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Summary.

Evaluation of syntheses or simulated data is often done subjectively through visual comparisons with
the original samples. This subjective evaluation is particularly dominant in the area of texture modeling
and simulation. In order to objectively evaluate the similarity (or difference) between original samples
and syntheses, we propose an approximation for the Kullback-Leibler distance based on Edgeworth
expansions (EKLD). We use this approximation to study the sampling distribution of the original and
synthesized images. As part of our development, we present numerical examples to study the behavior
of EKLD for sample mean distributions and illustrate the advantages of our approach for evaluating the
differential entropy and choosing the least statistically dependent basis from wavelet packet dictionaries.
Finally, we introduce how to use EKLD in statistical image processing to validate synthetic representa-

tions of images.

Keywords: differential entropy, cumulants, least statistically dependent basis, wavelet packet dictionary,

image processing.
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1. Introduction

Given a sample of images which obey an unknown distribution, several simulation methods exist to
generate synthetic images (see Cross and Jain, 1983; Geman and Geman, 1984; Popat and Picard,
1997; Portilla and Simoncelli, 2000; Simoncelli, 1997; Zhu, Wu and Mumford). Typically in practice,
visual comparisons between (and evaluations of) the synthetic and original images are performed.
While informative, such subjective, qualitative comparisons can be quite misleading. In this paper,
we develop quantitative measures to objectively compare images to improve upon, as well as com-
plement, visual analysis of synthetic images. In information theory, the Kullback-Leibler distance
(KLD) has proven to be a useful validation measure for evaluating the similarity (or difference) be-
tween original image samples and simulated images. Our proposed quantitative measure for image
comparison uses an approximation for the KLD based on Edgeworth expansions (EKLD).

As part of our development, we show that the Edgeworth expansion of the neg-entropy is a
useful tool in describing and characterizing image features. Recall that the most difficult problem
in image modeling is the “curse of dimensionality.” In particular, reliable estimates of probability
density functions of images, from a finite number of samples, are hard to obtain in general. It is
thus of paramount importance to extract relevant features from the images. The image features can
be defined as the expansion coefficients of an image relative to some basis. Therefore, choosing the
appropriate basis to the features of the image becomes crucial. Saito (Saito, 1998, 2001) developed
an algorithm to find the least statistically-dependent basis (LSDB) by quickly selecting a basis from
the local basis dictionary. We, in this paper, will use our Edgeworth expansion of neg-entropy to
evaluate the differential entropy and choose the LSDB.

Let X be an m dimensional random vector with density f. The m-dimensional KLD is defined
by

16 = [ sy tog T du )

where g is another m-dimensional density function. We may view the KLD (1) as the expected
amount of information in X with density f for discriminating against g. KLD is thus an appropriate
measure of distance in problems of discrimination.

If we let g = ¢f, an m-dimensional multivariate Gaussian distribution of same mean vector and

covariance matrix as that of f, then KLD is termed neg-entropy and defined by

100 = [ 1w log%du. @)

Under regularity conditions, a Gaussian approximation f of f may be derived via an Edgeworth
expansion (Barndorff-Nielsen and Cox, 1989; Kendall and Stuart, 1977). The neg-entropy in (2)
associated with this estimate is the expected neg-entropy E f[log( f/ é5)] = Je( f, o).
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The Kullback-Leibler distance, invariant under any invertible linear transformation, can be built
through density estimates of g (Joe, 1989; Hall, 1987; Hall and Morton, 1993). Density estimation,
however, relies on the choice of kernel function and window size or bandwidth for each estimator.
The computational and conceptual complexity in specifying these parameters limits the applicability
of density estimation methods for estimating (1).
We propose an alternative method based on Edgeworth expansions to evaluate the Kullback-
Leibler distance. Comon (Comon, 1994) and Jones and Sibson (Jones and Sibson, 1987) approxi-

mated the neg-entropy in one dimension by

r _ 1 2 ]' 2 7 4 ]' 2 -2
Je(f,¢) = 1373 T ggP1t gghs — gPaPa +o(n™7), (3)

using an Edgeworth expansion. Here, p, is the rth standardized cumulant of the random variable Z,
the standardized sum of the random variables X1, ..., X,, with independent and identical distribution
(i.e. Z = (ZX; —np)/+/n, p is the mean of X;), and n is the number of available samples. The

relationship between p, and the cumulant &, of the random variable Z is
2
pr = krf H;/ .

We generalize this method towards an approximation of the neg-entropy for an m-dimensional
random vector X. In particular, the analogous Edgeworth expansion for neg-entropy of the stan-

dardized random vector Z is

Ts(f, ) = %{(%)2 T+ (%)2 s + (%)2 J3} +o(n~?),

where Ji, J2, and J;3 are functions of the moments of the components of X.
Moreover, we may apply the Edgeworth expansion f of f and g of g to the KLD (1) and obtain
the expected KLD, E[log( f 19)]=JE( £, g). Since the expansion is very complicated, we derive the

approximation only up to o(n™1):

Je(f,8) = a1+ as —az — asg + O(n~%)

where
1 K3
ai = Elﬁ_g
1
ay = E[ﬁZ—QIOgﬁ—l—f—oﬂ]
as = bi+by+bs
1 I‘&3/7.‘,3 1 9 -
= — —— 9
a4 36 k% (fiz o +9kg |,
k3 3/ 3
b = —5(8°(a” +3a) —3p),

=3
6k5
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In practice, we may use the dominant terms and push all the other terms into the error term

with O(n™1):

~

Ju(f,5) = J(¢1,¢9) +O(n™)

with

J(¢s,0y) = = [B* —2log B — 1 +a?].

