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Abstract

We describe a new transform that generates a dictionary of bases for handling data on a

graph by combining recursive partitioning of the graph and the Laplacian eigenvectors of each

subgraph. Similar to the wavelet packet and local cosine dictionaries for regularly sampled

signals, this dictionary of bases on the graph allows one to select an orthonormal basis that

is most suitable to one’s task at hand using a best-basis type algorithm. We also describe a

few related transforms including a version of the Haar wavelet transform on a graph, each of

which may be useful in its own right.
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1. Introduction

For signal processing on regular domains, wavelets
have both a well-developed theory and a proven track
record of success. Accordingly, efforts have been made to
extend classical wavelets and wavelet techniques to the
ever-expanding realm of data on graphs. Such datasets
include structural/morphological data (e.g., tracings of
neuronal dendrites), traffic and transportation data, and
social networks. The motivation for developing these so-
called “second generation wavelets” is simple: to deter-
mine whether they afford the same advantages offered
by classical wavelets for approximation/compression, de-
noising, and classification in this more general setting.
However, a key difficulty in extending wavelets to

graphs is that we lack the notion of “frequency” in gen-
eral, i.e., we cannot apply the Littlewood-Paley theory
directly. Therefore, a common strategy has been to de-
velop wavelet-like transforms rather than true general-
izations of classical wavelets; see e.g., [1–9]. In this ar-
ticle, we propose a new redundant transform for data
on graphs, along with two variations, and then show the
basis vectors computed on a particular graph.

2. Definitions and notation

Let G be an undirected connected graph, let V (G) and
E(G) denote its vertices and edges, respectively, and let
N := |V (G)|. Let W (G) = (Wij) ∈ RN×N be the sym-
metric weight matrix of G, where Wij denotes the edge
weight between vertices i and j. In an unweighted (i.e.,
combinatorial) graph, Wij is either 0 or 1, depending on
whether there is an edge between the two vertices. By
contrast, in a weighted graph, Wij indicates the proxim-
ity of vertices i, j or affinity of information measured at
i, j. Let f = (f(1), . . . , f(N))T ∈ RN be a data vector,
where f(i) is the value measured at the vertex i of the
graph. Let 1 := (1, . . . , 1)T ∈ RN .
A standard technique for working with data on a

graph is to utilize the eigenvectors of the Laplacian ma-

trix of the graph, which is defined as L(G) :=D(G) −
W (G), where D(G) = diag(di) is the (diagonal) degree
matrix with di :=

∑
j Wij . Alternatively, we may use the

random-walk normalized Laplacian, which is defined as
Lrw(G) :=D(G)−1L(G) = I−D(G)−1W (G). The eigen-
vectors of both L(G) and Lrw(G) form a basis of RN and
can thus be used for representation, approximation, and
analysis of data on G. The simple path graph PN con-
sisting of N vertices provides an important insight for
the development of our new transform. As pointed out in
[10], the eigenvectors of L(PN ) are nothing but the Dis-
crete Cosine Transform (DCT) Type II, which are used
in the JPEG image compression standard. In general, it
is difficult to know the essential support of the Lapla-
cian eigenvectors a priori, which strongly depends on the
structure of the graph: sometimes they are completely
global, like those of PN , while the other times they may
be quite localized, as shown in [10]. Hence, it is worth
controlling the support of the eigenvectors explicitly.

3. Hierarchical graph Laplacian eigen

transform (HGLET)

We now introduce our Hierarchical Graph Laplacian
Eigen Transform (HGLET). First, we compute the com-
plete set of eigenvectors of L(G): φ0

0,0,φ
0
0,1, . . . ,φ

0
0,N−1

with corresponding eigenvalues 0 = λ0
0,0 < λ0

0,1 ≤ · · · ≤
λ0
0,N−1. As this is a multiscale transform, we adopt the

notation (λj
k,l,φ

j
k,l) for the eigenpairs, with j denoting

the level (or depth) of the partition, k denoting the re-
gion number on level j, and l indexing the eigenvectors
for region k on level j. Then we partition the graph into
two disjoint subgraphs (or regions) according to the sign
of the Fiedler vector, φ0

0,1. Partitioning the graph in this
manner is supported by the theory discussed in [11]. Fur-
thermore, the Fiedler vector of L(G) (or Lrw(G)) is the
solution of the relaxed RatioCut (or Normalized Cut)
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minimization problem; see e.g., [12] and the references
therein.
Let G1

0 and G1
1 be the two disjoint regions of G

obtained by this partitioning process; note V (G) =
V (G1

0) ∪ V (G1
1) but E(G) ) E(G1

0) ∪E(G1
1). From here

we repeat the process recursively. The whole process can
be summarized as follows:
Algorithm 1 (HGLET)

Step 0: Set G0
0 = G and N0

0 = N = |V (G)|; initialize
K0 = 1 and K1 = 0; set j = 0 and k = 0.

