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ABSTRACT

The Local Fourier Transform (LFT) provides a nice tool for concentrating both a signal and its Fourier transform.
But there are certain properties of this algorithm that make it unattractive for various applications. In this paper,
some of these disadvantages are explored, and a new approach to localized Fourier analysis is proposed, the continuous
boundary local Fourier transform (CBLFT), which attempts to correct some of these shortcomings. Results ranging
from segmentation to representation cost to compression are also presented.
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1. INTRODUCTION

It is a well known fact that the visual world is periodic. From man-made objects such as shingled roofs, brick walls
or striped clothing, to natural or biological objects such as trees, grass or blown sand, periodicities abound at all
scales. It is also well known from neuroscience that mammalian vision performs a spatial frequency filtering of the
visual information in a localized, patch-by-patch manner. The main benefit of this type of representation is that
visual information is more efficiently condensed, decreasing the loss of crucial information. Because of this, much
recent effort has been devoted to developing mathematical models and transform algorithms that mimic this type
of behavior. Some of the more successful approaches have been discrete cosine transform (DCT) used in the JPEG
compression standard,! discrete wavelet transforms (DWT), wavelet packet transforms (WPT), local trigonometric
transforms (LTT),? local Fourier transforms (LFT),?> and the brushlet transform (BT).?

The main advantage of these methods is that they provide a good tool for concentrating both a signal and its
frequency content. In addition, the LFT and BT are equipped with a phase. But all of these approaches suffer from
a crucial problem: how to effectively periodize the initial signal. Without any information outside of the original
interval, there lacks an effective way to both treat the boundary and recover the original signal from the transformed
coeflicients. Furthermore, instability of the folding process on or near signal discontinuities can increase edge effect
which translates recursively to all subsequent levels of the hierarchy in the transforms. This can result in inefficient
representation, improper segmentation and incorrect analysis of the signal.

It is with this in mind that a new approach to localized analysis is proposed, the Continuous Boundary Local
Trigonometric Transform (CBLTT). Closely related to the LTT, it attempts to correct these and other shortcomings
of the LTT. The main difference between the LTT and the CBLTT is that the former projects the signal onto smooth
overlapping basis functions, whereas the latter decomposes the signal into a set of completely disjoint regions without
any overlapping. Each disjoint subspace then undergoes an invertible, nonlinear transformation to reduce edge effect,
and it is immediately expanded into an orthonormal basis; e.g., the Fourier basis, the sine/cosine basis, or the wavelet
basis, etc.. As a tensor product, it can be applied to multi-dimensional data: signals, images, video. Since this new
approach can be used to efficiently segment the frequency domain of a signal, it also gives rise to a new version of
the BT.

In order to reduce edge effect and increase numerical stability, many variations of this new scheme have been
derived. But due to page limitation, only one version, the continuous periodic local Fourier transform, is presented
here. A more in-depth analysis of this method and its applications, as well as the other variations can be found in.*
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2. PROBLEMS WITH THE LOCAL FOURIER TRANSFORM

In this section, some of the shortcomings of the LFT are presented. Although similar problems also affect the LCT,
BT, DWT and WPT to varying degrees, only the problems specific to the LFT are illustrated here for simplicity.
These descriptions provide motivation for the CBLFT, which is introduced in Section 3 and described in detail. In
order to better understand the CBLFT, a few simple operations are needed and are defined next.

2.1. Smooth Orthogonal Periodization

A primary component of the LFT involves smoothly restricting a function to an interval and then periodizing it,
thus allowing it to be expanded into the Fourier basis with minimal edge effect. In other words, suppose a function
z(t) € L%(R) is to be split smoothly into pieces, each of which is supported on an interval I (with some overlap),
where |Jcz Ix = R, and I;’s are disjoint. Define z; to be an I-periodic extension of x € L2(I) such that

z1(t) 2wt — k|I)). 1)

kEZ

To achieve this goal, Wickerhauser? introduced the following smooth orthogonal periodization from leoc(R) into an
I-periodic extension of L2(Iy):
A
TIkm(t) = W;klkaIkm(t)' (2)
This operator consists of three operators: Uy, (unitary folding operator), 1, (restriction operator, i.e., 1, z(t) = z(t)
if ¢ € I, = 0 otherwise), and Wy, (periodized unfolding operator). To define the unitary folding operator Uy, for the
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Figure 1. The bottom plot shows the application of 77, to the linear function z(t) = ¢ which is shown in the top
plot. Notice how the signal is nicely restricted and periodized.

