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Efficient Approximation and Denoising of Graph
Signals Using the Multiscale Basis Dictionaries
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Abstract—We propose methods to efficiently approximate and
denoise signals sampled on the nodes of graphs using our over-
complete multiscale transforms/basis dictionaries for such graph
signals: the Hierarchical Graph Laplacian Eigen Transform
(HGLET) and the Generalized Haar-Walsh Transform (GHWT).
These can be viewed as generalizations of the Hierarchical
Discrete Cosine Transforms and the Haar-Walsh Wavelet Packet
Transform, respectively, from regularly-sampled signals to graph
signals. Both of these transforms generate dictionaries containing
an immense number of choosable bases, and in order to select a
particular basis most suitable for a given task, we have general-
ized the best basis algorithm from classical signal processing.
After briefly reviewing these transforms and the best basis
algorithm, we precisely prove their efficiency in approximating
graph signals belonging to discrete analogs of the space of Hölder
continuous functions and the Besov spaces. Then, we validate
their effectiveness with numerical experiments on real datasets
in which we compare them against other graph-based transforms.
Building upon this approximation efficiency of our transforms, we
devise a signal denoising method using the HGLET and GHWT
and again compare against other transforms. Our results clearly
demonstrate the superiority of our transforms over those other
transforms in terms of both approximation and denoising.

Index Terms—Multiscale basis dictionaries on graphs, graph
wavelets and wavelet packets, best basis selection, graph signal
approximation and denoising.

I. INTRODUCTION

IN classical signal processing, the signals considered pos-
sess simple, regular structures that are known a priori.

Examples of such signals include audio, images, time series
data, matrices, etc. All of these signals lie on regular grids,
which makes it easy to exploit their underlying structure
in order to analyze them. To this end, a number of highly
successful tools have been developed, with wavelets being one
of the crowning achievements.

Of course, as advancements in signal processing were being
made, so too were advancements made in computing power.
This made possible both the collection and processing of
signals on a new domain: graphs. Here, a signal’s structure
is no longer confined to the equispaced, regularly connected
domains of classical signal processing. Such freedom allows
for much richer classes of signals to be considered and
analyzed.
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But this increased versatility does not come without chal-
lenges. Nearly all of the theory and tools developed for classi-
cal signals cannot be generalized easily, if at all, to signals on
graphs1. Current methods must change and evolve, and new
methods must be developed. However, many of the questions
remain the same. How can we efficiently approximate a signal
on a graph? How can we quantitatively describe a signal? How
can we identify and remove noise from a signal on a graph?
In this work, we present strategies for tackling these questions
and more. Drawing motivation from concepts and techniques
used in classical signal processing, we develop new tools and
methods for analyzing signals on graphs which can rightly be
viewed as generalizations of classical techniques.

The organization of this article is as follows. In §II, we cover
some basics of graph theory and recursive graph partitioning.
We briefly review some transforms for signals on graphs
developed by other researchers, and then we provide an
overview of our own HGLET and GHWT transforms. In §III,
we present theoretical and experimental results concerning the
use of the HGLET and GHWT for approximation of signals
on graphs. Then in §IV, we demonstrate the effectiveness of
our transforms for denoising. The methods and tools discussed
herein are freely available in the MTSG Toolbox2, which
includes scripts for recreating Figures 2-8 and Table I. The
experiments in this paper were performed on a personal laptop
with a 2.20 GHz Intel® Core™ i5-5200U CPU with 12.0 GB
RAM.

II. BACKGROUND

A. Graph Theory

Let G = (V,E) be an undirected connected graph. Let
V = V (G) = {v1, v2, . . . , vN} denote the set of vertices (or
nodes) of the graph, where N := |V (G)|. For simplicity,
we typically associate each vertex with its index and write
i in place of vi. E = E(G) = {e1, e2, . . . , eM} is the set
of edges, where each ek connects two vertices i and j, and
M := |E(G)|. In this article we consider only finite graphs
(i.e., M,N <∞). Moreover, we restrict to the case of simple
graphs; that is, graphs without loops (an edge connecting
a vertex to itself) and multiple edges (more than one edge
connecting a pair of vertices i and j). We use f ∈ RN to
denote a signal on G, and we define 1 := (1, . . . , 1)T ∈ RN .

1It has been proposed in [1] that one can generalize the Fourier transform
to the graph setting by using the Laplacian eigenvectors as a generalization
of the Fourier basis. However, as explained in [2], it is a mistake to interpret
the graph Laplacian eigenvalues and eigenvectors as the (squared) frequencies
and the Fourier basis functions, respectively.

2https://github.com/JeffLIrion/MTSG Toolbox
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We now discuss several matrices associated with graphs.
The information in both V and E is captured by the edge
weight matrix W (G) ∈ RN×N , where Wij ≥ 0 is the edge
weight between nodes i and j. In an unweighted graph, this
is restricted to be either 0 or 1, depending on whether nodes
i and j are connected, and we may refer to W (G) as an
adjacency matrix. In a weighted graph, Wij indicates the
affinity between i and j. In either case, since G is undirected,
W (G) is a symmetric matrix. We then define the degree matrix
D(G) as the diagonal matrix with entries di =

∑
jWij . With

this in place, we are now able to define the (unnormalized)
Laplacian matrix, random-walk normalized Laplacian matrix,
and symmetric normalized Laplacian matrix, respectively, as

L(G) : = D(G)−W (G)

Lrw(G) : = D(G)−1L(G)

Lsym(G) : = D(G)−1/2L(G)D(G)−1/2.

We use 0 = λ0 ≤ λ1 ≤ . . . ≤ λN−1 to denote the
sorted Laplacian eigenvalues and φ0,φ1, . . . ,φN−1 to denote
their corresponding eigenvectors, where the specific Laplacian
matrix to which they refer will be clear from either context or
superscripts.

