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ABSTRACT

We propose a new method to analyze and represent stochastic data
recorded on a domain of general shape by computing the eigen-
functions of Laplacian defined over there (also called “geomet-
ric harmonics”) and expanding the data into these eigenfunctions.
In essence, what our Laplacian eigenfunctions do for data ona
general domain is roughly equivalent to what the Fourier cosine
basis functions do for data on a rectangular domain. Insteadof
directly solving the Laplacian eigenvalue problem on such ado-
main (which can be quite complicated and costly), we find the
integral operator commuting with the Laplacian and then diago-
nalize that operator. We then show that our method is better suited
for small sample data than the Karhunen-Loève transform. In fact,
our Laplacian eigenfunctions depend only on the shape of thedo-
main, not the statistics (e.g., covariance) of the data. We also dis-
cuss possible approaches to reduce the computational burden of
the eigenfunction computation.

1. INTRODUCTION

Most of the currently available signal and image processingtools
were designed and developed for signals and images that are sam-
pled on regular/uniform grids and supported on a rectangular or cu-
bic domain. For example, the conventional Fourier analysisusing
complex exponentials, sines and/or cosines, have been the crown
jewels for such data. On the other hand, there is an increasing
desire to analyze data sampled on irregular grids (e.g., meteoro-
logical data sampled at weather stations) or objects definedon a
domain of general shape (e.g., cells in histological images). Un-
fortunately, the conventional tools cannot efficiently handle such
data and objects. In this paper, we propose a new technique that
can analyze spatial frequency information of such data and objects,
filter the frequency contents if one wishes, and synthesize the data
and objects at one’s disposal. This is a direct generalization of
the conventional Fourier analysis. Our new tool explicitlyincor-
porates geometric configuration of the domain or spatial location
of the sensors. This is quite a contrast to the popular Karhunen-
Loève Transform (KLT) or Principal Component Analysis (PCA),
which only implicitly incorporate such geometric information via
covariance. One of the goals of this paper is to demonstrate our
tool’s superiority over the KLT/PCA for such datasets.
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and NSF DMS-0410406. We thank Prof. Raphy Coifman (Yale), Prof.
David Donoho (Stanford) and Prof. John Hunter (UC Davis) forthe fruitful
discussions and their warm encouragement.

Let us consider a bounded domain of general shapeΩ ⊂ R
d,

where typicallyd = 2 or 3. Let us also assume that the bound-
ary Γ = ∂Ω consists ofC2 curves (although one may be able
to weaken this assumption by more subtle argument). We want
to analyze the spatial frequency informationinsideof the object
without the annoying interference by the Gibbs phenomenon due
to the boundary of the objectΓ = ∂Ω. We also want to represent
the object compactly for analysis, interpretation, discrimination,
and so on, by expanding it into a basis that generates fast decaying
expansion coefficients.

There are at least two approaches to this problem. One is to
extend a general shape object smoothly to its outside, cut itby a
bounding rectangle, and use the conventional tools to analyze the
extended object on this rectangle. Using the idea of the potential
theory and elliptic partial differential equations (PDEs), we devel-
oped the so-called generalized polyharmonic local trigonometric
transform (GPHLTT) to do this extension and subsequent analysis
[1]. Although this approach can analyze the spatial frequency con-
tents of the object without being bothered by the boundary and the
Gibbs phenomenon, it is still not completely clear whether this is
really practical for compact representation of the objectsbecause
we need to store the Fourier coefficients of the bounding rectangle
that is larger than the object itself.

Instead, this paper proposes the second approach: find a gen-
uine orthonormal basis tailored to the domain of general shape.
To do so, we use the eigenfunctions of the Laplacian defined on
the domain. After all, complex exponentials, sines, and cosines
are the eigenfunctions of the Laplacian on the rectangular domain
with specific boundary conditions, i.e., the periodic, the Dirich-
let, and the Neumann boundary conditions, respectively. Also, our
favorite special functions, e.g., spherical harmonics, Bessel func-
tions, and prolate spheroidal wave functions, are again thepart
of the eigenfunctions of the Laplacian (via separation of variables)
for the spherical, cylindrical, and spheroidal domains, respectively.

2. PROPERTIES OF THE EIGENFUNCTIONS OF
LAPLACIANS AND THEIR COMPUTATION

In this section, we briefly outline the properties of the eigenfunc-
tions of the Laplacian on a general domain, and how to compute
them.

