An approximation formula in Hilbert space *

Zhihua Zhang and Naoki Saito
Dept. of Math., Univ. of California, Davis, California, 95616, USA.
E-mail: zzh@ucdavis.edu and saito@math.ucdavis.edu
Abstract Let {pr}7° be a frame for Hilbert space H. The purpose of this paper is to present an approximation
formula of any f € H by a linear combination of finitely many frame elements in the frame {¢x}7?° and show that the
obtained approximation error depends on the bounds of frame and the convergence rate of frame coefficients of f as well
as the relation among frame elements.
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1. Introduction

Let H be a Hilbert space and {ex}5° be an orthonormal basis for H. It is well-known that any f € H can
be approximated by the linear combination of {ey}} and the approximation error depends on the convergence
rate of the Fourier coefficients|2].

As a generalization of the orthonormal bases, Duffin and Schaeffer[3] introduced the notion of frames.
Suppose that {¢g}5° is a frame for H. For any f € H, we will construct a linear combination of finitely many
frame elements in the frame {(}}7° to approximate to f and show that the approximation error depends on
the bounds of frame and the convergence rate of frame coefficients of f as well as the relation among frame
elements.

We recall some concepts and propositions.
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Let {¢k}3° be a sequence in Hilbert space H. If there exist two positive constants A, B such that

Al FIPED Ifen)P <BIFI? VfeH, (1.1)
k=1

then the sequence {¢y}5° is said to be a frame for H, where A and B are said to be frame bounds. Specially,
if A=B=1and | ¢, ||=1 (k€ Z7T), then {p}}5° is an orthonormal basis for H.

Let {¢k}$° be a frame for H. The frame operator S is defined as

S: H—H,  Sf=> (fiex)er VfeH, (1.2)
k=1

where (f, 1) (k € Z1) are said to be frame coefficients.
Proposition 1.1[1,p58-62]. Let {¢x}5° be a frame with bounds A and B for H. Then
(i) The frame operator S is a self-conjugate operator and A || f |[<| SfI<B| f| VfeH.
(ii) The inverse operator 5! exists and & || f|<| ST F IS S | f I VfeH.

(iii) Denote @ = S~ 1ok, the {5 }$° is also a frame for H and

1 2 ~ 2 1 2
— < < — . .
5 | fI7< g:ll(f,wk)\ <7 | fII° VfeH (1.3)
(iv) For each k,
_ 2 2 = 25 \"
Pk= et B n§:1 ( ] B) ks (1.4)

where [ is the identity operator.

(v) Let R=1— 225 Then | R|< £-4.

The frame {@}5° is said to be a dual frame of {¢y}5°.

Denote the partial sum of the series in (1.4) by $%, i.e.

2 2 9 25 \"
"’0 ~N
= = + E: I— . )
Ye= Ay B e T A1 B¥r A+ B4 < A+B> Pk (1.5)

=1

Proposition 1.2[1,p58-62]. Under the conditions of Proposition 1.1, then

(i) for any f € H, the reconstruction formula f = > (f,¢r)@r holds
k=1



(i) for any f € H, the series > (f,px)Pn is convergent and
k=1

1= (Fen)@d IS (N ezh), (1.6)

B—A

where ¢ = 375

2. A new frame approximation operator (oY (-)),,

In order to approximate to any f € H by a linear combination of finitely many frame elements, we present
a new frame approximation operator in this section.

Let {¢%}5° be a frame for H with bounds A and B. The frame operator S, ¢, and @} are stated in

(1.2), (1.4), and (1.5), respectively.

oo
Definition 2.1 We truncate the series Y (f, ¢x)@L by its partial sum, for n, N € ZF, define
k=1

= (fe0)dr VfEH (2.1)
k=1
Denote
Sm: H—H,  Suf:=Y (f¢;)p; VfeH. (2.2)
j=1

and
Slo= S, St =818, (lez™h),
Sti.=8, St:=871S) (e zh). (2.3)

Definition 2.2. For any k, N, m € Z*, define

2 2 2 N 285, "
~0 o ~N — __ZFm
@)= 7 gee and (@)m A+Bwk+A+B;(f A+B) ok

From this definition, we have

N
@ =@t g (1- o) o (Ve z0) (2.4

Definition 2.3. Define a frame approximation operator as follows.

(08 (Nm: H—H, =N (f. o) (@ )m V€ H.
k=1



Lemma 2.4. (i) The sequence of operators {.S,,}3° is uniformly bounded.
(ii) For any f € H,

SLf—S'f(m—o0) VieZzt. (2.5)
Proof. Combining (1.2) with (2.2), for any f € H, we have
Smf — Sf (m— o). (2.6)

Using the resonance theorem, we know that there exists M > 0 such that || S,, [|[< M (m € ZT). So we get (i).
We have known that (2.5) holds for I = 1. Now we assume that (2.5) holds for [ — 1.