These matrices have been studied extensively, and we now
highlight three key properties (further information can be
found in [3], [4]). First, both L and Lsym are symmetric ma-
trices and therefore their eigenvectors form orthonormal bases
for RN . Second, Lrw and Lsym have the same eigenvalues,
and their eigenvectors are related in the following way:

φrw
l = D(G)−1/2φsym

l l = 0, 1, . . . , N − 1. (1)

From this, it is easily seen that the eigenvectors of Lrw are or-
thonormal with respect to the weighted inner product 〈, 〉D(G);
that is, (φrw

l1 )∗D(G)φrw
l2 = δl1,l2 . Third, for all three matrices

the smallest eigenvalue is zero, and for a connected graph
all the other eigenvalues are strictly positive. Furthermore,
for both L and Lrw the eigenvector associated to eigenvalue
zero is the normalized constant vector: φ0 = 1/

√
N and

φrw
0 = 1/

√∑N
i=1 di.

B. Recursive Graph Partitioning

In addition to serving as bases for signals on a graph,
Laplacian eigenvectors can also be used for graph partitioning.
For a connected graph G, Fiedler showed in [5] that an
eigenvector corresponding to the first nonzero eigenvalue of
the unnormalized Laplacian (i.e., φ1) partitions the vertices
into two sets,

V1 =
{
i
∣∣ φ1(i) ≥ 0

}
V2 = V \ V1,

such that the subgraphs induced on V1 and V2 by G are
both connected graphs. Thus, the Fiedler vector, as it has
come to be known, provides a simple means of bipartitioning.
This result also holds when using φrw

1 (which is equivalent
to using φsym

1 , since (1) reveals that the eigenvector entries
will have the same signs). Justification of this approach comes
from the fact that it yields an approximate minimizer of the

bipartitioning criterion called the RatioCut (or the Normalized
Cut) when L (or Lrw, respectively) is used [4], [6]. This result
can be seen as a corollary of the Discrete Nodal Domain
Theorem [7], [8], and by utilizing more of the Laplacian
eigenvectors we can partition the graph into more subgraphs.

A common strategy used to develop transforms for signals
on graphs, and one that we employ, is to utilize a hierarchical
tree. Unless the hierarchical tree is provided along with the
graph, it must be generated in one of two ways. The first is
to utilize a bottom-up clustering approach in which we start
with the individual vertices of the graph and recursively group
them together according to their similarity, as indicated by
the weight matrix W . The second method is to use a top-
down partitioning approach in which we start with the entire
graph and repeatedly partition it into subgraphs, typically in
a manner that strives to generate subgraphs that are roughly
equal in size while keeping similar vertices grouped together.
We now set forth a set of conditions for hierarchical trees. For
some transforms these requirements are stricter than necessary,
but we maintain them because the resulting trees are compat-
ible with all of the hierarchical tree-based transforms that we
mention in §II-C ([9]–[16]), as well as our own HGLET [17]
and GHWT [18].

Starting with notation, we use j to denote the levels of the
hierarchical tree, with j = 0 denoting the coarsest level and
j = jmax denoting the finest level. We use Kj to denote the
number of sets of vertices on level j of the tree, and we use
k ∈ [0,Kj) to index these sets. We use V jk to denote the kth
set of vertices on level j, and we set N j

k := |V jk |. We define
Gjk to be the subgraph formed by restricting to the vertices
in V jk and the edges between them. We often use the term
“region” to refer to a subgraph Gjk, especially when the nodes
of the graph lie in R, R2, or R3 because this emphasizes the
spatial organization of the subgraphs. In addition, we use the
term “subregion” to refer to a child subgraph. This notation
is illustrated in the hierarchical tree for a graph with N = 6
vertices in Figure 1.

We impose the following four requirements for a hierarchi-
cal tree:

i. The coarsest level is the entire graph; that is, G0
0 = G.

ii. At the finest level, each region is a single node; that is,
N jmax
k = 1 for 0 ≤ k < Kjmax = N .

iii. All regions on a given level are disjoint; that is,
V jk ∩ V

j

k̃
= ∅ if k 6= k̃.

iv. Each region on level j < jmax containing two or more
nodes is partitioned into exactly two regions on level
j + 1.

One method for generating a suitable recursive partitioning
of a graph is to repeatedly partition the graph and subgraphs
according to the signs of their respective Fiedler vectors (see
[2], [17]–[19] for details); this is illustrated in Figure 2.

Generating a recursive bipartitioning of a graph using
Fiedler vectors is obviously not a novel idea – Simon discussed
such a method already in [20]. What is novel is our use of such
a recursive bipartitioning to generate overcomplete dictionaries
of orthonormal bases for analyzing signals on the graph. That
is, while [9]–[16] each generate a single wavelet-like basis for
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V 3
0 = {1} V 3

1 = {2} V 3
2 = {3} V 3

3 = {4} V 3
4 = {5} V 3

5 = {6}

V 2
0 = {1} V 2

1 = {2} V 2
2 = {3, 4} V 2

3 = {5, 6}

V 1
0 = {1, 2} V 1

1 = {3, 4, 5, 6}

V 0
0 = {1, 2, 3, 4, 5, 6}

Fig. 1: An example of a hierarchical tree for a graph with
N = 6 nodes that conforms to our notation and requirements.
The nodes encircled in red and connected by dashed lines are
“copies” of singleton nodes, which we include because our
HGLET and GHWT require that all N nodes of the graph are
present at each level j of the hierarchical tree.

(a) j = 0 (b) j = 1 (c) j = 2 (d) jmax = 12

Fig. 2: A demonstration of recursive partitioning on a subset
of a dendritic tree (the full tree is shown in Fig. 8a). In (a)-(c),
colors correspond to different regions. In (d), each region is a
single node, and as such all nodes are disconnected.

signals on the graph, we generate an entire dictionary of bases
from which one can choose the particular basis that is best
suited for the task at hand (e.g., via our generalization of the
best basis selection algorithm). Moreover, our transforms are
compatible with hierarchical trees generated using different
approaches, such as the diffuse interface model of Bertozzi
and Flenner [21] or the local spectral method of Mahoney et
al. [22]. This flexibility is certainly advantageous, since graph
clustering and partitioning are quite active areas of research
and new algorithms continue to be developed.

