0 is

Ω = supp ϕ̂+ 2πZd = [−π/2, π/2]d + 2πZd

and its associated sets Ω1 = Rd, Ωγ = 0 (γ 6= 1). So it is an MRA structure of order 1. The refinement filter

τ0 = χ[−π/4, π/4]d+2πZd and by (6.1), the test set is

F =
⋃

ν={0,1}d

(
[−π/4, π/4]d + πν

)
+ 2πZd.

Clearly, Ω1 6⊂ F . By Theorem 6.1, we know that the minimal cardinality is 1. In fact, denote

τ = χ( [−π/2, π/2]d\(−π/4, π/4)d )+2πZd

and define ψ ∈ L2(Rd) by ψ̂ = τ
( ·

2

)
ϕ̂
( ·

2

)
. We can directly check that ψ is a UEP framelet with the cardinality

1. In other words, in this example, we have ρ = |detS| = 2d and σ = λ = 1.

7. The construction of the UEP framelets with the minimal cardinality

Let {Vm, ϕ} be an MRA structure with the spectrum Ω. In Section 6, we defined the associated set Ωγ

of the spectrum Ω. To construct framelets with the minimal cardinality, we now give the decomposition of the

associated set Ωγ .

Definition 7.1. For each ρ−dimensional vector α = (αν)ν∈G∗ ∈ {0, 1}ρ, define the set

Aα : =
{
ω ∈ Rd | χΩ(ω + 2πS∗−1ν) = αν (ν ∈ G∗)

}
.
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Denote the number of nonzero components of the vector α by nα and denote all nonzero components of

the vector α by {αkj}
nα−1
j=0 . By Definition 7.1, for ω ∈ Aα, we have

χΩ(ω + 2πS∗−1kj) = 1 (j = 0, ..., nα − 1), (7.1)

χΩ(ω + 2πS∗−1ν) = 0 (ν ∈ G∗\{kj}nα−1
0 ). (7.2)

Using Definitions 6.1 and 7.1, let us decompose the set Ωγ as Ωγ =
⋃

nα=γ
Aα (a disjoint union).

Denote N := S∗−1[−2π, 0)d + 2πZd as in (3.2). For each α ∈ {0, 1}ρ, define

A0
α := Aα

⋂
N.

Lemma 7.2. Let {Vm, ϕ} be an MRA structure of order λ. The following decomposition of Rd holds:

Rd =
⋃
nα≤λ

⋃
ν∈G∗

(A0
α + 2πS∗−1ν) (7.3)

and this is a disjoint union, where nα is the number of nonzero components of the vector α.

Proof. By Definition 6.1 and the decomposition of Ωγ , we have

Rd =

λ⋃
γ=0

Ωγ =

λ⋃
γ=0

⋃
nα=γ

Aα =
⋃
nα≤λ

Aα,

and so

N =
⋃
nα≤λ

(Aα
⋂
N) =

⋃
nα≤λ

A0
α.

Furthermore, N + 2πS∗−1 ν =
⋃

nα≤λ
(A0

α + 2πS∗−1 ν). From this and Lemma 3.2, we get (7.3).

For ν1 6= ν2, by Lemma 3.2, we get

(
A0
α + 2πS∗−1ν1

)⋂(
A0
α + 2πS∗−1ν2

)
⊂
(
N + 2πS∗−1ν1

)⋂(
N + 2πS∗−1ν2

)
= ∅.

For ν1 = ν2 and α 6= β, since A0
α

⋂
A0
β = ∅, we get

(
A0
α + 2πS∗−1ν1

)⋂(
A0
β + 2πS∗−1ν2

)
= ∅.

Therefore, (7.3) is a disjoint union. �
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Below we construct a UEP framelet with the minimal cardinality σ.

We always assume the MRA structure {Vm, ϕ} can derive UEP framelets, so the l2-norm ‖ u0(ω) ‖l2≤ 1,

where the vector u0(ω) = ((τ0 χΩ)(ω + 2πS∗−1ν))ν∈G∗ . Let the associated set Ωλ and the test set F be stated

in Definition 6.1 and (6.1), respectively. We have the following two cases.

(i) The case Ωλ 6⊂ F . We will construct a UEP framelet with the cardinality λ.

By Lemma 7.2, we only need to define wavelet filters {τµ(ω)}λ1 on each set A0
α+2πS∗−1ν (nα ≤ λ, ν ∈ G∗).

