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Abstract

We consider the best sparsifying basis (BSB) and the kurtosis maximiz-
ing basis (KMB) of a particularly simple stochastic process called the “gen-
eralized spike process”. The BSB is a basis for which a given set of realiza-
tions of a stochastic process can be represented most sparsely, whereas the
KMB is an approximation to the least statistically-dependent basis (LSDB)
for which the data representation has minimal statistical dependence. In
each realization, the generalized spike process puts a single spike with am-
plitude sampled from the standard normal distribution at a random location
in an otherwise zero vector of length � .

We prove: 1) both the BSB and the KMB select the standard basis (if
we restrict our basis search to all possible orthonormal bases in

���
); 2)

if we extend our basis search to all possible volume-preserving invertible
linear transformations, then the BSB exists and is again the standard basis
whereas the KMB does not exist. Thus, the KMB is rather sensitive to the
orthonormality of the transformations while the BSB seems insensitive. Our
results provide new additional support for the preference of the BSB over
the LSDB/KMB for data compression. We include an explicit computation
of the BSB for Meyer’s discretized ramp process.
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1 Introduction

This paper is a sequel to our previous paper [3], where we considered the best
sparsifying basis (BSB), and the least statistically-dependent basis (LSDB) for
input data assumed to be realizations of a very simple stochastic process called
the “spike process.” This process, which we will refer to as the “simple” spike
process for convenience, puts a unit impulse (i.e., constant amplitude of

�
) at a

random location in a zero vector of length � . Here, the BSB is the basis of � � that
best sparsifies the given input data, and the LSDB is the basis of � � that is the
closest to the statistically independent coordinate system (regardless of whether
such a coordinate system exists or not). In particular, we considered the BSB
and LSDB chosen from all possible orthonormal transformations (i.e., ������� ) or
all possible volume-preserving linear transformations (i.e., 	�
����������� , where the
determinant of each element is either � � or � � ).

In this paper, we consider the BSB and LSDB for a slightly more complicated
process, the “generalized” spike process, and compare them with those of the sim-
ple spike process. The generalized spike process puts an impulse whose amplitude
is sampled from the standard normal distribution ������� � � .

Our motivation to analyze the BSB and the LSDB for the generalized spike
process stems from the work in computational neuroscience [22], [23], [2], [27]
as well as in computational harmonic analysis [11], [7], [12]. The concept of spar-
sity and that of statistical independence are intrinsically different. Sparsity empha-
sizes the issue of compression directly, whereas statistical independence concerns
the relationship among the coordinates. Yet, for certain stochastic processes, these
two are intimately related, and often confusing. For example, Olshausen and Field
[22], [23] emphasized the sparsity as the basis selection criterion, but they also as-
sumed the statistical independence of the coordinates. For a set of natural scene
image patches, their algorithm generated basis functions efficient to capture and
represent edges of various scales, orientations, and positions, which are similar to
the receptive field profiles of the neurons in our primary visual cortex. (Note the
criticism raised by Donoho and Flesia [12] about the trend of referring to these
functions as “Gabor”-like functions; therefore, we just call them “edge-detecting”
basis functions in this paper.) Bell and Sejnowski [2] used the statistical inde-
pendence criterion and obtained the basis functions similar to those of Olshausen
and Field. They claimed that they did not impose the sparsity explicitly and such
sparsity emerged by minimizing the statistical dependence among the coordinates.
These motivated us to study these two criteria. However, the mathematical rela-
tionship between these two criteria in the general case has not been understood
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completely. Therefore we chose to study these simplified processes, which are
much simpler than the natural scene images as a high-dimensional stochastic pro-
cess. It is important to use simple stochastic processes first since we can gain
insights and make precise statements in terms of theorems. By these theorems,
we now understand what are the precise conditions for the sparsity and statis-
tical independence criteria to select the same basis for the spike processes, and
the difference between the simple and generalized spike processes. Weidmann
and Vetterli also used the generalized spike process to make precise analysis of
the rate-distortion behavior of sparse memoryless sources that serve as models of
sparse signal representations [28].

Additionally, a very important by-product of this paper (as well as our pre-
vious paper [3]) is that these simple processes can be used for validating any
independent component analysis (ICA) software that uses mutual information or
kurtosis as a measure of statistical dependence, and any sparse component analy-
sis (SCA) software that uses

���
-norm ( ������� �

) as a measure of sparsity. Actual
outputs of the software can be compared with the true solutions obtained by our
theorems. For example, the ICA software based on maximization of kurtosis of
the inputs should not converge for the generalized spike process unless there is
some constraint on the basis search (e.g., each column vector has a unit

�
	
-norm).

Considering the recent popularity of such software ([17], [5], [21]), it is a good
thing to have such simple examples that can be generated and tested easily on
computers.

The organization of this paper is as follows. The next section specifies nota-
tion and terminology. Section 3 defines how to quantitatively measure the sparsity
and statistical dependence of a stochastic process relative to a given basis. Sec-
tion 4 reviews the results on the simple spike process obtained in [3]. Section 5
contains our new results for the generalized spike process. In Section 6, we con-
sider the BSB of Meyer’s ramp process [20, p. 19], as an application of the results
of Section 5. Finally, we conclude in Section 7 with a discussion.

2 Notation and Terminology

Let us first set our notation and the terminology. Let � � � � be a random vector
with some unknown probability density function (pdf) �� . Let ������� � ��� � ,
where � is the so-called basis dictionary. For very high-dimensional data, we
often take � to be the union of the wavelet packets and local Fourier bases (see
[25] and references therein for more about such basis dictionaries). In this pa-
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per, however, we use much larger dictionaries: ����� � (the group of orthonormal
transformations in � � ) or 	�
 ����� ����� (the group of invertible volume-preserving
transformations in � � , i.e., those with determinants equal to

���
). We are inter-

ested in finding a basis within � for which the original stochastic process either
becomes sparsest or least statistically dependent. Let � � ��� � � be a numerical
measure of deficiency or cost of the basis � given the input stochastic process � .
Under this setting, the best basis for the stochastic process � among � relative
to the cost � is written as �����	��
��������������� � ��� � � .