C. Previous Work

A comprehensive review of transforms for signals on graphs
can be found in [23]. In their review, Shuman et al. divide
transforms into two general categories. The first category
consists of those transforms that are based on the graph Fourier
transform [1], which essentially uses Laplacian eigenvectors
as the analogs of the complex exponentials in the classical
Discrete Fourier Transform (DFT). Thus, these transforms rely
upon a notion of frequency. In contrast, the second category
are those methods which operate according to the connectivity
of the vertices. Our transforms fall into this latter group, so

that is where we shall focus our discussion (see [19, §2.3] for
a more in-depth review).

Using a hierarchical tree, several groups of researchers have
generalized the Haar wavelet transform to the graph setting
[9]–[12]. Recall that classical Haar scaling coefficients are
scaled averages of a function on an interval and that the
wavelet coefficients are the differences of these averages on the
two subintervals. Accordingly, each of these generalized Haar
transforms proceeds by assigning one “wavelet” coefficient
to each of the N − 1 parent (i.e., non-leaf) nodes in the
hierarchical tree, which is computed by taking the difference of
the scaled averages on its two children nodes. The remaining
expansion coefficient is the scaling coefficient on the root node
of the tree, which is equal to

√
N times the average of the

signal over the entire graph. The generalized Haar basis is
orthonormal, and its coefficients range in scale from local to
global.

Along with these generalizations of the Haar basis, a
number of other transforms also utilize a recursive partitioning
of a graph. Szlam et al. generate an orthonormal basis for
signals on graphs in two different ways [13]. Their first method
entails constructing the generalized Haar basis, smoothing the
basis functions using diffusion operators, and then performing
an orthogonalization procedure. Their second approach is to
generalize the local cosine dictionary on each subgraph using
the graph/manifold version of the folding and unfolding oper-
ators initially proposed by Coifman and Meyer for functions
on the real line (or on the regular 1-D lattice) [24]. Sharon
and Shkolnisky use a subset of the Laplacian eigenvectors
and a recursive partitioning tree to construct a multiresolution
analysis and consequently multiwavelet bases [14]. For a user-
specified constant m ∈ [1, N ], their orthonormal basis is
such that (i) all but m basis vectors are orthogonal to the
first m Laplacian eigenvectors of Lrw(G), and (ii) all but
O(m) basis vectors have small support. Another transform
that utilizes a hierarchical tree is that of Rustamov [15], which
is a generalization of the average-interpolating transform of
Donoho et al. for manifold-valued data [25] to the setting of
graphs. Rustamov and Guibas developed a second transform
[16], which is based on the lifting scheme for classical
wavelets (see, e.g., [26], [27]).

Of course, not all methods are based on a recursive partition-
ing of the graph. Jansen et al. have designed a wavelet trans-
form for signals on graphs that is based on the lifting scheme,
with the distinction that they are “lifting one coefficient at a
time” [28]. Coifman et al. take a unique approach, using the
diffusion/random walk on a graph to build diffusion wavelets
[29] and diffusion wavelet packets [30]. The underlying idea
is that by taking dyadic powers of a diffusion operator U
for which high powers have low numerical rank, they are
able to coarsen the graph and construct a multiresolution
approximation.

D. HGLET, GHWT, and the Best Basis Algorithm

Having reviewed existing transforms and techniques for
signals on graphs, we will now briefly review our own con-
tributions: the Hierarchical Graph Laplacian Eigen Transform
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(HGLET) and Generalized Haar-Walsh Transform (GHWT),
along with the best basis algorithm. Like many of the trans-
forms covered in this subsection, the HGLET and GHWT
utilize a recursive partitioning of the graph. (For a more
thorough discussion of these three techniques, see [2], [17]–
[19].)

Using a recursive partitioning of the graph, the HGLET
generates an overcomplete dictionary whose basis vectors’
supports vary in size from a single node to the entire graph.
We use φjk,l to denote the HGLET basis vectors, and we
use cjk,l to denote the corresponding expansion coefficients.
As with the recursive partitioning, j ∈ [0, jmax] and k ∈
[0,Kj) denote the level and region, respectively, to which a
basis vector/coefficient corresponds. l ∈ [0, N j

k) indexes the
vectors/coefficients from Gjk. The basis vectors are formed
by computing Laplacian eigenvectors on subgraphs Gjk and
extending them by zeros to the entire graph; these may be
the extended eigenvectors of L, Lrw, or Lsym. A benefit
of considering all three dictionaries is that we are able to
construct a hybrid basis, as described in Remark 2.1. In [2],
we demonstrated the use of hybrid bases for simultaneous
segmentation, denoising, and compression of classical 1D sig-
nals. The computational complexity of the HGLET is O(N3),
which is due to computing the full set of eigenvectors of the
N × N Laplacian matrix on level j = 0. Of course, when
such a cost is prohibitively expensive, one could perform the
HGLET only on subgraphs Gjk with N j

k ≤ Nmax < N nodes
where Nmax is a user-specified number depending on the
computational budget, in which case the cost is reduced to
O(N2

maxN).
Like the HGLET, the GHWT uses a recursive partitioning

of the graph to generate an overcomplete dictionary, but in
this case the basis vectors are piecewise constant on their
support. We use ψjk,l and djk,l to denote the GHWT basis
vectors and expansion coefficients, respectively. As with the
HGLET, j ∈ [0, jmax] and k ∈ [0,Kj) denote level and region,
respectively. In the case of the GHWT, we refer to l as the
basis vector’s/coefficient’s tag, and it assumes N j

k distinct
values within the range [0, 2jmax−j). We refer to coefficients
with tag l = 0 as scaling coefficients, those with tag l = 1
as Haar coefficients, and those with tag l ≥ 2 as Walsh
coefficients. Given a hierarchical tree with O(logN) levels,
the computational cost of the GHWT is O(N logN).

