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Abstract—In this paper we describe a new technique for detecting and
characterizing ellipsoidal shapes automatically from any type of image.
This technique is a single pass algorithm which can extract any group
of ellipse parameters or characteristics which can be computed from
those parameters without having to detect all five parameters for each
ellipsoidal shape. Moreover, the method can explicitly incorporate any a
priori knowledge the user may have concerning ellipse parameters.
The method is based on techniques from Projective Geometry and on
the Hough Transform. This technique can significantly reduce
interpretation and computation time by automatically extracting only
those features or geometric parameters of interest from images and
making exact use of a priori information.

Index Terms—Hough Transform, ellipse detection, parameter
estimation, projective geometry, feature extraction, computer vision.

————————   F   ————————

1 INTRODUCTION

IMAGE characterization and interpretation is a very time-consuming
job. Specifically, the problem of ellipse detection is often computa-
tionally demanding, since an ellipse is characterized by five pa-
rameters: center position coordinates; lengths of the major and
minor axes; and the orientation of the major axis. Many well-
studied approaches have been used to address this problem:

1)� probabilistic methods (see, for example, [8]), which attempt
to obtain all five parameters while selectively sampling the
image’s edge data;

2)� simulated annealing approaches (see, for example, [3]); and
3)� multistage methods (see [13], [17], and [18]), which detect

the parameters two or three at a time during each stage.

These methods usually combine both geometric insight and com-
putational expertise in obtaining their results.

In this article, we offer a new tool for constructing and using
parameter curves which translate image data (in this case, pairs of
edges) into inferences about the possible ellipses present in the
image. We present a single-stage method which can obtain any
combination of ellipse parameters or any combination of charac-
teristics which can be computed from those parameters. For exam-
ple, our method can, in a single pass:

�� obtain area and orientation information,
�� obtain area and center position, or
�� obtain minor axis length versus orientation.

Moreover, any a priori information (such as the maximum area,
maximum eccentricity, or minimum minor axis length) can be ex-
plicitly incorporated into determining the endpoints of these pa-
rameter curves.

The key to our method is obtaining a parameterization for the

family of ellipses which are tangent to two line segments. From
this parameterization, we can compute lower-dimensional pa-
rameter curves which describe any combination of parameters and
characteristics of this family. We use these lower-dimensional
curves to build single-stage Hough Transforms and to obtain these
characterizations of any ellipse field.

We would propose that the parameter curve methodology de-
tailed in this paper be combined with the many excellent compu-
tational strategies available in the literature in an object-oriented
framework, so that users and researchers can mix together the
ingredients which will be most successful for solving their prob-
lem. Towards this end, we offer a copy of the software used in the
experiments described below (see the Acknowledgment section).

We begin with our parameterization and then proceed to con-
struct the resulting Hough Transforms. We demonstrate our capa-
bilities in a sequence of examples using very straightforward com-
putational strategies in our implementation.

2 FUNDAMENTALS

Let P1 be the point (x1, y1) and P2 be the point (x2, y2) with associ-
ated normal directions N1 = (p1, q1) and N2 = (p2, q2), which for
definiteness we suppose point into the angular sector between the
tangent lines containing the other point (see Fig. 1). That is,
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We start by writing the equation for the line P1P2 and the two
tangents. P1P2 is given by
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This equation is clearly linear in x and y and is satisfied when P,
namely, (x, y), coincides with P1 or P2, so it represents the line P1P2.

The tangent lines at P1 and at P2 are given by

,1(x, y) � p1(x - x1) + q1(y - y1) = 0

and

,2(x, y) � p2(x - x2) + q2(y - y2) = 0,

respectively.
The functions L, ,1, and ,2 are each linear in x and y, so for

given constant l,

C(x, y) � L2(x, y) - l,1(x, y),2(x, y) = 0                      (3)

is quadratic in x, y and represents a conic section C. For l = 0, (3)
represents the (repeated) line L = 0 (L for short), and for l = � the
line pair ,1(x, y) = 0 or ,2(x, y) = 0 (,1 and ,2). For other values of l,
C passes through the intersection of these degenerate conics (see
Fig. 2). However, this intersection consists of two pairs of coinci-
dent points, each with an associated tangent direction, so the conic
touches ,1 at P1 and ,2 at P2 (see Fig. 3).