Consider an operatorT = −∆ = − ∂2

∂ x1
2
− · · · − ∂2

∂ xd
2

in L2(Ω) with appropriateboundary condition, which we will be
more specific later. The direct analysis ofT is difficult due to the
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unboundedness, etc., which are well known and often coveredin
any elementary functional analysis course (see e.g., [2]).A much
better approach is to analyze its inverseT−1, which is the so-called
Green’s operator because it is acompactandself-adjointoperator
and consequently we can have a good grip of its spectral proper-
ties. In fact,T−1 has discrete spectra (i.e., a countable number of
eigenvalues with finite multiplicity) except0 spectrum. Moreover,
thanks to this spectral property,T has a complete orthonormal ba-
sis ofL2(Ω), and this allows us to doeigenfunction expansionin
L2(Ω) [3, 4].

The key difficulty is to compute such eigenfunctions. Directly
solving the Helmholtz equation (or eigenvalue problem) on agen-
eral domain, i.e., finding non-trivial solutions of−∆φ = λφ that
satisfyBφ = 0 whereB is an operator specifying the boundary
condition, is quite tough. Unfortunately, computing the Green’s
function for a generalΩ satisfying the usual boundary condition
such as the Dirichlet or the Neumann condition is also very diffi-
cult.

2.1. Integral operators commuting with Laplacian

Our idea to avoid those difficulties is to find an integral operator
commutingwith the Laplacian without imposing the strict bound-
ary condition a priori. Then, from the following well-knownthe-
orem (see e.g., [5, pp.63–67]), we know that the eigenfunctions of
the Laplacian is the same as those of the integral operator, which
is easier to deal with.

Theorem 2.1. Let K andT be operators acting onL2(Ω). Sup-
poseK andT commute and one of them has an eigenvalue with
finite multiplicity. Then,K and T share the same eigenfunction
corresponding to that eigenvalue, i.e., there exists a function φ ∈
L2(Ω) such thatKφ = µφ andTφ = λφ.

Here is the key step in our development. Let us replace the
Green’s functionG(x, y) (the kernel of the Green’s operator) by
the fundamental solution of the Laplacianor theharmonic kernel:

Φ(x, y) =

8

>

<

>

:

− 1
2
|x − y| if d = 1,

− 1
2π

log |x − y| if d = 2,
|x−y|2−d

(d−2)ωd

if d > 2,

(1)

whereωd is the surface area of the unit sphere inR
d. The price

we pay for this replacement is to have rather implicit, non-local
boundary condition (which we will discuss shortly) although we
do not have to deal with this condition directly. LetK be the
integral operator with its kernelΦ(x, y):

Kf(x)
∆
=

Z

Ω

Φ(x, y)f(y) dy, f ∈ L2(Ω). (2)

We now have the following theorem (The proof can be found in
[6]).

Theorem 2.2. The integral operatorK commutes with the Lapla-
cianT = −∆ with the followingnon-localboundary condition:
Z

Γ

Φ(x, y)
∂φ

∂νy

(y) ds(y) = −1

2
φ(x)+ pv

Z

Γ

∂Φ(x, y)

∂νy

φ(y) ds(y),

for all x ∈ Γ, where∂/∂νy is the normal derivative operator at
the pointy ∈ Γ and ds(y) is the surface measure onΓ.

Therefore, we also have the following theorem (see e.g., [4,
Sec. 4.5]).

Theorem 2.3. The integral operatorK is compact and self-adjoint
on L2(Ω). Thus, the kernelΦ(x, y) has the following eigenfunc-
tion expansion (in the sense of mean convergence):

Φ(x, y) ∼
∞

X

j=1

µjφj(x)φj(y),

and{φj}j∈N forms an orthonormal basis ofL2(Ω).

We will use the basis{φj}j∈N to expand and represent the
data supported onΩ. Note that to compute these eigenfunctions in
practice, we discretize the eigenvalue problem of the integral op-
erator,Kφ = µφ on Ω, convert it to the matrix-based eigenvalue
problem, and then compute its eigenvectors. In this paper, we use
the conventional technique to compute the eigenvalues and eigen-
vectors of such a matrix, i.e., a slow algorithm, i.e.,O(N3), where
N is the number of samples in the discretization. However, we
can considerably speed up the eigenvector computation, i.e., up to
O(N) using the wavelets or the Fast Multipole Method, which we
will briefly discuss in Section 5.