N | =

Moreover, we may use the distribution of the sample mean instead of the sum of the random variables
X1, X,

The Edgeworth approximation of KLD in m dimensions is even more complicated than one
dimension. Nonetheless, we show that the dominant term is the KLD of two Gaussian distributions
¢s and ¢,. The Edgeworth approximation of the KLD up to O(n™') is thus analogous to that in
one dimension, in that Jg(f,§) = J(¢5,d,) + O(n~1).

This paper elucidates two facts. First, the convergence rate of the corresponding Kullback-Leibler
distance based on the Edgeworth expansion is o(n~!). On the other hand, the alternative density
estimation approach to computing the Kullback-Leibler distance can provide only root-n consistent
estimators (Hall and Morton, 1993). Furthermore, the error rate of the histogram estimator not
only depends on sample size n, but also on the choice of ‘binwidth’ value h (Hall, 1987). The total
error is, roughly, O(h?) + o(n~'/2). In the case of kernel estimation, the error is o(n~'/2) when the
dimension is less than (or equal to) 3; the estimator is much less sensitive to choices of the bandwidth
h compared to the associated histogram estimator.

Second, the Kullback-Leibler information based on the Edgeworth expansion can be evaluated
for any dimensional distribution as compared to density estimation (both histogram and kernel
estimator) which can be performed only on low-dimensional distributions (1, 2, and 3 dimensions)
in practice.

The paper is organized as follows. Section 2 derives the Edgeworth expansion of the Kullback-
Leibler distance in both one and m dimensions. Section 3 discusses estimation of the Kullback-Leibler
distance via sample cumulants. In Section 4, we verify numerically that the neg-entropy of the sample
mean distribution decreases as the sample size increases and show numerically that discrimination
based on the EKLD of arbitrary distributions f and g can be replaced by the EKLD of the sample
mean distributions f and g. We also evaluate the differential entropy of high dimensional densities

using the Edgeworth expansion. In Section 5, we apply our methods to two image analysis problems:
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1) choosing the LSDB from a local basis dictionary and 2) evaluating three methods, INGA (Lin; et.
al., 2001), PCA (Watanabe, 1965), and ICA (Jutten and Herault, 1991), for synthesizing/simulating

large dimensional images.

2. Kullback-Leibler Distance

The Kullback-Leibler distance (KLD) measure J(f, g), also called relative entropy or cross-entropy,
is a measure of the ‘distance’ between two distributions f and g and is defined by

LG (4)
g(u)

The KLD in (4) can be viewed as the expected amount of information in X (single m dimensional

I(f.9) = / f(u)log

observation from the distribution with density f) for discriminating against g. If f and g do not
share the same first and second moments, under regularity conditions, we may apply the Edgeworth
expansion f of f and § of g to the KLD in (4) and obtain the expected KLD, Ef[log f181=Je(f,§)-

In this section we will derive Edgeworth expansions of the Kullback-Leibler distance (EKLD)
useful in image analysis problems presented in later sections. Our development will detail the
expansion in the one dimensional case and then present the general m-dimensional expansion as a
generalization or extension of the derivations in the one dimensional situation. We conclude the
section with a practical implementation of the Edgeworth expansion for the neg-entropy, that is, the
KLD with g being an m-dimensional multivariate Gaussian distribution. Throughout the section,
we will use the covariant and contravariant system (indexing random variables by lower and upper
indices) to denote operations in high dimensional spaces (McCullagh, 1987). See Appendix A for
the definition of the covariant-contravariant system and the corresponding properties of cumulants
and Appendix B for properties of covariant-contravariant Hermite polynomials.

We first detail the construction of Edgeworth approximations of the KLD (4). Let Xy,...,X,
and Xi,...,X, be independent and identically distributed (iild) m-dimensional random vectors.
Denote the components of each random vector by X; = (X},...,X™) and X; = (X},...,X™),

with means g = (u!,...,p™) and @t = (it,...,i™) and moments
gt = (X" LX),
gl = B(XU . XW)),

respectively, where 1 < iy < m. Let S, = >.7  X;, S, = 0, Xi, Z = (Sp, — np)/+/n, and
Z = (S, —nj1)/+/n such that the cumulants &>~~# and &#* of Z and Z are of the order n'~%.
Then the Edgeworth expansion of fz and g, the distributions of Z and Z respectively, up to order
five about its best normal approximate (Barndorff-Nielsen and Cox, 1989; Kendall and Stuart, 1977)

are given by
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where

(27r)*m/2{det(/@)}_1/2exp(—0.5m,jziz")
(2m) "™/ {det(R)} /% exp(—0.57; ;5'5)

o5 (2; k)
Pq (2; F)

denote m-dimensional multivariate normal distributions with zero mean and covariance matrices
k = [k%] and & = [&"] respectively, with k) = E(ZiZ9), & = E(Z'Z7), [ki;] represent-

1

ing k!, and [R; ;] representing &'

Here v(z;k) = vi(z;k) + va(z;6) + v3(z;K), u(Z; k) =
u1(z; k) + ua(Z; k) + us(Z; k), and v;(z; k) and w;(z; %), i = 1,2,3, are the corresponding terms
in the sum k%%h;;k(z), K558 h;(2), and K59FKEPY R 00, (2), and RS9FR ) (7), B9 R0 (Z),
&HIRELPO R, 00 (Z) Tespectively. Note that there are m? terms in v (z; ) and uq (2; &), m® terms in
va(z; k) and ua(Z; %), and m® terms in v3(z; k) and u3(Z; §).

