814

helpful. We have been successful with the proposed rejection for-
mula, both in cases when no object was present in the key image
(i.e., it contained only background) and when the image contained
unknown or unlearned objects.
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Generalized E-Filter and Its Application to Edge
Detection

NAOKI SAITO AND M. A. CUNNINGHAM

Abstract—The E-filter is a homomorphic filter proposed by Moore
and Parker which differentiates the small and large amplitude com-
ponents of a signal. In this correspondence, we describe a generaliza-
tion of the E-filter to include a control parameter. Selectively tuning
this parameter causes the behavior of the E-filter to range from linear
to highly nonlinear. We have found that the E-filter can be simply im-
plemented and has several properties which make it attractive for use
in edge detection problems. We have also shown the superiority of the
E-filter to scale-space filtering for edge detection in one-dimensional
systems.

Index Terms—Homomorphic filter, nonlinearity, scale-space filter.

1. INTRODUCTION

Interpretation of measurements made by remote sensing devices
must contend with the spatial and/or temporal resolution limita-
tions of the measurement system and, of course, the presence of
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noise. This problem is shared by many disciplines. In the field of
two-dimensional image processing, a common task in the chain of
interpreting images is the identification of edges [3]. Once identi-
fied, the edge description of an image can be incorporated in var-
ious interpretation systems. In our applications, we have a similar
task: identification of the edges between beds of different lithology.
One difference is that often our data are one dimensional; they de-
scribe a physical measurement made as a function of depth in an
oil well, for example. Again, once the bed boundaries have been
identified, they serve as input to any number of schemes to improve
the resolution of the measurements.

One difficulty in any edge-detection system is, of course, that
sharp transitions which define the edges are sharp because of their
high-frequency content, and any linear filtering done to suppress
noise will also tend to blur the important transitions. Some filtering
is necessary, however, due to the fact that edge detection relies
essentially on derivatives of the data. A number of alternative
schemes have been proposed to overcome this difficulty; median
filtering [6] is one example. A drawback to median filtering in the
context of edge detection, however, is that lines in two-dimen-
sional images or spikes in one-dimensional curves do not survive
the filtering process. In this correspondence, we shall describe some
of our work with a generalization of the E-filter originally proposed
by Moore and Parker [S], which we have found to possess several
attractive properties for use in the edge-detection problem.

In the next section, then, we describe the E-filter and some of
its relevant properties and propose a simple generalization. Section
I1I discusses some applications of the generalized E-filter to edge
detection in one-dimensional systems using an approach based on
the generalized E-filter. We compare this to the method of scale-
space filtering as proposed by Witkin [8]. The use of the E-filter in
this application eliminates several difficulties encountered with the
implementation of scale-space filtering.

II. GENERALIZED E-FILTER

In this section, we discuss the properties of the E-filter and pro-
pose a more general form than was considered originaily by Moore
and Parker [5]. The E-filter is in the class of nonlinear homo-
morphic filters studied by Oppenheim et al. [7]. The E-transform
of an input signal f(x) is defined as follows:

flew) = ), @)
ey = |, Vi+ () e 22)

where f(£) = df(£)/d§. The input signal f(x) is mapped into the
E-domain with the amplitudes preserved.

The important property of this transformation is that large values
of the gradient f(£) stretch the signal in the E-domain, thereby
mapping ‘‘significant’’ structures to lower frequency. A low-pass
filter applied to the transformed signal will therefore pass the sig-
nificant structures unaffected. One difficulty which arises in apply-
ing E-filters to real problems is the design of the low-pass filter.
For linear processing, one normally looks at the frequency content
of typical input signals for the application, and chooses filter pa-
rameters, such as cutoff frequency, accordingly. The choice of cut-
off frequency for a nonlinear process would appear to be problem-
atic.

In order to obtain some control over the nonlinearity, we intro-
duce a parameter p into the E-transform as follows:

e(xip) = S V1 + p(f(e)) d.

The definition of ‘‘significant’” structure can now controlled by the
parameter p. When the product pf(§)? is small compared to 1, the
E-transform reduces to the identity map and the E-filter to just the

(2.3)
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Fig. 1. Gamma-ray log. The original signal represents the measurement of
natural formation radioactivity as a function of depth in the well. The
parameter p controls the nonlinearity of the generalized E-filter: the non-
linearity increases as p increases.

low-pass filter. When the product is large with respect to 1, the
nonlinear aspects become more pronounced; eventually, the low-
pass filter becomes ineffective.