Remark 2.4. These eigenfunctions of the Laplacian are closely
related to the so-calledGeometric Harmonicsproposed by Coif-
man and Lafon [7]. After all, our eigenfunctions are a specific ex-
ample of the geometric harmonics with a specific kernel (1). How-
ever, there are some important differences between their objectives
and methods with those of ours. First of all, their emphasis is the
analysis of theextrinsicgeometric information, i.e., how toextend
a given function to the outside of the domain for various machine
learning and statistical regression purposes. Also, theiranalysis
focuses on thebandlimitedkernel:Jd/2(2πB|x−y|)/|x−y|d/2,
whereJd/2(·) is the Bessel function of the first kind of orderd/2
andB > 0 is the bandwidth. Due to its oscillatory nature, the
integral operator with this kernel is more difficult to deal with. On
the contrary, our emphasis is to use them for theintrinsic anal-
ysis of the data defined on the domain. We rather prefer to use
the harmonic kernelΦ(x, y) (1) because it is easier to deal with
mathematically and more amenable to fast algorithms such asthe
wavelets and Fast Multipole Method; see Section 5.

For a variety of applications, we hope to prove the following
conjecture:

Conjecture 2.5. For f ∈ C2(Ω)////////// defined onC2-domainΩ, the C1(Ω)
expansion coefficients〈f, φk〉 w.r.t. the Laplacian eigenbasis de-
cay asO(k−2). Thus, theN -term approximation error measured
in theL2-norm, i.e.,‖f − PN

k=1 〈f, φk〉φk‖L2(Ω) should have a
decay rate ofO(N−1.5).

Essentially, this conjecture says that what our Laplacian eigen-
functions do for data on a general domain with smooth boundary is
essentially equivalent to what the DCT basis functions do for data
on a rectangular domain.

3. EXAMPLES

In this section, we will show a few analytic examples to contrast
our eigenfunctions with the conventional basis functions to deepen
our understanding of those eigenfunction-based representation.
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3.1. 1D Example

Consider the unit intervalΩ = (0, 1). Then, our integral operator
K with the kernelΦ(x, y) = −|x−y|/2 gives rise to the following
eigenvalue problem:

−φ′′ = λφ, x ∈ (0, 1);

φ(0) + φ(1) = −φ′(0) = φ′(1). (3)

The kernelΦ(x, y) is ofToeplitzform, and consequently, the eigen-
vectors must have even and odd symmetry [8], which is indeed the
case. In this case, we can derive the explicit solution as follows.

• λ0 ≈ −5.756915 is a solution of the secular equation:

2 + 2 cosh
√
−λ0 =

√
−λ0 sinh

√
−λ0,

and the corresponding eigenfunction is:

φ0(x) = A0

“

cosh
√
−λ0 x + cosh

√
−λ0 (1 − x)

”

,

whereA0 ≈ 0.2157973 is a normalizing constant.

• λ2m−1 = (2m−1)2π2, m = 1, 2, . . ., and the correspond-
ing eigenfunction is:

φ2m−1(x) =
√

2 cos(2m − 1)πx;

These are normal cosines with odd modes.

• λ2m, m = 1, 2, . . ., is a solution of the secular equation:

tan

√
λ2m

2
= − 2√

λ2m

,

and the corresponding eigenfunction is:

φ2m(x) = A2m cos
√

λ2m(x − 1/2),

whereA2m =
√

2
n

1 + sin
√

λ2m√
λ2m

o−1/2

is a normalization
constant.

Figure 1 shows these Laplacian eigenfunctions of the lowestfive
frequencies.

Remark 3.1. It is very instructive now to compare our eigen-
functions and their derivation with the more conventional tech The
Laplacian eigenfunctions with the Dirichlet boundary condition on
the unit interval satisfy−φ′′ = λφ, φ(0) = φ(1) = 0, and they
aresines. The Green’s function in this case is:

GD(x, y) = min(x, y) − xy.

Those with the Neumann boundary condition, i.e.,φ′(0) = φ′(1) =
0, arecosines, and its Green’s function is:

GN (x, y) = −max(x, y) +
1

2
(x2 + y2) +

1

3
.