Step 1: Construct the Laplacian matrix L(Gj
k).

Step 2: Compute its eigenvectors, {φj
k,l}

Nj

k
−1

l=0 .

Step 3: If N j
k > 1, then partition Gj

k by the

sign of the Fiedler vector φj
k,1 into Gj+1

Kj+1 and

Gj+1
Kj+1+1; set N

j+1
Kj+1 = |V (Gj+1

Kj+1 )|, and N j+1
Kj+1+1 =

|V (Gj+1
Kj+1+1)|, and Kj+1 = Kj+1 + 2 ; else set

Gj+1
Kj+1 = Gj

k, N j+1
Kj+1 = |V (Gj

k)|, and Kj+1 =
Kj+1 + 1.

Step 4: If k+1 < Kj, then set k = k+1 and go back
to Step 1; else go to Step 5.

Step 5: If |V (Gj+1
k )| = 1 for k = 0, . . . ,Kj+1−1, then

finish; else set j = j + 1, k = 0, Kj+1 = 0, and go
back to Step 1.

Several remarks on this algorithm are in order.

• L(Gj
k) in Step 1 above can be replaced by Lrw(G

j
k),

which may result in better partitions; see [12].

• Similar to dictionaries of orthonormal bases such
as wavelet packet or local cosine dictionaries for
regularly-sampled signals, our HGLET yields a
highly overcomplete basis set for data measured on
the vertices V (G) (after extending each eigenvector
φ

j
k,l from its original support V (Gj

k) to V (G) by

zeros). There are in fact more than 2⌊N/2⌋ possible
bases choosable from this overcomplete set, which
allow us to select a basis most suitable for the task
at hand via the best-basis type algorithms origi-
nally developed for regularly-sampled signals; see
e.g., [13].

• The HGLET eigenvectors {φj
k,l}

Nj

k
−1

l=0 for each fixed

(j, k) form an orthonormal basis for RNj

k if one uses
the usual Laplacian matrix L(Gj

k) in Step 1. On
the other hand, if one uses the random-walk ver-
sion Lrw(G

j
k), the resulting eigenvectors are neither

mutually orthogonal nor normalized to have unit
ℓ2-norm in general. To generate a set of orthonor-

mal vectors, one only needs to multiply
√
D(Gj

k) to

each such eigenvector; see also [12].

• The actual HGLET transform of a given data vector
f ∈ RN can be done either on the fly in Algorithm 1
(i.e., immediately after the orthonormal eigenvec-
tors are computed at each j and k) by taking inner

products 〈f |V (Gj

k
),φ

j
k,l〉, where f |V (Gj

k
) ∈ RNj

k is

the portion of f supported on V (Gj
k); or one can

do the same after Algorithm 1 is completed.
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Fig. 1. The HGLET eigenvectors computed on the Minnesota
road map (N = 2636). The random-walk Laplacians were used
for this set of experiments with the inverse physical (Euclidean)
distances between vertices as edge weights. (a)-(c) show the
eigenvectors at different scales covering the densely connected
region. (d) shows the eigenfunctions with higher oscillations
whose support is the same as that of (c).

• The computational cost of generating the whole set
of eigenvectors in the HGLET is clearly O(N3).

• For an unweighted path graph PN , the HGLET ex-

actly yields a dictionary of the block DCT-II bases;
in other words, the HGLET can be viewed as a true
generalization of the block DCT-II dictionary.

• Finally, it is easy to see that, over all levels of the
partition tree, this scheme yields a total of N − 1
subgraphs (including the initial graphG) containing
two or more vertices; see also Section 4.

Figure 1 shows some HGLET eigenvectors on the Min-
nesota road network.

4. Variations of HGLET

In this section, we will discuss two variants of the
HGLET that are not a member of the HGLET dictio-
nary strictly speaking, i.e., not directly choosable using
the best-basis type algorithms.

