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ABSTRACT

Extending computational harmonic analysis tools from the classical setting of regular lattices to the more general
setting of graphs and networks is very important and much research has been done recently. Our previous Gener-
alized Haar-Walsh Transform (GHWT) is a multiscale transform for signals on graphs, which is a generalization
of the classical Haar and Walsh-Hadamard Transforms. This article proposes the extended Generalized Haar-
Walsh Transform (eGHWT). The eGHWT and its associated best-basis selection algorithm for graph signals will
significantly improve the performance of the previous GHWT with the similar computational cost, O(N logN)
where N is the number of nodes of an input graph. While the previous GHWT/best-basis algorithm seeks the
most suitable orthonormal basis for a given task among more than (1.5)N possible bases, the eGHWT/best-basis
algorithm can find a better one by searching through more than 0.618 · (1.84)N possible bases. This article de-
scribes the details of the eGHWT/basis-basis algorithm and demonstrates its superiority using several examples
including genuine graph signals as well as conventional digital images viewed as graph signals.

Keywords: Multiscale basis dictionaries, wavelets on graphs, graph signal processing, adapted time-frequency
analysis, the best-basis algorithm

1. INTRODUCTION

In recent years, research on graphs and networks is experiencing rapid growth due to a confluence of several
trends in science and technology: the advent of new sensors, measurement technologies, and social network
infrastructure has provided huge opportunities to visualize complicated interconnected network structures, record
data of interest at various locations in such networks, analyze such data, and make inferences and diagnostics. We
can easily observe such network-based problems in truly diverse fields: biology and medicine (e.g., connectomes);
computer science (e.g., social networks); electrical engineering (e.g., sensor networks); hydrology and geology
(e.g., ramified river networks); and civil engineering (e.g., road networks), to name just a few. Consequently,
there is an explosion of interest and demand to analyze data sampled on such graphs and networks, which
are often called “network data analysis” or “graph signal processing”; see e.g., recent books1–4 and survey
articles,5,6 to see the evidence of this trend. This trend has forced the signal processing community to extend
classical techniques on regular domains to the setting of graphs. Much efforts have been done to develop wavelet
transforms for signals on graphs (or the so-called graph signals).7–15 Comprehensive reviews of transforms for
signals on graphs have also been written.5,6

The Generalized Haar-Walsh Transform (GHWT),16–18 developed by Irion and Saito, has achieved superior
results over other transforms in terms of both approximation and denoising of signals on graphs (or graph signals
for short). Using a recursive partitioning of the graph and successive averaging and differencing operations,
the GHWT generates two overcomplete dictionaries of orthonormal bases (ONBs). They are reordered versions
of each other and are called coarse-to-fine (c2f) and fine-to-coarse (f2c) GHWT dictionaries. The best-basis
algorithm, which is extended for the graph setting from what Coifman and Wickerhauser developed for the
regular lattices,19 is then applied to those two dictionaries to find the most suitable ONB for a given task (e.g.,
compression, denoising, . . . ).
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In the mean time, Thiele and Villemoes20 proposed an algorithm to find the best basis among discretized
and rescaled Walsh functions for an input 1D (non-graph) signal of dyadic length. We modify and extend this
algorithm to GHWT to develop the extended GHWT (eGHWT). The eGHWT can search in a much larger set
of ONBs that include those searched by the GHWT with similar computational cost.

In Section 2, we introduce some basic concepts of graph signal processing. Then the GHWT/best-basis
algorithm is reviewed. In Section 3, we provide an overview of the eGHWT. Example on 6-nodes signal explaining
the eGHWT and illustrating the difference from the GHWT is given. Section 4 demonstrates the superiority of
the eGHWT over the GHWT (including the graph Haar and Walsh bases) using real datasets.

2. THE GENERALIZED HAAR-WALSH TRANSFORM (GHWT)

In this section, we will first establish our notation and define some important quantities which will be used
throughout this article. Then, we will review the Generalized Haar-Walsh Transform (GHWT).16–18 It is a
multiscale transform for graph signals and a true generalization of the classical Haar and Walsh-Hadamard
transforms: if an input graph is a simple path graph whose number of nodes is dyadic, then the GHWT reduces
to the classical counterpart exactly.

2.1 Notations and Definitions

A graph is a pair G = (V,E), where V = V (G) = {v1, v2, . . . , vN} is the vertex (or node) set of G, and
E = E(G) = {e1, e2, . . . , eM} is the edge set, where each edge connects two nodes vi, vj for some 1 ≤ i 6= j ≤ N .
We only deal with finite N and M in this article. For simplicity, we often write i instead of vi.