We also note that ����� in this paper implies ����� 	 , unless stated otherwise. The
� � � identity matrix is denoted by ! � , and the �"� � column vector whose entries
are all ones, i.e., � � � � �$#�#�# � � �&% , is denoted by ' � .
3 Sparsity vs. Statistical Independence

Let us now define measures of sparsity and statistical independence for the basis
of a given stochastic process.

3.1 Sparsity

Sparsity is a key property for compression. The true sparsity measure for a given
vector (�� � � is the so-called

�$)
quasi-norm which is defined as* ( * ),+��-/.10 �32 � � �5476�8:9<;� ��= �

i.e., the number of nonzero components in ( . This measure is, however, very
unstable for even small geometric perturbations of the components in a vector.
Therefore, a better measure is the

� �
norm:

* ( * �>+� ? �@ 9BA5C � 8:9D� ��E
CGF �

� � � � � � #
In fact, this is a quasi-norm for ��� � � �

since it does not satisfy the triangle
inequality, but only the weaker conditions:

* ( �IH * � �KJML CGF �ON � * ( * � � * H * � � where
�QPR� �RS � � � � � is the conjugate exponent of � ; and

* ( �TH * �� � * ( * �� � * H * �� . It
is easy to show that �U��� �WV�) * ( * �� � * ( * ) . See [11] for the details of the

� �
norm

properties.
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Thus, we use the expected
���

-norm minimization as a criterion to find the best
basis for a given stochastic process in terms of sparsity:

� � � ��� � � � � * � L C � * �� � (1)

We propose to minimize this cost in order to select the best sparsifying basis
(BSB):

� � ����
D� ��������$� � � � � � � � #
Remark 3.1. It should be noted that minimization of the

� �
norm can also be

achieved for each realization. Without taking the expectation in (1), we can select
the BSB, � � � � � �G( � � � for each realization ( . We can guarantee that

��������$� � � � ��� � ��( � � � �U������ � � � ��� � � � �/�������� � � � ��� � �K( � #
For highly variable or erratic stochastic processes, � � �G( � � � may change signif-
icantly for each ( . Thus if we adopt this strategy to compress an entire training
dataset consisting of � realizations, we need to store additional information in
order to describe a set of � bases.

Whether we should adapt a basis per realization or on the average is still an
open issue. See [26] for more details.

3.2 Statistical Independence

The statistical independence of the coordinates of � � � � means �� � H��3�
��
	 ��� C � ��� ��� 	 ���
�
���������� � � , where each ���� is a one-dimensional marginal pdf of
�� . Statistical independence is a key property for compressing and modeling a
stochastic process because: 1) an � -dimensional stochastic process of interest can
be modeled as a set of one-dimensional processes; and 2) damage of one coor-
dinate does not propagate to the others. Of course, in general, it is difficult to
find a truly statistically independent coordinate system for a given stochastic pro-
cess. Such a coordinate system may not even exist for a given stochastic process.
Therefore, the next best thing is to find the least statistically-dependent coordinate
system within a basis dictionary. Naturally, then, we need to measure the “close-
ness” of a coordinate system (or random variables) � C ��#�#�# ��� � to the statistical
independence. This can be measured by mutual information or relative entropy
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between the true pdf  � and the product of its marginal pdfs:

! ��� � +� �
�� � H�� �U��� �� � H��� �9BA5C ���� � � 9���� H

� ��� � � � �
�@ 9BA5C � ���R9 � �

where � ��� � and � ���R9 � are the differential entropy of � and � 9 respectively:

� � � � � �
�
�� � H� �U��� �� � H�� � H��

� � �:9�� � �
�
���� � � 9�� �U��� ���� ��� 9�� � � 9 #

We note that ! � � �	� � , and ! � � �,� � if and only if the components of � are
mutually independent. See [9] for more details of the mutual information.

Suppose � � � L C � and � ��
 
 ��� ����� with ���� � � ��� . We denote
this set of matrices by 	�
 � ������� � . Note that the usual 	�
 ��������� is a subset of
	�
 � ��������� . Then, we have

! � � � � ��� � � � �
�@ 9BA5C � ���R9 � � ��� � � � �

�@ 9BA5C � ���R9 � �
since the differential entropy is invariant under such an invertible volume-preserving
linear transformation, i.e.,

� � � L C � � ��� � � � � �U��� � ���� � L C � ��� � � � �

because � ����� ��L C ��� �
. Based on this fact, we proposed the minimization of the

following cost function as the criterion to select the so-called least statistically-
dependent basis (LSDB) in the basis dictionary context [25]:

��� � � � � � � �@ 9BA5C ��� � � L C � � 9�� � �@ 9BA5C � � �:9 � # (2)

Now, we can define the LSDB as

������� � ����
����������$� ��� � ��� � � #
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Closely related to the LSDB is the concept of the kurtosis-maximizing basis
(KMB). This is based on the approximation of the marginal differential entropy
� ���R9 � in (2) by higher order moments/cumulants using the Edgeworth expansion
and was derived by Comon [8]:

� � �:9 � � �
�
����� ���R9 � � �

�
��� ���
	 � �:9 ����� 		 � �:9�� � (3)

where ��� ���R9 � is the � th central moment of �R9 , and � � �:9�� S�� 		 � �:9�� is called the
kurtosis of �R9 . See also Cardoso [6] for a nice exposition of the various approxi-
mations to the mutual information. Now, the KMB is defined1 as follows:

��� ����
D� ��������$� ��� � � � � � ����
� �/��������
�@ 9BA5C � � �:9�� � (4)

where ��� � ��� � � � ��� �9BA5C � � �:9�� . Note that the LSDB and the KMB are tightly
related, yet can be different. After all, (3) is simply an approximation to the en-
tropy up to the fourth order cumulant. We also would like to point out that Buck-
heit and Donoho [4] independently proposed the same measure as a basis selection
criterion, whose objective was to find a basis under which an input stochastic pro-
cess looks maximally “non-Gaussian.”