In the case of one dimension, we use the Edgeworth expansion of fz and g; up to order five

about its best normal approximates given by (Barndorff-Nielsen and Cox, 1989):

fa(2) ¢5(2)(1 +v(2)) +o(n™")
97(2) = ¢4(A)(1 +u(2) +o(n), (5)

where ¢7(z) and ¢,4(Z) denote normal distributions with zero means and variances k! = E(ZZ?)

and &% = E(Z!Z") respectively. Here

1 1 10
0(z) = gpsHa(2) + 1 paHa(2) + gros*Hol2),

1110,
u(z) = gﬂsHs(Z) + P Ha(Z) + Epngﬁ(z).

Substituting the Edgeworth expansions (5) into the KLD (4) and using the equality
f_ttrd
g b5 9
we obtain the following expansion
;. f(y)
Te(fa) = [ fwoszay

_ (y ) : ¢5(y) : $9(y)
B / 1(w)log ¢f(y / 1(w)log ¢y(y) dy+/ 1y)log a(y) a- (6)
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The first term of (6) is the expected neg-entropy Jg(f, ¢5). The second term, after substituting f

and § in (5), the expression becomes

95 (y)
fly log / or( log d + / o5 (y)v(y)log dy. 7
[ fwnes 28 o 35(1) ™
The first term of (7), denoted as J(¢y, dy), is the KLD of two Gaussian distributions, and the second

term, using the properties of the Hermite polynomials (Appendix B), is zero.

Finally, after substituting f and § in (5), the third term of (6) becomes

/f log ¢g dy— /¢fu )dy — /¢fv

where
[oruwdy = btbarb,
_ Llmskg (1 5
[orwumar = 35250 (Lo som),
with
b o= 2 (8%(a’ +3a) — 30),
62
by = 24 (85 - 6627 +3),
k%kg 6 . )
by = —22(8% — 1586 + 454 — 15).
72K

Here, o = E;%(nl — k1), 8= (/@2/%2_1)%, y=a?+1,6 = a*+6a®+3, and n = o + 150 + 4502 +15.
Let a1 = J(f, ¢5), az = J(¢5, ), as = [ 65 (y)u(y) dy, and as = [ ¢;(y)v(y)u(y) dy. Then the

one-dimensional Edgeworth KLD approximation is

Je(f,§) = a1 +az — as — as + o(n™)

where
1 KZ3
“a = 12;@2
ay = E[ﬁZ—QIOgﬁ—l—f—oﬂ]
a3 = by +by+0b3
o 1 I‘&3/7.‘,3 1
ay = 36 k% (ﬂz o +9n2),
b = 67 3(ﬁ3(0é +30£) 3/8)7
K3
b = g i 7(8'6-68%7+3),
E§E3 6 4 >
by = (8°n — 158%0 + 456°y — 15)..

7273
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In practice, we may use the dominant terms and push all the other terms into the error term
with O(n™1):
Tu(f,9) = J(65,65) +O0(n")
with
1
J(¢f:¢g) = 3 [ﬂ2 —2logpB—1 —I—OL2] .

In high dimensions, the Edgeworth approximation of the KLD up to O(n~!) is analogous to that

in one dimension

Je(f,9) = J(¢7,04) +O0(n™) (8)
where
61,8 = Flatbte—1),
o = 1@%@,
- S

i

— Ry i pi)(jed _ I

c = Z FERFTY {k"'k" + ("' =R (K —F)}.
i#]

In particular, if g = ¢y in (4) is the m-dimensional multivariate Gaussian distribution of same mean

vector and covariance matrix as those of f, then KLD is termed neg-entropy and defined by

f(w)
J(f, b :/fulog—du. 9
(60) = [ S(w)tog s )
The corresponding Edgeworth neg-entropy, similar to Edgeworth KLD in (8), can be shown up to
o(n~2) as
R 171\ 1\* 1\? _2
Ts(i,9) = 5{(5) n+ () 2+ (%) Jg} +oln™),
where

Ji = (/‘Oi’j’s)zﬁi,w3'§j,w3ﬁs,w3[3!]7
Jo = (62K rakj nakis makita 4],
Jz = (E"°)2(KM™™) 2Ky r6H,m6 ks, 651,76 Km,x6 Kom,m6 6]

and 73, 74, and 76 represent the permutations of (i, 4, s), (4, ], s,!) and (4, j,s,l,m,n) respectively.

Here, J1, Jo2, and Js denote the tensor notation over the index (3, j, s), (4,74, s,1), and (3, 4, s,I, m, n).
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3. Sample Cumulants

The Edgeworth expansion of the Kullback-Leibler distance J(f, g) involves the third order cumulants

k4% and &% of the random vectors Z and Z, corresponding to f and g respectively, where

kW0 = EB(Z' =) (27 = ) (Z° - i)

RO = B(Z' =) (2 - )2 - ).

In the case of one dimension, the third order standardized cumulants p3 and ps are needed. To
apply all the approximations in Section 2, we need to estimate these third order cumulants.

