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Abstract

We report our current effort on extracting morphological features from neuronal dendrite
patterns using the eigenvalues of their graph Laplacians and clustering neurons using those
features into different functional cell types. Our preliminary results indicate the potential
usefulness of such eigenvalue-based features, which we hope to replace the morphological
features extracted by methods that require extensive human interactions.
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1. Introduction

In recent years, the advent of new sensors and tech-
niques has allowed one to image complicated intercon-
nected structures in biology such as dendrites connected
to a single neuron, neuronal axon/fiber tracts in a hu-
man brain, and a network of blood vessels in human
body. Neuroscientists hope to gain insight into modeling
and understanding brain functions by analyzing images
of such network structures. The actual analysis of them,
however, remains elusive. For example, vision scientists
want to understand how the morphological properties
of dendrite patterns of retinal ganglion cells (RGCs),
such as those shown in Figure 1, relate to the functional
types of these cells. Although such classification of neu-
rons should ultimately be done on the basis of molec-
ular or genetic markers of neuronal types, it has not
been forthcoming. Hence, neuronal morphology has of-
ten been used as a neuronal signature that allows one
to classify a neuron such as an RGC into different func-
tional cell types [2]. The state of the art procedure is still
quite labor intensive and costly: automatic segmentation
algorithms to trace dendrites in a given 3D image ob-
tained by a confocal microscope only generate imperfect
results due to occlusions and noise; moreover, one has to
painstakingly extract many morphological and geometri-
cal parameters (e.g., somal size, dendritic field size, total
dendrite length, the number of branches, branch angle,
etc.) with the help of an interactive software system. In
fact, 14 morphological and geometric parameters were
extracted from each cell in [2]. It takes roughly half a
day to process a single cell from segmentation to param-
eter extraction!

In this paper, we examine how to analyze and charac-
terize such neuronal dendrite structures automatically
using computational harmonic analysis techniques so
that we can save human interaction cost in this dendrite
pattern analysis.

2. Analysis of Dendrite Structures via
Graph Laplacian Eigenvalues

The segmentation and tracing software system used
by our collaborator, Prof. Leo Chalupa and his group
(Dept. Neurobiology, Physiology & Behavior, UC Davis)
provides us with a sequence of 3D coordinates that rep-
resent points sampled along dendrite arbors (or paths)
of RGCs with the branching information [2]. One of
the most natural and simplest ways to model such a

Fig. 1. Dendrites of various types of retinal ganglion cells of a
mouse; reprinted from [2] with permission from Elsevier.



JSIAM Letters Vol. xx (20xx) pp.1-

Naoki Saito et al

network-like structure is to construct a graph. Hence,
our first task is to convert such a sequence of 3D
points to a connected graph G consisting of the ver-
tex set V and edge set E. To fix our notation, let G
be a graph representing dendrite patterns of an RGC,
V = V(G) = {v1,v2,...,v,} where each v, € R3 is a
3D sample point along dendrite arbors of this RGC, and
E = E(G) = {e1,ea,...,en} where e; connects two ver-
tices v;, v; for some 1 < ¢,j < n, and write e, = (v;,v;).
Let d,, be the degree (or valency) of the vertex vy. In
fact, dendrite patterns of each RGC in our dataset can
be converted to a tree rather than a general graph since
it is connected and contains no cycles. We also note that
we only deal with unweighted graphs in this paper. In
other words, we essentially examine the connectivities
and complexity of the dendrite graphs, which may not
reflect the physical lengths of the dendrite arbors. We
will defer our investigation of models that reflect such
physical realities as our future project, which includes
the weighted graphs where each edge e € FE has weight
we = |lv; — vj|| 71, i.e., the inverse of the physical dis-
tance between two vertices of e.

Once we construct a graph per RGC, we proceed as
follows:

Step 1: Construct the Laplacian matriz (often called
the combinatorial Laplacian matrix) L(G) =
D(G) — A(G) where D(G) := diag(dy,,...,dy, ) is
the diagonal matrix of vertex degrees and A(G) =
(a;,;) is the adjacency matrix of G, i.e., a;; = 1 if
v; and v; are adjacent; otherwise it is 0.

Step 2: Compute the eigenvalues of L(G);
Step 3: Construct features using these eigenvalues;

Step 4: Repeat the above steps for all the RGCs and
feed these feature vectors to clustering algorithms.