An edge connecting a node i and itself is called a loop. If there exists more than one edge connecting some
i, j, then they are called multiple edges. A graph having loops or multiple edges is called a multiple graph (or
multigraph); a graph with neither of these is called a simple graph. A directed graph is a graph in which edges
have orientations while undirected graph is a graph in which edges do not have orientations. If each edge e ∈ E
has a weight (normally nonnegative), then G is called a weighted graph. A path from i to j in a graph G is a
subgraph of G consisting of a sequence of distinct nodes starting with i and ending with j such that consecutive
nodes are adjacent. A path starting from i that returns to i (but is not a loop) is called a cycle. For any two
distinct nodes in V , if there is a path connecting them, then such a graph is said to be connected. In this article,
we only consider undirected weighted simple connected graph.

Sometimes, each node is associated with spatial coordinates in Rd. For example, if we want to analyze a
network of sensors and build a graph whose nodes represent the sensors under consideration, then these nodes
have the spatial coordinates in R2 or R3 indicating their current locations. In that case, we write x[i] ∈ Rd for
the location of node i. Let f = (f [1], . . . , f [N ])T ∈ RN be a data vector (often called a graph signal) where
f [i] ∈ R is the value measured at the node i of the graph.

We now discuss several matrices associated with undirected simple graphs. The information in both V and
E is captured by the edge weight matrix W (G) ∈ RN×N , where Wij ≥ 0 is the edge weight between nodes
i and j. In an unweighted graph, this is restricted to be either 0 or 1, depending on whether nodes i and
j are adjacent, and we may refer to W (G) as an adjacency matrix. In a weighted graph, Wij indicates the
affinity between i and j. In either case, since G is undirected, W (G) is a symmetric matrix. We then define
the degree matrix D(G) := diag(d1, . . . , dN ), di :=

∑
j Wij . With this in place, we are now able to define

the (unnormalized) Laplacian matrix, random-walk normalized Laplacian matrix, and symmetric normalized
Laplacian matrix, as L(G) := D(G)−W (G), Lrw(G) := D(G)−1L(G), Lsym(G) := D(G)−1/2L(G)D(G)−1/2,
respectively. See21 for the details of the relationship between these three matrices and their spectral properties.
We use 0 = λ0 < λ1 ≤ . . . ≤ λN−1 to denote the sorted Laplacian eigenvalues and φ0,φ1, . . . ,φN−1 to denote
their corresponding eigenvectors, where the specific Laplacian matrix to which they refer will be clear from
either context or subscripts. Which version of Laplacian matrices should be used depends on applications. For
example, von Luxburg21 recommends the use of the eigenvectors of Lrw for graph partitioning. To reduce the
computational complexity (as we did for the GHWT construction), we only use the Fiedler vector ,22 i.e., the
eigenvector φ1 corresponding to the smallest nonzero eigenvalue λ1, to bipartition a given subgraph in this
article.



Below, we will briefly review the construction of the GHWT, which consists of two main steps: 1) recursively
bipartitioning an input graph; and 2) generating a full ONB on each level of the graph partitioning based on
simple yet careful averaging and differencing operations. We will review each step below.

2.2 Recursive Partitioning of Graphs

The foundation upon which the GHWT (and eGHWT) is constructed is a binary partition tree (also known as a
hierarchical bipartition tree) of an input graph G(V,E): a set of tree-structured subgraphs of G constructed by
recursively bipartitioningG. This bipartitioning operation ideally splits each subgraph into two smaller subgraphs
that are roughly equal in size while keeping tightly-connected nodes grouped together. We typically use the
spectral graph partitioning with the Fiedler vectors of the Lrw matrices of subgraphs for this bipartitioning.
More specifically, let Gj

k denote the kth subgraph on level j of the binary partition tree of G. Note G0
0 = G

and level j = 0 represents the root node of this tree. The two children of Gj
k in the tree, Gj+1

k′ and Gj+1
k′+1, are

obtained through partitioning Gj
k using the Fiedler vector of Lrw(Gj

k). The graph partitioning is recursively
performed until each subgraph corresponding to the leaf contains only one node. We note that any graph cut
methods other than spectral graph partitioning can be used as well as long as the binary partition tree of G is
constructed.

2.3 Overcomplete Dictionaries of Bases

After the binary partition tree of the input graph with depth jmax is generated, an overcomplete dictionary of
basis vectors is composed by Algorithm 1 shown below. Each basis vector is denoted as ψj

k,l, where j denotes
the level, k denotes the region and l denotes the tag. The tag l of specifies the sequence of average and difference
operations by which ψj

k was generated. Generally speaking, larger l values indicate more oscillation, with
exceptions when imbalances occur in the recursive partitioning. We refer to basis vectors with tag l = 0 as
scaling vectors, those with tag l = 1 as Haar vectors, and those with tag l ≥ 2 as Walsh vectors.