Remark 3.2. Earlier work of Pham [24] also proposes minimization of the cost
(2). We would like to point out the main difference between our work [25] and
Pham’s. We use the basis libraries such as wavelet packets and local Fourier bases
that allow us to deal with datasets with large dimensions such as face images
whereas Pham used the more general dictionary 
 
 ������� � . In practice, however,
the numerical optimization (2) clearly becomes more difficult in his general case
particularly if we want to use this for high dimensional datasets.

4 Review of Previous Results on the Simple Spike
Process

In this section, we briefly summarize the results of the simple spike process. See
[3] for the details and proofs.

1Note that there is a slight abuse of the terminology; We call the kurtosis-maximizing basis in
spite of maximizing unnormalized version (without the division by �������� �"! ) of the kurtosis.
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An � -dimensional simple spike process generates the standard basis vectors. ��� = �� A5C � � � in a random order, where ��� has one at the � th entry and all the
other entries are zero. We can view this process as a unit impulse located at a
random position between

�
and � .

4.1 The Karhunen-Loève Basis

The Karhunen-Loève basis of this process is not unique and not useful because of
the following proposition.

Proposition 4.1. The Karhunen-Loève basis for the simple spike process is any
orthonormal basis in � � containing the “DC” vector ' � � � � � � �$#�#�# � � � % .

This proposition reflects the non-Gaussian nature of the simple spike process,
i.e., the optimality of the KLB can be claimed only for the Gaussian processes.

4.2 The Best Sparsifying Basis

As for the BSB, we have the following result:

Theorem 4.2. The BSB with any � � 2 ��� � 4 for the simple spike process is the
standard basis if � � ����� � or 	�
 � ��� ����� .

4.3 Statistical Dependence and Entropy of the Simple Spike
Process

Before stating the results on the LSDB of this process, let us note a few specifics
about the simple spike process. First, although the standard basis is the BSB for
this process, it clearly does not provide the statistically independent coordinates.
The existence of a single spike at one location prohibits spike generation at other
locations. This implies that these coordinates are highly statistically dependent.

Second, we can compute the true entropy � � � � for this process unlike other
complicated stochastic processes. Since the simple spike process selects one pos-
sible vector from the standard basis vectors of � � with uniform probability

� S � ,
the true entropy � � � � is clearly ������� . This is one of the rare cases where we
know the true high-dimensional entropy of the process.
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4.4 The LSDB among
�������

For � � ������� , we have the following theorem.

Theorem 4.3. The LSDB among ������� is the following:� for � �	� , either the standard basis or the basis whose matrix representa-
tion is

�
�


�������
���3J � J �
�
� � J � J
� J � � J . . . � J
...

. . . . . . . . .
...

� J . . . � � J � J
� J � J �
�
� � J ���3J

���������� (5)

� for � � �
, the Walsh basis, i.e.,

�
J


��� � � � �
� � � � � �� � � � � �� � � � � �

���� �
� for � � � ,


�� C� � C� � C� 	C� � C� � L C� 	C� � L 	� � �

 �� ; and

� for � � J , C� 	�� � �
� � ��� , and this is the only case where the true indepen-

dence is achieved.

Remark 4.4. Note that when we say the basis is a matrix as above, we really mean
that the column vectors of that matrix form the basis. This also means that any
permuted and/or sign-flipped (i.e., multiplied by � � ) versions of those column
vectors also form the basis. Therefore, when we say the basis is a matrix � , we
mean not only � but also its permuted and sign-flipped versions of � . This remark
also applies to all the propositions and theorems below, unless stated otherwise.

Remark 4.5. There is an important geometric interpretation of (5). This matrix
can also be written as:

� ����� � � +�	! � �3J ' �! � ' % �! � #
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In other words, this matrix represents the Householder reflection with respect to
the hyperplane .1H � � � � � �9 A ) � 95� ��= whose unit normal vector is ' � S ! � .

Below, we use the notation � � � � � for the LSDB among � ��� � to distinguish it
from the LSDB among 
 
 ��������� , which is denoted by ����� � � � . So, for example,
for � � � , � � � � � �K! � or � � � � � � .
4.5 The LSDB among

��� ���	��
��
As discussed in [3], for the simple spike process, there is no important distinction
in the LSDB selection from 
 
 ��� ����� and from 	�
 � ����� � � . Therefore, we do not
have to treat these two cases separately. On the other hand, the generalized spike
process in Section 5 requires us to treat 	�
 � ��������� and 
 
 ������� � differently due
to the continuous amplitude of the generated spikes.

We now have the following curious theorem:

Theorem 4.6. The LSDB among 
 
 ��� ����� with �� J is the following basis pair
(for analysis and synthesis respectively):

� L C��� � � � �

����������

� � �
�
� �
�
� �
�
� �
�
� �� 	 � 	 � 	 �
�
� �
�
� �
�
�
� 	� � � � � � � � �
�
� �
�
�
� �

...
...

. . .
...

...
...

. . .
...�

� L C �
�
� �
�
� �
�
�
�
� L C � � L C �

� L C�
� �
�
� �
�
� �
�
� �
�
�

�
� � �

 ���������� � (6)

����� � � � �

������
� � � � � �OA 	 � ��� � �QS � ��� 	 ��� � �
�
� ��� �

� � 	 � 	 S � � 	 � �
�
� �
� � � � � S � � � � . . .

...
...