A key feature of the GHWT is that we can arrange the
coefficients in two ways. On each level j, we can group them
by their k index, yielding the coarse-to-fine dictionary; this
dictionary has the same structure as the HGLET dictionary.
Alternatively, we can group them by their tag l to obtain
the fine-to-coarse dictionary, the significance of which is that
it affords us more bases from which to choose. Generally
speaking, for a graph with N nodes the HGLET, GHWT
coarse-to-fine, and GHWT fine-to-coarse dictionaries each
contain > 2bN/2c choosable bases. (See Table 6.1 in [19];
exceptions can occur when the recursive partitioning is highly
imbalanced.)

For the task of selecting one basis from the immense
number of choosable bases, we have generalized the best

basis algorithm of Coifman et al. [31] for our transforms.
The algorithm requires a user-specified cost functional, and the
search starts at the bottom level of the dictionary and proceeds
upwards, comparing the cost of the children coefficients to the
cost of the parent coefficients. As justification of the term “best
basis,” we have also generalized the corresponding proposition
of Coifman et al.

Proposition 2.1. [19, Ch. 6] Suppose that J is a cost
functional such that for all sequences {xi} and {yi} and
integers α < β < γ,

if J
(
{xi}i∈[α,β)

)
≤ J

(
{yi}i∈[α,β)

)
and J

(
{xi}i∈[β,γ)

)
≤ J

(
{yi}i∈[β,γ)

)
,

then J
(
{xi}i∈[α,γ)

)
≤ J

(
{yi}i∈[α,γ)

)
.

(2)

Given a signal f on a graph G and a hierarchical tree for the
graph, the set {bi}i∈[0,N) of expansion coefficients returned by
the best basis algorithm is the set that minimizes J over all
choosable sets of coefficients in the dictionary (or dictionaries)
considered. (We refer the reader to [19] for the proof.)

Remark 2.1. The three HGLET dictionaries (using L, Lrw,
and Lsym) and the GHWT coarse-to-fine dictionary all con-
form to the same hierarchical structure. We can take advantage
of this by using a “hybrid” best basis algorithm in which we
choose different transforms to capture the various regions of
the signal. And while the structure of the GHWT fine-to-coarse
dictionary is incompatible with the structure of the other four
dictionaries, we can select a best basis from the fine-to-coarse
dictionary and compare its cost to that of the GHWT coarse-
to-fine best basis or the hybrid best basis.

III. APPROXIMATION OF SIGNALS ON GRAPHS

A. Theoretical Results

Classical wavelets have been highly successful for approxi-
mation and compression. Examples of their use include the
JPEG 2000 image compression standard [32] and wavelet
orthogonal frequency-division multiplexing (OFDM), which is
a means of data encoding commonly used in digital communi-
cation [33]. As theoretical justification for their use, results on
approximation error bounds and wavelet coefficient decay rates
have been proven for signals of various types (e.g., Lipschitz,
Hölder, Sobolev, Besov, and bounded variation; see [34], [35]
and [36, Ch. 9]).

Proving similar results for signals on graphs is challenging
because we lack the concepts and tools used for classical
signals, but there have been some developments. For a graph
equipped with a hierarchical tree, Coifman et al. [11], [12],
[37] define a Hölder seminorm and use it to prove various
results for the graph Haar basis (which is a choosable basis
from the GHWT fine-to-coarse dictionary). They begin by us-
ing the hierarchical tree to define a distance function between
nodes of a graph:

d(m,n) := min{N j
k

∣∣ m,n ∈ V (Gjk)}.
Thus, the distance between two nodes is the size of the
smallest subgraph to which both nodes belong. For a constant
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0 < α ≤ 1, they define the Hölder seminorm of a function f
on the graph as

CH(f) := sup
m 6=n

|f(n)− f(m)|
d(m,n)α

.

With these definitions in place, we now extend their result for
the generalized Haar transform to our own transforms.

Theorem 3.1. For a graph G equipped with a hierarchical
tree, suppose that a signal f is Hölder continuous with
exponent α and constant CH(f). Then the coefficients with
l ≥ 1 for the HGLET (with unnormalized Laplacian L) and
the GHWT satisfy

|cjk,l| ≤ CH(f)(N j
k)
α+1/2

|djk,l| ≤ CH(f)(N j
k)
α+1/2.

The coefficients with l ≥ 1 for the HGLET with Lrw and Lsym

satisfy

|cj,rwk,l | ≤
Cjk√
2
· CH(f)(N j

k)
α+1/2 + C̃jk

∥∥∥f |V jk ∥∥∥D(Gjk)

|cj,symk,l | ≤
√
Cjk · CH(f)(N j

k)
α+1/2 +

√
Cjk

∥∥∥f |V jk ∥∥∥2 ,
where f |V jk ∈ RN

j
k denotes the restriction of f to the vertices

in V jk , and Cjk and C̃jk are constants that are independent from
α.

Proof. Below, we present the proof for the HGLET with L;
the proof for the GHWT bound is identical, with cjk,l and φjk,l
replaced by djk,l and ψjk,l, respectively. Our proof follows that
of [37], although here we use vectors and summations rather
than functions and integrals. For the proofs for the HGLET
with Lrw and that with Lsym, due to the page limitation, we
refer the interested readers to our online supplementary note
[38].

