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ABSTRACT

We propose a new method to analyze and represent stochaistic d
recorded on a domain of general shape by computing the eigen
functions of Laplacian defined over there (also called “gebm
ric harmonics”) and expanding the data into these eigeifums:

In essence, what our Laplacian eigenfunctions do for data on
general domain is roughly equivalent to what the Fourieingos
basis functions do for data on a rectangular domain. Instéad
directly solving the Laplacian eigenvalue problem on sudoa
main (which can be quite complicated and costly), we find the
integral operator commuting with the Laplacian and thergalia
nalize that operator. We then show that our method is baitteyds

for small sample data than the Karhunen-Loeve transfonrfadt,

our Laplacian eigenfunctions depend only on the shape addhe
main, not the statistics (e.g., covariance) of the data. M@ dis-
cuss possible approaches to reduce the computationalrbofde
the eigenfunction computation.

1. INTRODUCTION

Most of the currently available signal and image procestdois
were designed and developed for signals and images theamre s
pled on regular/uniform grids and supported on a rectanguleu-
bic domain. For example, the conventional Fourier analysisg
complex exponentials, sines and/or cosines, have beerrdia c
jewels for such data. On the other hand, there is an incrgasin
desire to analyze data sampled on irregular grids (e.g.eonet
logical data sampled at weather stations) or objects defineal
domain of general shape (e.g., cells in histological impges-
fortunately, the conventional tools cannot efficiently dl@nsuch
data and objects. In this paper, we propose a new techniatie th
can analyze spatial frequency information of such data ajetts,
filter the frequency contents if one wishes, and synthebieelata
and objects at one’s disposal. This is a direct generabizatf
the conventional Fourier analysis. Our new tool explicitigor-
porates geometric configuration of the domain or spatiatioo

of the sensors. This is quite a contrast to the popular Kamnhun
Loeve Transform (KLT) or Principal Component Analysis @®C
which only implicitly incorporate such geometric inforrat via
covariance. One of the goals of this paper is to demonstiate o
tool’s superiority over the KLT/PCA for such datasets.
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David Donoho (Stanford) and Prof. John Hunter (UC Davis}tierfruitful
discussions and their warm encouragement.

Let us consider a bounded domain of general sttage R?,
where typicallyd = 2 or 3. Let us also assume that the bound-
aryT' = 00 consists ofC? curves (although one may be able
to weaken this assumption by more subtle argument). We want
to analyze the spatial frequency informatimside of the object
without the annoying interference by the Gibbs phenomenan d
to the boundary of the objett = 9. We also want to represent
the object compactly for analysis, interpretation, disénation,
and so on, by expanding it into a basis that generates faayihec
expansion coefficients.

There are at least two approaches to this problem. One is to
extend a general shape object smoothly to its outside, cyt &
bounding rectangle, and use the conventional tools to aedhe
extended object on this rectangle. Using the idea of thengiate
theory and elliptic partial differential equations (PDEsE devel-
oped the so-called generalized polyharmonic local trigostoic
transform (GPHLTT) to do this extension and subsequentyaizal
[1]. Although this approach can analyze the spatial frequeon-
tents of the object without being bothered by the boundadythe
Gibbs phenomenon, it is still not completely clear whetlés ts
really practical for compact representation of the objbeisause
we need to store the Fourier coefficients of the boundingrege
that is larger than the object itself.

Instead, this paper proposes the second approach: find a gen-
uine orthonormal basis tailored to the domain of generapsha
To do so, we use the eigenfunctions of the Laplacian defined on
the domain. After all, complex exponentials, sines, andness
are the eigenfunctions of the Laplacian on the rectanguarain
with specific boundary conditions, i.e., the periodic, thieidd-
let, and the Neumann boundary conditions, respectivelyo Adur
favorite special functions, e.g., spherical harmonicssséfunc-
tions, and prolate spheroidal wave functions, are agairptre
of the eigenfunctions of the Laplacian (via separation ofdes)
for the spherical, cylindrical, and spheroidal domainspeztively.

2. PROPERTIESOF THE EIGENFUNCTIONS OF
LAPLACIANSAND THEIR COMPUTATION

In this section, we briefly outline the properties of the efgac-
tions of the Laplacian on a general domain, and how to compute
them.