4.1 Generalized Haar transform

The first one, which we call the Generalized Haar

Transform (GHT), provides a complete orthonormal ba-
sis (i.e., no redundancy) of RN comprised of one piece-
wise constant vector from each subgraph Gj

k containing
two or more vertices, along with the constant (i.e., DC)
vector on the entire graph G. This variation proceeds as
Algorithm 1 except Step 2, which is modified as follows:

Step 2: Compute only the Fiedler vector, φj
k,1; define

ψ
j
k(i) :=

{
1 if φj

k,1(i) ≥ 0;

−rjk if φj
k,1(i) < 0,

i = 1, . . . , N j
k ,
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where rjk :=
|{m ∈ [1, N j

k ] |φ
j
k,1(m) ≥ 0}|

|{m ∈ [1, N j
k ] |φ

j
k,1(m) < 0}|

; then set

ψ
j
k = ψj

k/‖ψ
j
k‖.

This modified Algorithm 1 yields a GHT orthonormal

basis: ϕ0
0 ∪ {{ψj

k}K
j−1

k=0 }Jj=0, where ϕ
0
0 = 1/

√
N is the

constant vector on G, the ψj
k vectors are extended by

zeros to V (G0
0)\V (Gj

k), and J is the deepest level of the
partitioning (note that J may be larger than log2 N in
general, unlike the regularly-sampled signals). We note
that in this GHT, each of the N − 1 subgraphs Gj

k with

|V (Gj
k)| ≥ 2 contributes a single ψj

k basis vector to the
GHT basis, with the initial graph G also contributing
ϕ0

0. This is quite a contrast to the general HGLET dic-
tionary case because not all the subgraphs generated in
Algorithm 1 contribute their eigenvectors to a basis cho-
sen by the best-basis type algorithm from this dictionary.
The computational cost for generating this GHT is

O(N log2 N), which should be contrasted with the full
HGLET case. This speed up is mainly due to the fact
that we only need to compute one eigenvector in Step 2
of the GHT algorithm.

4.2 Orthonormalized hierarchical Fiedler transform

Each eigenvector φj
k,l in the HGLET dictionary is a

discretized version of a function that is “continuous”
within its support V (Gj

k). On the other hand, the basis
vectors in the GHT are all binary-valued (i.e., “discon-
tinuous”) except the DC vectorϕ0

0. Hence it is natural to
consider a smoother version of the GHT. Here, we pro-
pose the Orthonormalized Hierarchical Fiedler Trans-

form (OHFT), which proceeds similarly to the GHT
with the following modification and addition:

Step 2: Compute only the Fiedler vector φj
k,1; then set

ψ
j
k :=φ

j
k,1.

Step 6: Form ψ̃
j

k by extending each ψj
k (except j =

0) by zeros to V (G0
0) \ V (Gj

k); define ϕ
0
0 :=1/

√
N ;

form a matrix Ψ :=
[
ϕ0

0

∣∣∣ψ0
0

∣∣∣ ψ̃
1

0

∣∣∣ · · ·
∣∣∣ ψ̃

J

KJ−1

]
∈

RN×N where J is the deepest level of the partitions;
finally, orthonormalize the columns of Ψ using the
QR factorization.

Step 6 is necessary to form an orthonormal basis since

the extended vectors ψ̃
j

k are not mutually orthogonal in
general.
We note that the OHFT provides a single orthonor-

mal basis for RN , and its basis vectors are continuous
within their original support. However, due to the or-
thogonalization procedure in Step 6, the support of each
basis vector is extended beyond its original support by
nonzero values, and moreover, this extension by orthog-
onalization may not provide continuous extension to the
outside of the original support. We are currently investi-
gating whether we can provide smoother and continuous
extensions while keeping the orthogonality.
The cost of computing the OHFT is O(N3) due to the

orthogonalization procedure in Step 6.
Figure 2 compares a GHT basis vector and the corre-

sponding OHFT basis vector.
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Fig. 2. Comparison between one of the GHT basis vectors and
the corresponding OHFT basis vector on the MN road map. We
again used the random-walk Laplacian, similar to Fig. 1.