We may write C in the form

C(x, y) = ax2 + 2hxy + by2 + 2gx + 2fy + c,                         (4)

where a, b, c, f, g, h are linear functions of l and also depend on x1,
y1, p1, q1, x2, y2, p2, q2.

Let us write (4) in the form

xTAx + 2fTx + c = 0,                                       (5)

where x = (x, y)T and f = (g, f)T and A is the matrix

A = �� ��
a h
h b .                                           (6)
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We then seek the center x0 = (x0, y0)
T so that (5) may be written

(x - x0)
TA(x - x0) = d,

i.e.,

x Ax x Ax x AxT T T d- + - =2 00 0 0 .                               (7)

Comparing (5) with (7), we find that

Ax0 = -f,

giving

x0 = -A-1f.                                            (8)

Then

x Ax f A f0 0
1T Td d c- = - =- ,

or

d = fTA-1f - c.

2.1 The Range of l for Which the Conic Is an Ellipse
Equation (7) represents a parabola if A is singular, since then the
center x0 is at infinity. It represents an ellipse or a hyperbola or is
vacuous if (1/d)A is positive definite, indefinite, or negative definite.

Let us look more closely at the quantities a, b, ... h. From (2),

L(x, y) = (y1 - y2)x + (x2 - x1)y + x1y2 - x2y1,

,1(x, y) = p1x + q1y - p1x1 - q1y1,

,2(x, y) = p2x + q2y - p2x2 - q2y2.

It follows that
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Let us now examine the signs of the terms L2 and ,1,2 in (3). L2

is positive except on the line L, where it is zero. Because of (1), the
product ,1,2 is positive for x in the sector between ,1 and ,2 con-
taining the segment P1P2. Hence, if l < 0, (3) is not satisfied for any
x in that sector or in the opposite sector, where also ,1,2 > 0. How-
ever, these sectors divide the plane into two separated domains.
Thus, for l < 0, any conic touching ,1 and ,2 must have two sepa-
rated components and is thus a hyperbola. Hence, we need only

Fig. 1. P1 = (1, 5), P2 = (4, 1), N1 = (1, 3/10), and N2 = (-1/4, 1), with the
corresponding lines ,1, ,2, and L.

Fig. 2. Graphs of the equations L x y c,2 7 = �  and ,1,2(x, y) = c, for
various values of c. The intersections of these curves are solutions to
(3) for l = 1. Note that there may be zero, one, two, three, or four inter-
sections for various c.

Fig. 3. Graphs of (3) for various values of l ranging from one to 39.
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consider positive values of l. When l is small and positive, the
conic is close to the line segment P1P2, to which it tends as l � 0.
When l = 0, the matrix A is singular, but, as l increases, A at first
becomes positive definite and then becomes singular (indefinite)
again for a positive value l0 of l. For l larger than l0, A becomes
indefinite. This behavior corresponds to the center of the ellipse at
first receding to infinity, so that the ellipse tends to a parabola for
l = l0, and then, for l > l0, the conic becomes a hyperbola, but this
time within the sectors for which ,1,2 is positive. Thus, the range
of l for which the conic C of (3) is an ellipse is the interval 0 < l <
l0. Hence, we must solve

det A 01 6 = =a h
h b                                    (10)

for l. One root is zero; the other is the required value l0 given by
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Thus, the conic C of (3) represents an ellipse if and only if 0 < l < l0.
For l in this range, one may calculate the coordinates of the center
of the ellipse, (x0(l), y0(l)), via (8). Note that x0(l) and y0(l) param-
eterize the line previously found in [18]. Observe that
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where the constants depend only on the image data. It is easy to
show that x0(l) and y0(l) parameterize a line (one can even com-
pute dy/dx implicitly).

The lengths of the major and minor axes are

r l k r l k1 1 2 21 11 6 1 6= =/ /and                       (12)

where k1 > k2 are the eigenvalues of A/d:
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This leads to the usual formula for area as a function of l:

Area =
-

p d

ab h2
.                                      (13)

The orientation of the axes is given by

b l
k1 6 = -�

��
�
��arctan

d a
h
2                                 (14)

where the matrix A is given in (6) and where a(l), b(l), and h(l) are
given in (9). See Fig. 4 for example graphs of area and orientation
as functions of l.