Several observations are in order. First, the basis vectors on each level are localized. In other words, ψj
k,l is

supported on V (Gj
k). If V (Gj

k)∩V (Gj′

k′) = ∅, then the basis vectors {ψj
k,l}l and {ψj′

k′,l′}l′ are mutually orthogonal.

Second, the basis vectors corresponding to Gj
k span the same linear subspace as the union of those corresponding

to Gj+1
k′ and Gj+1

k′+1, where Gj+1
k′ and Gj+1

k′+1 are the two subgraphs of Gj
k. Third, the depth of the dictionary is

the same as the binary partition tree, which is approximately O(logN) if the tree is nearly balanced. There are
N vectors on each level, so the total number of basis vectors is approximately O(N logN). In addition, we can
arrange these basis vectors by region, which we call the coarse-to-fine (c2f) dictionary, or by tag, which we call the
fine-to-coarse (f2c) dictionary.16–18 The c2f dictionary corresponds to a collection of basis vectors by recursively
partitioning the “time” domain information of the input graph signal while the f2c dictionary corresponds to
those by recursively partitioning the “frequency” (or “sequency”) domain information of the input graph signal.
Each dictionary contains more than (1.5)N choosable ONBs; see, e.g., Thiele and Villemoes20 for the details
on this number. Note, however, that exceptions can occur when the recursive partitioning generates a highly
imbalanced tree. Figures 1 and 2 show the examples of these dictionaries for a simple path graph consisting of
six nodes.

2.4 The Previous Best-Basis Algorithm in the GHWT

To select the basis from a dictionary of wavelet packets that is “best” for approximation/compression, a best-
basis algorithm is required. The previous best-basis algorithm in GHWT is a straightforward generalization
of Coifman and Wickerhauser,19 which was developed for non-graph signals of dyadic length. The algorithm
requires a real-valued cost function J . In the GHWT case, the algorithm works as long as J is nonnegative
and additive ∗ of the form J (c) :=

∑
i g(c[i]) where c is the expansion coefficients of an input graph signal on

each region. For example, if one wants to promote sparsity in graph signal representation or approximation, one
can set this g function as g(x) = |x|p, 0 < p ≤ 1, The algorithm aims to find the best basis whose coefficients
minimize J . Algorithm 2 describes the details of this procedure. This algorithm initiates the best basis as the

∗The additivity property can be dropped in principle by following the work of Saito and Coifman on the local regression
basis23



Algorithm 1: Generating GHWT Dictionary16–18

Input: A binary partition tree {Gj
k} of the graph G, 0 ≤ j ≤ jmax and 0 ≤ k < Kj . N j

k := |V (Gj
k)|.

Kj denotes the number of subgraphs on level j.
Output: An overcomplete dictionary of basis vectors {ψj

k,l}
for k = 0, . . . , N − 1 do // Basis vectors on level jmax are unit vectors

ψjmax

k,0 ← 1V (Gjmax
k ) ∈ RN

end
for j = jmax, . . . , 1 do // Compose basis vectors on level j − 1 from level j

for k = 0, . . . ,Kj−1 − 1 do

ψj−1
k,0 ← 1V (Gj−1

k )/
√
N j−1

k // Compute the scaling vector

// Basis vectors supported on V (Gj−1
k ) are computed from those on V (Gj

k′) and

V (Gj
k′+1). Gj

k′ and Gj
k′+1 are the two subgraphs of Gj−1

k

if N j−1
k > 1 then

ψj−1
k,1 ←

Nj

k′+1

√
Nj

k′ψ
j

k′,0−N
j

k′

√
Nj

k′+1
ψj
k′+1,0√

Nj

k′ (N
j

k′+1
)2+Nj

k′+1
(Nj

k′ )
2

// Compute the Haar vector

end

if N j−1
k > 2 then

for l = 1, . . . , 2jmax−j − 1 do // Compute the Walsh-like vectors

if both subregions k′ and k′ + 1 have a basis vector with tag l then

ψj−1
k,2l ← (ψj

k′,l +ψj
k′+1,l)/

√
2;

ψj−1
k,2l+1 ← (ψj

k′,l −ψ
j
k′+1,l)/

√
2;

else if (without loss of generality) only subregion k′ has a basis vector with tag l then

ψj−1
k,2l ← ψj

k′,l

else if Neither subregion has a basis vector with tag l then
Do nothing

end

end

end

end



Algorithm 2: The best-basis algorithm of Coifman-Wickerhauser19 tailored for the GHWT16–18

Input: An overcomplete dictionary of basis vectors {ψj
k,l} from Algorithm 1, 0 ≤ j ≤ jmax and

0 ≤ k < Kj where Kj denotes the number of subgraphs on level j; an additive cost function
J (c) =

∑N
i=1 g(c[i]); an input graph signal f ∈ RN .