02 02
O0x12 0xq?
in L?(Q) with appropriateboundary condition, which we will be
more specific later. The direct analysisBfis difficult due to the

Consider an operatdl’l = —A = —
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unboundedness, etc., which are well known and often covered Therefore, we also have the following theorem (see e.g., [4,
any elementary functional analysis course (see e.g., f2thuch Sec. 4.5)]).

better approach is to analyze its invef$e', which is the so-called

Green’s operator because it is@mpactandself-adjointoperator ~ Theorem 2.3. The integral operatofs is compact and self-adjoint
and consequently we can have a good grip of its spectral prope ONn L*(9). Thus, the kerneb(z, y) has the following eigenfunc-
ties. In fact,7~* has discrete spectra (i.e., a countable number of tion expansion (in the sense of mean convergence):

eigenvalues with finite multiplicity) exceptspectrum. Moreover,

thanks to this spectral properf§,has a complete orthonormal ba- &(x ~ - (2D
sis of L?(Q2), and this allows us to deigenfunction expansicn (@.9) ; #i95(@)95(v).
L*(Q) [3, 4].

The key difficulty is to compute such eigenfunctions. Dilect  and{¢,} ;e forms an orthonormal basis di* ().
solving the Helmholtz equation (or eigenvalue problem) ge-
eral domain, i.e., finding non-trivial solutions efA¢ = \¢ that We will use the basig¢;};en to expand and represent the
satisfy B¢ = 0 where B is an operator specifying the boundary data supported of2. Note that to compute these eigenfunctions in
condition, is quite tough. Unfortunately, computing thee@m's practice, we discretize the eigenvalue problem of the nalegp-
function for a generaf) satisfying the usual boundary condition erator, K¢ = u¢ on, convert it to the matrix-based eigenvalue
such as the Dirichlet or the Neumann condition is also veffi di problem, and then compute its eigenvectors. In this papeyse
cult. the conventional technique to compute the eigenvalues iged-e
vectors of such a matrix, i.e., a slow algorithm, i@(N?), where
N is the number of samples in the discretization. However, we
can considerably speed up the eigenvector computationypéo
Our idea to avoid those difficulties is to find an integral @per O(N) using the wavelets or the Fast Multipole Method, which we
commutingwith the Laplacian without imposing the strict bound-  will briefly discuss in Section 5.
ary condition a priori. Then, from the following well-knovthe-

2.1. Integral operators commuting with Laplacian

orem (see e.g., [5, pp.63-67]), we know that the eigenfanstof Remark 2.4. These eigenfunctions of the Laplacian are closely

the Laplacian is the same as those of the integral operatohw  related to the so-calleGeometric Harmonicgroposed by Coif-

is easier to deal with. man and Lafon [7]. After all, our eigenfunctions are a spe@k-
ample of the geometric harmonics with a specific kernel (DwH

Theorem 2.1. Let K andT be operators acting o (£2). Sup- ever, there are some important differences between thgicibkes

poseK and7T commute and one of them has an eigenvalue with and methods with those of ours. First of all, their emphasthe
finite multiplicity. Then,K and T share the same eigenfunction analysis of thextrinsicgeometric information, i.e., how &xtend
corresponding to that eigenvalue, i.e., there exists atfanep ¢ a given function to the outside of the domain for various niraeh
L?(Q) such thatK ¢ = u¢ andT'¢ = A\¢. learning and statistical regression purposes. Also, tuedlysis
focuses on theandlimitedkernel: J; 5 (27 Blz —y|) /|z —y|*/?,
Here is the key step in our development. Let us replace the whereJ,,»(-) is the Bessel function of the first kind of ordér2
Green’s functionG(z, y) (the kernel of the Green’s operator) by and B > 0 is the bandwidth. Due to its oscillatory nature, the