One can imagine that it is rather a difficult task to find these Green’s
functions for a general domain in higher dimensions. Incidentally,
when we discretize and approximate the Green’s operator with the
gridpoint sampling and the trapezoidal rule, then the eigenvectors
are the so-called DST-I/DCT-I basis vectors. Here, one can also
see that the asymmetry of the discretized matrix corresponds to
the special weighting at the two end points of the basis vectors for
them to be orthonormal [9]. When we discretize it with midpoint
sampling, we obtain DST-II/DCT-II basis vectors as the eigenvec-
tors, which do not require any special weighting of the end points.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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1

1.5

x

φ k

Fig. 1. First five eigenfunctions of the Laplacian on the unit inter-
val with the non-local boundary condition (3). The eigenfunctions
with odd symmetry are in fact usual cosine functions. Those with
even symmetry are cosh function or cosines with non-integerperi-
odicity.

3.2. 2D Example

Let us now consider the unit diskΩ in R
2. Then, our integral

operatorK with the kernelΦ(x, y) = − 1
2π

log |x − y| gives rise
to the following eigenvalue problem:

−∆φ = λφ, in Ω;

∂φ

∂ν

˛

˛

˛

Γ
=

∂φ

∂r

˛

˛

˛

Γ
=

∂φ

∂θ

˛

˛

˛

Γ
+

.....

− ∂Hφ

∂θ

˛

˛

˛

Γ
,

whereH is the Hilbert transform for the circle, i.e.,

Hf(θ)
∆
=

1

2π
pv

Z π

−π

f(η) cot

„

θ − η

2

«

dη θ ∈ [−π, π].

Figure 2 shows those Laplacian eigenfunctions of the lowest25
frequencies (or the smallest 25 eigenvaluesλ’s). They are similar
yet different from the usual Laplacian eigenfunctions thatsatisfy
the Dirichlet condition at the circumference because our eigen-
functions do not vanish at the circumference. These eigenfunctions
are in fact “modes” of the vibration of the domain if the domain is
interpreted as a “drum”.

4. COMPARISON WITH KLT/PCA

In this section, we shall discuss the use of the Laplacian eigenfunc-
tions for analysis of a stochastic process that lives on a general do-
main and generates its realizations over there, and comparethem
with KLT/PCA. As we mentioned in Introduction, KLT/PCA im-
plicitly incorporate geometric information of the measurement (or
pixel) location through the autocorrelation or covariancematrices
whereas our Laplacian eigenfunctions use explicit geometric infor-
mation through the harmonic kernelΦ(x, y) (1). Moreover, it is
important to point out that our Laplacian eigenfunctions are com-
puted once and for all once the geometry of the domain is fixed,
and they areindependentof the statistics of the stochastic process
and do not require any autocorrelation or covariance information
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Fig. 2. First 25 Laplacian eigenfunctions on the unit disk.

Fig. 3. Three samples of the eye data.

of the process. This means that we can compute these eigenfunc-
tions even if we have only one realization of the stochastic pro-
cess. On the other hand, KLT/PCA requires a good number of
realizations for stably estimating the autocorrelation orcovariance
matrices.

The dataset we use is the so-called“Rogue’s Gallery” dataset
that we obtained through the courtesy of Prof. Larry Sirovich at
Mount Sinai School of Medicine. See [10, 11] for more about this
dataset. Out of 143 face images in the dataset, 72 are used as a
training dataset from which we compute the autocorrelationma-
trix for KLT/PCA. The remaining 71 faces are used as test dataset
to check the validity of KLT/PCA. We cut out the left and right
eye region as our domainΩ from the face images as shown in
Figure 3. Therefore in this case,Ω consists of two separate com-
ponents. Figure 4 shows the first 25 KL basis vectors. Note that
all the KL basis vectors are simply the linear combination ofthe
eyes in the training dataset. Figure 5 shows the Laplacian eigen-
vectors that have the lowest 25 frequencies. These basis vectors
are completely independent from the statistics of the eye training
dataset; they only depend on the shape of the domain. Note also
that they reveal the even and odd symmetry similar to cosinesand
sine functions in the conventional Fourier analysis. Figures 6 and 7
show the energy distribution of the data over the first 50 KLT/PCA
coordinates and that over the Laplacian eigenvectors possessing
the lowest 50 spatial frequencies, respectively. As we can observe
from these figures, KLT/PCA push more energy of the data into the
top few coordinates. However, in terms of interpretabilityof the
coordinates, the Laplacian eigenvectors are more intuitive. For ex-
ample, we can see that the there are several coordinates withhigh
energy in the Laplacian eigenvector coordinates, e.g., thecoordi-

Fig. 4. Top 25 KL basis vectors for the eye region.