Our rationale behind using the Laplacian eigenvalues is
the following: They reflect various intrinsic geometric
information about the graph e.g., connectivity (or the
number of separated components), diameter (the maxi-
mum distance over all pairs of vertices), mean distance,
etc.; see, e.g., [1, 3] for the details on the graph Laplacian
eigenvalues. In fact, we view the dendrites connected to
a neuron as a musical instrument, try to “listen” to its
sounds, and check if those can be used to characterize
the dendrite patterns. We know that it is not possible to
uniquely identify a graph from its Laplacian eigenvalues
in general. In particular, “almost all trees are cospec-
tral”; see, e.g., [3]. In practice, however, it is often possi-
ble to obtain good approximation of a graph from them.
Hence, we believe that the features based on the Lapla-
cian eigenvalues of a graph will be useful for various
recognition and clustering purposes.

Before stating the facts or theorems in [3, 4] (see
also [1]) that are used to construct our features, let
us fix our notation and define several key quantities.
Let | - | denote a size of a set. Let |V| = n, and let
0 =X < A1--+ < Ay_1 be the sorted eigenvalues of
L(G). Let mg(A\) denote the multiplicity of A as an
eigenvalue of L(G), and let mg(I) be the number of
eigenvalues of L(G), multiplicities included, that belong

to I, an interval of the real line. A vertex of degree 1
is called a pendant vertex, and a vertex adjacent to a
pendant vertex is called pendant neighbor. Let p(G) and
¢(G) be the number of pendant vertices and the number
of pendant neighbors of G, respectively. For a nonempty
subset of vertices S C V(G), let 35S be the boundary of
S defined as 9S := {e = (u,v) € E(G)|u € S,v ¢ S}.
Let i(G) be the isoperimetric number of G:

i(G) = inf {ﬁ

The isoperimetric number is closely related to the con-
ductance of a graph, i.e., how fast a random walk on G
converges to a stationary distribution. The Wiener in-
dex W(G) of a graph G is the sum of the entries in the
upper triangular part of the distance matrix A(G) of
G, where (A(G));,; is the number of edges in a shortest
path from vertex v; to vertex v;. The Wiener index of a
molecular graph has been used in chemical applications
because it may exhibit a good correlation with physical
and chemical properties of the corresponding molecule.
We now list several theorems we use in this paper.

®¢ch,|5|gn/2}. (1)

e m(0) is equal to the number of connected compo-
nents of G.

e The number of pendant neighbors of G is bounded
as:

p(G) —ma(1) < q(G) < ma(2,n], (2)

where the second inequality holds if G is connected
and satisfies 2¢(G) < n.

e For n > 4, the isoperimetric number i(G) satisfies

i(G) < \/ (2 max dy — Al(G)) MG, (3)

veV(G)

e Let G be a tree. Then
n—1

W@ =Y /\% (4)
k=1

3. Numerical Experiments and Prelimi-
nary Results

In this section, we report our preliminary results
we obtained very recently. We only use the dendrite
patterns categorized into the so-called “monostratified”
RGCs, meaning the dendrites of those RGCs are con-
fined to either the On or the Off sublaminae of the inner
plexiform layer (a layer immediately below the RGCs
toward rods and cones) [2], which should be contrasted
with “bistratified” RGCs whose dendrites span the On
and Off sublaminae).

The following features were used to characterize the
dendrite patterns of 130 monostratified RGCs.

Feature 1: (p(G) —ma(1))/|V(G)] as a lower bound of
the number of the pendant neighbors ¢(G) as shown
in (2) with the normalization by |V (G)| ;

Feature 2: The normalized
W(G)/IV(G)| via (4) ;
Feature 3: mg(4,0)/|V(G)], i.e., the number of eigen-

values of L(G) larger than 4 (normalized) ;

‘Wiener index



JSIAM Letters Vol. xx (20xx) pp.1-

Naoki Saito et al

Y@m
Y um)

a0 20 o 0 ) 8

20
X(um)

(a) RGC #60
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Fig. 2. Zoom up of a part of two RGCs belonging to Cluster 1
(a) and Cluster 6 (b). One can see some “spines” in (a).

Feature 4: The upper bound of the isoperimetric num-
ber i(G) shown in (3) .

