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Abstract

Time–frequency representations of a signal can provide a useful means for obtaining parameter estim
signals consisting of various chirps. We demonstrate the utility of including edge information extracted from
time–frequency representations when using a Hough transformation to perform this task. In particular, w
that using the edge information: (1) reduces the variance of the chirp parameter estimates in the case w
chirp signal has a single component; and (2) reduces the amount of spurious cross talk results when the s
multiple chirp components. We further demonstrate a variation of our technique that detects the onset and
of individual chirp components. We propose this technique as a fast preprocessing step for other algorith
as maximum likelihood estimation which can provide very accurate parameter estimates.
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1. Introduction

There is a long tradition of using sonogram-based tools such as the short time Fourier tra
and the Wigner–Ville distribution to obtain a graph of the phase of a signal’s components [3,4,1
The use of time–frequency representations such as the local trigonometric, wavelet packet, and
Gabor transforms has drawn further attention to the problem of estimating the instantaneous fre
of a signal or its components [7]. In this paper, we are interested in those problems where th
parametric model for the phase of the signal’s components and where one would like to obtain es
of these parameters. Many useful techniques may be found in the literature [1,4,13,17].

The technique we propose is the use of a Hough transformation to process the edges which
tracted from the signal’s local Fourier representation. We make use of a variant of the Hough tra
called the randomized Hough transform (RHT) [20] to randomly sample the well-resolved edges
time–frequency image and to convert these edge groups to parameter estimates. The edge inf
does carry substantial uncertainty, but we show that its use: (1) reduces the variance of the ch
meter estimates in the case where the chirp signal has a single component; and (2) reduces th
of spurious cross talk results when the signal has multiple chirp components. We also propose a
algorithm that uses the uncertainty of the edge information to group edges with consistent orient

We do not attempt a direct comparison of our methods with the very large number of othe
known techniques, but instead have decided to provide a means for readers to decide for them
our methods are useful for their specific problems by making available the codes required to reprod
figures in this paper. The codes make use of the Donoho’s WaveLab software and can be found
Saito’s web page http://www.math.ucdavis.edu/~saito/software/. We hope that following WaveLa
producible research’ philosophy [2] aids the progress of this long line of research results recorde
literature.

2. Problem formulation

We consider discretized signals of the form

f (tl) =
K∑

k=1

e2πi N
2 pk(tl ) + nl, (1)

whereK is the number of chirps in the signal, thetl is anN point uniform discretization of[0,1], and
nl are samples from a Gaussian distribution. We shall modify the variance of this Gaussian distr
later to control the signal-to-noise ratio for our problem. The functionspk we shall consider belong t
one of the following classes:

• Linear chirps

pk(t) = αkt + tan(βk)
t2

2
; (2)

• Logarithmic chirps [8]

pk(t) = (αk − βk)t + βk log(t + 1); (3)

http://www.math.ucdavis.edu/~saito/software/
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• Sinusoidal chirps [6,11]

pk(t) = −αk

2πβk

cos
(
2π(βkt − γk)

)
. (4)

We shall assume for simplicity that we know a priori to which class the signal’s components b
(e.g., we know that we are listening for helicopters or bats, etc.). We shall remove the implicit as
tion that the chirp components’ duration is over all of[0,1] when we present Algorithm II. Our initia
objective is to determine the number of componentsK and to estimate theP parameters describing ea
chirp.

3. Time–frequency representation

Our time–frequency representation shall be constructed using a
√

N local Fourier basis. This loca
Fourier basis is constructed from the

√
N local sine and cosine bases (see [5] for details): for 1� j �

√
N

and 1� k <
√

N define

Cjk(t) = b(
√

Nt − j)cos

(
(2k − 1)

π

2
(
√

Nt − j)

)
,

Sjk(t) = b(
√

Nt − j)sin

(
(2k − 1)

π

2
(
√

Nt − j)

)
,

where

b(x) =
{

cos((π/2)t), if |t | < 1,
0, otherwise.

We use these collections and the fast algorithms associated with them to compute a
√

N local Fourier
representation for our signal,

λj,±k =
∫

f (t)
(
Cjk(t) ± iSjk(t)

)
dt. (5)

The time–frequency representation used here is an image with pixel dimensions 2
√

N by
√

N . To the
pixel with index(j, k), we shall assign intensity|λj,k| and a position in the rectangle[−1,1]×[0,1] given
by (2j −1,2k −1)/

√
N . For the various classes of chirps in Eqs. (2) through (4), it is easy to see th

large coefficients off will appear in the image along ridges which follow the curvesξ = p′
k(t). Though

one could apply the variants of the RHT we present below to other time–frequency representatio
as the Wigner–Ville distribution, we prefer the rather coarse local Fourier representation so that

(1) we can handle signals with many samples (e.g., several thousand),
(2) denoised versions of our signal can be obtained from subsamples of the pixels, and
(3) we have square pixels in our time–frequency representation.