...
. . . . . . �

� � � � � S � � �
�
� � � �

������� (7)

where � , � � , � � are arbitrary real-valued constants satisfying � ;� � ,
� � ;� � � , and

����� � S � � � � � � � , � �	J���#�#$# � � .
If we restrict ourselves to � � 	�
 � ��� ����� , then the parameter � must satisfy:

� � � ��
� A 	 � � � � � � � L C #
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Remark 4.7. The LSDB such as (5) and the LSDB pair (6), (7) provide us with
further insight into the difference between sparsity and statistical independence.
In the case of (5), this is the LSDB, yet it does not sparsify the simple spike
process at all. In fact, these coordinates are completely dense, i.e., � ) � � . We
can also show that the sparsity measure � � gets worse as � � � . More precisely,
we have the following proposition.

Proposition 4.8.

���U������ � � � � � � � � � � � � � � � if ��� � � � �� if �"� � #
It is interesting to note that this LSDB approaches the standard basis as � �� . This also implies that

���������� � � � � � � � � � � � �/;� � �	� �U�������� � � � � � � � ��
>#
As for the analysis LSDB (6), the ability to sparsify the simple spike process

depends on the values of
� � and � � . Since the parameters � , � � and � � are arbitrary

as long as � ;� � and
� � ;� � � , let us put � � �

,
� �,� � , � �,� �

, for � � J���#$#�# � � .
Then we get the following specific LSDB pair:

� L C��� � � � �

����
� � �
�
� �
�
... ! � L C�

 ���� � � ��� � � � �

����
� � � �
�
� � �
�
... ! � L C�

 ���� #
This analysis LSDB provides us with a sparse representation for the simple spike
process (though this is clearly not better than the standard basis). For � �
� L C��� � � � � ,

� � � �� * � * ���� � �
� � � � � � �

� � J,��J � �
� � � � � � � #

Now, let us take � � �
,
� �I� �

, � �I� J for ��� J��$#�#�# � � in (6) and (7). Then we
get

� L C��� � � � �

����
� � �
�
� �
� J . . .

...
...

. . . . . .
�

� �
�
� � J

����� � � ��� � � � �

���� � � � �
�
� � �
� �
... ! � L C� �

����� #
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The sparsity measure of this process is:

� � � �
� � � � � � �

� � .���� � � ���TJ � = � � � � J � � � �
� � � �

��� � � � � � � #
Therefore, the simple spike process under this analysis basis is completely dense,
i.e., � � � � for � � � � �

and the equality holds if and only if � � � . Yet this is
still the LSDB.

Finally, from Theorems 4.3 and 4.6, we have the following corollary:

Corollary 4.9. There is no invertible linear transformation providing the statisti-
cally independent coordinates for the simple spike process for �� J .
5 The Generalized Spike Process

In [13], Donoho et al. analyze the following generalization of the simple spike
process in terms of the KLB and the rate distortion function, which was recently
followed up in details by Weidmann and Vetterli [28]. This process first picks one
coordinate out of � coordinates randomly as before, but then the amplitude of this
single spike is picked according to the standard normal distribution � ����� � � . The
pdf of this process can be written as follows:

 � �G( � � �
�

�@ 9 A5C
? �
���A 9�� � 8 � � E�� � 8:9�� � (8)

where � � � � is the Dirac delta function, and
� � 8 � � � � S ! J
	 � � � ��� � ��8 	 S�J � , i.e.,

the pdf of the standard normal distribution. Figure 1 shows this pdf for � � J .
Interestingly enough, this generalized spike process shows rather different behav-
ior (particularly in the statistical independence) from the simple spike process in
Section 4. We also note that our proofs here are rather analytical compared to
those for the simple spike process presented in [3], which have a more combina-
torial flavor.

5.1 The Karhunen-Loève Basis

We can easily compute the covariance matrix of this process, which is proportional
to the identity matrix. In fact, it is just ! � S � . Therefore, we have the following
proposition, which was also stated without proof by Donoho et al. [13]:
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Figure 1: The pdf of the generalized spike process ( � ��J ).
Proposition 5.1. The Karhunen-Loève basis for the generalized spike process is
any orthonormal basis in � � .

Proof. Let us first compute the marginal pdf of (8). By integrating out all 8�9 ,0�;� � , we can easily get:

 ��� � 8 � � � �
�
� � 8 � � � � � �

� � � 8 � � #
Therefore, we have

� 2 � � 4 � � . Since
� 9 and

� � cannot be simultaneously
nonzero, we have

� 2 � 9 � � 45� � 9 � � 2 � 	� 4R� �
� � 9 � �

since the variance of
� � is

� S � , which is easily computed from the marginal pdf
 ��� . Therefore, the covariance matrix of this process is, as announced, ! � S � .
Therefore, any orthonormal basis is the KLB.

In other words, the KLB for this process is less restrictive than that for the
simple spike process (Proposition 4.1), and the KLB is again completely useless
for this process.
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5.2 Marginal distributions and moments under
� ��� ���	� 
��

Before analyzing the BSB and LSDB, we need some background. First, let us
compute the pdf of the process relative to a transformation � ���"L C � , � �
	�
 � ��������� . In general, if � � � L C � , then

�� � H� � �
� ����� � L C �  � � � H� #

Therefore, from (8), and the fact � ���� � � � �
, we have

�� � H� � �
�

�@ 9 A5C
? �
���A 9 � ��� %� H�� E � ��� % 9 H�� � (9)

where �:%� is the � th row vector of � . As for its marginal pdf, we have the following
lemma:

Lemma 5.2.

�� � � � � � �
�

�@ 9BA5C � � � � ��� 9 � � � � � � � ��#$#�# � � � (10)

where �>9 � is the � 0 � � � th cofactor of matrix � , and
� � � � � � � � ��� S � �S � represents

the pdf of the normal distribution � ����� � 	 � .
In other words, we can interpret the � th marginal pdf as a mixture of Gaussians

with the standard deviations � � 9 � � , 0 � � ��#�#$# � � . Figure 2 shows several marginal
pdfs for � � J . As we can see from this figure, it can vary from a very spiky
distribution to a usual normal distribution depending on the rotation angle of the
coordinate.