Output: The best basis B(G); the minimal cost A(G).
for k = 0, . . . , N − 1 do // Initialize the best basis on level jmax

B(Gjmax

k )← {ψjmax

k,0 };
A(Gjmax

k ) = g(〈ψjmax

k,0 ,f〉)
end
for j = jmax − 1, . . . , 0 do // Update the best basis upwards

for k = 0, . . . ,Kj do

B(Gj
k)← {ψj

k,l};
A(Gj

k)←
∑

l g(〈ψj
k,l,f〉);

if Gj
k is split into two subgraphs Gj+1

k′ and Gj+1
k′+1 then

if A(Gj
k) ≥ A(Gj+1

k′ ) +A(Gj+1
k′+1) then

B(Gj
k)← B(Gj+1

k′ ) ∪B(Gj+1
k′+1);

A(Gj
k)← A(Gj+1

k′ ) +A(Gj+1
k′+1)

end

end

end

end
B(G)← B(G0

0);
A(G)← A(G0

0);

whole set of vectors at bottom level of the dictionary. Then it proceeds upwards, comparing the cost of the
expansion coefficients corresponding to two children subgraphs to the cost of those of their parent subgraph.
The best basis is updated if the cost of the parent subgraph is smaller than that of its children subgraphs. The
algorithm continues until it reaches the top (i.e., the root) of the binary partition tree (i.e., the dictionary). Th
c2f and f2c dictionaries are searched separately to obtain two sets of the best bases, among which the one with
smaller cost is chosen as the final best basis of the GHWT dictionaries. We note here that the graph Haar basis
is selectable only in the f2c dictionary while the graph Walsh basis is selectable in either dictionary.

3. THE EXTENDED GENERALIZED HAAR-WALSH TRANSFORM (eGHWT)

In this section, we describe the extended GHWT, i.e., our new best-basis algorithm on the GHWT dictionaries,
which simultaneously considers the “time” domain split and “frequency” (or “sequency”) domain split of an input
graph signal. This transform will allow us to deploy the modified best-basis algorithm that can select the best
ONB for one’s task (e.g., efficient approximation, denoising, etc.) among a much larger set (> 0.618 · (1.84)N )
of ONBs that the c2f and f2c GHWT dictionaries would provide (> (1.5)N ). The previous best-basis algorithm
only searches through the c2f dictionary and f2c dictionary separately, but this new method combined them
together to search through them simultaneously.

Thiele and Villemoes20 proposed an algorithm to find the best basis among the ONBs of RN consisting of
discretized rescaled Walsh functions for an input 1D (non-graph) signal of length N , where N must be a dyadic
integer. Their algorithm operates in the time-frequency plane by constructing a tiling of minimal cost among all
possible tilings with dyadic rectangles of area one. Here we adapt their method to our graph setting that does
not have to be dyadic. In addition, its generalization for 2D signals developed by Lindberg and Villemoes24 can
be generalized to the 2D eGHWT by considering the tensor product of binary partition trees as we will discuss
more in Section 4.2.
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(a) The c2f GHWT dictionary

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5 ψ0
0,6 ψ0

0,7

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

0,3 ψ1
1,0 ψ1

1,1 ψ1
1,2 ψ1

1,3

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

1,1 ψ2
2,0 ψ2

2,1 ψ2
3,0 ψ2

3,1

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0 ψ3
6,0 ψ3

7,0

(b) The relabeled c2f GHWT dictionary

Figure 1: (a) The c2f GHWT dictionary on the simple path P6. Stem plots with black, red, blue colors
correspond to the scaling, Haar, and Walsh vectors, respectively. (b) The relabeled c2f GHWT dictionary by
Algorithm 3 applied to the c2f GHWT dictionary shown in (a). The gray stem plots indicate the “fictitious” (or
“non-existent”) nodes newly generated by Algorithm 3.