thefundamental solution of the Laplaciam theharmonic kernel integral operator with this kernel is more difficult to dedttw On
the contrary, our emphasis is to use them for ititeénsic anal-
—Lz —y| ifd=1, ysis of the data defined on the domain. We rather prefer to use
®(x,y) = _% log | —y| ifd=2, (1) the harmonic kerne®b(x, y) (1) because it is easier to deal with
lz—y|2—¢ ifd>2 mathematically and more amenable to fast algorithms sutheas
(d=2)wq ' wavelets and Fast Multipole Method; see Section 5.
wherewy is the surface area of the unit sphereRifi. The price For a variety of applications, we hope to prove the following
we pay for this replacement is to have rather implicit, nocal conjecture:

boundary condition (which we will discuss shortly) althbuge _ _
do not have to deal with this condition directly. Lé&f be the Conjecture 2.5. For f ¢ (I#jfH) defined onC-domaing, the C*(Q)

integral operator with its kerné(z, y): expansion coefficient§f, ¢x) w.r.t. the Laplacian eigenbasis de-
cay asO(k~?2). Thus, theN-term approximation error measured
Kf((l?) A / CP(CB,y)f(y) dy, fe€ L2(Q) 2) in theLQ-norm, |E,Hf - Zgzl <fa ¢k> ¢k||L2(Q) should have a
Q decay rate oD(N~15).
We now have the following theorem (The proof can be found in Essentially, this conjecture says that what our Lapladigere
[6]). functions do for data on a general domain with smooth boynidar

essentially equivalent to what the DCT basis functions daé&ta

Theorem 2.2. The integral operato” commutes with the Lapla- on a rectangular domain.

cianT = — A with the followingnon-localboundary condition:
0 1 0P (x, 3. EXAMPLES
[ o) 22w asty) =~ 3o+ pv [ ZHEL o) as(y),
r Oy 2 r  Ouy

In this section, we will show a few analytic examples to castr
for all z € T", whered/dv, is the normal derivative operator at  our eigenfunctions with the conventional basis functieddepen
the pointy € T" and ds(y) is the surface measure dh our understanding of those eigenfunction-based repratiemt



3.1. 1D Example

Consider the unit intervdl =

K withthe kerneld(z, y) =

(0,1). Then, our integral operator
—|z—y|/2 gives rise to the following

eigenvalue problem:
—¢" =X¢, z€(0,1);
¢(0) + ¢(1) = —¢'(0) = ¢'(1). @)

The kernekb(z, y) is of Toeplitzform, and consequently, the eigen-
vectors must have even and odd symmetry [8], which is indeed t
case. In this case, we can derive the explicit solution dsvisl

e )\o ~ —5.756915 is a solution of the secular equation:
2 + 2cosh v/ —Xo = vV —Agsinh vV — Ao,
and the corresponding eigenfunction is:

do(x) = Ao (cosh V—=Xoz + coshv—X\o (1 — x)) ,

whereAq =~ 0.2157973 is a normalizing constant.

e Aoy = (2m—1)*7%,m = 1,2,..., and the correspond-
ing eigenfunction is:

Go2m—1(x) = V2cos(2m — 1)mz;
These are normal cosines with odd modes.
e )\, m = 1,2, ..., isasolution of the secular equation:
vV A2m 2
tan = — R
2 V >\2m

and the corresponding eigenfunction is:

dam () = Aom cos vV Aam (x — 1/2),

. —1/2
_ sin VAo,
WhereAQm — \/§ {1 + ﬁ}
constant.

Figure 1 shows these Laplacian eigenfunctions of the lofineest
frequencies.

Remark 3.1. It is very instructive now to compare our eigen-
functions and their derivation with the more conventioeaht The
Laplacian eigenfunctions with the Dirichlet boundary cibiod on
the unit interval satisfy-¢" = A\¢, $(0) = #(1) = 0, and they
aresines The Green’s function in this case is:

is a normalization

Gp(r,y) = min(z,y) — zy.