interval I, let Iy, = (o, agy1). Then
A
Ur,z(t) = U(rg, ok, €1)U (Tht1, Qs €k41)2(1), 3)
where U(r, a, €) is a unitary folding operator associated with the action region t € (o — €, + €) and is defined as

r(E2)z@) +r () z2a—t) fa<t<a+e,

€

Ur,a,e)zt) 2 r (Y z(t) —r (E2)2Q2a—t) fa-e<t<a, (4)

€

z(t) otherwise.

The function r(t) above is called a rising cutoff function, which is a smooth version (e.g., r € C4(R) with d € N) of
the Heaviside step function satisfying the following condition:

0 ift<-—1,

[r@®))? + |r(=t)> =1 forallt€ R, and r(t)= {1 £ 1 (5)



A typical example of C*(R) is the following iterated sine function which will be employed throughout the remainder
of this paper:

0, i< —1,
r(t) = ¢ sin[(1 +sin 5t)], if [¢| < 1, (6)
1 if ¢ > 1.

The periodized unfolding operator Wy in Equation (2) is defined as:

rk(t;ca Yo (t) — rk(a;:k—t)x(ak + ap+1 —t) if ap <t<op+er,
Wi, a(t) = W (re, In, ee)z(t)= q ri(E)2(t) + (2= )z (an + apr — 1) if appr—ep <t <, (7
z(t) otherwise.

An important feature of T, is the fact that it preserves the smoothness of a smooth function; that is, if z € C4(R),
then Ty, x is an Ij-periodic extension that also belongs to C%(R). Figure 1 shows the application of T7, to a linear
function z(t) = t.

2.2. Instability of the Folding Process

One of the main drawbacks of the LFT derives from the instability of the folding procedure on or near a jump in
the signal. Discontinuities at folding locations cause improper boundary conditions within a subspace, often times
resulting in increased representation cost. Furthermore, once a subspace fails to achieve the proper boundary condi-
tions, the problem repeats itself recursively in children subspaces, resulting in improper or unpredictable partitioning
(see Figure 2). In other words, it is the folding operation itself, rather than the dataset, that is the dominating factor
in the resulting basis partition pattern and overall representation cost. In addition, since there does not exist an
attractive, invertible folding process for the top level, then this problem is present in every subspace and every level.

Poorly periodized parent space
T T T

Poorly periodized children subspaces
T T T

Figure 2. If the parent space is not properly periodized (top figure), then the children subspaces will not properly
periodize (bottom figure). This error propagates recursively to lower levels of the decomposition.

Evidence of this behavior can also be seen when switching between cosine and sine polarities (see Wickerhauser?
for details on polarity). Using the same dataset, completely different basis partition patterns arise when the polarity
is switched. Figure 3 illustrates this fact. The folding operation seems to be the determining factor in the choice of
basis (or partitioning), rather than the underlying structure in the image.

2.3. Mixing Information Across Boundaries

Another problem arises because information within subspaces is folded across boundaries; that is, basis functions
have global support. Although this can produce a desirable effect when reconstructing compressed signals by reducing
the blocking effect between subspace boundaries, it also can be detrimental for various applications such as texture
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Figure 3. Basis partition patterns of the same image using the real valued local Fourier transform. The pattern on
the left was chosen when sine polarity was used, and the pattern on the right was chosen when cosine polarity was
used.
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Figure 4. LFT periodization causes the sharp bump in the parent space to be mixed into many locations of the
children subspaces.
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segmentation and signal analysis. This becomes particularly problematic for the LFT and BT since they require the
additional “periodized unfolding” operations (equation (7)) which are not needed for the LCT.