For the coefficients from the HGLET with unnormalized
Laplacian L and with tag l ≥ 1, we have

|cjk,l| =
∣∣∣〈f ,φjk,l〉∣∣∣

=
∣∣∣〈f − 〈f ,φjk,0〉φjk,0,φjk,l〉∣∣∣

≤
∥∥∥f − 〈f ,φjk,0〉φjk,0∥∥∥

2
‖φjk,l‖2

=

∑
n∈V jk

∣∣∣∣∣∣f(n)−
∑
m∈V jk

f(m)

N j
k

∣∣∣∣∣∣
2


1/2

=

∑
n∈V jk

∣∣∣∣∣∣
∑
m∈V jk

f(n)− f(m)

N j
k

∣∣∣∣∣∣
2


1/2

≤

∑
n∈V jk

∣∣∣∣∣∣
∑
m∈V jk

CH(f)d(m,n)α

N j
k

∣∣∣∣∣∣
2


1/2

≤

∑
n∈V jk

∣∣∣∣∣∣
∑
m∈V jk

CH(f)(N j
k)
α

N j
k

∣∣∣∣∣∣
2


1/2

=

∑
n∈V jk

(
CH(f)(N j

k)
α
)21/2

= CH(f)(N j
k)
α+1/2.

Sharon and Shkolnisky derive an n-term nonlinear approxi-
mation bound by defining a generalization of Besov spaces in
the graph setting [14]. For a fixed orthonormal basis {ϕl}N−1l=0

and a parameter τ ∈ (0, 2), they define the τ -measure of a
function f as

|f |τ :=

(
N−1∑
l=0

| 〈f , ϕl〉 |τ
)1/τ

. (3)

They note that for all signals, the τ -measure satisfies

‖f‖2 ≤ |f |τ ≤ N
1
τ−

1
2 ‖f‖2.

They define discrete analogs of the Besov spaces as

Bτ,M = {f
∣∣ |f |τ < M and ‖f‖ = 1},

where 0 < τ < 2 and 1 ≤ M ≤ N
1
τ−

1
2 . Following the

notation of [34], let Pnf denote the best nonlinear n-term
approximation of f in the basis. Sharon and Shkolnisky prove
the following bound on the approximation error.

Theorem 3.2. [14] For a fixed orthonormal basis {ϕl}N−1l=0

and a parameter 0 < τ < 2,

‖f − Pnf‖2 ≤
|f |τ
nβ

, (4)

where |f |τ corresponds to {ϕl}N−1l=0 and β = 1
τ − 1

2 .

As the HGLET (with L and Lsym but not with Lrw) and
GHWT yield overcomplete dictionaries of orthonormal bases,
this theorem applies directly to any basis we select from those
dictionaries; for the GHWT, this includes both the coarse-to-
fine and fine-to-coarse dictionaries. Furthermore, note that the
τ -measure satisfies the requirements (2) from Proposition 2.1
for our best basis algorithms. Therefore, we have the following
corollary.

Corollary 3.1. For a signal f , consider one or more dictio-
naries of orthonormal expansion coefficients (i.e., those corre-
sponding to the HGLET with L, the HGLET with Lsym, GHWT
coarse-to-fine, or GHWT fine-to-coarse). For τ ∈ (0, 2), using
the τ -measure as the cost functional for the (“hybrid”) best
basis algorithm yields the choosable orthonormal basis that
minimizes |f |τ and therefore has the best bound for nonlinear
approximation error in (4).

Of course, this corollary does not tell us which τ -measure
should be used as the best basis cost functional in order
to achieve the best approximation bound in (4). Fortunately,
the best basis search is quick and inexpensive, and thus we
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can perform the search over a range of τ values (e.g., τ =
0.1, 0.2, . . . , 1.9), obtaining a set of best basis coefficients for
each one. We can then specify a constant n (e.g., n = [0.1N ])
and choose the particular τ and corresponding basis which
minimizes the upper bound |f |τ/nβ . However, in practice this
does not always lead to the best choice of τ because the bound
(4) is not tight enough.

What we can do instead is to search over a range of τ values
and choose the particular best basis that yields the smallest
cumulative relative error. To do this, we find the N best basis
expansion coefficients for each τ and then compute a vector
of length N containing the relative approximation errors when
1, 2, . . . , N coefficients are retained. This is easily done for
orthonormal bases; for bases that are not orthonormal, this can
still be accomplished in a simple manner by forming the N×N
matrix of best basis vectors. We then take the sum of this
vector of relative errors; in other words, letting Pnf denote
the best n-term nonlinear approximation of f with respect to
the basis, we compute

cumulative relative error =

N∑
n=1

‖f − Pnf‖2/‖f‖2. (5)

We search over the range of τ values and select the basis which
minimizes this sum. In terms of Figure 4, we are selecting the
τ that yields the smallest area under the relative error curve. As
we will use this strategy often, we refer to it as the minimum
relative error best basis algorithm. Note that we can use this
method for the HGLET with Lrw even though the basis is
not orthonormal with respect to the standard inner product.
However, Theorem 3.2 and Corollary 3.1 will not apply to the
resulting basis.

B. Experimental Results

Having proven some theoretical approximation results for
our transforms, we now present an experiment comparing our
methods to other transforms. For our signal, we use vehicular
traffic volume data on the Toronto road network,3 as seen
in Figure 3. The data was collected over 24 hour windows
(i.e., it is not the case that all intersections were monitored
over the same 24 hour time span). Using the street names and
intersection coordinates included in the data set, we generated
the road network of Toronto. This graph and its corresponding
signal are freely distributed as part of the MTSG Toolbox.
We emphasize that this is a real data set, thereby avoiding the
concern of designing a synthetic signal that is either unrealistic
or biased towards certain transforms.

In addition to the graph Haar basis, the graph Walsh basis
(i.e., level j = 0 of the GHWT coarse-to-fine dictionary),
and the eigenvectors of the unnormalized Laplacian L(G)
of the entire graph, we compare our methods to two other
graph transforms. Granted, the transforms considered use a
fixed basis while our methods involve adaptively choosing a
basis from an overcomplete dictionary, but this is the fairest
comparison we can make. The two transforms that we selected

3This information is made publicly available by the city of
Toronto at http://www1.toronto.ca/wps/portal/contentonly?vgnextoid=
417aed3c99cc7310VgnVCM1000003dd60f89RCRD.
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Fig. 3: Traffic volume data over a 24 hour period at intersec-
tions in the road network of Toronto (N = 2202 nodes and
M = 4877 edges).

were the graph-QMF [39] (which is based on the graph Fourier
transform; see [1]) and Laplacian multiwavelets [14]. As we
mentioned in §II-C, a parameter m needs to be specified for
these multiwavelets. We used two values, both of which are
used in example code that the authors provide: m = 10 and
m = bN/20c. The cost of generating the multiwavelet basis is
O(m2N logN + T (N,m) logN), where T (N,m) is the cost
of computing the first m global Laplacian eigenvectors [14];
a computational cost for the graph-QMF is not mentioned in
[39].