We demonstrate the effects of varying p in Fig. 1. The signal in
this example is a measurement of the natural formation radioactiv-
ity as a function of depth in the borehole, known as a gamma-ray
log. The noise in this measurement is dominated by counting sta-
tistics. The top trace in the figure depicts the filtered signal with
the E-transform turned off. Moving toward the bottom of the fig-
ure, p is increasing and the Gaussian filter is kept constant. For
large values of p, the filtered signal approaches the original input
signal, displayed at the bottom of Fig. 1.

We should note here that the E-transform maps regularly sam-
pled data into an irregularly sampled domain. One method of han-
dling this problem is to interpolate to a regular interval, filter, and
then interpolate back. Using the approximated Gaussian filters de-
veloped by Burt [2], we can efficiently obtain the set of signals
convolved with various sizes of Gaussian filters. An alternative
scheme, which we have developed, is to assume that the sampled
data define a piecewise-linear function, i.c., in the Ith interval, we
write

fleisy) —f(e/).

€1 T €

FOe) = fle) + (e = &) (2.4)
We apply an analytically defined filter such as a Blackman-Harris
window [4], which can be written as follows:

3
: S 2
b(f) = by + 2. b, cos <nT7rt>
n=1

for by = 0.35869, b, = —0.48829, b, = 0.14128, and b; =
—0.01168. The Blackman-Harris window has a weight of by T over
the interval {0, T']; so we write the filtered signal evaluated at the
Ith sample R(¢;) as follows:

e+T/2

byTR(e)) = Se/—rfz f()b(t — e, + T/2) dr.

(25)

(2.6)

These integrals are readily computed and reduce to evaluating sums
of cosine terms. This technique avoids the two interpolation steps
required in the standard application of E-filters and improves the
numerical efficiency. In timings of this scheme on a VAX 8650
processor, 500-point samples were filtered in roughly 1 CPU s. A
simple median filter of the same length runs approximately an order
of magnitude faster.

I1I. EDGE DETECTION IN ONE-DIMENSIONAL SYSTEMS

Witkin [8] proposed some time ago that convolution of a signal
with Gaussian functions of various widths can serve to identify
significant structures in the signal, without resort to a priori infor-
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Fig. 2. Edge positions in the gamma-ray log. (a) Linear filtering. The
points mark the positions of edges detected in the gamma-ray log from
Fig. 1 as a function of Gaussian width. (b) E-filtered results. The non-
linearity parameter was setto be p = 1.

mation. The basic idea is to convolve the signal with Gaussian
functions of increasing width, mapping the function into the *‘scale
space.”’ At large values of the Gaussian width, only a few struc-
tures remain, and they are defined to be significant. They are iden-
tified by computing the zero crossings of the second derivatives of
the scaled signal. The structure boundaries are then tracked to small
values of the Gaussian width for accurate placement of the edges.

In practice, there are some difficulties in implementing the scale-
space filter as described above. Computation of the second deriv-
atives of sampled data is a noisy process. In most of our applica-
tions, we have looked at extreme points of the first derivatives rather
than zero crossings of the second derivatives. Edges are defined by
extreme values of the first derivative greater than some threshold
value. A more severe problem is tracking the edge; as the Gaussian
widths decrease, more and more edges are detected, and identifi~
cation of the significant structure becomes problematic. Witkin {8],
in fact, devotes a significant amount of time to developing a hier-
archical tree to assist in following the edge. The problem is illus-
trated in Fig. 2(a) where we have plotted the edges detected in the
gamma-ray log from Fig. 1. In this example, we have set p = 0 to
turn off the E-filter. Note that as the Gaussian width increases, the
edge positions migrate some distance from the original location,
especially around the structure marked “‘a’” and “‘b.”

The edge migration can be readily explained. For the sake of
simplicity, we use the second derivative/zero-crossing scheme in-
stead of the first derivative/extremum scheme mentioned above for
detecting edge positions. We define the unit step function 6 (x —
x,) to be zero for x < x, and one for x > x;. The second derivative
of the convolution of this function with a Gaussian is decribed as
follows:

X

—x
— G(x; — x, 0),
g

G (x, o) *8(x — x;) = (3.7)
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where G(x, 0) = 1/v270 exp (—x?/20%) and G (x, o) is the
second derivative of G(x, o) with respect to x. The edge is located
by requiring this expréssion to vanish, which occurs when x = x,,
independent of Gaussian width ¢. In the case of the boxcar function
consisting of two step functions f(x) = 6(x — x;) — 8(x — x;),
the situation changes. The second derivative of the convolved sig-
nal becomes

X1

Gulx, 0) * flx) = =

X — X

xG(x, - x,0)—

G(x; — x, g).