Noticing that S!, f — S'f = Sy (S f) — S (SPLF) + Sp(SU1F) — S(SU1f), we have
I Spf =S U< S (Sp £ = ST | 41 S (871 F) =SSV ) [|1=: p32(F) + a4 () (2.7)
Since || S, ||< M, by the postulate of induction, we have
P S M| S =S =0 (m— o0).
Let g = S'"1'f. Then by (2.6),
a9 (f) =l Smg — Sg |- 0 (m — o0).

Hence, by (2.7), we have S’ f — S'f (m — 00), i.e. (2.5) holds for any [ € ZT. So we get (ii).
Lemma 2.5. For any f € H, (¢)(f))m is a linear combination of {¢,}7, where A = max{m, n}.

Proof. By Definition 2.2 and the operator equality

QSm n __ - n 2 : 1
(I*A+B) I*;( l )<A+B> S

we conclude that

N n l
Ny 2AN+1) 2 n\ [ 2 l
@k Jm = AL B sDk-FAJrBZZ ) 118 S Pk

n=1[=1

Again by Definition 2.3, we get

N—I—l n 9 N n
(Uﬁ[(f)) “A+B Z fron)er + A+ B Z Z bn,z,kan@k =: My + M,
k=1 k=1

n=1



n !
where by, 1 1 = < I ) (*A-q%B) (f, er)-

For any f € H, by (2.2), we obtain that for any k, [ € ZT,

Shiok =D _¢ipjs  where = > (0 0) (Purs Pun) - (Purys 95):
j=1 Vi, Vj—1=1

So we see that for [, k € Zt, S! o4 is a linear combination of m frame elements 1, s, ..., P, further, the
sum Ms is a linear combination of m elements 1, @2, ..., o;m. Clearly, the sum M is a linear combination of n

elements ¢1, @2, ..., pn. Therefore, (o2 (f))m is a linear combination of {y,}7}, where A = max{m, n}. Lemma

n

2.5 is proved.
3. Approximation by (¢ ().,

We will approximate to f by (0 (f))m. First, we estimate | f — o (f) || in Lemma 3.1. Next, we

n

estimate || oY (f) — (o) (f))m || in Lemma 3.3. Finally, we get an estimate || f — (62 (f))m || in Theorem 3.4.

n

Meanwhile, we show that the approximation error only depends on the frame bounds and the convergence rate
of the frame coefficients of f as well as the relation among frame elements.

Lemma 3.1. Let {¢;}3° be a frame for H with bounds A, B and o} (f) be stated in (2.1). Denote

1

2

w=r | X Gk | (3.1)
j=n+1
Then for any f € H, we have
I f=ad (N I<a™ | fl T (L+a" ) 1 Fllenlf) (n, N €Z¥), (3.2)

VA
where ¢ = %.
Remark 3.2. Since {p;}7° is a frame, we see that k§ |(f,ox)|*> < oo. From this and (3.1), we get
=1
en(f) = 0 (n — o).
Proof of Lemma 3.1. By Proposition 1.2(ii) and (2.1), we know that for any f € H and N € Z7T, the

(f, gok)(ﬁkN is its partial sum. Denote its remainder term by

&) n
series > (f, or)@n converges and o) (f) =

k=1 k=1
()= D (fen)Br -
k=n-+1



So

£ = (D=1 f- (Zf,wk —?"()>||<||f Zf,wk@k [RRENCHR P
k=1

Using Proposition 1.2(ii), we get

1f = (DI FI+ 1 () -

By Proposition 1.2(i), the series Z (f, vx)Pr converges, so we can decompose 7 (f) as follows:

rN ()= D (Fe@rt+ >, (Fen) @R — k) = uh (f) + o) ().
k=n-+1 k=n+1

By (1.4) and (1.5), it follows that

oo
or—0y = x5 X (- 225w
n=N+1

_ 25 \N+1 [ _2 2w 25
= (-5 <A+B ort ZiB n21( A+B)n‘#’k)
_ (I 25 )N+195k RN+190]€7

A+B

where R=1— %. So we get

v (f) == > (f,er) RN G = —RNH! < > @k)@k) :

k=n-+1 k=n+1
From this and (3.4), we get
(=) (f,sakm—RN“( > (f,sokwk) = (I =R 3" (£, k) @k
k=n-+1 k=n-+1 k=n-+1

However, we have

o0 o0 2 o0
| Z (fsor) Pk ||2 SUP < Z (fs or) Pk, g) = sup Z (f, 1)@k, 9)
k=n+1 llgll= k=n+1 llgll=1 k=n+1

Using Cauchy’s inequality in 12, we get

1> (fren)Pe ||2S< > |(f7%0k)|2>' sup ( > |(@k,9)|2>-
k

k=n-+1 k=n-+1 llgll=1 =n+1



By Proposition 1.1 (iii), we know that {$}5° is also a frame for H and

> 1
4 2
D@9l <59l
k=1
From this, we get

k=

k=n-+1

Again by (3.1) and (3.5), we have

N|=

I I T RN (17 1P 20 )

By Proposition 1.1(v), we have || I — RN T |[< 14+ ¢VF! (¢ = gT_’:). So

Iy (D) 1€ —= @+ ) | f 1l enlf).