We normalized Features 1, 2, 3, by the number of vertices
in the graph because we wanted to make features less
dependent on the number of samples or how the dendrite
arbors are sampled. Of course, the number of vertices
itself could be a feature although it may not be a decisive
one. On the other hand, Feature 4 was not explicitly
normalized because the isoperimetric number (1) itself
is a normalized quantity in terms of number of vertices.
Feature 1 was used because the number of pendant
neighbors seems to be strongly related to the so-called
“spines,” short protrusions from the dendrite arbors.
Figure 2(a) shows several spines as the edges of length 1
each of which is attached to a terminal vertex of degree
1. Hence, we expect that the larger this lower bound
p(G) — mg(1) is, the more likely for the RGC to have
spines. In contrast to Figure 2(a), Figure 2(b) shows an
example of the RGC whose Feature 1 value is small.
Apparently, there is no spine in this figure and each of
the pendant neighbors has exactly one pendant (or ter-
minal) vertex. The reason why we used Feature 3, the
normalized version of mg(4, 00), is based on our follow-
ing observations. The Laplacian eigenvalue distribution
of each RGC dendrite graph typically looks like that in
Figure 3. It consists of a smooth bell-shaped curve that
ranges over [0,4] and the sudden burst above the value
4. We have observed that this value 4 is critical since the
eigenfunctions corresponding to the eigenvalues below 4
are semi-global oscillations (like Fourier cosines/sines)
over the entire dendrites or one of the dendrite arbors
whereas those corresponding to the eigenvalues above
4 are much more localized (like wavelets) in branching
regions. Figures 4 and 5 demonstrate our observation.
Finally, Figures 6 and 7 show the scatter plots of these
four features of 130 RGCs (we only show two such plots
here out of six possible scatter plots). The numbers in
the plots are the cluster numbers obtained by Coombs et
al. [2] using the hierarchical clustering algorithm on the
14 morphological features. From these figures, we can
observe that Cluster 6 RGCs separate themselves quite
well from the other RGC clusters. In fact, the sparse and
distributed dendrite patterns such as those in Clusters
6 and 10 are located below the major axis of the point
clouds in Figure 6 and above the major axis of the point
clouds in Figure 7. These imply that the dendrite pat-
terns belonging to Cluster 6 and 10 have smaller number

!
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Fig. 3. A typical distribution of the Laplacian eigenvalues. RGC
#100 in Cluster 6 was used for this figure.
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Fig. 4. The Laplacian eigenfunction of RGC #100 corresponding
to the eigenvalue A1141 = 3.9994, immediately below the value
4. Note that the support of this eigenfunction is semi-global, i.e.,
covers one whole dendrite arbor.

of spines and smaller Wiener indices compared to the
other denser dendrite patterns such as Clusters 1 to 5.
Also we observe that the feature variability of RGCs in
Clusters 7 and 8 are higher than the other clusters.

4. Discussion

Our results reported here are still preliminary. There
are many things to be done. Among them, the most
urgent is to answer the following natural questions: 1)
Among the features derivable by directly analyzing a
graph (e.g., those 14 features used in [2]), which ones
can be derived from the Laplacian eigenvalues and which
ones cannot? 2) Among the features derivable by both
methods, which ones can be derived more easily using
the Laplacian eigenvalues than the direct graph analy-
sis? For example, computing the isoperimetric number
i(G) of a given graph G is an NP problem in terms of
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Fig. 5. The Laplacian eigenfunction of RGC #100 corresponding
to the eigenvalue A1142 = 4.3829, immediately above the value
4. Note that the support of this eigenfunction is localized around
the branching point.
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Fig. 6. A scatter plot of the normalized lower bounds of the num-

ber of the pendant neighbors vs the normalized Wiener indices.
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Fig. 7. A scatter plot of the normalized number of the eigen-
values larger than 4 vs the upper bounds of the isoperimetric
numbers.

number of the vertices [4], and yet we can estimate its
upper bound easily using the Laplacian eigenvalue as
shown in (3).

Next, we also need to deepen our theoretical under-
standing of the sudden behavior change (like a phase
transition) of the Laplacian eigenfunctions correspond-
ing to the eigenvalues below and above 4 as demon-
strated in Figures 3, 4, and 5. Note that this phe-
nomenon occurs in each cell.

Another interesting thing we need to investigate is to
“resample” the dendrite patterns so that each tree has
the same number of vertices. If we can do so, then there
is no need to normalize the above features by |V (G)|,
and we can really examine whether those features are
reflecting topological information of the dendrite pat-
terns rather than the number of vertices. This resam-
pling, however, must be done very carefully (e.g., not
skipping the vertices with degree other than 2) so that
we do not change the topology of the patterns.

Yet another investigation should be to consider the
Dirichlet-Laplacian eigenvalue problems by explicitly
imposing the Dirichlet boundary condition on the termi-
nal nodes of the trees, and then compare the eigenvalues
with those of the combinatorial Laplacians; see [1, 4] for
more about the Dirichlet-Laplacian eigenvalues.

Finally, analysis using the weighted graphs, as briefly
mentioned in the beginning of Section 2, should be care-
fully done. On one hand, the weighted graphs reflect
more physical reality of the RGCs, hence we can expect
more accurate results. On the other hand, analysis of
such graphs are expected to be tougher than combina-
torial Laplacian used in this paper because for example,
m¢(1) among the different RGCs does not have the same
meaning anymore.

This is quite an interdisciplinary research project that
taps into extremely rich mathematical ideas. We hope to
report more results in the near future.
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