Proof. Let us rewrite (9) as

�� � H� � �
�

�@ 9BA5C � ��� % C H���
�
� � ��� % 9 L C H�� � ��� % 9
	5C H���
�
� � ��� % � H�� � ��� % 9 H� # (11)

The � th marginal pdf can be written as

�� � � � � � � � �� ���MC � �
�
��� � � � � �MC �
�
� � � � L C � � � 	5C �
�
� � � � #
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Marginal Density Function at Various Rotation Angles

Figure 2: The marginal pdfs of the generalized spike process ( ��� J ). All the
pdfs shown here are projections of the 2D pdf in Figure 1 onto the rotated 1D
axis. The axis angle in the top row is � # � ��� rad., which is close to the the first axis
of the standard basis. The axis angle in the bottom row is 	 S � rad., i.e.,

� � degree
rotation, which gives rise to the exact normal distribution. The other axis angles
are equispaced between these two.
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Consider the 0 th term in the summation of (11) and integrate it out with respect to
�MC ��#�#�# � � � L C � � � 	5C ��#�#�# � � � :� � ��� % C H����
�
� � ��� % 9 L C H� � ��� % 9 	5C H����
�
� � ��� % � H� � ��� % 9 H�� � �MC �
�
� � � � L C � � � 	5C �
�
� � � � #

(12)
We use the change of variable formula to integrate this. Let � % � H � 8�� , ���� �$#�#�# � � , and let

���
be the

�
th column vector of � . The relationship � H � ( can

be rewritten as follows:

� � 9�� � � H � � � � � � � � 9 �� ��( � 9 � �
where � � 9�� � � is the ��� � � � � ��� � � � matrix by removing 0 th row and � th column,
and the vectors with superscripts indicate the length � � �

column vectors by
removing the elements whose indices are specified in the parentheses. The above
equation can be rewritten as

H � � � � � � � 9�� � � � L C � ( � 9 � � � � � � 9 �� 
�#
Thus,

� H � � � � � �MC��
�
� � � � L C � � � 	5C �
�
� � � �� �
� �� � � � 9�� � � � � ( � 9 �� �
��� 9 � � � 87C �
�
� � 8:9 L C � 8:9
	5C �
�
� � 8 � #

Let us now express � % 9 H �K8:9 in terms of � � and ( .

� % 9 H � � � � � �9 
 % H � � � � � 9 � � � (13)

� � � � � �9 
 % � � � 9�� � � � L C � ( � 9 � � � � � � 9 �� 
 � � 9 � � �
� � � � � �9 
 % � � � 9�� � � � L C ( � 9 � � � �

� � 9 � � � � � � �9 
 % � � � 9�� � � � L C � � 9 �� ���� �� � � � � �9 
 % � � � 9�� � � � L C ( � 9 � � � �
� 9 � �� � �� � � � � �9 
 % � � � 9�� � � � L C ( � 9 � � � �
�>9 � �

where �	� � follows from the following lemma which is proved in Appendix A:
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Lemma 5.3. For any � � � � 9 � � � 
 
 ��� ����� ,
� 9 � � � � � � �9 
 % � � � 9�� � � � L C � � 9 �� � �

�>9 � �� � � � � � 0�� � � � #
Now, let us go back to the integration (12). Thanks to the property of the delta

function with Equation (13), we have
�
�
�
�
� � � 87C����
�
� � � 8:9 L C�� � � 8:9 	5C ���
�
� � � 8 � � � ��� % 9 H�� �

��� 9 � � � 87C��
�
� � 8:9 L C � 8:9
	5C �
�
� � 8 �� �
� �>9 � � � � � � � S � 9 � �� � ��� � � ��� 9 � � � �

where we used the fact that
� � � � is an even function. Therefore, we can write the

� th marginal distribution as announced in (10).

Let us now compute the moments of � 9 , which will be used later. We use the
fact that this is a mixture of � Gaussians each of which has mean � and variance� �>9 � � 	 . The following lemma computes the higher order moments.

Lemma 5.4.

� 2 � � � � � 4 � � � � �
� J � F 	 L C � � �RS�J �

�@ 9BA5C ��� 9 � � � � for all � � � . (14)

Proof. We have:

� 2 � � � � � 4 � �
�

�@ 9BA5C
� �
L � � � �

� � ��� � � �>9 � � � � �� �
�

�@ 9BA5C
� J	 ��� 9 � � � � � � � � ��� L C L � ��� �

by Gradshteyn and Ryzhik [14, Formula 3.462.1], where � L C L � � � � is Whittaker’s
function as defined by Abramowitz and Stegun [1, pp.687]:

� L��OL CGF 	 ��� � ��� � � � � � � ! 	J � F 	 	5CGF 	 � � � S�J � �WS � � #
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Thus, putting � ��� � � S�J to the above equation yields:

� L C L � ��� � � ! 	J CGF 	 	 � F 	 � � � � � S�J � #
Therefore, we have

� 2 � � � � � 4 � �
�

�@ 9BA5C � �>9 � � �
� � � � � �J � F 	 � � � � � S�J �

� �
�

�@ 9BA5C � �>9 � � �
� � � �J � F 	 L C � � � S�J �

� � � � �
�7J � F 	 L C � � � S�J �

�@ 9 A5C � � 9 � � � �
as we desired.

5.3 The Best Sparsifying Basis

As for the BSB, there is no difference after all between the generalized spike
process and the simple spike process.