5. Discussion

The purpose of this article has been to introduce our
newly developed HGLET method and its variations.
In this section, let us first briefly discuss the relation

of our work to the previous works. First of all, the hi-
erarchical partitioning of a graph using the Fiedler vec-
tors is a natural idea and obviously not new. For exam-
ple, Simon [14] discussed such a recursive bi-partitioning
of a graph. However, his aim was to create hierarchical
(bi)partitions of unstructured grids for the purpose of
parallel processing, and he was concerned about neither
basis constructions nor data analysis.
There are several constructions of wavelet-like trans-

forms on a graph. Diffusion wavelets [1] are based on the
bottom-up approach using the diffusion/random walk on
a graph, which have been generalized to wavelet packets
in [2]. By contrast, our HGLET and its variants utilize
the top-down approach, and can be viewed as a simple
generalization of the classical block DCT-II dictionary.
The spectral graph wavelet transform (SGWT) [7]

directly applies the Littlewood-Paley theory by view-
ing the eigenvalues and eigenvectors of the global graph
Laplacian as the “frequencies” and “Fourier modes,” re-
spectively. However, for a general graph, the eigenvalue
indices cannot be viewed as natural frequencies of the
graph, and moreover some eigenvectors of L(G) may
be localized [10]. In other words, one cannot explicitly
control localization properties of such SGWT wavelets,
which may lead to unexpected problems.
Jansen et al. developed a wavelet-like transform for

signals on graphs by generalizing the classical lift-
ing scheme [5]. Since their method proceeds vertex-by-
vertex, a discrete (e.g., dyadic) notion of scale no longer
exists, which is quite a contrast to our HGLETs.
Rustamov recently constructed two different wavelet-

like transforms on graphs. The first one [8] is based
upon the average-interpolation wavelets and also uses
a top-down partitioning, like our HGLETs. However, it
is fundamentally different from ours due to the average-
interpolation procedure. The second one [9] used the lift-
ing scheme whose update and prediction operators are
adaptively learned from a given set of signals so that
the resulting wavelet coefficients of a signal belonging
to the same signal class become sparse. The aim of this
adapted wavelet construction is the same as that of the
best basis selected from the full HGLET dictionary, but
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these two constructions are quite different.
We also acknowledge that the GHT is similar to those

found in [3,4,6]. The differences are that [3] and [4] utilize
bottom-up clustering methods whereas our transforms
use a top-down partitioning; [6] assumes that the parti-
tion tree has already been computed and is provided as
an input.
Finally, after our work for this article was completed,

we noticed the article by Szlam et al. [15], which pro-
vided the closest idea to ours. In that article, the au-
thors proposed a top-down approach using the Laplacian
eigenfunctions satisfying the Neumann boundary condi-
tion, briefly mentioned the construction of the Haar ba-
sis, and then proposed a generalization of the local co-
sine dictionary to manifolds and graphs. The construc-
tion part of their Haar basis seems to be identical to
ours, although they did not describe their algorithm in
detail; in particular, they never explicitly mentioned the
conversion of the Fiedler vectors (or the Neumann eigen-
functions in their terminology) to their Haar basis vec-
tors. As for their construction of the local cosine dic-
tionary on manifolds and graphs, they transported the
folding/unfolding operators on the regular lattice to the
general manifold and graph setting. Considering our ex-
periences of the local cosine dictionary on the regular
lattice [16], such generalized local cosines may not work
well in practice. In fact, such folding/unfolding oper-
ations may be unnecessary or even harmful for appli-
cations. Moreover, they did not notice that the usual
graph Laplacian eigenvectors are the true generalization
of DCT Type II.
Much work remains to be done in order to fine tune

these methods and apply them to cutting-edge problems
ranging from data approximation and denoising to clas-
sification and regression on graphs. Beyond such applica-
tions, we would like to mention two possible extensions
of the HGLET. The first one is to develop the Gener-

alized Haar-Walsh Transform, which is a generalization
of the Haar-Walsh dictionary to the graph setting, and
which includes the GHT as just one possible basis. First,
we perform a full partitioning of the graph using Fiedler
vectors so that all regions at the finest level consist of
a single vertex. The basis vectors at this level are sim-
ply Kronecker deltas. From here we perform average and
difference operations on the basis vectors corresponding
to each pair of children regions to generate the basis vec-
tors of their parent region, and we iterate this process
from bottom to top until we reach the root level j = 0.
This process yields an overcomplete basis set that is a
generalization of the Haar-Walsh dictionary.
The second extension is to adopt a more flexible graph