The sample cumulants, the so-called k-statistics, are unbiased estimates of the cumulants. For
each cumulant of X;, k, with appropriate superscripts, there is a unique polynomial symmetric
function, denoted by k with matching superscripts, such that k is an unbiased estimate of x. For

example,

n
T -1 T
K" = n Exi,

i=1

1 ..
rt 17 puT ol
kPt = =Yz,
n
1 ..
gt = —d)”sm;aﬁm’;, (10)
n

where z;,z; are samples of the process X;, X; and

5 1, if § = j
_ﬁa Z#Ja
P N

2 . .
GOy (FIFS
ensure the estimators are unbiased (McCullagh, 1987).
Another way to calculate the sample cumulants is to use the sample moments k? = %Zle xi,
ki = LS wizd, and k¢ = L3 2izizs, and the relationship between cumulants and mo-
ments from Appendix A. Then the third order cumulant can be expressed in terms of moments

as

n2

(n—1)(n-2) |

In this paper, we use the sample cumulants defined in (10). In the two dimensional case, there are

ks = k% — BRI — KTk — kK + 2Kk E) .

four terms: k111, k222 kLL2 and k122, In the general case of m dimensions, there are m terms of
kb5 m(m — 1) terms of k7, and Z(m — 1)(m — 2) terms of k*¥*. For applications of k-statistics
in detecting departures from the usual linear model assumption (see Anscombe, 1961; Bickel, 1978;

Hinkley, 1985; McCullagh and Pregibon, 1987; Brillinger, 1994).



10 J.J. Lin; N. Saito; R.A. Levine

4. Numerical Examples

The Edgeworth approximations of Section 2 require that the distributions f and g of interest are
“not far from the Gaussian distribution” (Hall, 1987). Though the approximations are relatively
robust to the Gaussian constraint, we propose application of these approximations in image analysis
to the sample mean distributions with respect to f and g which, by the central limit theorem, will be

normally distributed up to order n'/?

. For example, in discriminating between images drawn from
the distributions f and g, we compute the EKLD between the sampling distributions of the sample
mean image from each of these image distributions. Given the relatively large sample sizes in our
applications, the use of the sampling distributions overcomes any sensitivity of our procedures to
extreme violations of the Gaussian assumption by the distributions f and g under study.

The central limit theorem guarantees that our approximations for the sampling distributions are
valid, however reliance on the sampling distributions of images, as opposed to the true underlying
stochastic process, may bias our image evaluation procedures. In this section, we numerically study
the sensitivity of our proposed method for computing neg-entropy and differential entropy and
discriminating between distributions using the EKLD. In Section 4.1, we verify numerically that the
neg-entropy of the sample mean distribution decreases as the sample size increases. In Section 4.2,
we show numerically that discrimination based on the EKLD of arbitrary distributions f and g
can be replaced by the EKLD of the sample mean distribution denoted by f and g. We conclude
our numerical studies in Section 4.3 with a comparison of our EKLD approximations of differential

entropy with the commonly used density estimation approach.

4.1. The neg-entropy of the sample mean distribution

In order to investigate the neg-entropy of the sample mean distribution, we generate data sets
of sample size 20,25,...,100, from the exponential distribution with means 1, 0.1, and 0.01 and
uniform distribution with interval (0,1), (0,10), and (0,100). Figure 1 shows the six neg-entropies
of the sample mean generated from the distributions exp(1), exp(10), exp(100), U(0,1), U(0,10),
and U(0,100). Tt is clear that the larger the sample size, the less the neg-entropy. This shows that
the larger the sample size, the closer the distribution is to that of a Gaussian distribution, despite
the non-Gaussian distributions from which the data is generated.

This study indicates that conclusions based on EKLD of the sampling distributions is the same
as that of the KLD. We find this result to hold in general, particularly in image applications such as
those presented in Section 5, though for brevity we do not present more illustrations here. We also
note that this procedure is analogous to the classical hypothesis testing routines of basic inference

on sampling distributions. Nonetheless, more theoretical examination of the sensitivity of our image
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Table 1. Four discrimination cases and the corresponding Kullback-Leibler

Distance

case | f g1 g2 condition

(1) | Uniform(0, 1) | Uniform(0, ) | Uniform(0,b) | 1<a<b

(2) | exponential(l) | exponential(a) | exponential(b) a<b
(3) | Uniform(0, 1) | exponential(a) | exponential(b) a<b
(4) | exponential(1) | Uniform(0, @) | Uniform(0, b) a<b

Table 2. Four theoretical formula of Kullback-Leibler Distances

case | KLD condition | KLD theoretical value
(1) | J(U(0,a),U(0,b)) a<b log 2
2

(
(2) | J(exp(a),exp(b)) a<b |logl+g—
(3) | J(U(0,a),exp(b)) a<b log % + %%

(4) | J(exp(a),U(0,0)) | a<b | (1—e ) logl —1]+ (Le s —1)

analysis methods to EKLD comparisons through image sampling distributions is an item of future

research.

4.2. The discrimination based on the EKLD

Given f and g, two density functions, the KLD J(f,g) represents a measure of distance between
them. Numerically, given samples drawn from f and g, the EKLD Jg(f,§) of the sample mean
distribution is an approximation of J(f,g). To demonstrate the discrimination of distributions via
EKLD, we consider the following problem. If the KLD between the sample mean distribution of f(x)
and that of gy (z) is smaller than the corresponding KLD between f(z) and g»(z), can we conclude
that the true KLD between f(z) and g;(z) is smaller than that between f(z) and go(z)? Let us
consider the following examples to investigate this idea.

We wish to discriminate between distributions g; and g» with respect to f in the four cases in
Table 4.2. Table 4.2 presents the theoretical KLD values in each case. Suppose f is “closer” to g1
than to g2 in terms of the KLD. We will study whether EKLD can correctly discriminate between
g1 and gs.