Fig. 5. The Laplacian eigenvectors with the lowest 25 spatial fre-
quencies for the eye region.

nates #7, and # 13. If we check what these coordinates are in Fig-
ure 5, the coordinate #7 correlates well with the pupil in theeyes
while the coordinate #13 indicates how wide the eyes are open.
We also demonstrate that the high dependence of the KLT/PCA
on the training dataset in Figures 8 and 9. Figure 8 compares the
energy averaged over the training dataset as a function of coor-
dinates. From this figure, one can observe a few things. First,
the energy of the KLT/PCA coordinates drops suddenly at the co-
ordinate #73. This is because the training dataset consistsof 72
samples (eyes), and consequently the rank of the autocorrelation
matrix is only 72. Thus, the KLT/PCA coordinates beyond #72
are useless. Secondly, the KLT/PCA coordinates in the training
dataset is nicely sorted in the energy decreasing order as expected.
However, for the test dataset, as shown in Figure 9, its behavior is
different. The energy of the KLT/PCA coordinates are not ordered
as in the training dataset anymore, and its decay is slower than
that of the Laplacian eigenvector coordinates. In fact, because the
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Fig. 6. Energy distribution of the eye data over the first 50 PCA
coordinates.

Laplacian eigenfunctions do not depend on the statistics ofthe data
at all, their behavior in the test dataset is essentially thesame as in
the training dataset.

5. STRATEGIES FOR FAST COMPUTATION

To be more practical for a large image domain, it is importantto
fully utilize the fast algorithms for computing our Laplacian eigen-
functions. There are at least two possibilities, both of which we are
currently actively investigating. Both of them use the special prop-
erties of the harmonic kernel (1). Unlike the autocorrelation ma-
trix of the eye data we examined in the previous section, which is
not really structured except that it is symmetric, the kernel matrix
displayed in Figure 11, is essentially of block Toeplitz form and the
entries decays logarithmically away from the diagonal. Therefore,
one possibility is to use the “Alpert wavelets” [12] tosparsifythis
matrix, and then use the eigenvalue solver for sparse matrices. An-
other possibility is to use the Krylov subspace method (suchas the
Lanczos iteration) [13] with the celebrated Fast MultipoleMethod
(FMM) [14] to speed up the matrix-vector multiplications inthe
Krylov subspace procedure. This is possible because our integral
operator (2) with the harmonic kernel (1) is the one for comput-
ing the electrostatic potential field caused by the point charges (an
input vector to which the operator acts).

Moreover, if the domain consists of multiple and separated
components (e.g., left eye region and the right eye region),then
one can reduce the original problem into a set of smaller problems.
For example, in Figure 11, one can clearly see the two subdomains,
i.e., the left eye region and the right eye region. One can cutthe
connection (or communication) between these two regions when
computing the kernel matrix with (1). Such disconnection opera-
tion sets the entries of the lower-left and upper-right blocks of the
matrix displayed in Figure 11 to completely zero and decouples
the original matrix into two smaller matrices of half size.
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Fig. 7. Energy distribution of the eye data over the Laplacian
eigenfunctions of the 50 lowest frequencies.

6. CONCLUSION

We have demonstrated that our Laplacian eigenfunctions maybe
useful forobject-orientedimage analysis and synthesis in which
the user can define the image domain freely and explicitly with
the help of interactive device (e.g., pointer/mouse) or some au-
tomatic segmentation algorithm. We also demonstrated thatour
method leads to unconventional non-local boundary condition for
the Laplacian eigenvalue problem, but that we do not need to com-
pute the Green’s function explicitly for this boundary condition.
Our experiments and analogy with the analytic examples suggest
that we should be able to get fast-decaying expansion coefficients
if the images are inC2(Ω) and the boundary ofΩ is smooth.
In essence, our method can be viewed as a replacement of DCT
for the general shape domain. This means that our eigenfunctions
have a variety of potential applications e.g., interpolation, extrap-
olation, local feature computation, and perhaps compression. We
also expect that higher order Laplacians, i.e., polyharmonic eigen-
functions can be computed easily with our approach by simply
replacing the harmonic kernel by the polyharmonic kernel. Here
again we do not need to worry about the boundary condition. Fi-
nally, we would like to note that our method has a connection to
many interesting mathematics such as spectral geometry, Toeplitz
operators, PDEs, potential theory, radial basis functions, almost-
periodic functions.
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