Theorem 5.5. The BSB with any � �32 ��� � 4 for the generalized spike process is the
standard basis if � � ����� � or 	�
 � ��� ����� .
Proof. Let us first consider the case � � ����� � 4 . Using Lemma 5.4, the cost func-
tion (1) can be rewritten as follows:

� � � ��� � � � �@
� A5C � 2 � � � � � 45�

� � � �
�7J � F 	 L C � � � S�J �

�@ 9 A5C
�@
� A5C � �>9 � � � #

Let us now define a matrix
�

� +� � � 9 � � . Then
�

� � 	�
 ����� ����� since

� L C � �

�� � �
� � � 9�� � � � � � 9 � �

and ��L C � 	�
 ������ � � . Therefore, this reduces to

� � � ��� � � � � � � �
�7J � F 	 L C � � � S�J �

�@ 9 A5C
�@
� A5C � �� 9 � � � � � � � � ��� ��� � � �

��� �

� � �
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where
�

� represents the simple spike process, and
� � � � ��� is the constant before

the double summations above, which is dependent only on � and � . This means
that for fixed � and � , searching for the � that minimizes the sparsity cost for the
generalized spike process is equivalent to searching for the

�

� that minimizes the
sparsity cost for the simple spike process. Thus, Theorem 1 in [3] (or Theorem 4.2
in this paper) asserts that the

�

� must be the identity matrix ! � or its permuted or
sign flipped versions. Suppose � 9 � � � 9 � . Then, � L C � � � � � 9 � � � ! � , which
implies that � � � ! � . If � � � 9 � is any permutation matrix, then � L C is just that
permutation matrix or its sign flipped version. Therefore, � is also a permutation
matrix or its sign flipped version.

Finally, let us consider the case �T� � . Then, any linear invertible transfor-
mation except the identity matrix or its permuted or sign-flipped versions clearly
increases the number of nonzero elements after the transformation. Therefore, the
BSB with � � � is also a permutation matrix or its sign flipped version.

This completes the proof of Theorem 5.5.

5.4 The LSDB/KMB among
� �����

As for the LSDB/KMB, we can see some differences from the simple spike pro-
cess.

Let us first consider the case of � � ������� . So far, we have been unable to
prove the following conjecture.

Conjecture 5.6. The LSDB among � ��� � is the standard basis.

The difficulty is the evaluation of the sum of the marginal entropies (2) for the
pdfs of the form (10). However, a major simplification occurs if we consider the
KMB instead of the LSDB, and we can prove the following:

Theorem 5.7. The KMB among ����� � is the standard basis.

Proof. Because
� 2 � � 4 � � ,

� 2 � 	� 4 � C
� � �9BA5C � 	9 � , and �
	 � � � �I� �

� � �9BA5C � 	9 � by
(14), the cost function in (4) becomes

��� � ��� � � � �
�

�@
� A5C

��
�@ 9BA5C � 	9 � � �

�

? �@ 9BA5C � 	9 � E
	��� # (15)

Note that this is true for any � � 	�
 ����������� . If we restrict our basis search to
the set ������� , another major simplification occurs because we have the following
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special relationship between � 9 � and the matrix element
� � 9 of � � ������� :

� L C � �

���� �
��� � 9�� � � % #

In other words,
� 9 � � � �� � � �

� 9 � � � � 9 � #
Therefore, we have

�@ 9BA5C � 	9 � �
�@ 9BA5C � 	9 � � � #

Inserting this into (15), we get the following simplified cost for � � ������� :

��� � ��� � � � � �
�

?
� �

�@ 9 A5C
�@
� A5C � 	9 � E #

This means that the KMB can be rewritten as follows:

��� ����
���/������ � � � � @ 9�� � � 	9 � # (16)

Let us note that the existence of the maximum is guaranteed because the set ����� �
is compact and the cost function � 9�� � � 	9 � is continuous.

Now, let us consider a matrix
� � � �R9 � � � � � 	9 � � . Then, from the orthonormal-

ity of columns and rows of � , this matrix
�

belongs to a set of doubly stochastic
matrices ������� . Since doubly stochastic matrices obtained by squaring the ele-
ments of ����� � consist of a proper subset of ����� � , we have

� ������ � � � � @ 9�� � � 	9 � � � ���� ��� � � � @ 9�� � � 	9 � #
Now, we prove that such

�
must be an identity matrix or its permuted version.

�/���� ��� � � � �@
� A5C

�@ 9 A5C � 	9 � �
�@
� A5C

? � ���� ���� 	 � � � A5C
�@ 9BA5C � 	9 � E

� �@
� A5C �� ���

20



where the first equality follows from the fact that maxima of the radius of the
sphere � 9 � 	9 � subject to � 9 �Q9 � � �

, �Q9 � � � occur only at the vertices of that
simplex, i.e., � � � ��� � � � , � � � ��#�#�# � � where � � � � is a permutation of � items.
That is, the column vectors of

�
must be the standard basis vectors. This implies

that the matrix � corresponding to
� �K! � or its permuted version must be either! � or its permuted and/or sign-flipped version.

5.5 The LSDB/KMB among
� � � ���	��
��

If we extend our search to this more general case, we have the following theorem.

Theorem 5.8. The KMB among 	�
 ����� ����� does not exist.

Proof. The set 	�
 � ������� � is not compact. Therefore, there is no guarantee that
the cost function ��� � ��� � � has a minimum value on this set. In fact, there is a
simple counterexample: let � � � � ��� � � � � L C � � � �
�
��� � � , where � is any nonzero
real scalar. Then ��� � ��� � �<� � � � 	 � � L 	 � � � J � tends to � � as � increases
to � .

As for the LSDB, we do not know whether the LSDB exists among 	�
������ � �
at this point, although we believe that the LSDB is the standard basis. The negative
result in the KMB does not necessarily imply the negative result in the LSDB.