As for our own transforms, we use the HGLET best basis
(with unnormalized Laplacian L), the GHWT best basis, and
the hybrid best basis. For the hybrid best basis algorithm, we
consider all four dictionaries: HGLET with L, HGLET with
Lrw, HGLET with Lsym, and GHWT coarse-to-fine. In order
to avoid the need to specify a cost functional, we utilize the
minimum relative error best basis algorithm, which determines
the best τ -measure to be used as the cost functional. To
generate the partitioning tree for our transforms, we perform
recursive bipartitioning using the Fiedler vector of Lrw, as
described in §II-B; we use this same method to generate the
partitioning tree required by Laplacian multiwavelets.

Figure 4 shows the relative approximation errors for the
Toronto data set as a function of the fraction of coefficients
retained. The best performances are achieved by the hybrid
best basis4 and the GHWT best basis (which originates from
the fine-to-coarse dictionary), with the hybrid basis performing
better when fewer than 19.7% of the coefficients are kept
and the fine-to-coarse GHWT best basis performing better
thereafter. To explain why this crossover occurs, we need
to examine the structure of these bases. Figure 5 illustrates
the levels of the selected GHWT coefficients from within the

4In the hybrid best basis algorithm, we did not compare the hybrid basis to
the GHWT fine-to-coarse best basis, as mentioned in Remark 2.1. Although
the GHWT best basis has a lower cumulative relative error, we display the
results for the hybrid best basis so that the two can be compared.

http://www1.toronto.ca/wps/portal/contentonly?vgnextoid=417aed3c99cc7310VgnVCM1000003dd60f89RCRD
http://www1.toronto.ca/wps/portal/contentonly?vgnextoid=417aed3c99cc7310VgnVCM1000003dd60f89RCRD
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fine-to-coarse dictionary. By contrast, the hybrid best basis
is actually the set of global eigenvectors of Lsym(G). Intu-
itively, this makes sense because we expect that intersections
involving more streets will have more traffic volume, and the
degree normalization of Lsym should help its eigenvectors to
capture this. Since the vectors in this hybrid best basis are
global in scale, this basis is well-suited for very sparse, coarse
approximation of the signal, which is why it outperforms the
GHWT best basis when fewer than 19.7% of the coefficients
are retained. However, the more localized basis vectors in the
GHWT best basis enable it to better capture details on finer
scales, and thus it surpasses the hybrid best basis after the
19.7% mark.

It is also important to note from Figure 5 that the structure
of the GHWT best basis differs radically from that of the
Haar basis, which has one block of ≈ 2j coefficients on levels
j = 0, 1, ..., jmax−1. Recalling that the basis vectors are global
on level j = 0 and become more localized as j increases,
we see that the GHWT best basis has far more basis vectors
with large supports. Furthermore, given that the number of
oscillations in the basis vectors on a particular level j generally
increases from left to right in this table, i.e., as l increases
(see [18] and [19, Ch. 5]), we note that the GHWT best basis
contains basis vectors with much more oscillation than those
in the Haar basis, which assume only two distinct nonzero
values. Thus, the best basis algorithm validates what we would
expect: more oscillatory basis vectors are advantageous for
representing this signal. However, it is also necessary to have
some basis vectors which are more localized, as evidenced by
the fact that the Walsh basis is outperformed by the GHWT
best basis and the Haar basis.
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Fig. 4: Relative approximation error as a function of coeffi-
cients kept for the Toronto traffic volume data set.

This experiment demonstrates the effectiveness of adap-
tively selecting a basis for a signal on a graph, as opposed
to using a fixed basis. It also illustrates some of the insights
afforded by selected bases, such as whether the nature of the
signal is smooth or oscillatory, or whether its features are local
or global in scale.
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Fig. 5: The locations of the GHWT best basis coefficients
within the fine-to-coarse dictionary for the Toronto traffic data.
(See [19, §5.2] for a detailed explanation of this visualization.)

IV. DENOISING OF SIGNALS ON GRAPHS

Building upon their effectiveness for approximation, classi-
cal wavelets have also been applied to the task of denoising
with much success. The reasons why this works are because
(1) a basis that is efficient for approximation concentrates
the majority of a signal’s energy into a small number of
large coefficients; and (2) “Gaussian white noise in any one
orthogonal basis is again a white noise in any other (and with
the same amplitude)” [40]. Based on these insights, Donoho
et al. devised wavelet shrinkage [41], which yields nearly
optimal nonlinear estimators. Their method is simple and
straightforward: apply the wavelet transform to the signal, soft-
threshold the coefficients (excluding the scaling coefficients),
and then reconstruct.

We employ this same strategy in order to denoise signals
on graphs using our transforms. Of course, a precursor step
when denoising with the HGLET and GHWT is to first select
a best basis. As with our approximation experiment, we do so
by using the minimal relative error best basis algorithm.

Consider a noisy signal g = f + ε, where f is the noise-
free signal and ε ∼ N (0, σ2I) is Gaussian noise. For the
sake of transparency, the formula that we use to compute the
signal-to-noise ratio is

SNR = 20 log10
‖f‖2
‖g − f‖2

.