To be concrete, we consider the distributions listed in Table 4.2. Table 4.2 also presents the KLD
values for each of the corresponding comparisons of f with g; and f with go. EKLD evaluates the
distance between the sample mean distributions of the distributions of interest. Figure 2 presents
the EKLD comparisons for each of the four cases in Table 4.2. It is clear that, from Figure 2, the
larger sample size is, the KLD of the sample mean from the “large” distance distribution is larger

than the one from the “small” distance distribution with some minor exception points. That is,
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Table 3. Four theoretical Kullback-Leibler Distances
case I(f, g1) J(f, g2)
(1) | J(U(0,1),U(0,10)) = 2.303 | J(U(0,1),U(0,100)) = 4.605
(2) J(exp(1),exp(10)) = 1.403 | J(exp(1),exp(100)) = 4.596
(3) | J(U(0,1),exp(10)) = 2.353 | J(U(0,1),exp(100)) = 3.606
(4) | J(exp(1),U(0,10)) = 0.303 | J(exp(1),U(0,100)) = 2.605

EKLD can be used well to discriminate between g; and gs.

4.3. Calculation of the differential entropy
In this section, we illustrate computation of the differential entropy using our Edgeworth approx-
imation. We use this application to compare our approach to the estimated entropy of (Hall and

Morton, 1993) based on density estimation. Note that the differential entropy

S(f) = - / £(u) log £ (u) du

may be written in terms of the neg-entropy

S(f)=5(bs) = J(f:65) - (11)

Differential entropy calculations via density estimation are computationally slow due to the
choice of ‘bandwidth’ and kernel functions (Joe, 1989; Hall, 1987). Furthermore, density estimation
is not applicable to evaluate differential entropy for problems in dimensions greater than three.
Differential entropy computations via the Edgeworth expansion of the neg-entropy do not suffer from
these shortfalls. Furthermore, the order of Edgeworth approximation is O(n~3/2), while the density
estimation approximation is of order O(n~'/2). This difference in order explains the difference in
absolute error between the two techniques. In the remainder of this section, we highlight these
difference through a number of numerical studies.

Table 5.2 presents S(f) when f = ¢z, the standard normal distribution in one dimension (the
theoretical value is 1.42) using EKLD and density estimation for samples of size n = 100, 200, 300,
400, and 500. Note that even in this simple one dimensional example, the approximate value of S(¢)
by EKLD is more accurate than that by density estimation.

Tables 5.2 - 5.2 illustrate situations in which density estimation can not be used to evaluate
differential entropy, but the Edgeworth expanded neg-entropy is not only feasible, but produces
excellent approximations. Table 5.2 presents S(f) when f is a bivariate Gaussian distribution
with three different dispersions. Table 5.2 displays S(f) when f is a three-dimensional Gaussian

distributions with two different dispersions. Table 5.2 shows the 4-dimensional, 5-dimensional, and
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8-dimensional numerical results of S(f) when f = ¢z, Z denotes a standard normal random vector.

Here, in Table 5.2 - 5.2, we use the Edgeworth expansion with order O(n=3/2).

5. Image Analysis

5.1. LSDB from the local basis dictionaries

Recent advances in imaging technology produce a large quantity of images over almost a continuous
spatial spectrum as well as resolution. Image modeling is essential for the description and charac-
terization of image features, large scale computations using images, and image compression. The
most difficult problem in image modeling is the ‘curse of dimensionality’. In particular, reliable
estimates of probability density functions of high dimensional data, such as images, from a finite
number of samples are hard to obtain in general. It is thus of paramount importance to extract
relevant features from the images, reduce the dimensionality of the problem, and simplify the model
by assuming statistical relationship among these features.

Image features are defined as the expansion coeflicients of an image relative to some basis. The
Karhunen-Loéve Basis provides a decorrelated coordinate system. Saito (Saito, 1994) developed
and considered a local basis library to extract features from images for classification and regression.
The basis library consists of a collection of local basis dictionaries such as wavelet packets, local
cosine/sine bases, or local Fourier bases. Each dictionary consists of a redundant number of the
basis vectors with the specific characters in scale, position, and frequency. These basis vectors
are organized as a quadtree in a hierarchical manner ranging from very localized spikes to global
oscillations with different frequencies.

Image modeling techniques using the feature extractors have been proposed by various group of
scientists. Saito (Saito, 1998, 2001) developed an algorithm to find the least statistically-dependent
basis (LSDB) by quickly selecting from the local basis library a basis that is “closest” to the statistical
independence in the sense of relative entropy. He used the differential entropy S(fx,) of each

coordinate estimated by the method of density estimation as the selection criterion of LSDB:
n
B = i ,
LSDB argglel% 21 S(fx.)
7=

where D is a basis dictionary. Based on the relationship of differential entropy S(f) and neg-entropy

J(f, )
J(f,¢) = S5(¢) =S(f),

we can rewrite the selection criterion as the form

n

Brspp = arg min > (S(6x.) = T(fx., ¢x:))
i—1
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where neg-entropy J(fx,,®x,;) can be estimated by the method of Edgeworth expansion.

To demonstrate the comparison between the LSDB selected by the method of density estimation
and Edgeworth expansion, we use the data set of face images, ‘Rogues Gallery Problem’. This
dataset consists of digitized pictures of faces of 143 people, provided by Prof. L. Sirovich of Mount
Sinai School of Medicine via Prof. M. V. Wickerhauser of Washington University. We randomly
selected 72 faces to be the training dataset. Each image is of dimension 128 x 128. Figure 3 (a) is
the average face of the training set. We want to choose the LSDB partition pattern (segments) from
the local dictionary to investigate features of the face: profile, eyebrow, eye, nose, and mouth. We
will use both the methods of density estimation and Edgeworth expansion to choose the LSDB of
the face from the local cosine dictionary.