Since A0
α ⊂ Aα, by (7.2) and the assumption condition ‖ u0(ω) ‖l2≤ 1, we know that for ω ∈ A0

α, the

l2-norm of the vector bα(ω) : =
(

(τ0χΩ)(ω + 2πS∗−1kj)
)nα−1

j=0
is less than and equal to 1. Again since A0

α is

a 2πZd-periodic set, by Lemma 3.3, we may take a (nα + 1)× nα matrix of bounded, 2πZd-periodic functions

on the set A0
α

Dα(ω) = (dαµ,j(ω))µ,j (µ = 0, ..., nα, j = 0, 1, ..., nα − 1)

such that its first row is bα(ω) and

D∗α(ω)Dα(ω) = Inα on A0
α. (7.4)

Define τµ(ω) (µ = 1, ..., nα) on each set A0
α + 2πS∗−1ν (nα ≤ λ, ν ∈ G∗) by

τµ(ω + 2πS∗−1ν) =


dαµ,j(ω), ω ∈ A0

α (ν = kj , j = 0, ..., nα − 1),

0, ω ∈ A0
α (ν ∈ G∗\{kj}nα−1

0 )

(7.5)

and for µ = nα + 1, ..., λ,

τµ(ω + 2πS∗−1ν) = 0, ω ∈ A0
α (ν ∈ G∗).

By Lemma 7.2, we know that {τµ}λ1 is well defined on Rd and {τµ}λ1 ⊂ L∞(T d).

For ω ∈ A0
α. By (7.1) and (7.5), we obtain

dαµ,j(ω) = (τµ χΩ)(ω + 2πS∗−1 kj) (µ = 0, ..., nα, j = 0, ..., nα − 1).

From this and (7.4), we deduce that (2.2) holds with r = λ for each ω ∈ A0
α. Finally, by Lemmas 3.1 and

7.2, we know that {τµ}λ1 satisfy the condition of the unitary extension principle. Therefore, defining {ψµ}λ1 by
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ψ̂µ(S∗·) = τµϕ̂ (µ = 1, ..., λ), {ψµ}λ1 is a UEP framelet with the cardinality λ. Since Ωλ 6⊂ F , by Theorem 6.2,

we know that it is a UEP framelet with minimal cardinality.

(ii) The case Ωλ ⊂ F . We will construct a UEP framelet with cardinality λ− 1.

For α ∈ {0, 1}d satisfying nα < λ, we define the filters {τµ}λ−1
1 on each set A0

α + 2πS∗−1ν (ν ∈ G∗) as in

the case (i).

For α ∈ {0, 1}d satisfying nα = λ and ν ∈ G∗, we define {τµ}λ−1
1 on each set A0

α+ 2πS∗−1ν as follows. By

A0
α ⊂ Aα and nα = λ, we have A0

α ⊂ Ωλ ⊂ F , so the λ-dimensional vector ((τ0χΩ)(ω + 2πS∗−1kj))j=0,1,...,λ−1

is the unit vector for ω ∈ A0
α. We take a λ order orthogonal matrix of bounded, 2πZd-periodic functions on the

set A0
α,

Cα(ω) = (cαµ,j(ω))µ,j (µ, j = 0, 1, ..., λ− 1),

where cα0,j(ω) = (τ0χΩ)(ω + 2πS∗−1kj) (j = 0, ..., λ− 1).

Define τµ(ω) (µ = 1, ..., λ− 1) on each set A0
α + 2πS∗−1ν by

τµ(ω + 2πS∗−1ν) =


cαµ,j(ω), ω ∈ A0

α (ν = kj , j = 0, ..., λ− 1),

0, ω ∈ A0
α (ν ∈ G∗\{kj}λ−1

0 ).

We have defined {τµ}λ−1
1 on Rd. Again let {ψµ}λ−1

1 be such that ψ̂µ(S∗·) = τµϕ̂ (µ = 1, 2, ..., λ − 1).

Using the argument similar to (i), we deduce {ψµ}λ−1
1 is a UEP framelet. By Theorem 6.2 and Ωλ ⊂ F , we

know that it is a UEP framelet with the minimal cardinality.

8. MEP bi-framelets

Let {Vm, ϕ} and {Ṽm, ϕ̃} be a pair of MRA structures. Define their spectrum Ω by

Ω = Ω′
⋂

Ω′′,

where Ω′ and Ω′′ are the spectra of the center space of MRA structures {Vm, ϕ} and {Ṽm, ϕ̃}, respectively, i.e.,

Ω′ = supp ϕ̂+ 2πZd and Ω′′ = supp ̂̃ϕ+ 2πZd.
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We always assume that |Ω′
⋂

Ω′′| > 0. Similarly to Definition 6.1, based on the above spectrum Ω, we define

the associated set Ωγ and the order λ of this pair of MRA structures.

From Lemma 3.4, using the similar argument of “If part” in Theorem 4.1, we obtain the following existence

theorem in which there is no additional condition on the refinement filters τ0 and τ̃0. This is a quite different

case from the UEP framelets.

Theorem 8.1. Any pair of MRA structures {Vm, ϕ} and {Ṽm, ϕ̃} with the spectrum Ω may derive a

pair of bounded filters {τµ, τ̃µ}ρ1 satisfying (2.3), where ρ = |detS|. Let ψ̂µ(S∗·) = τµ ϕ̂ and
̂̃
ψµ(S∗·) = τ̃µ ̂̃ϕ

(µ = 1, ..., ρ). If the wavelet systems {ψµ,m,n} and {ψ̃µ,m,n} are both Bessel sequences, then {ψµ, ψ̃µ}ρ1 are a

pair of MEP bi-framelets.