3.1 Relabeling Region Indices

Before the new best-basis algorithm is applied, the binary partition tree of an input graph and the overcomplete
dictionary of basis vectors are formed in the same way as the c2f GHWT dictionary. Then to deploy the new
best-basis algorithm, the region index k of Gj

k and ψj
k,l needs to be relabeled. Previously, on level j, the region

index k takes all the integer values in [0,Kj) where Kj is the total number of subgraphs (or regions) on level j.
After relabeling, k takes an integer values in [0, 2j − 1] according to its location in the binary tree. The whole
procedure is described by Algorithm 3. Then the region indices of the basis vectors {ψj

k,l} supported on the

subgraph Gj
k are also relabeled accordingly. Figure 1b shows the result of Algorithm 3 applied to the c2f GHWT

Algorithm 3: Relabeling the GHWT Dictionary

Input: A binary partition tree denoted by {Gj
k}, 0 ≤ k < Kj , 0 ≤ j < jmax, Kj denotes the number of

subgraphs on level j
Output: The same binary partition tree {Gj

k} with region index k relabeled
// On level 0, there is only one region G0

0, so no relabeling is required.

for j = 1, . . . , jmax do

if Gj−1
k is split into Gj

k′ and Gj
k′+1 then

The two subgraphs are relabeled as Gj
2k and Gj

2k+1

else if Gj−1
k is kept as Gj

k′ then // the subgraph contains only one node.

The subgraph is relabeled as Gj
2k

end

dictionary shown in Figure 1a on a simple path graph with N = 6.

3.2 The New Best-Basis (eGHWT) Algorithm

We can then apply Algorithm 4 to search for the best basis in the new GHWT dictionary. This whole procedure
is called the eGHWT.
∗An associative array is an abstract data type composed of a collection of (key, value) pairs such that each possible

key appears at most once in the collection.
†((j, k, l), g(〈ψj

k,l,f〉)) is a pair of (key, value) of the associative array A0. Here we use (j, k, l) ∈ A0 to denote that

(j, k, l) is a valid key of A0. Therefore, (j, k, l) ∈ A0 if and only if ψj
k,l exists. Since we relabeled ψj

k,l, there is no



Algorithm 4: The New Best-Basis (eGHWT) Algorithm

Input: The dictionary of basis vectors {ψj
k,l} from Algorithm 3; an additive cost function

J (c) =
∑N

i=1 g(c[i]); an input graph signal f ∈ RN .
Output: The best basis B.
Initialize the associative array∗ A0 as the expansion coefficients† of the dictionary evaluated through
g(·), i.e., A0[j, k, l] = g(〈ψj

k,l,f〉);
Initialize another associative array I0 by I0[j, k, l] = 1 if (j, k, l) ∈ A0;
for m = 0, . . . , jmax − 1 do // Compute Am+1 and Im+1

Initialize Am+1 and Im+1 as empty associative arrays;
for (j, k, l) ∈ Am with j < jmax and l ≡ 0 (mod 2) do

if (Am[j, k, l] +Am[j, k, l + 1]) ≤ (Am[j + 1, 2k, l/2] +Am[j + 1, 2k + 1, l/2]) then
Im+1[j, k, l/2]← 0;
Am+1[j, k, l/2]← (Am[j, k, l] +Am[j, k, l + 1]);

else
Im+1[j, k, l/2]← 1;
Am+1[j, k, l/2]← (Am[j + 1, 2k, l/2] +Am[j + 1, 2k + 1, l/2]);

end
// Any of Am[j, k, l + 1], Am[j + 1, 2k, l/2], Am[j + 1, 2k + 1, l/2] will be replaced by 0 in

the above steps if it does not exist.

end

end
I ← Ijmax

;
for m = jmax − 1, . . . , 0 do // Recover the best basis from {Im}

Initialize Itemp as an empty associative array;
for (j, k, l) ∈ I do

if I[j, k, l] = 0 then
Itemp[j, k, l]← Im[j, k, 2l] if (j, k, 2l) ∈ Im;
Itemp[j, k, l]← Im[j, k, 2l + 1] if (j, k, 2l + 1) ∈ Im;

else
Itemp[j + 1, 2k, l]← Im[j + 1, 2k, l] if (j + 1, 2k, l) ∈ Im;
Itemp[j + 1, 2k + 1, l]← Im[j + 1, 2k + 1, l] if (j + 1, 2k + 1, l) ∈ Im;

end

end
I ← Itemp;

end
B ← {}; // Initialize B as an empty set

Add ψj
k,l into B if (j, k, l) ∈ I. // B is the best basis



Several remarks on the algorithm are in order:

• Am[j, k, l] is the minimal cost of ONBs in a linear subspace. Generally, Am[j, k, l] is computed from the
minimal of Am−1[j, k, 2l] + Am−1[j, k, 2l + 1] and Am−1[j + 1, 2k, l] + Am−1[j + 1, 2k + 1, l]. The linear
subspace of Am[j, k, l] is the direct sum of the two linear subspaces corresponding to Am−1[j, k, 2l] and
Am−1[j, k, 2l + 1], which is the same as the direct sum of those corresponding to Am−1[j + 1, 2k, l] and
Am−1[j + 1, 2k + 1, l]. In other words, when we compute Am from Am−1, we are concatenating linear
subspaces.