Figure 3 (b)—(d) show the partition patterns of LSDB selected from the local cosine dictionary
by using density estimation and Edgeworth expansion with order O(n=3/2) and O(n~2). Here, there
are 103 LSDB segments generated by the method of density estimation (Figure 3(b)); 142 LSDB
segments are chosen by the method of Edgeworth expansion up to the order 1.5 ((Figure 3(c)); and
190 LSDB segments are chosen by the method of Edgeworth expansion up to the order 2 (Figure
3(d)). We observe that as the order of the Edgeworth expansion increases, the LSDB tries to split
the image into finer segments. In particular, the LSDB segments in Figure 3(d) using the Edgeworth
expansion up to the order 2, catches finer features around the eye area than Figure 3(b), which was
selected by density estimation. Furthermore, the LSDB chosen by the Edgeworth expansion up to
order 1.5 describes the same features as that by density estimation. On the other hand, the LSDB
chosen by the Edgeworth expansion up to order 2 describes the facial features exactly, such as the
eyebrow, which is not characterized by either density estimation nor the Edgeworth expansion with
order 1.5. Therefore, we may conclude that the method of Edgeworth expansion up to O(n=2)

provides the best LSDB describing more facial features than the others.

5.2. Image Synthesis Validation via Edgeworth KLD

Given n samples of a dependent random vector X (image) of p dimensions (n > p), a synthesis can
be obtained by several simulation methods. It is then of critical importance to know the accuracy
of the methods in a quantitative manner. That is, how to judge the closeness of these syntheses to
the original image?

In this section, we will show how to use the EKLD to compare three methods for image synthesis
obtained by the method of PCA, ICA and INGA. The Principal Components Analysis (PCA), under
a strict assumption of normality, transforms the sample set orthogonally to independent Gaussian
distributed random variables. The Independent Component Analysis (ICA), under the assumption

that the sample set is a linear mixture of the independent source, is a linear process which tries
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to transform the sample set to independent components. The Iterative Nonlinear Gaussianization
Algorithm (INGA) — an extension to PCA. While PCA merely transforms a set of correlated random
variables into a set of uncorrelated random variables, INGA nonlinearly transforms them to the
standard multivariate Gaussian variables in an attempt to minimize the statistical dependence among
the transformed coordinates, at a similar computational cost to PCA. The difference between INGA
and ICA lies in two aspects, although both seek statistically-independent coordinate systems. First,
INGA seeks a nonlinear transform whereas ICA seeks a linear one. Second, the motivation of INGA
is really resampling and simulation rather than blind source separation and blind deconvolution.
Each of these simulation methods consist of forward and backward processes. See (Lin; et. al.,
2001) for more details of these three processes in the context of image synthesis.

To validate these synthesis procedures, we compare the EKLD of the sample mean distribution
for each simulation method. The fact is that the smaller EKLD is, the closer (or more similar) the
simulated samples are to the originals.

Our model validation procedure may be summarized as follows.

(a) Simulate the stochastic process of interest with INGA and generate 100 datasets each of which
contains 100 simulated samples.

(b) Compute the EKLD in (8) between the original distribution and the simulated distribution using
the sample means and the sample covariance matrices computed from the original samples and
a simulated dataset containing 100 simulated samples. Perform this EKLD computation for
each dataset. This results in 100 EKLDs.

(c) Display the distribution of these 100 EKLDs by its 90% confidence interval (c.i.) . The

smaller EKLD is, the closer (or more similar) the simulated samples are to the originals.

We illustrate our methods on the so-called cigar, spike, and eye data sets (for details see Lin; et.
al., 2001) and compare the syntheses produced by INGA, PCA and ICA with Monte Carlo estimates
of the EKLD sampling distribution.

(a) Cigar data
Figure 4 shows the original cigar sample and syntheses obtained by INGA, PCA, and ICA. By
visual inspection, we note that the INGA synthesis is better than the others, but we desire a
quantitative comparison of the three syntheses. Table 5.2, row 1 displays 90% c.i. of the EKLD
for the INGA, PCA, and ICA syntheses. We note that INGA outperforms PCA and ICA on
average, though the difference between the three algorithms is not statistically significant.
(b) Spike process data
Figure 5 shows the original two-dimensional spike data set and syntheses obtained by INGA,

PCA, and ICA. By visual inspection, we note that the INGA synthesis is better than that of



16 J.J. Lin; N. Saito; R.A. Levine
PCA and ICA. Table 5.2, row 2 shows 90% c.i. of the EKLD for the INGA, PCA, and ICA
syntheses. Again, on average, INGA is superior to PCA and ICA though the difference is not
statistically significant.
(c) Eye data

As a higher dimensional comparison of the three synthesis algorithms, we use 25-dimensional
extracted eye images. Figure 6 shows the original data and syntheses by INGA, PCA, and
ICA. It is very difficult to visually compare the syntheses here. A quantitative comparison
through the EKLD is thus crucial towards evaluating these synthesis procedures. Table 5.2,
row 3 shows 90% c.i. of the EKLD for the INGA, PCA, and ICA syntheses. We may conclude
that the INGA synthesis is significantly superior to that of PCA and ICA. Furthermore, ICA

does not significantly improve upon PCA.
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Appendix A: Covariant and Contravariant System

To define the covariant and contravariant system more precisely, we start with a vector x with m

components ', z2

,---,2™. We define u as a d-dimensional array whose elements are functions of
the components of x, taken d at a time. We write u = u®% = (g%t g% . . z%)T where the

d components need not be distinct and T' denotes the transposition. Consider the transformation

y = g(z) from z!,... 2™ to new variables y!,... ,y™ and let ¢ = cf(z) = g—zr having full rank for
all z. If @, the value of u for the transformed variables y",r = 1,2,...,m, satisfies
,L—LT17‘2...7‘d — C’{‘lcz‘z . CT_‘duilig...id

11 12 1d

then w is said to be a contravariant tensor. On the other hand, if u is a covariant tensor, we write