As can be seen in Figure 4, a structure such as the sharp bump which is localized to one region of the parent
space, is mixed within all children subspaces when using LFT periodization. By the time that bottom level of the
decomposition is reached, the bump is mixed to every region of the signal; in essence, almost all recognizable structure
has been lost due to the mixing of information across subspace boundaries.

In response to the problems described above, an approach was devised to remedy these and other shortcomings.
In particular, the algorithm satisfies the following constraints:

It is invertible,

It operates on all subspaces including the top level,

It is stable, preserving continuity at the subspace boundaries,

It is computationally efficient,

e It is an isometry for use in the best basis algorithm.

One possible solution is presented in the next section.



3. THE CONTINUOUS BOUNDARY LOCAL FOURIER TRANSFORM

This section describes one version of the CBLFT. Although there are many different variations of the algorithm,
each with its own strengths and weaknesses, only one which is based on a continuous periodic extension is presented
here due to page limitation. The other forms of the CBLFT are detailed and analyzed in.*

3.1. The Continuous Periodic Local Fourier Transform

The basic approach is to force continuity at the boundary of each subspace by creating an artificial extension to
be used for folding. The main problem is that an invertible transformation is often difficult to find. Some simple
ideas include even and odd extensions. They suffer from a host of problems, though, which are described in.* The
following scheme was devised to satisfy the above conditions, while also solving the information mixing problem
described in section 2.3. The idea is to use a periodic extension of each subspace, while also forcing continuity at the
boundary. Figure 5 illustrates the approach. To begin, the right hand side of the signal is extended in a continuous
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Figure 5. Isometric folding using a continuous periodic extension. Notice that both the left and right hand sides
are extended in a continuous periodic manner, but the left hand side is temporarily shifted prior to folding in order
to preserve the isometry.

periodic fashion, and folding is performed at the right hand boundary. The extension is discarded and the energy
of the folded right half is computed to find how much energy has been lost or gained. This is then repeated for the
opposite side, but with a temporary shift in both the signal and extension prior to folding. The value of the shift,
which depends on the signal, can be precomputed and is used to preserve the isometry. Immediately afterwards,
periodized unfolding is performed to periodize the subspace, as well as undo any mixing which occurred during the
folding procedure. Figure 6 shows the results of this periodization process.

Notice that the continuous periodic extension successfully periodizes the two children subspace, while also mini-
mizing the mixing of information. It should be noted that this method can be used for any subspace, including the
top level. And because of the isometry, it can be cast in a best basis setting to perform a stable adaptive analysis of
a signal.
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Figure 6. A comparison of various methods of periodization. The top figure shows the original function with a
sharp bump at one location. The second figure shows the effects of splitting the space into two children via the local
Fourier transform. The third figure shows splitting via an even extension (described in*). And the fourth figure
shows the results of splitting the space using the continuous periodic extension.

3.2. Continuous Periodic Extension and Folding

Mathematically, the approach for folding is formulated as follows. Let z, be a function of N + 1 discrete points
indexed from 0 to N. Let z¢9 # zn, i.e., there a discontinuity at the boundary if the function is periodized. For
simplicity, let R = the radius of the rising cutoff function such that R < %, and let n =0,..., R — 1 in all of the
following formulas.

Then one version of the discrete continuous periodic extension can be constructed according to Figure 7 using
midpoint folding (see?). With this arrangement, the values of the extension to the left of zo are given by
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Figure 7. Example of a continuous periodic extension of a linear function with midpoint folding.? In this example,
N=T.

T pn 1 =IN_n+To—IN (8)
and the values of the extension to the right of z are

TNtntl = Tp + TN — To- 9)



Using Equation (4), folding at the left hand edge is defined as

Tpn = TpZTp +T—p-1T—p-1
= rpn+7 n 1(EN_n+T0 — TN) (10)
and at the right hand edge as
IN-n = TpTN-n —T—n—1TN+4n+1
= TuIN—n — T—n-1(Tn + TN — Zo)- (11)

Now, for the isometric version, the generalized isometric folding formula for the left hand side can be found using
Equation (10) and applying the shift operation with shift, s = s(z,), to get

s = Ttp(@n+8)+r_n1(@_p_1+8)—s
= TpZTn +r_pn_1T_p_1+ S(Tn +7r_p_1— 1)
= TaZn+ 71 (TN—n + To — wNZ+s£rn +r o1 — 1)1. (12)
P n

where #; ,, stands for the folded result with shift. Thus, this is just the standard folding operation, with the added
term, s\,.