We analyze the signal with the transform(s) of our choice
and select a basis using the minimal relative error best basis
algorithm. Having selected a basis, the next step is to threshold
the coefficients. For a threshold T > 0, we soft-threshold
HGLET expansion coefficients cjk,l (and likewise for GHWT
coefficients djk,l) as

c̃jk,l =

{
cjk,l if l = 0

sign(cjk,l)(|c
j
k,l| − T )+ otherwise.
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A key aspect of this denoising procedure is determining the
appropriate threshold T . To do this, we generate a curve of
the relative reconstruction errors (i.e., ‖g − ĝ‖2/‖g‖2, where
ĝ is a reconstruction of g) in which we use the magnitudes
of the coefficients as thresholds; specifically, the smallest
threshold is zero and the biggest is the magnitude of the second
largest coefficient. For this task we use hard-thresholding, and
thus the best n term nonlinear approximation of the signal
corresponds to hard-thresholding with the (n + 1)st largest
coefficient magnitude. An example of such a curve can be
seen in Figure 6d, where the signal is a noisy version (7.00 dB)
of the Toronto traffic data and the basis being considered is
the HGLET best basis. And although we do not use it to
denoise the signal, we also display a curve of the signal-to-
noise ratios obtained by using soft-thresholding with each of
the N coefficient magnitudes as the thresholds.

Note the behavior of the two curves in Figure 6d: the
SNR curve rises quickly as the threshold increases from zero,
while the relative error curve starts dropping rapidly when the
threshold decreases towards zero. After attaining its maximum,
the SNR curve falls quickly to the SNR of the noisy signal
(7.00 dB). In Figure 8, we observe similar behavior for a noisy
version of thickness data on a dendritic tree. The value of the
signal at each node is the thickness of the dendrite at that
point, as measured by Coombs et al. [42]. As we lower the
threshold (i.e., proceed from right to left in the plots), the
reconstruction error steadily declines while the threshold is
relatively large. This is because, as mentioned at the start
of this section, a basis that is efficient for approximation
concentrates the majority of the signal’s energy into a small
number of large coefficients. When the threshold is high, only
a few coefficients are retained, which explains why the relative
error curve is constant on the right side of the plot and fairly
flat in the middle of the plot. On the other hand, there are
a large number of small coefficients which capture the detail
and noise in the signal. As the threshold decreases, more and
more of these are retained, which explains the rapid decrease
in the relative error of the reconstructions of the noisy signal.

As we see from Figures 6d and 8d, the peak SNR occurs
soon after the relative error starts to drop quickly as the thresh-
old decreases toward zero. The intuition here is simple: we
want to retain the coefficients that capture detail in the signal
while thresholding those which capture the noise; without
thresholding, these coefficients ultimately lead to a relative
reconstruction error of zero and the original SNR value of the
noisy signal. Empirically, we have found the following elbow
detection scheme to work well for determining a threshold,
which we illustrate in Figure 7 using the case of the HGLET
best basis relative error curve for the noisy Toronto traffic data
(Fig. 6). First, we draw a line (shown in green) from the first
point on the relative error curve to the last. We then find the
point on the curve with the largest orthogonal distance from
this line. We repeat the process a second time, drawing a line
from this point to the first point (shown in red) and finding the
point on the relative error curve with the greatest orthogonal
distance from that line. This point on the relative error curve
(again shown in red) is the threshold that we use for denoising.
The reason why we iterate this elbow detection scheme twice

is because we seek a threshold that is lower than that at which
the relative error curve starts to drop rapidly towards zero. We
do not iterate a third time because doing so would drive the
threshold too low, causing too much of the noise to be retained.

At this point we now formally describe our denoising
experiments. We consider two signals: the traffic volume data
for Toronto (Fig. 6a) and thickness data on the dendritic tree
(Fig. 8a). We add Gaussian noise to these signals such that
the signal-to-noise ratios are 7.00 dB for the Toronto traffic
data and 8.00 dB for the dendritic tree; the resulting signals
are displayed in Figures 6b and 8b, respectively. (Lower SNR
values for both signals were investigated, but in such cases it
was found that the noise obscured the signal and denoising was
infeasible.) We recursively partition the graphs using Fiedler
vectors of Lrw, as described in §II-B, and we analyze the noisy
signals using each of the three HGLET variations (L, Lrw, and
Lsym) and the GHWT. Using the minimal relative error best
basis algorithm, we compute the HGLET (L) best basis, the
GHWT best basis, and the hybrid best basis selected from
the three HGLET dictionaries and the GHWT coarse-to-fine
dictionary. For comparison, we also consider the Haar basis,
the Walsh basis (i.e., level j = 0 of the GHWT coarse-to-fine
dictionary), the eigenvectors of the unnormalized Laplacian
L(G) of the entire graph, the graph-QMF transform, and
Laplacian multiwavelets. For each of these bases we generate
a relative error curve, and from this curve we determine the
threshold using the aforementioned elbow detection scheme.
We soft-threshold the coefficients (leaving coefficients with
l = 0 unchanged), reconstruct the signal, and compute the
SNR.

Figures 6d and 8d show the results of our threshold selection
method for the relative error and SNR curves of the noisy
Toronto and dendritic tree data sets. These curves correspond
to use of the HGLET (L) best basis for the Toronto traffic
data and the GHWT best basis for the dendritic tree data.
The denoised signals are displayed in Figures 6c and 8c. In
addition to these results, a summary of the full results from
this experiment can be found in Table I.

These experimental results demonstrate the effectiveness of
the HGLET and GHWT, along with the best basis algorithms,
for denoising signals on graphs. It is worth noting that for
both of these signals, the GHWT best basis originated from
the fine-to-coarse dictionary. An advantage of this dictionary
is that, unlike the coarse-to-fine and HGLET dictionaries, it
contains choosable bases for which basis vectors from different
levels have overlapping supports. Thus, global basis vectors
can capture the general characteristics of the signal while
localized basis vectors contribute the finer scale details. We
also note that for the Toronto traffic data the HGLET (L) best
basis performed better than the hybrid best basis selected from
the dictionaries that include the HGLET (L) dictionary. Why
did this happen in this case? While this could be because the
chosen threshold for the hybrid best basis was not optimal,
the real answer is that the best basis algorithm merely finds
the basis that minimizes its cost functional, which in this case
is based on the τ -norm of the expansion coefficients, where
0 < τ < 2, and the relative `2 errors. When we compute
the relative `2 errors, the noise-free signal f is not available.