02
(3.8)

In the limit where the edges are far apart compared to the Gaussian
width (|x; — x,| >> o), this vanishes approximately for x = x,
and x = x,. In the other case (|x; — x,| << ¢), this vanishes for
x = (x; + x)/2 £ 0. Consequently, scale-space filtering will
suffer from edge migration due to the coherent interference of
neighboring structures.

Using the generalized E-filter, we can avoid these coherent in-
terferences to some extent. In Fig. 2(b), we display the results of
a calculation of edge positions of the gamma-ray log with p = 1,
that is, with the E-filter active. It is apparent that the positions of
the edges do not depend on the scale width. This results from the
ability of the E-filter to stretch the signal in the E-domain so that
there is no interference from nearby structures. Using the boxcar
function described above, we can examine this property in detail.
In Fig. 3, the boxcar function and its generalized E-transformed
signal are displayed. We can easily see that the points B and D go
away from A and C, respectively, when either the boxcar’s height
h or the parameter p is increased. In this simple situation, we can
calculate the range of p to obtain the correct edge positions as a
function of ¢ given the width w(= |x; — x,|), k. The second de-
rivative of the Gaussian convolved signal on the E-domain can be
calculated using integration by parts:

F(e:p, 0) = G,.(e, 0) * f(e; p)

(G(e — x,, 0) = G(e — x, — ph, o)

N =

= G(e —x, — ph, o) + G(e — x, — 2ph, 0)).
(3.9)

Our concern is now the uniqueness of the zero crossings of this
function and their range of existence on the E domain.

As for the uniqueness, Babaud et al. [1] and Yuille et al. [9]
proved that extra zero crossings are never created as the scale in-
creases using a Gaussian filter. In our case, when ¢ = 0, zero
crossings can be defined at ¢ = x, + ph/2, x, + 3ph/2, so the
number of zero crossings is just two for any ¢ > 0. Moreover,
these two zero crossings move toward + o, respectively, as o in-
creases.

Now that we have understood the behavior of the zero crossings,
it is easy to derive the condition to obtain the correct edge posi-
tions. As we can see in Fig. 3, any point in the interval [x,, x, +
ph] (respectively, [x, + ph, x, + 2ph]) on the E-domain is mapped
back to a single point x; (respectively, x,) on the original domain,
which is the correct edge position. Therefore, the condition to be
derived is that the zero crossings of (3.9) stay in these intervals on
the E-domain, that is, simply, F(x; p, ¢) > 0 and F(x, + ph; p,
o) < 0. Due to the symmetric nature of F(e), these imply that
F(x, + ph; p, 0) < 0 and F(x, + 2ph; p, 0) > 0. We cannot
derive the range of p to satisfy these inequalities analytically, but
numerically. Fig. 4 shows the lower bound of p to satisfy these
with changing o, w for fixed h. It is apparent that the range of p
gets narrower with decreasing w and increasing o.

To confirm the effect of the parameter p in another context, we
applied the generalized E-filter to the Gaussian signal itself with
changing p and the smoothing width, and we then checked zero-
crossing positions. This is illustrated in Fig. 5. As we can see,

e
e(x)
N
f(e(x)) D | x2+2ph
N
¢ x2+ph //
x1+ph S
B /
X1 /
A ' /f(x)
h
(o] x1 | oxe X

Fig. 3. Generalized E-transform of the boxcar function. The distance AB
and CD is controllable by p. Any point in the interval [x, x, + ph] and
[x, + ph, x, + 2ph] on the E-domain is mapped back to the points x,
and x;, on the original domain, respectively.
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Fig. 4. The lower bound of parameter p to prevent the edge migration in
the boxcar example with changing o and w. h is fixed to 1 in this case.
The acceptable range of p gets narrower as o increases and w decreases.

increasing the parameter p has the effect of *‘remigrating’’ the zero-
crossing positions toward the correct edge positions, as does the
previous boxcar example.