Those with the Neumann boundary condition, igé(0) =
0, arecosinesand its Green’s function is:

¢'(1) =

Gn(w,y) = —max(z,y) + 3 (o +97) + 3.
One canimagine that it is rather a difficult task to find thesee@’s
functions for a general domain in higher dimensions. Incidky,
when we discretize and approximate the Green’s operatorttt
gridpoint sampling and the trapezoidal rule, then the eigetors
are the so-called DST-I/DCT-I basis vectors. Here, one ¢sm a
see that the asymmetry of the discretized matrix correspénd
the special weighting at the two end points of the basis vedto
them to be orthonormal [9]. When we discretize it with midgoi
sampling, we obtain DST-II/DCT-II basis vectors as the eige-
tors, which do not require any special weighting of the enidtso
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Fig. 1. First five eigenfunctions of the Laplacian on the unit inter
val with the non-local boundary condition (3). The eigerdiions
with odd symmetry are in fact usual cosine functions. Thogk w
even symmetry are cosh function or cosines with non-intpger
odicity.

3.2. 2D Example

Let us now consider the unit disR in R2. Then, our integral
operatorK with the kernel®(z,y) = — 5= log |z — y| gives rise
to the following eigenvalue problem:

~A¢ =\,
a6

el = ol T

whereX is the Hilbert transform for the C|rcle, i.e.,

Hf ézi /77rf cot(

Figure 2 shows those Laplacian eigenfunctions of the lo@Bst
frequencies (or the smallest 25 eigenvald&y. They are similar
yet different from the usual Laplacian eigenfunctions thetisfy
the Dirichlet condition at the circumference because ogeri
functions do not vanish at the circumference. These eigetifins
are in fact “modes” of the vibration of the domain if the domai
interpreted as a “drum”.

in Q;

7

)dn 0 € [—m, .

4. COMPARISON WITH KLT/PCA

In this section, we shall discuss the use of the Laplaciaendigc-
tions for analysis of a stochastic process that lives on argédo-
main and generates its realizations over there, and contipaine
with KLT/PCA. As we mentioned in Introduction, KLT/PCA im-
plicitly incorporate geometric information of the measuaent (or
pixel) location through the autocorrelation or covariant&rices
whereas our Laplacian eigenfunctions use explicit gedmefor-
mation through the harmonic kernélx, y) (1). Moreover, it is
important to point out that our Laplacian eigenfunctions esm-
puted once and for all once the geometry of the domain is fixed,
and they aréndependenbf the statistics of the stochastic process
and do not require any autocorrelation or covariance inéion
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Fig. 2. First 25 Laplacian eigenfunctions on the unit disk. Fig. 4. Top 25 KL basis vectors for the eye region.

Fig. 3. Three samples of the eye data.

of the process. This means that we can compute these eigenfun
tions even if we have only one realization of the stochastic p
cess. On the other hand, KLT/PCA requires a good number of
realizations for stably estimating the autocorrelatioo@rariance
matrices.

The dataset we use is the so-caltBbgue’s Gallery” dataset
that we obtained through the courtesy of Prof. Larry Sirbwat
Mount Sinai School of Medicine. See [10, 11] for more aboig th
dataset. Out of 143 face images in the dataset, 72 are used as
training dataset from which we compute the autocorrelatiza
trix for KLT/PCA. The remaining 71 faces are used as testssta
to check the validity of KLT/PCA. We cut out the left and right
eye region as our domaift from the face images as shown in
Figure 3. Therefore in this cas@, consists of two separate com- nates #7, and # 13. If we check what these coordinates arg-n Fi
ponents. Figure 4 shows the first 25 KL basis vectors. Note tha ure 5, the coordinate #7 correlates well with the pupil ind¢les
all the KL basis vectors are simply the linear combinatiorthef while the coordinate #13 indicates how wide the eyes are.open
eyes in the training dataset. Figure 5 shows the Laplacigenei We also demonstrate that the high dependence of the KLT/PCA
vectors that have the lowest 25 frequencies. These badisrsec on the training dataset in Figures 8 and 9. Figure 8 comphees t
are completely independent from the statistics of the egieitrg energy averaged over the training dataset as a function af co
dataset; they only depend on the shape of the domain. Naie als dinates. From this figure, one can observe a few things. ,First
that they reveal the even and odd symmetry similar to cosinds  the energy of the KLT/PCA coordinates drops suddenly at the ¢
sine functions in the conventional Fourier analysis. Fégs and 7 ordinate #73. This is because the training dataset corwista
show the energy distribution of the data over the first 50 KIGA samples (eyes), and consequently the rank of the autoatiorel
coordinates and that over the Laplacian eigenvectors psisge matrix is only 72. Thus, the KLT/PCA coordinates beyond #72
the lowest 50 spatial frequencies, respectively. As we tasewe are useless. Secondly, the KLT/PCA coordinates in theibgin
from these figures, KLT/PCA push more energy of the datahlot dataset is nicely sorted in the energy decreasing ordenestd.