For the interested reader, we cite [12] as a complete general ref-
erence for this material.

3 EDGE DETECTION IMAGES

The presence of ellipsoidal shapes is often revealed by disconti-
nuities or edges in the image values, and there are several groups
of well-studied edge detection techniques ([10], [11], [2], [7], and
others). Useful surveys of these techniques can be found in [9] and
in [19]. In an object-oriented framework, we can foresee any num-
ber of edge detection techniques being used successfully. Using an
edge detection technique, we can compute a set of edge points
(coordinates) at the boundaries of these ellipsoidal shapes, Pi = (xi, yi),
whose number depends on the length of the ellipse’s boundary.
Moreover, we can measure the slopes (or orientations) of the edge
points by computing the edge gradients; we can simply add 90
degrees to the edge gradient direction to obtain the edge orienta-
tion, hi. In addition, we can measure the strength or magnitude of
the edge gradient, mi. In this paper, we have employed the well-
known Canny edge detector using an implementation of the Robot
Vision Group in the Department of Artificial Intelligence at the
University of Edinburgh (also included with our software). This
software produces an array of edge orientations and an array of
edge magnitudes. We use both files as input into the Hough Trans-
form processing described below.

4 SOME SIMPLE EXPERIMENTS

With the parameterization of Section 2 and our collection of edge
data 

r
e P mi i i i= , ,h2 7  in hand, we can construct Hough Transforms

to answer a variety of sample questions concerning ellipse fields.

4.1 Center-Finding Experiment
Suppose we are interested in finding the centers of the ellipses in
Fig. 5. The five ellipses have area 0.028, eccentricities around 2.5,
and orientations - +p p

2 6k , for k = 1, ¡, 5. Suppose, for example,
that we knew that the ellipses had ratios of major axis length to
minor axis length less than 4.0. We shall see below how to incorpo-
rate this information explicitly in our implementation. As a first

Fig. 4. (a) Graphs of area and orientation as functions of l computed from the edge data used in the previous figures. Note that the area curve has
a vertical asymptote at l0 = 93.27. (b) Graph of the planar curve whose components give area and orientation as functions of l.
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step, we process the image in Fig. 5 using the Canny edge detector
mentioned above.

In order to make use of the discussion in Section 2 for our col-
lection of edge data, we set qi = 1 and pi = tan hi. Note that for each
pair of edges from which we will construct a parameter curve, we
check the conditions in (1). If one of these conditions is not met, we
use the normal vector -Nk instead of Nk in defining our curve. We then
use the parameterizations in (11) to define the curve (x0(l), y0(l)),
which we have shown parameterizes the line previously found in
[18]. When considering candidate ellipses (parameterized by l) for
voting during the Hough Transform step, we eliminate those with
ratio of major axis length to minor axis length exceeding 4.0. That
is, we register a vote for a candidate ellipse only if

eccentricity l r l r l r l1 6 1 6 1 6 1 6= - <1
2

2
2

1

15
4/ ,           (15)

where r1 and r2 are defined in (12).
In order to obtain the most consistent estimates for the ellipse

centers given the edge points, 
r
e x y mi i i i i= , , ,h2 7> C , we use the

Hough Transform ([4], [5], [8]) which was originally developed to
detect straight lines in images. This technique is essentially a
“voting” or “evidence gathering” scheme: given a pair of data
points from our collection 

r r
e ei j, , vote for the center position of all

possible ellipses passing through (xk, yk) with the slope tanhk for k
= i, j, which agree with all of our a priori information, and then
accumulate the votes from all data points to get the desired pa-
rameters. Our simple implementation proceeds as follows. We
prepare the so-called “accumulator array” which is a discretized
version of the two-dimensional parameter space for the ellipse
center position. The array contents are initially set to zero. Then,
for each pair of edges 

r r
e ei j,  which both have sufficient magnitude,

mi, mj > M, and which are sufficiently close together, |Pi - Pj| < B
(M and B are user controls in our software), we increment the ar-
ray contents through which the curve determined by (11) and (15)
passes. Thus, if there exists an ellipse in the image so that many
pairs of edge points correspond to it, the corresponding curves
will pass through a common point and that element/cell of the
accumulator array accumulates many votes. Finally, we can select
a maximum in the accumulator array to obtain the most consistent
parameters representing that ellipse. There are a number of well-
studied additional techniques for improving this very simple

computational approach, but in this paper we focus on presenting
our new parameterization and its uses as a single-pass method and
as a means of explicitly incorporating a priori information. These
additional methods include:

1)� the “bow-tie” method to compensate for uncertainty in edge
orientations, (see [5]);

2)� the use of Average Shifted Histograms (see [14]) to compen-
sate for problems in accurately estimating parameters due to
the discretization of the parameter space; and

3)� the many very recent techniques introduced in [6], [16], [15],
[1], and [3].

These would all be potentially very valuable modules to include
in an actual implementation but are beyond the scope of this
correspondence.

In our example, we constructed a 100 � 100 accumulator array
to discretize the center position parameters. We applied our
Hough Transform for detecting center position to the edge data.
The top five centers found by computing the top five local maxima
in the accumulator array are shown in Fig. 6. The reader is invited
to use the software we provide (see the Acknowledgment section)
to repeat our experiment and see that, in this case, the a priori in-
formation had negligible effect on the result.

4.2 Area- and Orientation-Finding Experiment
Suppose we are interested in the areas and orientations of the el-
lipses contained in the unit square pictured in Fig. 5 after having
completed the work of Section 4.1.

Using the edge angle and magnitude data pictured and a list of
centers produced in Section 4.1, we construct our Hough Trans-
form. For each pair of edges 

r r
e ei j, , we use the parameterizations in

(13) and (14) to define the curve

Area l b l l l1 6 1 64 9, ; , ,
r r
e ei j 0 0� < .                      (16)

See Fig. 4 for an example graph of this curve. When considering
candidate ellipses for voting during the Hough Transform step, we
eliminate those whose centers, (x0(l), y0(l)), are more than a dis-
tance D (another user control in the software) from all of the ellipse
centers given in our a priori information.

We constructed a 100 � 100 accumulator array to discretize
the area and orientation parameters. We applied our Hough
Transform for detecting area versus orientation to the edge
data. The results obtained by incorporating and not incorpo-

Fig. 5. An illustration of five intersecting ellipses with the same area.

Fig. 6. An illustration of the top five ellipse centers found during sample
experiment 1.
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rating the a priori center position information are pictured in
Fig. 7.

4.3 Center Position and Area Experiment
Suppose we are interested in computing the center positions and
areas for the collection of ellipsoidal shapes in Fig. 8, another 100 � 100
image. We use the Canny edge detector technique to obtain the
edge orientation and magnitude information.

To carry out our analysis, we prepare a single-stage Hough
Transform which makes use of the space curve for center position
and area:

x y e e x yi j0 0 0 0 1 2l l l l l pr l r l1 6 1 6 1 64 9 1 6 1 6 1 6 1 63 8, , ; , , ,area
r r

=        (17)

where the functions x0,y0 are given in (8) and the functions r1 and
r2 are given in (12).

We prepared a 100 � 100 � 100 accumulator array whose axes
were center position in the unit square and area between 0 and
0.04, initialized the array, and carried out our simple voting proc-
ess in exactly the same manner described in the two-dimensional
problems described above. The resulting list of local maxima ap-
pears in Table 1.

5 CONCLUSIONS

In this paper, we have described a new family of single-stage
Hough Transforms for detecting any collection of ellipse parame-
ters or characteristics computable from those parameters. We have
also indicated how a priori information can be explicitly included
in the voting procedure. We have demonstrated the flexibility of
these tools by carrying out simple experiments to detect area and
orientation information and to detect center position and area in-
formation. Furthermore, we have offered our software on the
Internet in an object-oriented format for the public to evaluate
these techniques in conjunction with many other well-studied
computational techniques.

We expect these parameter curve techniques to provide cus-
tomized algorithms for those investigating specific properties of
ellipse fields and to provide additional tools for those pursuing the
full five-parameter ellipse detection problem.
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