• The linear subspace of one entry in A0 is one dimensional since it is spanned by one basis vector. In other
words, A0[j, k, l] corresponds to the linear subspace spanned by ψj

k,l.

• Ajmax
has only one entry Ajmax

[0, 0, 0], which corresponds to the whole Rn. Its value is the minimal cost
of all the ONBs, i.e., the cost of the best basis.

• If the signal is of dyadic length, then (Am−1[j, k, 2l], Am−1[j, k, 2l+1]) corresponds to splitting the subspace
of Am[j, k, l] in the “frequency” domain in the “time-frequency plane” while (Am−1[j + 1, 2k, l], Am−1[j +
1, 2k + 1, l]) does the split in the “time” domain.

• If the signal is of dyadic length, the eGHWT can select among a much larger set (> 0.618 · (1.84)N ) of
ONBs than what each of the c2f and f2c GHWT dictionaries would provide (> (1.5)N ).20 The numbers
are similar even for non-dyadic cases as long as the partition trees are essentially balanced. The essence
of this algorithm is that at each step of the recursive evaluation of the costs of subspaces, it compares the
cost of the parent subspace with not only its two children subspaces partitioned in the “frequency” domain
(the f2c GHWT does this), but also its two children subspaces partitioned in the “time” domain (the c2f
GHWT does this).

3.3 The eGHWT illustrated by a graph signal on P6

Let f = [2,−2, 1, 3,−1,−2]T ∈ R6 be an example graph signal on the simple 6-node path P6 to analyze. The

L1-norm is chosen as the cost function. Figure 2 shows that the c2f-GHWT best basis is
√
6
6 ψ

0
0,0 +

√
6
6 ψ

0
0,1 +

2
√
3

3 ψ0
0,2 + 4

√
3

3 ψ0
0,3 + 4ψ0

0,4 + 0ψ0
0,5 with cost 8.28 and the f2c-GHWT best basis is

√
3
3 ψ

1
0,0 + 0ψ1

1,0 +
√
6
3 ψ

1
0,1 +√

6ψ1
1,1 + 4ψ0

0,4 + 0ψ0
0,5 with cost 7.84 while Figure 3 demonstrates that the best basis chosen by the eGHWT is

0ψ2
0,0 +1ψ2

1,0 +0ψ1
1,0 +

√
6ψ1

1,1 +4ψ0
0,4 +0ψ0

0,5 with cost 7.45, which is the smallest among these three best-basis
representations. The indices used here are before relabeling for the illustration purpose.

4. APPLICATIONS

In this section, several examples using eGHWT on real datasets are given.

4.1 Efficient Approximation of Graph Signals

Here we analyze the vehicular traffic volume data on the Toronto road network †, which contains the most
recent 8 peak-hour vehicle volume counts collected at intersections where there are traffic signals. The data
was typically collected between the hours of 7:30 am and 6:00 pm, over the period of 03/22/2004–02/28/2018.
We generated the road network of Toronto using the street names and intersection coordinates included in the
dataset. The graph has N = 2275 nodes and M = 3381 edges. Figure 4a displays this vehicular volume data
where the size of the marker is proportional to the vehicular volume.

In addition to the best basis from eGHWT, the graph Haar basis, the graph Walsh basis, best basis from c2f
dictionary and best basis from f2c dictionary are used for comparison purpose. The performance is displayed
in Figure 4b. The y-axis denotes the relative approximation error ‖f − Pnf‖2/‖f‖2, where Pnf denotes the

corresponding ψj
k,l for some triple (j, k, l). In that case, (j, k, l) /∈ A0.

†https://www.toronto.ca/city-government/data-research-maps/open-data/open-data-catalogue/

transportation/#7c8e7c62-7630-8b0f-43ed-a2dfe24aadc9

https://www.toronto.ca/city-government/data-research-maps/open-data/open-data-catalogue/transportation/#7c8e7c62-7630-8b0f-43ed-a2dfe24aadc9
https://www.toronto.ca/city-government/data-research-maps/open-data/open-data-catalogue/transportation/#7c8e7c62-7630-8b0f-43ed-a2dfe24aadc9
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Figure 2: The c2f (a) and f2c (b) GHWT dictionaries for P6. The basis vectors are grouped by region in
(a) and by tag in (b). The best basis vectors obtained by GHWT in each dictionary for the input signal
f = [2,−2, 1, 3,−1,−2]T are indicated by red.
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Figure 3: The best basis vectors for the signal f = [2,−2, 1, 3,−1,−2]T, selected by the eGHWT are indicated
by red in the c2f GHWT dictionary (a) and f2c GHWT dictionary (b). Note the orthogonality of these vectors.
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Figure 4: (a): Traffic volume data in the city of Toronto; (b): Relative `2 approximation error of the data shown
in (a)
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(d) eGHWT