\F

Finally, by (3.3), we obtain the conclusion of Lemma 3.1.
We will approximate to a2 (f) by (o2 (£))m-
Lemma 3.3. Let {1 }$° be a frame for H with bounds A, B, and let o2 (f) and (¢ (f))m be stated in

(2.1) and Definition 2.3, respectively. Then for any f € H, we have

N+1
2
ol ()= @ (m IS VB [ Vi anam (N, n, meZ"),
A+B
where
QN p,m = INax H Sl@k - inQDk || . (36)
1<ISN
1<k<n

Proof. By (1.5), we have

N l
N 2 2 N 9
N-1 _ I,
P =% tarB% T a1 ;( l )( A+B> Son

and by (2.4), we have

~N ~N-1 2 2 /N 2\,
(@5 )m = (P )+A+Bwk+A+BZ L) (marg) S (3.7)



So we get

2 L/ N 2\
~N ~N ~N—1 ~N—1 l l
e — @ )m=0r ' — (B )m+A+BZ< ) >(—A+B) (S'or — Shn)-

Recursively using the above formula, we have

N . l
~N SNy _ (=1 ~1 2 J 2 l l
Pr — Pk )m = (@ — (Pr)m + A1 B Z Z 1 TArB (%K — Sppr)- (3.8)
By Definition 2.2 and (1.5), we get

ISR 2\’
o= @bm = (525 (Son Swn)

From this and (3.8), we have

2~ @Bm =475 ZN: ZJ: ( 5 > (AiB)l (8" — Spupn)-

j=1 1=1

So we obtain

N . l
~N J 2 . Lo, — Gl
16— (@) >m||_A+B(;;(l)(A+B)> x| 5o~ S |
However,
N i ! 9 N+1
_— <|1 .
B;;(l)(A+B)_A+BZ< A+B> _<+A+B)
So we have
N+1
15 - @l (1425 ) g S'en = Shn | (39)

By (2.1) and Definition 2.3, using cauchy’s inequality, we obtain that for any f € H,

[oN () = @l < X 1F o0l 13 = @ |
(3.10)

1

(£ m?)% (Z e - @)

IN

Combining (3.9)-(3.10) with (3.6), we get

1
2

2
(0 = X = (14

—
2
=

B
o
2
3
3
7N
3

‘(fawk”z )

b
Il

1



From this and (1.1), we get the conclusion of Lemma 3.3.

Since
1= X w11 F = () N+ 1o (F) = (@ () |l

by Lemma 3.1 and Lemma 3.3, we conclude immediately the following

Theorem 3.4. Let {¢}$° be a frame with bounds A and B, and let

N
=Y (fo0)(@)m  (f € H),
k=1

where (1), is stated in Definition 2.2. Then for any f € H and N, n, m € Z*, we have

|f =@l < a7
(3.11)
bR ) e+ VB (14 525) VA annm,

where €,(f) is stated in (3.1), ¢ = g—;ﬁ, and
aNpm = max || S'pp —Sh o || (S is the frame operator).
1<I<N
1<k<n

Remark 3.5. In Lemma 2.5, we have shown that (o (f)),, is a linear combination of 1, ...,5 (A =
max{m, n}). So Theorem 3.4 gives a formula approximating to any f € H by a linear combination of finitely
many frame elements.

Remark 3.6. Denote
Ri=¢"| £,

Ry = — (1+ ") || f |l en(f),

1
VA

9 N+1
Rs:=VB]| f| <1+ A+B) N (3.12)

Since ¢ = B+A < 1, we see that By — 0 (N — oc0). By Remark 3.2, we have Ry — 0 (n — 00). From

Lemma 2.4(ii) and (3.6), we obtain an nm — 0 (m — 00), so we have R3 — 0 (m — o0).



Therefore, for any f € H and an approximation error ¢ > 0, first we choose N such that R; < §, next,

we choose n such that Ry < g, finally, for fixed N, n, we choose m such that R3 < 5. Then from (3.11), we

have || f — (a7 (f))m [I<e.

Our result is a generalization of a known result on the orthonormal bases[2].
Remark 3.7. When {y;} is an orthonormal basis for H, the frame bounds B = A = 1 and the frame

operator S and S,, are both the identity operator. By (3.6),

AN nm = 0.

By (1.4), (1.5), (2.3), and (3.12), we have

N|=

Gk =@k = (PR )m = ¢ and Ri=R3=0, Rp= ( Z |(f7<,0k)|2>
Therefore, Theorem 3.4 is reduced to a well-known result in Hilbert space[2].
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