partitioning scheme. In our HGLET in this article, we
have focused only on using Fiedler vectors to split each
subgraph into two smaller subgraphs. However, note
that only our OHFT has a crucial dependence on the
Fiedler vector, whereas the other transforms simply use
the Fiedler vector as a means for partitioning the graph.
Each of our transforms could just as easily utilize a dif-
ferent partitioning scheme. Furthermore, it is entirely
permissible within the general structure of our trans-
forms to allow G and subsequent subgraphs to be split

into an arbitrary non-fixed number of subgraphs; ideally
this number of partitions of a given subgraph should be
the same as the number of clusters in that subgraph if
such clusters are clearly formed. Since graph partition-
ing is a highly evolving field, it is important that our
transforms be independent of the particular choice of
hierarchical graph partitioning scheme.
We are currently investigating the above extensions

and examining the performance of our HGLETs for var-
ious applications including simultaneous segmentation
and compression of regularly-sampled signals. We hope
to report results of more extensive and challenging ex-
periments in our future article.

Acknowledgments

This research was partially supported by the ONR
grant N00014-12-1-0177 and the NDSEG fellowship.

References

[1] R. R. Coifman and M. Maggioni, Diffusion wavelets, Appl.
Comput. Harm. Anal., 21 (2006), 53–94.

[2] J. C. Bremer, R. R. Coifman, M. Maggioni, and A. Szlam,
Diffusion wavelet packets, Appl. Comput. Harm. Anal., 21

(2006), 95–112.
[3] F. Murtagh, The Haar wavelet transform of a dendrogram,

J. Classification, 24 (2007), 3–32.
[4] A. Lee, B. Nadler and L. Wasserman, Treelets—an adaptive

multi-scale basis for sparse unordered data, Ann. Appl. Stat.,
2 (2008), 435–471.

[5] M. Jansen, G. P. Nason, and B. W. Silverman, Multiscale
methods for data on graphs and irregular multidimensional
situations, J. R. Stat. Soc. Ser. B, 71 (2008), 97–125.

[6] M. Gavish, B. Nadler and R. Coifman, Multiscale wavelets
on trees, graphs and high dimensional data: Theory and ap-
plications to semi supervised learning, in: Proc. 27th Intern.
Conf. Machine Learning, J. Fürnkranz et al. eds., pp. 367–
374, Omnipress, Haifa, 2010.

[7] D. K. Hammond, P. Vandergheynst, and R. Gribonval,
Wavelets on graphs via spectral graph theory, Appl. Com-
put. Harm. Anal., 30 (2011), 129–150.

[8] R. M. Rustamov, Average interpolating wavelets on point
clouds and graphs, arXiv:1110.2227v1 [math.FA], 2011.

[9] R. M. Rustamov and L. Guibas, Wavelets on graphs via deep
learning, in: Advances in Neural Information Processing Sys-
tems, Vol. 26, 2013, to appear.

[10] Y. Nakatsukasa, N. Saito, and E. Woei, Mysteries around

the graph Laplacian eigenvalue 4, Linear Algebra Appl., 438
(2013) 3231–3246.

[11] M. Fiedler, A property of eigenvectors of nonnegative
symmetric matrices and its application to graph theory,
Czechoslovak Math. J., 25 (1975), 619–633.

[12] U. von Luxburg, A tutorial on spectral clustering, Stat. Com-
put., 17 (2007), 395–416.

[13] N. Saito, Local feature extraction and its applications using
a library of bases, in Topics in Analysis and Its Applications:
Selected Theses, R. Coifman ed., pp. 269–451, World Scien-
tific Pub. Co., Singapore, 2000.

[14] H. D. Simon, Partitioning of unstructured problems for par-
allel processing, Comput. Sys. Eng., 2 (1991), 135–148.

[15] A. D. Szlam, M. Maggioni, R. R. Coifman, and J. C. Bremer,
Jr., Diffusion-driven multiscale analysis on manifolds and
graphs: top-down and bottom-up constructions, in: Wavelets
XI, M. Papadakis et al. eds., Proc. SPIE 5914, Paper #
59141D, 2005.

[16] N. Saito and J.-F. Remy, The polyharmonic local sine trans-
form: A new tool for local image analysis and synthesis with-
out edge effect, Appl. Comput. Harm. Anal., 20 (2006), 41–
73.

– 4 –