Other choices would be quite appropriate given additional prior information concerning, for examp
frequency band, dynamic range, or duration of the signal components.

In Fig. 1, the time–frequency representation of signals consisting of the linear chirpsα1 = 0.1, β1 =
0.4 andα2 = −0.1, β2 = 0.5 is shown forN = 256.
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Fig. 1. Time–frequency image derived from the local Fourier representation of a signal having two chirp compone
parametersα1 = −0.1, β1 = π/4, α2 = 0.4, β2 = −π/4, andN = 256.

4. Edge detection and uncertainty

The problem of parameter estimation for our signal has thus been converted to the problem of d
the parabolas, lines, or other curvesξ = p′

k(t) present in the time–frequency representation.
To detect the edges in our image, we employ the matched filter technique of Nevatia and Babu [

the suggested modifications of this technique due to Lyvers and Mitchell [14]. The procedure is ba
as follows: at each pixel in the image, compute averages of the pixel values in various direction
the maximum of these responses and call the corresponding direction theedge angle; call the value of
this maximum response theedge magnitude. In this paper we chose to employ matched filters for
following 8 angles:π/2,±3π/8,±π/4,±π/8,0. In Fig. 2 we show edge angle and magnitude ima
associated with the time–frequency image displayed in Fig. 1.

We prefer these matched filtering techniques to gradient methods [15] due to the fact that g
methods are primarily used for detecting step edges (usually the more prevalent type in typical im
whereas we are interested in detecting line edges. The use of step edge information leads to d
of two parameter curves per signal component—one for each side of the ridge of large local
coordinates. Note that due to the size of our image, all of the edge detection computations costN

computations.
The edge data comes in the form(ti, ξi, θi), where(ti, ξi) is the position of the edge in the time

frequency image and tan(θi) is the slope of the edge. If this edge falls along the ridge of large coeffici
this data will approximately satisfy the equations

ξi = p′(ti), (6)

tan(θ) = p′′(ti). (7)

The uncertainty in the positions of the detected edges can arise due to noise in the recording o
larities in the chirps themselves. Further discussion of the limitations of Eqs. (6) and (7) can be
in [9]. The primary uncertainty in the edge angle information arises from the quantization of the
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Fig. 2. The edge orientation and magnitude images associated with the time–frequency image displayed in Fig. 1.
orientation colormap associates colormap values with edge orientation angles as follows: 1↔ π/2, 2↔ 3π/8, 3↔ π/4,
4↔ π/8, . . . , 8↔ −3π/8.

data according to the number of matched filters employed and is the primary object of study he
examples discussed in this paper, we considered the edge angle uncertainty to be±π/16.

5. Hough processing

The Hough transform is a well-known method for detecting curves in an image [10]. The par
variant we shall employ here is the randomized Hough transform (RHT) [20]. For a chirp cons
of P unknown parameters, the RHT algorithm selectsP pixels at random (from among those pixe
with intensity larger than some threshold) and maps them to a single bin in a histogram, usually
an accumulator array, describing a region of the chirp parameter space. Typically, the bin size
histogram can be estimated from performing a statistical analysis such as we perform in Experi
below.

We shall make use of the edge information to eliminate spurious votes from the standard RHT
dure as follows. The randomly chosenP pixels in the time–frequency image determine a unique c
in the image. We shall allow the parameter space vote only if the edge information at the chose
is consistent with the derivative of the curve.

5.1. Algorithm I outline

Inputs:

• Samples of signal in equation withP parameters given in Eq. (1);
• Edge magnitude thresholdTe = 75% of the maximum magnitude;
• Parameter histogram thresholdTh = 75% of the maximum vote count.
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Processing:

(1) Compute local Fourier coefficients as in Eq. (5) [cost:O(N logN)].
(2) Compute edge angle and magnitude information from the local Fourier coefficient image

O(N)].
(3) Threshold the edge magnitude file (choose edges with intensity> Te).
(4) Compute the Hough transform of this edge collection. Repeat the following for some user d

number of times:
(a) Select at random groups ofP edges;
(b) Compute a parametric curve passing though theP edge locations;
(c) Compute the derivative of this parametric curve at the edge locations;
(d) If the edge data is consistent with the derivative information (e.g., if their difference is les

the uncertainty of the edge data), then vote for the curve parameters in the parameter his
[Cost: proportional to number of groups processed.]

(5) Threshold (choose local maxima with score> Th) and rank the local maxima within the accumula
array according to their score [cost: inversely proportional to the histogram bin size].

Output: List of detected phase function parameters.