Below we also derive a split trick for MEP bi-framelets.

Theorem 8.2. Let {Vm, ϕ} and {Ṽm, ϕ̃} be a pair of MRA structures with the spectrum Ω. If {ψµ, ψ̃µ}r1

are a pair of MEP bi-framelets derived by them, then both ψr and ψ̃r can be split into two functions, respectively

ψr = ψ(1)
r + ψ(2)

r , ψ̃r = ψ̃(1)
r + ψ̃(2)

r ,

such that {ψ1, ..., ψr−1, ψ
(1)
r , ψ

(2)
r } and {ψ̃1, ..., ψ̃r−1, ψ̃

(1)
r , ψ̃

(2)
r } are still a pair of MEP bi-framelets derived

by this pair of MRA structures.

Denote the test set

Fd :=

{
ω ∈ Rd;

∑
ν∈G∗

(τ0τ̃0χΩ)(ω + 2πS∗−1ν) = 1

}
.

Theorem 8.3. Let {Vm, ϕ} and {Ṽm, ϕ̃} be a pair of MRA structures with the spectrum Ω and the

order λ. Then the minimal cardinality of pairs of MEP bi-framelets derived by it

h =

 λ− 1 if Ωλ ⊂ Fd,

λ if Ωλ 6⊂ Fd.

Since the argument of this theorem is similar to that of Theorem 6.2, we omit its proof.

Let us now construct an MEP bi-framelets with the minimal cardinality h. Suppose that Ωλ 6⊂ Fd. Then,
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by Theorem 8.3, the minimal cardinality h = λ. Below we give the construction of a pair of MEP bi-framelets

{ψµ, ψ̃µ}λ1 with the minimal cardinality λ.

By Lemma 7.2, we only need to define wavelet filters {τµ, τ̃µ}λ1 on each set A0
α + 2πS∗−1ν. By (7.2), we

know that for ω ∈ A0
α, χΩ(ω + 2πS∗−1ν) = 0 (ν ∈ (G∗ \ {kj}nα−1

0 )). Denote two nα-dimensional vectors:

bα(ω) : =
(

(τ0χΩ)(ω + 2πS∗−1kj)
)nα−1

j=0
,

b̃α(ω) : =
(

(τ̃0χΩ)(ω + 2πS∗−1kj)
)nα−1

j=0
.

By Lemma 3.4 (i), we may take two (nα + 1)× nα matrices of bounded, 2πZd-periodic functions on each

set A0
α (nα ≤ λ)

Bα(ω) = (bαµ,j(ω))µ,j , B̃α(ω) = (̃bαµ,j(ω))µ,j (µ = 0, ..., nα, j = 0, 1, ..., nα − 1)

such that the first rows of the matrices Bα(ω) and B̃α(ω) are bα(ω) and b̃α(ω), respectively, and

B∗α(ω)B̃α(ω) = Inα on A0
α.

Now define τµ(ω) (µ = 1, ..., λ) on each set A0
α + 2πS∗−1ν. For µ = 1, 2, ..., nα,

τµ(ω + 2πS∗−1ν) =


bαµ,j(ω), ω ∈ A0

α (ν = kj , j = 0, ..., nα − 1),

0, ω ∈ A0
α (ν ∈ G∗\{kj}nα−1

0 )

and for µ = nα + 1, ..., λ,

τµ(ω + 2πS∗−1ν) = 0, ω ∈ A0
α (ν ∈ G∗).

Define τ̃µ(ω) (µ = 1, ..., λ) on each set on A0
α + 2πS∗−1ν. For µ = 1, 2, ..., nα,

τ̃µ(ω + 2πS∗−1ν) =


b̃αµ,j(ω), ω ∈ A0

α (ν = kj , j = 0, ..., nα − 1),

0, ω ∈ A0
α (ν ∈ G∗\{kj}nα−1

0 )

and for µ = nα + 1, ..., λ,

τ̃µ(ω + 2πS∗−1ν) = 0, ω ∈ A0
α (ν ∈ G∗).
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By Lemma 7.2, we have defined {τµ}λ1 and {τ̃µ}λ1 on Rd. We easily check that the wavelet filters {τµ}λ1 and

{τ̃µ}λ1 satisfy (2.3). By the mixed extension principle, we know that if we define {ψµ, ψ̃µ}λ1 as ψ̂µ(S∗·) =

τµϕ̂,
̂̃
ψµ(S∗·) = τ̃µ ̂̃ϕ, then {ψµ, ψ̃µ}λ1 is a pair of MEP bi-framelets with the minimal cardinality λ, whenever

the wavelet systems {ψµ,m,n} and {ψ̃µ,m,n} are both Bessel sequences.

Suppose that Ωλ ⊂ Fd. Using Lemma 3.4 (ii), we can also construct a pair of MEP bi-framelets with the

minimal cardinality λ− 1. Due to the similarity of the arguments, we omit the details here.
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