9

−79.6 −79.5 −79.4 −79.3 −79.2

43.5

43.55

43.6

43.65

43.7

43.75

43.8

43.85

43.9

43.95

 

 

−2

0

2

4

6

8

10

12

x 10
4

(a) Original
−79.6 −79.5 −79.4 −79.3 −79.2

43.5

43.55

43.6

43.65

43.7

43.75

43.8

43.85

43.9

43.95

 

 

−2

0

2

4

6

8

10

12

x 10
4

(b) 7.00 dB

−79.6 −79.5 −79.4 −79.3 −79.2

43.5

43.55

43.6

43.65

43.7

43.75

43.8

43.85

43.9

43.95

 

 

−2

0

2

4

6

8

10

12

x 10
4

(c) 8.96 dB

0 1 2 3 4 5 6 7 8

x 10
5

0

0.25

0.5

0.75

1

Threshold

R
e

la
ti
v
e

 E
rr

o
r

0 1 2 3 4 5 6 7 8

x 10
5

6

8

10

S
N

R
(d)

Fig. 6: The (a) original, (b) noisy, and (c) denoised versions
of the traffic volume data on the Toronto road network. The
HGLET (L) best basis (τ = 0.3) was used here. (d) Relative
error and SNR curves, with the red line indicating the selected
threshold.
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Fig. 7: (a) An illustration of the method that we use to
determine a threshold from the relative error curve. The curve
seen here is a rescaled version of the relative error curve for
the Toronto traffic data (Figure 6d). (b) A zoomed-in version
of the figure.

Hence, for the best basis selection we must use the relative
`2 errors between the noisy observed signal and the denoised
signal that is constructed using the bases in our dictionaries.
In contrast, the SNR values in Table I were computed using
the noise-free signals and the denoised signals. As the best
basis algorithm is not privy to the noise-free signal, there is no
guarantee that it will select the optimal basis for maximizing
SNR, which explains this seemingly impossible result.

Remark 4.1. Our denoising strategy using the HGLET and
GHWT dictionaries can be generalized to cope with non-
Gaussian noise. To properly handle such noise models, how-
ever, it is necessary to consider precise statistical models of the
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Fig. 8: The (a) original, (b) noisy, and (c) denoised versions
of the thickness data on the dendritic tree. This denoising
was done using the GHWT best basis (τ = 0.9). (d) Relative
error and SNR curves, with the red line indicating the selected
threshold.

coefficients and adopt a level-dependent thresholding scheme
as suggested, e.g., in [43], [44].

V. CONCLUSION

In this article, we precisely proved the efficiency of our
HGLET and GHWT transforms, in conjunction with the
best basis selection algorithm, for approximating signals on
graphs belonging to discrete analogs of the space of Hölder
continuous functions and the Besov spaces. We then proposed
quite natural methods to approximate and denoise a given
graph signal and performed numerical experiments. Our trans-
forms performed favorably when pitted against various other
transforms for the real signals on graphs we used. Indeed, such
direct comparisons between methods are especially important
as the field of signal processing on graphs continues to advance
and mature. In future work we plan to showcase the versatility
and advantages of our graph-based transforms on certain
classical problems such as signal segmentation and matrix
data analysis where the conventional non-graph-based methods
encounter difficulty.
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Dendritic Tree Toronto

(8.00 dB) (7.00 dB)

HGLET (L)
Best Basis

20.85 dB (τ = 0.1) 8.96 dB (τ = 0.3)

Laplacian
Eigenvectors (L)

22.56 dB 8.26 dB

GHWT
Best Basis

23.03 dB (τ = 0.9) 8.27 dB (τ = 1.0)

Haar Basis 22.68 dB 8.29 dB

Hybrid
Best Basis

22.29 dB (τ = 0.3) 8.82 dB (τ = 0.3)

Walsh Basis 21.57 dB 8.14 dB

Graph-QMF 2.85 dB 8.09 dB

Multiwavelets
(m = 10)

21.76 dB 8.61 dB

Multiwavelets
(m = bN/20c)

15.37 dB 7.47 dB

TABLE I: Denoising results for the noisy versions of the
traffic volume data for Toronto (Fig. 6) and the dendritic tree
thickness data (Fig. 8). For Laplacian multiwavelets [14], we
used the two values of m that were used in the example code
provided by the authors: m = 10 and m = bN/20c; it was
not necessary to specify parameters for the Graph-QMF [39].

The comments and criticism of anonymous reviewers
greatly helped the authors improve this article.
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[8] T. Bıyıkoğlu, W. Hordijk, J. Leydold, T. Pisanski, and P. F. Stadler,
“Graph Laplacians, nodal domains, and hyperplane arrangements,” Lin-
ear Algebra Appl., vol. 390, pp. 155–174, 2004.

[9] F. Murtagh, “The Haar wavelet transform of a dendrogram,” J. Classi-
fication, vol. 24, no. 1, pp. 3–32, 2007.

[10] A. B. Lee, B. Nadler, and L. Wasserman, “Treelets—an adaptive multi-
scale basis for sparse unordered data,” Ann. Appl. Stat., vol. 2, no. 2,
pp. 435–471, 2008.

[11] M. Gavish, B. Nadler, and R. R. Coifman, “Multiscale wavelets on trees,
graphs and high dimensional data: Theory and applications to semi su-
pervised learning,” in Proceedings of the 27th International Conference
on Machine Learning (ICML-10), J. Fürnkranz and T. Joachims, Eds.
Haifa, Israel: Omnipress, June 2010, pp. 367–374.

[12] R. R. Coifman and M. Gavish, “Harmonic analysis of digital data bases,”
in Wavelets and Multiscale Analysis, J. Cohen and A. I. Zayed, Eds.
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