U = Ui, iy--i, and the transformation law for covariant tensor is

Uryry..rg = d:}1 dg s d:}i Wiyip...ig
where di. = g—;‘i, the matrix inverse of I, satisfies the relationship c[di = (5{ =dldl.
Let X4, --,X,, be independent and identically distributed m-dimensional random vectors. De-
note the components of each random vector by X = (X!,---, X™), with mean p = (u',..., ™)

and moments

ﬁh...iv — E(X'Ll _uh) (X’Lv _'ui,,)’



EKLD in Image Analysis 17
where 1 < i <m, 1 <k <m. The cumulants of X are the coefficients of the cumulant generating

function
oo

1 . .
K,X(t) = IOg(MX(t)) = z Wlﬁzl""’“til .. 't’iv y
P AERRRTL

where Mx is the moment generating function of X. Here, ki~ is called the vth cumulant of X.

The following are the relationships between moments and cumulants.

&Y = k" 4+ Kk'w
gE = gRR 4 (5TTE 4 T RR 4 RS 4 kT i
= gYF 4 giIR3] + kT K
KR = ghhkl i edikil [4] + kHI kot [3] + Iﬂ',zlijlik’l[ﬁ] + kI kFRL (12)

where k¢k7*[3] is the sum over the three partitions of three indices. The following is a complete list
of the 15 partitions of four items, one column for each of the five types (McCullagh, 1987)
igkl d|ljkl ij|kl d|j|kl i|j|k|

Jlikl k|l i|k|jl

kligl dl|jk il|jk

llijk Jlklil

Ik

k|l|ij
Let S, = ), X; and Z = (S, — p)/+/n be the sum and standardized sum of random vectors
Xi,---,X, such that the cumulant %% of Z is of the order n'~%. Then the Edgeworth expansion

of pz up to order five about its best normal approximate is given by (Barndorff-Nielsen and Cox,

1989; Kendall and Stuart, 1977)

pz(2; k)

1 .. 1 .. 10 ;.
= ¢m(Z; HJ) 1+ glﬁz’]’khijk (Z; KZ) + Zlﬁz’]’k’lhi]‘kl (Z; KJ) + alﬁz’]’klﬁl’p’qhijklpq (Z; K,)

+  O(n?) (13)

where

(75 ) = (2m) " {det(s)) ™ exp(— S hi2127)

denotes the m-dimensional multivariate normal distribution of zero mean and covariance matrix
k = [k%7], with k% = E(ZZ7) and [k; ;] represents £~ '. The covariant Hermite polynomial h;, . ;,

is defined as

Om (%3 6) hiy..i, (X56) = (=1)0;, ... 0i, dm(x;K),
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where 9; = 8/0z". For the later use, the contravariant Hermite polynomial h%1*"% is defined as
G (x5 6) K1 (x5 6) = (=1)%0" ...0" (X3 k),

with 8¢ = k%99;. The first four covariant and contravariant Hermite polynomials are

hi = z;, ht = :);'i7
hij = zixj — Kij B = gigd — il
hijk = TixjTR — Kij2TR[3], Rk — pipipk _ Ei,jmk[?’],
hijie = iR — KijTRT[6] + Kijkn[3] RiM — g ghal _ i gk gl 6] + ko khA[3)]

where the new notation z; is defined as x; = &; j2”.

Appendix B : Properties of Hermite polynomials

The expansion (7) may be simplified via certain properties of the Hermite polynomials (Skovgaard,
1981). First recall

Bt (xy k) = KU kIR (%K)
If the components of X are uncorrelated and of unit variance, then k¢ = k;; = 1, k% = k;; =

0. The covariant-contravariant Hermite polynomials for the multivariate distribution of X is then

formed by taking all possible products of the Hermite polynomials (McCullagh, 1987):
hi.i(x) = h¥i(x)= H,(z'), i...idenotes v repetitions
hi..s5..5(x) = hi19-3(x) = Hy_(x*)Hy(2?), i...i denotes v — t repetitions
j...J denotes t repetitions
hiy.q,(x) = At (x) = Hi(z™) ... Hi(z%).
Second, recall the useful orthogonality properties (?) in the Hermite polynomials
[s@t,@H, @ = b,
/¢($)H§ (x)Hy(z)dz = 313,
/ H@)H2 () Hy(z)de = 6
[o@m@a = o
/ S(o)HMw)de = 93-31,

where Hy(z) is the standard kth order Hermite polynomial. In the case of two dimensions (m = 2)

with uncorrelated components of unit variance,

pz(z;K) = ¢2(z; k) [1 +v1(z; k) + v2(2; K) + v3(Z; K)] +o(n 1)



where
v1(2; k)
v2(2; K)
v3(z; K)
and

h1122( )

hllllll( ) — h111111 (Z

hi11122(2) =
hi12222(2) =

h22222

+

+ 4+ +

h111( ) hlll(z = H3 Zl
hi22(z) = h122( ) = H; 21)
hllll( ) hllll(z

h111122( ) 4 zl) 5 z2

h112222( )

2(z)

) ()
( ()
) = Ha(z")

h''?2(z) = Hy(2")Hy(2) hi222(z
) = He(z")
( (%)
Hy(2")Hy(2)

EKLD in Image Analysis

Kl’l’lhlll(z) + 31@1’1’2h112(z) + 351,2,2h122(z) + [-'.;2,2,2h222(Z) ,
kMU 110 (2) + 4PV Ry 10(2)
661132 hy192(2) + 465522 higoe(2) + K222 hagos(2)

khbLgh ’1h111111(Z +6H1’1’1K1’1’2h111112(z)
L11,1,2,2 11,1,2,2,2

15> hi11122(2) 4+ 20K h111222(2)
1,1,2,2,2,2 1,2,2 22,2

15k™ h112222(2) + 6 h122222(2)

k252K ’2’2}1222222 (

)
(
(
)
h112 (Z) = h112(z

) =
h222(Z) = h222( ) H; ( )
(z) = Hs(z")H,

&

h1112(z h1112

)=

) = h'***(z) = Hy (") Hs
hiiinz(z) = B2 (2) = Hy(21)Hi(2%)

(

(

h122222(2) = h122222(z) =H (Zl

)
hi11222(2) = h*'1#*%(z) = Ha(2")Hs(2")
"YH )

— h222222(z) — H@(Zz) .