With isometric folding well defined, a formula for finding an explicit shift value, s, can be easily derived by using
the above notation along with the definition of an isometry to get

R—-1 R—-1
0 = Y [@ntsr)+35 ] =Y (@2 +903)
n=0 n=0
R—1
&0 = (Z2 +28FpAn + 82X + BN, — T2 — T p)
n=0
R—1 R—1 R—1
S0 = Y XN +25) Fndnt+ > (F2+EN ., —2h—Th )
n=0 n=0 n=0
2
R—1 ~ R—1 ~ R—1 R—1 /~ ~
- Zn:O TnAn £ \/(Enzﬂ Z'n)\n) - Zn:O )‘% : En:O ('Z-%L + m%\f—n - .’E% - x?\l—n)
R—2 = R_1 2 . (13)
Zn:O )‘n

Tt should be noted that most of the values in Equation (25) are constants that can be precomputed only once;
hence, there is not a lot of computational overhead involved with this isometric operator.
3.3. Continuous Periodic Extension and Unfolding/Inversion
Solving for z in Equations (10) and (11) yields the following formula for inverse folding at the left hand side

Tn = [jn - r—n—l(xN—n + x9 — :EN)] /Tn (14)

and at the right hand side
IN-—n = [S’Z'N—n + T—n—l(mn + TN — '7:0)] /Tn' (15)

Now, similar to many of the methods described in,* this approach yields implicit inversion formulas. Represented
as a linear system, it can be written as

[ 7o +7_1 0 0 0 0 0 0 0 T
r_o 1 0 0 0 0 r_o —Tr_o
! 0 N\ 0 0 0 !
r N2+1 0 0 7’N2—1 T_ N2+1 0 0 —-r_ N;—l v =7 (16)
r_ N;—l 0 0 —’I“Ng-l 7'N2—1 0 0 —-T_ N;—l
! 0 o~ 0 0 N\, 0 !
r_o —r_o 0 0 0 0 T1 —Tr_o
| 0 0 0 0 0 0 0 ro—r_q




In this system, it is assumed that R = %, although this is not necessary.

In order to invert this, sparse matrix routines can be employed, but for computational speed it is better to
exploit the structure of the array and find an explicit solution. To do this, it is necessary to recover xo and = (see
Equations (10) and (11)). They are easily found from the first and last rows of Equation (16) to be

Zo
o= ——— 17
0= (17)
and -
oy = —N (18)
o —7T-1
Using these results, and exploiting the symmetry in Equation (16), generalized inversion formulas for z1,...,zNn_1
are found by simultaneously solving a system of equations derived from rows n and N —n forn=1,...,R—2in
Equation (16). These two equations have two unknowns, and so the unique solution is found to be
Tn = [Fn—T-n-1(TN-n +To —ZN)]/Tn
= (@n—r_p_{@N-n+Tn1(@n + 2N —20)]/T0 +T0 —TN})/Tn
= [rni’n - Tfnfli.an + Tfnfl(Tfnfl - Tn)(xo - mN)]/ (Ti + 7'2_”_1) (19)
| S —
=1
and
IN—n = [i'N—n + r—n—l(xn +TN — xO)]/Tn
= (i'an + Tfnfl{[-’i'n —T—n—1 (1'an + o — 'Z.N)]/Tn +TN — -Z'O})/Tn
= [N n+T o 1Fpn—T oy 1(r 1 +rp) (w0 —zN)]/ (2 +72,_1)- (20)
—_——