6 An Application to the Ramp Process

Although the generalized spike process is a simple stochastic process, we have
the following important interpretation. Consider a stochastic process generating a
basis vector randomly selected from some fixed orthonormal basis and multiplied
by a scalar varying as the standard normal distribution at a time. Then, that basis
itself is simultaneously the BSB and the KMB among ������� . Theorems 5.5 and
5.7 claim that once we transform the data to the generalized spike process, we
cannot do any better than that, both in terms of sparsity and independence within
������� .

Along this line of thought, let us now consider the following stochastic process
as an application of the theorems in this paper:

� ��� � ��� � ����� � ��� �	� ��� � � � 2 ��� � � �
��� ������� � � ������ �Q���$2 ��� � � � (17)
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10 realizations of the ramp process

Figure 3: Ten realizations of the simple ramp process. The position of the discon-
tinuity is picked uniformly randomly from the interval 2 ��� � � . A realization of the
generalized ramp process can be obtained by multiplying a scalar picked from the
standard normal distribution to a realization of the simple ramp process.

where � � � � is the Heaviside step function, i.e., � ��� � � �
if � � � and � otherwise.

This is a generalized version of the ramp process of Yves Meyer [20, p. 19].
Figure 3 shows some realizations of the simple ramp process. Let us now consider
the discrete version of (17). Let our sampling points be � � � 	 � 	5C	 � , ��� ����#$#�# � � ��
. Suppose the discontinuity (at � � � ) does not happen at the exact sampling

points. Then all the realizations whose discontinuities are located anywhere in
the open interval � 	 � L C	 � � 	 � 	5C	 � � have the same discretized version. Therefore, any
realization now has the following form:

�( � � � ( � � ��� 8 ) � �$#�#�# �8 � L C	� � � % � 8�� � � � 	 � 	5C	 � � for � � ����#�#�# � � � � �	 � 	5C	 � � � � for � � � �$#�#�# ��� � � �
where � is picked uniformly randomly from the set . ��� � � �
�
��� ��� � = . (Note that
the index of the vector components starts with � for convenience). Then, we have
the following theorem:
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Theorem 6.1. The BSB pair of the discretized version of the generalized ramp
process (17), selected from 	�
 ����������� , are:

� L C� � � � � � J � � L CGF �

���������
� � � �
�
� �
�
� � � �� � � � �
�
� � � J
� . . . . . . . . .

...
...

...
. . .

� � � � � J
...

. . .
� � � � J

� �
�
� �
�
� � � ���

���������� � (18)

� � � � � � �GJ � � CGF � � ( )������ (<C
����� �
�
�

����� ( � L C�� # (19)

Proof. It is straightforward to show that the matrix without the factor � J ��� L CGF � in
(18) is the inverse of the matrix 2 ( ) � (�C1� �
�
� � ( � L C 4 . Then, the factors �GJ � �OL CGF � and
�GJ � � CGF � in (18) and (19), which are easily obtained, are necessary for these matri-
ces to be in 	�
 ������ � � . It is now clear that the analysis basis � L C� � � � transforms the
discretized version of the generalized ramp process to the generalized spike pro-
cess whose amplitudes obey ������� � J ��� L 	 F � � instead of � ����� � � . Once converted
to the generalized spike process, then from Theorem 5.5, we know that we cannot
do any better than the standard basis in terms of the sparsity cost (1). This implies
that the BSB among 	�
 ����������� is the basis pair (18) and (19).

In fact, this matrix is a difference operator (with DC measurement) so that it
detects the location of the discontinuity in each realization, while the synthesis
basis vectors (19) are the realizations of this process themselves modulo scalar
multiplications. Clearly, this matrix also transforms the discretized version of the
simple ramp process (i.e., with ��� �

in (17)) to the simple spike process whose
nonzero amplitude is � J ��� L CGF � . Therefore, if the realizations of the simple or gen-
eralized ramp process is fed to any software that is supposed to find a sparsifying
basis among 	�
 � ��������� , then that software should be able to find (18) and (19).
As a demonstration, we conducted a simple experiment using Cardoso’s JADE
(Joint Approximate Diagonalization of Eigenmatrices) algorithm [6] applied to
the discretized version of the simple ramp process.

The JADE algorithm was designed to find a basis minimizing the sum of the
squared fourth order cross-cumulants of the input data (i.e., essentially the KMB)
under the whitening condition,

� � � % � ! � . In fact, the best basis is searched
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Figure 4: The analysis BSB vs. the analysis basis obtained by JADE algorithm
( � � �WJ ). A row permutation and a global amplitude normalization were applied
to the JADE analysis basis to have a better correspondence with the BSB.

for within a subset of 
 
 ��� ��� � , which has a very special structure: every element
in this set is of the form � � � L C � where

�
is the whitening matrix of the

inputs � and � � ����� � . Note that this subset is neither � ��� � nor 	�
 � ��� ����� . For
our numerical experiment with JADE, we modified the code available from [5] so
that it does not remove the mean of the input dataset. (Otherwise, we could only
extract � � �

basis vectors.) In Figure 4, we compare the theoretical optimum, i.e.,
the analysis BSB (18), and the analysis basis obtained by JADE, which is almost
identical to the BSB (modulo permutations and sign flips).

Now, what happens if we restrict the basis search to the set � ��� � ? The basis
pair (18) and (19) are not orthogonal matrices. Therefore, we will never be able
to find the basis pair (18), (19) within ����� � . Consequently, even if we found the
BSB among ����� � , the ramp process would be less sparsified by that orthonormal
BSB than by (18). Yet, it is of interest to determine the BSB within ����� � due
to the numerical experiments of Cardoso and Donoho [7]. They apply the JADE
algorithm without imposing the whitening condition to the discretized version of
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the simple ramp process. This strategy is essentially equivalent to searching the
KMB within ����� � . The resulting KMB, which they call “jadelets” [7], is very
similar to Daubechies’s almost symmetric wavelet basis called “symmlets” [10,
Sec. 6.4]. For the generalized ramp process, the KMB among 	�
 � ��� ��� � may not
exist as Theorem 5.8 shows, because within 	�
 � ����� � � , the generalized ramp pro-
cess is equivalent to the generalized spike process via (18) and (19). On the other
hand, we cannot convert the generalized ramp process to the generalized spike
process within ����� � , although the KMB among ����� � exists for the generalized
spike process. These observations indicate that the orthonormality may be a key
to generate the wavelet-like multiscale basis for the generalized ramp process. At
this point, however, we do not fully understand why orthonormality has to be a
key for generating such a wavelet-like multiscale basis. The mystery of the or-
thonormality was intensified after we failed to reproduce their results using the
modified JADE algorithm. This issue needs to be investigated in the near future.