With the use of the E-filter, it is therefore possible to simply
filter with a large width and obtain the placement of the edge po-
sitions directly, without having to track the structures to small
Gaussian widths. This is a significant savings in terms of compu-
tational effort. Although the generalized E-filter is somewhat more
computationally intensive than simple linear filters, the scale-space
algorithm no longer needs to be iterated. Moreover, there is no
need to track the edges.

Use of the generalized E-filter also solves another difficulty found
with scale-space filtering, which is called the ‘‘masking’” effect,
and is related to the loss of high-frequency information for large
values of the Gaussian width. In Fig. 2, we see an illustration of
the problem. The two structures marked ‘b’ are separated by a
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Zero Crossing Trajectories

Gaussian Pyramid Level

Fig. 5. Edge migration. The edge positions of a Gaussian shape signal are
showp as a function of both Gaussian width and nonlinearity parameter
p. With the E-filter active (p > 0), the edge positions remain stable.

relatively small gap. Standard linear filtering, as used in the scale-
space filter, cannot resolve them, and only one structure is identi-
fied. When the edge detection is based on the E-filter approach, the
two structures remain separated, even for large Gaussian widths,
and both are correctly identified.

IV. CONCLUSION

We have described a simple generalization of the E-filter pro-
posed by Moore and Parker [5], and have shown its utility in one-
dimensional edge detection problems. We have found that the
E-filter method is superior to scale-space filtering in these systems
in the sense of the edge position migration. In particular, signifi-
cant but narrow structures are not adversely affected by the E-filter;
they are readily identified. We have not addressed the issue of very
noisy data. In that case, it will be difficult to provide any improve-
ment over what can be obtained with matched filters. In the cases
we have shown, however, the E-filter provides an attractive alter-
native to more standard linear techniques.
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Symbolic Construction of a 2-D Scale-Space Image

ERIC SAUND

Abstract—This correspondence offers a symbolic approach to con-
structing a multiscale primitive shape description for 2-D binary (sil-
houette) shape images. In contrast to contour or region smoothing
techniques, grouping operations are performed over collections of to-
kens residing on a scale-space blackboard. Two types of grouping op-
erations are identified that, respectively, 1) aggregate edge primitives
at one scale into edge primitives at a coarser scale, and 2) group edge
primitives into partial-region assertions, including curved-contours,
primitive-corners, and bars. Procedures to perform these computa-
tions are presented.

Index Terms—Image understanding, machine vision, multiscale,
perceptual grouping, primal sketch, scale-space, shape representation,
symbolic token grouping.

I. INTRODUCTION

The shapes of naturally occurring objects characteristically in-
volve spatial events occurring at a multitude of spatial scales. Shape
details appearing at smaller scales are situated in relation to one
another by the spatial structure emergent at larger scales. It is im-
portant to make explicit the multiscale structure of a shape object’
because important distinguishing characteristics or features may
occur at any scale. For this reason, one widely cited goal for early
visual shape processing is to construct a description of a shape
across a variety of scales [2], [6], [9], 1101, [14], [22], [24], [28],
[35]. From these descriptions may be extracted important primitive
shape events to be used by later stages devoted to object recogni-
tion or other visual tasks. This correspondence is concerned with
building multiscale shape descriptions of two-dimensional binary
(silhouette) shape images in terms of edge and region shape prim-
itives.

Currently available techniques for multiscale shape analysis are
of two basic types: contour-based smoothing and region-based
smoothing. Both of these approaches are based on the application
of a numerical smoothing operator uniformly to some one-dimen-
sional (contour-based) or two-dimensional (region-based) array of
shape data. The operator is typically characterized by a size or width
parameter indicating the degree of smoothing performed, and hence
the scale of the result. As will be illustrated, at coarse scales both
contour-based smoothing and isotropic region-based smoothing ap-
proaches fail to capture in a consistent manner important aspects
of the geometric structure inherent to shape objects. The prospects
for oriented region-based filters are uncertain.

This correspondence describes a fundamentally different ap-
proach to extracting a primitive shape description at multiple scales.
The approach is based on grouping of shape tokens in the style of
the Primal Sketch [19]. A shape token is a packet of information
making explicit the pose (location, orientation, and scale) plus other
data about a fragment of shape such as a local figure/ground bound-
ary. Token grouping may be considered a symbolic computation
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'We refer to a figure whose shape we are analyzing as a shape object.
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