Figure 5: Pointwise relative `2-error using 25% of the best-basis coefficients

approximation of f with top n basis vectors having largest coefficients in magnitude. The x-axis denotes n/N ,
i.e., the fraction of coefficients retained. In Figure 5, we display the residual plots when 25% coefficients are
used. We can clearly see that the eGHWT plot is much closer to 0 than the rest of the methods.

4.2 Viewing an Image (or a General Matrix Signal) as a Tensor Product of Graphs

For a single signal supported on a graph, we can now use eGHWT to produce a suitable ONB. Then for a
collection of signals in a matrix form (including regular digital images), we can also compose the affinity matrix
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(c) f2c GHWT (d) eGHWT

Figure 6: Comparison of various bases: using only 3.125% of coefficients

of the rows and that of the columns separately, thus define graphs that the rows and columns are supported on as
was done previously.13,25 Those affinity matrices can be either computed from the similarity of rows or columns
directly or can be composed from information outside the original matrix signal. For example, Kalofolias26 used
row and column graphs to analyze recommender systems.

After the affinity graphs on rows and columns are obtained, we can use the eGHWT to produce ONBs on
rows and columns separately. Then the matrix signal can be analyzed or compressed by the tensor product of
those two ONBs. In addition, the Thiele-Villemoes algorithm,20 from which we develop the eGHWT, has been
extended to matrix signals by Lindberg and Villemoes.24 We have also extended the eGHWT to the tensor
product of row and column affinity graphs and search for best 2D ONB on the matrix signal directly. Note that
we can also specify or compute the binary partition trees in a non-adaptive manner (e.g., recursively splitting at
the middle of each region), typically for signals supported on a regular lattice.

4.2.1 Approximation of the Barbara Image

In this section, we use the famous Barbara image. The size of the image is 512× 512. The partition trees on the
rows and columns are specified explicitly: every bipartition is forced at the middle of each region. Therefore,
those two trees are balanced binary trees with depth equal to log2(512) + 1 = 8.

Figure 6 displays the approximation performance of basis vectors of Haar, c2f GHWT, f2c GHWT, and
eGHWT. We can see that with the same fraction (1/32 = 3.125%) of the coefficients retained, the eGHWT has
much higher performance with less blocky artifacts than that of Haar and c2f/2c GHWTs. Figure 7 shows the
zoomed-up face and left leg of those approximations. Especially for the leg region that has some specific texture,
i.e., stripe patterns, the eGHWT outperformed the rest of the methods.



(a) face (b) leg

Figure 7: Comparison of various bases: using only 3.125% of coefficients. Methods used from left to right and
top to bottom: Haar; c2 GHWT; f2c GHWT; eGHWT.

4.2.2 Haar Transform for Images with Non-Dyadic Size

For non-dyadic images, there is no straightforward way to obtain the partition trees in a non-adaptive manner as
we did for the Barbara image in the previous subsection. This is a problem faced by the classical Haar transform
as well, which requires an input image to be dyadic. Non-dyadic images are often modified by zero padding, even
extension, or other methods before the Haar transform is applied. We propose to apply the Haar transform on
a non-dyadic image without modifying the input image using the eGHWT.

To obtain the binary partition trees, we need to cut an input image F horizontally or vertically into two
parts recursively. Apart from using the affinity matrices, we propose the penalized total variation cost to cut the
input image. Denote the two sub-parts as F1 and F2. We search for the optimal cut such that

Penalized Total Variation Cost :=
‖F1‖TV

|F1|p
+
‖F2‖TV

|F2|p
(p > 0)

is minimized, where ‖Fk‖TV :=
∑

i,j(|Fk[i + 1, j] − Fk[i, j]| + |Fk[i, j + 1] − Fk[i, j]|), and |Fk| indicates the
number of pixels in Fk, k = 1, 2. The denominator is used to make sure that the size of F1 and that of F2 are
close so that the tree becomes nearly balanced. Recursively applying the horizontal cut on the rows of F and
the vertical cut on the columns of F will give us two binary partition trees. We can then select the 2D Haar
basis from the eGHWT dictionary or search for the best basis with minimal cost (note that this cost function
for the best-basis search is different from the penalized total variation cost above).

Here we chose an image patch of size 100 × 100 around the face part from the original 512 × 512 Barbara
image so that it is non-dyadic.