f’—‘ig. 5. The Laplacian eigenvectors with the lowest 25 spatial fre-
quencies for the eye region.

top few coordinates. However, in terms of interpretabitifythe However, for the test dataset, as shown in Figure 9, its hehiv
coordinates, the Laplacian eigenvectors are more inéuitfor ex- different. The energy of the KLT/PCA coordinates are hoeoed
ample, we can see that the there are several coordinatesigfth ~ as in the training dataset anymore, and its decay is sloveer th
energy in the Laplacian eigenvector coordinates, e.g.cooedi- that of the Laplacian eigenvector coordinates. In factabse the
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Fig. 6. Energy distribution of the eye data over the first 50 PCA Fig. 7. Energy distribution of the eye data over the Laplacian

coordinates.

Laplacian eigenfunctions do not depend on the statistittssofiata
at all, their behavior in the test dataset is essentiallystree as in
the training dataset.

5. STRATEGIESFOR FAST COMPUTATION

To be more practical for a large image domain, it is important
fully utilize the fast algorithms for computing our Laplacieigen-
functions. There are at least two possibilities, both ofclihvire are
currently actively investigating. Both of them use the salgarop-
erties of the harmonic kernel (1). Unlike the autocorrelatna-
trix of the eye data we examined in the previous section, wlsc
not really structured except that it is symmetric, the kematrix
displayed in Figure 11, is essentially of block Toeplitzficeind the
entries decays logarithmically away from the diagonal.réfae,
one possibility is to use the “Alpert wavelets” [12] $parsifythis
matrix, and then use the eigenvalue solver for sparse reatrin-
other possibility is to use the Krylov subspace method (sisctine
Lanczos iteration) [13] with the celebrated Fast Multipelethod
(FMM) [14] to speed up the matrix-vector multiplications time
Krylov subspace procedure. This is possible because cegrit
operator (2) with the harmonic kernel (1) is the one for cothpu
ing the electrostatic potential field caused by the pointgés (an
input vector to which the operator acts).

Moreover, if the domain consists of multiple and separated

components (e.g., left eye region and the right eye regitweh
one can reduce the original problem into a set of smallerlproé.
For example, in Figure 11, one can clearly see the two subithisma
i.e., the left eye region and the right eye region. One cartmut
connection (or communication) between these two regionsnwh
computing the kernel matrix with (1). Such disconnectioerap
tion sets the entries of the lower-left and upper-right kéoof the
matrix displayed in Figure 11 to completely zero and decesipl
the original matrix into two smaller matrices of half size.

eigenfunctions of the 50 lowest frequencies.

6. CONCLUSION

We have demonstrated that our Laplacian eigenfunctionsbeay
useful forobject-orientedmage analysis and synthesis in which
the user can define the image domain freely and explicitly wit
the help of interactive device (e.g., pointer/mouse) or es@u-
tomatic segmentation algorithm. We also demonstratedabat
method leads to unconventional non-local boundary camdfior
the Laplacian eigenvalue problem, but that we do not needrte ¢
pute the Green’s function explicitly for this boundary ciiuh.
Our experiments and analogy with the analytic examplesestgg
that we should be able to get fast-decaying expansion ciesffec

if the images are iC?(Q) and the boundary of) is smooth.

In essence, our method can be viewed as a replacement of DCT
for the general shape domain. This means that our eigemndmsct
have a variety of potential applications e.g., interpolatiextrap-
olation, local feature computation, and perhaps comprasiVe
also expect that higher order Laplacians, i.e., polyhaimeigen-
functions can be computed easily with our approach by simply
replacing the harmonic kernel by the polyharmonic kernebreH
again we do not need to worry about the boundary condition. Fi
nally, we would like to note that our method has a connectmn t
many interesting mathematics such as spectral geomegp|ito
operators, PDEs, potential theory, radial basis functiahmost-
periodic functions.
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