7 Discussion

Unlike the simple spike process, the BSB and the KMB (an alternative to the
LSDB) selects the standard basis if we restrict our basis search to the set ������� .
If we extend our basis search to 	�
 ����� ����� , then the BSB exists and is again the
standard basis whereas the KMB does not exist. Of course, if we extend the search
to nonlinear transformations, then it becomes a different story. We refer the reader
to our recent articles [18], [19], for the details of a nonlinear algorithm.

The results of this paper further support the conclusion of the previous work
[3]: dealing with the BSB is much simpler than the LSDB. To deal with statistical
dependency, we need to consider the probability law of the underlying process
(e.g., entropy or the marginal pdfs) explicitly. That is why we need to consider
the KMB instead of the LSDB to prove the theorems. Also in practice, given a
finite set of training data, it is a nontrivial task to reliably estimate the marginal
pdfs. Moreover, the LSDB unfortunately cannot tell how close it is to the true
statistical independence; it can only tell that it is the best one (i.e., the closest
one to the statistical independence) among the given set of possible bases. In
order to quantify the absolute statistical dependence, we need to estimate the true
high-dimensional entropy of the original process, � � � � , which is an extremely
difficult task in general. We would like to note, however, a recent attempt to
estimate the high-dimensional entropy of the process by Hero and Michel [15],
which uses the minimum spanning trees of the input data and does not require
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us to estimate the pdf of the process. We feel that this type of techniques will
help assessing the absolute statistical dependence of the process under the LSDB
coordinates. Another interesting observation is that the KMB is rather sensitive to
the orthonormality of the basis dictionary whereas the BSB is insensitive to that.
Our previous results on the simple spike process (e.g., Theorems 4.3, 4.6) also
suggest the sensitivity of the LSDB to the orthonormality of the basis dictionary.

On the other hand, the sparsity criterion neither requires estimation of the
marginal pdfs nor reveals the sensitivity to the orthonormality. Simply computing
the expected

� �
norms suffices. Moreover, we can even adapt the BSB for each re-

alization rather than for the whole realizations, which is impossible for the LSDB,
as we discussed in [3], [26].These observations, therefore, suggest that the pur-
suit of sparse representations should be encouraged rather than that of statistically
independent representations. This is also the viewpoint indicated by Donoho [11].

Finally, there are a few interesting generalizations of the spike processes,
which need to be addressed in the near future. We need to consider a stochas-
tic process that randomly throws in multiple spikes to a single realization. If we
throw in more and more spikes to one realization, the standard basis is getting
worse in terms of sparsity. Also, we can consider various rules to throw in mul-
tiple spikes. For example, for each realization, we can select the locations of the
spikes statistically independently. This is the simplest multiple spike process. Al-
ternatively, we can consider a certain dependence in choosing the locations of the
spikes. The ramp process of Yves Meyer ((17) with � � �

) represented in the
wavelet basis is such an example; each realization of the ramp process generates
a small number of nonzero wavelet coefficients around the location of the discon-
tinuity of that realization and across the scales. See [4], [13], [20], [26] for more
about the ramp process.

Except in very special circumstances, it would be extremely difficult to find
the BSB of a complicated stochastic process (e.g., natural scene images) that truly
converts its realizations to the spike process. More likely, a theoretically and com-
putationally feasible basis that sparsifies the realizations of a complicated process
well (e.g., curvelets for the natural scene images [12]) may generate expansion co-
efficients that may be viewed as an amplitude-varying multiple spike process. In
order to tackle this scenario, we certainly need to: 1) identify interesting, useful,
and simple enough specific stochastic processes; 2) develop the BSB adapted to
such specific processes; and 3) deepen our understanding of the amplitude-varying
multiple spike process.
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A Proof of Lemma 5.3

Proof. Let us consider the following system of linear equations:

� � 9�� � � � � � � � � � 9 �� �
where � � � � � ��� C � �
�
����� � L C ��� � 	5C � �
�
� ��� � � % � � � L C , �>� � ��#$#�# ��� . Using Cramer’s
rule (e.g., [16, pp.21]), we have, for � � � ��#�#�# � � � � � � � � ��#�#$# � � ,

�
� � �� � �

����� �
� 9�� � � ���� � � � 9 �C ����� �
�
�

�����
� � 9 �� L C �����

� � 9 �� �����
� � 9 �� 	5C ����� �
�
� �����

� � 9 �
� �� � �� � � � �

� � L � � L C � � 9�� � �
� � 9�� � ���� �� � � � �

� � L � � L C � 9 ��S � � � � 9
	 �
� 9 � S � � � � 9
	 �� � � 9 �

� 9 � �
where � � � follows from the �O� ��� �7� � � � column permutations to move

� � 9 �� located
at the � th column to the � th column of � � 9�� � � , and � � � follows from the definition
of the cofactor. Hence,

� 9 � � � � � � �9 
 % � � � 9�� � � � L C � � 9 �� � � 9 � � � � � � �9 
 % � � � �
� � 9 � � �

� 9 � @ � �A � � 9 � � 9 �
� �

�>9 �
�@
� A5C � 9 � � 9 �� �

�>9 � �� � �/#
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This completes the proof of Lemma 5.3.
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