Here p = 3.0 is chosen. To decide the value of p, we need to balance between the total variation and
structure of partition tree. Larger p means less total variation value after split but less balanced partition tree.
p can be fine-tuned based on evaluation of the final task, for example, the area under the curve of the relative
approximation error in the compression task.

Figure 8 shows that the decay speed of the eGHWT basis vector coefficients is faster than the classical Haar
transform (non-adaptive cuts after even reflection to make the input image dyadic).
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Figure 8: Comparison of the classical Haar transform and the eGHWT bases on the face part (of size 100× 100)
of the Barbara image

4.3 Constructing a Graph from an Image for Efficient Approximation

We can view a digital image of size M × N as a signal on a graph consisting of MN nodes by viewing each
pixel as a node. Note that the underlying graph is not a regular 2D lattice of size M ×N . Rather it is a graph
reflecting the relationship or affinity between pixels. In other words, wij , the weight of the edge between ith and
jth pixels in that graph should reflect the affinity between local region around these two pixels, and this weight
may not be 0 even if ith and jth pixels are remotely located. This idea have been used in image segmentation27

as well as image denoising.28

Here we define the edge weight wij as Szlam at al.:28

wij = e
−‖F [i]−F [j]‖22

σF ·

{
e
−‖X[i]−X[j]‖22

σX if ‖X[i]−X[j]‖2 < r
0 otherwise

where X[i] is the spatial location of node (pixel) i, and F [i] is a feature vector based on intensity, color, or
texture information of the local region centered at that node. As one can see from the above weight, the pixels
located within a disk with center X[i] and radius r are considered to be the neighbors of the ith pixel. The scale
parameters, σF and σX must be chosen appropriately. Once we construct this graph, we can apply the eGHWT
in a straightforward manner.

We examined two images here. The first one is the subsampled version of the Barbara image of size 128×128
(we subsampled the original Barbara image to reduce computational cost). For both experiments, we used
r = 5, σX = ∞ while σF = 0.001 for the first example and 0.0001 for the second example. The parameters can
firstly be chosen according to the performance of the image cut reviewed by human, then fine-tuned based on the
on evaluation of the final task, for example, the area under the curve of the relative approximation error here.
Also, as the feature vector F [i] at the ith pixel, we simply used its pixel (intensity) value in those examples.
We will investigate how the use of more sophisticated feature vectors would improve the image approximation
performance and report our findings at a later date.

Figure 9 shows our results on the subsampled Barbara image. Figure 9a demonstrates that the decay rate of
the expansion coefficients using the eGHWT dictionary is much faster than that of the classical Haar transform.
Moreover, the basis vectors from the eGHWT best basis display some meaningful feature of the image. Figure 9b
shows the four best-basis vectors corresponding to the largest expansion coefficients in magnitude (other than
the scaling vector). We can see that the basis vectors shown in top left and bottom left interact with the table
and the bookshelf in the image while the basis vector shown in top right indicates Barbara herself and the on
shown in bottom right indicates her left leg region.

The second example is a composite texture image. Our method, i.e., applying the eGHWT on an image
viewed as a graph, allows us to generate basis vectors with irregular support that is adapted to the structure
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Figure 10: (a): A composite textured image of size 128× 128; (b): Relative `2 approximation error of (a) using
five methods

of the input image as shown in the Barbara image example above, which works particularly well on texture
images. Figure 10a displays the original composite texture image. For visualization purpose, the graph weights
are computed from the template image reflecting the ground truth of the five textured regions. Figure 10b shows
the approximation performance of five different methods. Figure 11 compares the top basis vectors of the graph
Haar basis and those of the eGHWT best basis.

5. SUMMARY

In this article, we have introduced the extended Generalized Haar-Walsh Transform (eGHWT). After briefly
reviewing the preceding Generalized Haar-Walsh transform (GHWT), we have described how the GHWT can be
improved with the new best-basis algorithm. We call this whole procedure of developing the extended Haar-Walsh
wavelet packet dictionary on a graph and selecting the best basis from it as the eGHWT. We then have conducted
several numerical experiments using both synthetic and real examples to demonstrate the improvement of the
eGHWT over the GHWT. Moreover, we have developed the 2D eGHWT for matrix signals, especially digital
images, which has also shown superiority over the classical Haar-Walsh wavelet packet transforms. Currently, we
are conducting more numerical experiments of 2D eGHWT, including the analysis of term-document matrices
and recommender system. We hope to report these at a later date.



(a) (b)

Figure 11: (a): Top 9 Haar basis vectors computed from the GHWT f2c dictionary; (b): Top 9 eGHWT best
basis vectors
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