=1
For the isometry, the generalized isometric inversion formula for the left hand side is found using Equation (12) to
be
Ty = [Esn —T—n-1(EN_n + Zo — ZN)] [Tn — SAn/Tn- (21)
Adding this to Equations (17) , (19) and (20) yields the following isometric inversion formulas
z A
g = Ts0 g 0 (22)

o +7_1 To+7_1
—_—— ——

Z0 @o
~ ~ i‘s,O -'Z's,N Ao
Tpn = TnTs,;n —T—n—1Ls,N—n + r—n—l(r—n—l - ’r'n) - —s | rnAn + T—n—l(""—n—l - 'rn)i (23)
ro+7_-1 ro —T-1 ro 4+ r_1
Zn Qn
and
- - Ts,0 Ts,N Ao
TN-—n=TnpZTs,N-n+ T-n—-1Ts,n — Tfnfl(rfnfl + Tn) - —$§(T-n-1 )\n+(7"7n71 - Tn)i (24)
rTo+T_1 ro—T-1 To+17Tr_1

~ v ~ v
-~ -~

ZN-—n Bn

forn=1,...,R—1. Notice that is just the standard inversion operation of Equations (19) and (20) applied to &; p,
with the added terms a,, and 3, (also note that Sy = 0).

Now that the inversion formulas are well defined, they too need to be used in a formula for finding an explicit
shift value, s. Using the above notation along with the definition of an isometry yields

R (@nzatBnzn—n)E (TR (anzntBazn—n)) - SR (@2 +82) TR (2423 0 Fon Fon )

Sz (03 +52) ‘
As stated above, most of the values in Equation (25) are constants that can be precomputed only once; hence, there
is not a lot of computational overhead involved with this isometric operator.

s = (25)



3.4. Existence of a Real Valued Shift

In light of Equation (13), it is important to know whether a real valued isometric shift always exists. The answer
is no, even for nonnegative functions. A simple counterexample is z = (1,0,...,0) where N = 15 and R = 8. The
problem arises because the right hand extension is nonpositive, causing the energy of the folded right hand side to
increase; that is, Y0 (&% _, — *x_n) > 0. In response to this result, it is natural to wonder whether it is possible
to place a condition on z to cause Equation (13) to always be satisfied with a real valued s. The following theorem

answers this question.

THEOREM 3.1. [JFor all real valued functions z € [0,1] and rising cutoff fuctions (6), there exists a value C € R
such that for y = x + C and C > 0, there exists a real valued shift, s = s(y), which is the solution to Equation (13).

Proof. (i) Zf} 0 A2 # 0; ie., the denominator of Equation 13 is nonzero. For this to be true, the following
equivalent relationships need to be satisfied.
YoM # 0
& n # 0 for some n € [0, R — 1]
& rn+rN_n # 1 for some n € [0, R — 1]
S rmt/1-12 # 1 for some n € [0, R — 1]
< Vi=r2 # 1-—r, for some n € [0, R — 1]
& 1—r2 # 1-2r,+7r2 forsomen € [0,R—1]
& 2r2 —2r, # 0 for some n € [0,R — 1]
& ro(rn—1) # 0 for some n € [0, R — 1](*)

Now, using the fact that % <rp,<1lVne€[0,R—1],then rp(r, —1) <0V n €[0,R—1] and (%) is satisfied;

2
(i4) (Zf;ol gnAn) Sy Rz Rl gz 242 ) >0 (x); ie., the determinant in Equation (13)
is nonnegative.

To begin, it is clear that (x) will always be true as long as Zf:_ol (;lj% + 53—, — Y — yjzv_n) < 0. So it is necessary
to understand when this occurs. To do this, consider the left and right parts separately. Starting with the right side,
notice that Y71 (53, _,, — y%_,) will be maximized when y% ,, is a minimum, and the right hand extension is also
minimized. This occurs when yo = C+ 1,y, =C forn=1,...,R—1,and yy_, = C for n =0,..., R — 1. Using
this yields

R-1
0 = (TN —n = Y%—n)
n=0
R-1 R-1
<0 = [Tn:UN—n - "'—n—l(yn +yn — y0)]2 - Z y]2V7n
n=0 n=0
&0 = C*rg—r_y) —|—Z[rn— —Dr_,_ 1] —C?’R
R-1 R-1 R-1
0 = C) [rn—71-n1)?—1]+2C) [ronalrn—r—a )]+ > 12,4
n=0 n=1 n=1