The correlation term vy (z; k), v2(2; k), and v3(z; k) will reduce to

vi(z;6) =
v2(x;6) =
+
v3(z;K) =
+
+
+

kDU HS (2Y) + 36M12 Hy (2N Hy (22) + 36122 Hy (21 Hy (22) + k222 H3(27)

KUV (21) + 46DV Y2 Hy (21 Hy (22)

6r1122 Ha (1) Ha (2%) + 465552 Hy (2') Hy (2%) + 62222 Hy(2%),

I‘Cl’l’llil’l’lHﬁ (Zl) + 6!‘61’1’151’1’2H5(21)H1 (zZ)

15&1’1’114,1’2’2H4(ZI)HQ(Z2) + 20/&11’1’1&2’2’21‘[3 (ZI)H3 (Z2)

1565026222 Hy (2V ) Hy (22) + 665226222 Hy (21) Hs (2%)

k22222 (zz) )
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Table 4. Numerical results of S(¢x) (1.42, theoretical value).

n | by Edgeworth/abs.err | by density estimation/abs.err
100 1.439/0.019 1.389/0.031
200 1.425/0.005 1.392/0.028
300 1.424/0.004 1.404/0.016
400 1.424/0.004 1.413/0.007
500 1.422/0.002 1.425/0.005

Table 5. 2-dim numerical results of S(¢x).

) (1 0) ( 1 0.3) ( 1 0.8)

covariance cov = cov = cov =
0 1 03 1 0.8 1

true vale 2.8379 2.7907 2.3271
n by Edgeworth/abs.err | by Edgeworth/abs.err | by Edgeworth/abs.err
100 2.5642/0.2737 2.6181/0.1726 2.4041/0.0769
200 2.7545/0.0833 2.6751/0.1156 2.2617/0.0653
300 2.7874/0.0505 2.8281/0.0374 2.2739/0.0530
400 2.8090/0.0288 2.7820/0.0086 2.3442/0.0172
500 2.8529/0.0149 2.7897/0.0009 2.3169/0.0101

Table 6. 3-dim numerical results of S(¢x).

1 00 1 08 06
covariance | cov= |0 1 0 cov=|08 1 04
0 01 06 04 1
true vale 4.2568 3.5087
n by Edgeworth/abs.err | by Edgeworth/abs.err
100 4.0904/0.1663 3.2448/0.2639
200 4.3208/0.0640 3.4428/0.0659
300 4.1976/0.0591 3.4757/0.0330
400 4.2800/0.0232 3.4737/0.0350
500 4.2730/0.0162 3.4899/0.0187
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Table 7. 4-dim, 5-dim, 8-dim numerical results of S(¢z) with identity covariance.

21

dimension 4-dim 5-dim 8-dim

true vale 5.6757 7.0946 11.35151

n by Edgeworth/abs.err by Edgeworth/abs.err by Edgeworth/abs.err
100 5.3947/0.2810 6.7851/0.3095 11.0698/0.2816

200 5.4864,/0.1893 7.3411/0.2464 11.1345/0.2169

300 5.5043/0.1714 6.9629/0.1317 11.1246/0.2268

400 5.5904/0.0852 6.9771/0.1175 11.1223/0.2291

500 5.7089/0.0331 7.0451/0.0495 11.2801/0.0713

Table 8. The 90% confidence interval for the EKLD of the INGA, PCA and ICA.

example INGA PCA ICA Conclusion
2-dim cigar | (0.1237) (0.1920) (0.1047) INGA produces the best
(Figure 4) 0.1847 1.0892 0.9823 syntheses.

(0.7051) (2.8520) (3.8764)
2-dim spike | (0.0976) (0.5361) (0.6301)
(Figure 5) | 0.1628 1.9211 1.1541

(0.7512) (3.7647) (4.2062)
25-dim  eye | (2.8531) (10.0919) | (12.713)
(Figure 6) | 3.1781 19.694 20.789

(3.8114) (28.743) (30.418)

INGA produces the best

syntheses.

INGA produces the best
syntheses. Here, the
original eye dataset has
been compressed from
144-dim to 25-dim via
PCA.
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Fig. 2. EKLD between the sample mean from “large” and “small” distance.
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Fig. 3. Comparison of LSDB chosen by using density estimation and Edgeworth Expansion with order
O(n='%) and O(n™2).
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Fig. 4. Resampling of the “cigar” data by INGA, PCA and ICA. The first row left to right: original samples;
resamples by INGA; The second row left to right: resamples by PCA and ICA.
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original image Synthesis by INGA
2 2
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Fig. 5. The spike process simulation (p = 2). The first row left to right: original samples; resamples by INGA,;

The second row left to right: resamples by PCA and ICA.
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Fig. 6. Simulations of the eye image database by INGA and PCA. The first row left to right: original samples;
resamples by INGA; The second row left to right: resamples by PCA and ICA.
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