2 _
_2713 i1 r-n-1(rn—r-n-1) :I:\/[fo 17" n—1( T"_T—n—l)] - 713:(}[("%_"—71—1)2—1]' o it

neo[(rn—r—n—1)21]

e C

(26)

Some values of C' computed from Equation (26) are shown in Figure 8. As can be seen, as R increases, C' converges
to a number close to 0.8019. Thus, for any « € [0, 1], and for all values of C > 0.8019, E (yN n—Ya_n) <0.In
a similar manner, the above argument can be repeated for the left hand side, but using the function that maximizes
YA (92 —y2), namely y, = C +1forn=0,...,R—1,yn—n=C+1forn=1,...,R—1, and yx = C. The
results are

2 _ —
C = D D Y (R 1i\/ S i (ratr—a )] =X (A r—no1)2 =11 T 2
- R—1

n=0 [(rn+r—n—1)2*1]

11 (27)
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Figure 8. Values of C found using Equation (26) with 20 < R < 28,

A plot of various values of C found using Equation (27) is shown in Figure 9. As R increases, C tends towards
—1.1981. What this means is that the left hand side can always be shifted so that its energy before and after folding
can be the same.

. . N
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Figure 9. Values of C found using Equation (27) with 2° < R < 28,

Thus, as long as C' > 0.8019, then a shift, s(y), will always exist. And the lowest value that the left hand side
will ever be shifted is —1.1981. 0O

4. RESULTS

Results, ranging from segmentation to representation cost and compression are presented here. First, take Figure 10,
which shows a comparison between the standard LFT and the CPLFT when sparsity among the transformed coef-
ficients, &, is optimized. It should be noted that lim, o = ||Z||} = limyyo > _; |#:” = [|2[|o = #{i : #; # 0}. Hence,
the sparsity measure 7 with 0 < p < 1 is employed as a stable approximation of true sparsity. (See®® for more
about such sparsity measures). As can be seen in plots (a) and (b), CBLFT segments the signal into regions that
match the structure of the underlying signal, whereas the LFT does not. In terms of cost, the sparsity measure is
-1 = 91.97 for LFT, and ¢! = 76.43 for CBLFT. This affects the compression results as can be seen in plots (c)
and (d), which show the reconstructed signals after thresholding half of the transform coefficients. As can be seen,
LFT produces some undesirable oscillations near the subspace boundaries. This artifact is not as prevalent in the
CBLFT reconstruction.
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Figure 10. Sparsest basis partition pattern using (a) LFT with £°-!, and (b) CBLFT. Compression results, 2:1,
using (c¢) LFT, and (d) CBLFT.

Another important property of CBLFT is the stability of partition patterns under various conditions. For example,
Figure 11 shows the results of using different sparsity measures, /P, as well as shifting an image. As can be seen, the
partition patterns tend to be more stable for CBLFT. This is not the case when using LFT, LCT or BT.

Figure 12 shows the effect that image rotation has on the basis partition pattern. Notice that the partition
pattern tends to rotate along with the rotation of the image. None of these results were witnessed when the test was
repeated using LFT, LCT or BT.

5. CONCLUSION

Although there is a lot more to be learned about this approach, preliminary results seem promising. The overall ability
to minimize the mixing of information within subspaces while still reducing edge effect lends itself nicely to signal
and image analysis. The stability of the algorithm under various sparsity measures, as well as the robustness under
shifts and rotations shows promise for certain applications such as textured segmentation. In addition, numerous
variations of this idea have been proposed and analyzed in depth and will be presented in future papers.
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Shift Invariance and LP Invariance (CBLFTM, cont per bdry, cos polarity)
p=0.1 p=0.01

Figure 11. Comparing the left two plots to the right two plots shows the robustness and stability of the partition
pattern under two different sparsity measures (£°-! versus £°-°!) using CBLFT. Comparing the top two plots to the
bottom two plots shows the robust and stable partition pattern under a shift using CBLFT.

Rotation Invariance (CBLFTM, cont per bdry, cos polarity, p = 0.1)

Figure 12. Robust partition patterns under a rotation of the image using CBLFT.