5.2. Experiments using Algorithm I

In Experiment A, we ran the Hough processing with and without the edge data for a signal havi
linear chirpsα1 = 0.2, β1 = −π/6 andα2 = −0.2, β2 = π/6. The signal-to-noise ratio (SNR) was 0. W
employ WaveLab’s definition of SNR,

SNR(f,n) = 20 log10

( ‖f ‖2

‖f − n‖2

)
, (8)

wheref is the reference signal andn the noisy signal. In Fig. 3, we show the two accumulator arr
Note that a common difficulty in using the Hough transform when multiple objects are present
image is the tendency for spurious results due to cross talk between features of those objects
clearly visible in the left subfigure. In our experience, the consistency test required of the edges
this spurious cross talk effect. In the software contributed with this paper we show that when ch
α1 = 0.1, β1 = −π/8 andα2 = 0.0, β2 = −π/16, the spurious cross talk effect is sufficient to gene
an erroneous maximum peak when not using the edge information.

In Experiment B, we characterize the variance of the chirp parameter estimates with and with
use of the edge information. One means of doing this is to compute the mean and standard d
of parameter votes that are cast in the accumulator array during the Hough processing. The
deviation gives a measure of how tightly the distribution of votes are around the estimated pa
value. In order to make a more general statement, we compute the average standard deviatio
parameter votes for a large number of experiments that estimate the parameters of signals consi
single linear chirp. We segmented the experiments according to the true slope of these linear chirp
We display the results of the following processing in Fig. 4. For each choice of tan(β) we computed
1000 signals consisting of a single chirp component with slope tan(β) and randomy interceptα with
SNR-3. For each signal we computed the mean and standard deviation of the individual paramet
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Fig. 3. Experiment A: Images of accumulator arrays for Hough processing with and without the edge information. N
the ‘cross talk’ between the two chirps in the accumulator array (the two symmetric ridges in the accumulator array
between the two local maxima) has been reduced when making use of the edge information.

Fig. 4. Experiment B: Comparison of parameter estimate standard deviations with and without the edge information for
linear chirps. The error bars represent the middle two quartiles of the distribution of standard deviations.

votes. In Fig. 4 we display the mean and standard deviation of these standard deviations: the e
represent the two middle quartiles of the distribution of standard deviations. Note that the use of t
information decrease the average standard deviations of the parameter estimates, usually by a fa
least 2. Note that the edge information makes less of a contribution for choices ofβ which fall between
the angles of our matched filter. We use the average standard deviation to determine the bin size
parameter space histograms: typically we use bin sizes which correspond to one half or one quar
standard deviation. In the software contributed with this paper, we repeat Experiment B for loga
chirps.
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Fig. 5. Experiment C: Comparison of parameter estimate standard deviations with and without the edge information for
SNRs. The error bars represent the middle two quartiles of the distribution of standard deviations.

In Experiment C, we characterize the standard deviation of our linear chirp parameter estim
different SNRs. We selectedα = −0.2 andβ = π/6 and prepared groups of 500 signals with this ch
and a common SNR. We ran our Hough processing with and without the edge data. For each s
computed the mean and standard deviation of the individual parameter space votes. In Fig. 5 we
the mean and standard deviation of these standard deviations: as in Fig. 4, the error bars repr
two middle quartiles of the distribution of standard deviations. We observe an increase in the a
of our estimation results with increasing SNR until they reach a plateau around SNR 2. This pla
accuracy is expected because each parameter estimate vote uses only two pixels. These two pix
position uncertainty of±1/

√
N , so the parameter estimates will have expected standard deviation

is bounded from below.

6. Using uncertainty to group edges

The uncertainty associated with the edges extracted from the time–frequency representation of
can be used to group edges with consistent orientations and, following some of the ideas of [16]
the following “greedy” variant of our RHT algorithm.

Instead of immediately computing and voting for candidate curve parameter values whenever
P consistent edges in our time–frequency image, we shall also test the other edge pixels along
didate parameter curve in the time–frequency image. We then remove the bright edge pixels (i.
with large magnitude) along the parameter curve from the pool of bright edges and continue the
until the number of remaining bright edges gets small or if we have processed too many inconsiste
pairs.

Using the bright edges along this candidate curve, we can:

(1) Report the estimated curve parameters (which we can estimate using a least squares fit);
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(2) Compute and report the minimum and maximum time position of these consistent edge pix
thereby track the onset and termination of the chirp component. This allows the algorithm
useful in somewhat less tailored settings than those we have described earlier in the paper;

(3) The thresholds of the RHT variant we present below can be phrased in terms of the phas
parameter curve characteristics instead in terms of a histogram threshold. For instance, we
to detect only chirps of a certain duration;

(4) We avoid the use of a parameter space histogram whose computational burdens can be su
whenP > 2.

6.1. Algorithm II outline

Inputs:

• Samples of signal in Eq. (1) withP parameters;
• Edge magnitude thresholdTe = 50% of the maximum magnitude;
• Minimum length of candidate curve segment,Tl = (1/2)

√
N ;

• Minimum percentage of edge pairs along a candidate curve segment which are consistent,Tc = 75%;
• Maximum number of inconsistent edge pairsNf .

Processing:

(1) Compute local Fourier coefficients as in Eq. (5) [cost:O(N logN)].
(2) Compute edge angle and magnitude information from the local Fourier coefficient image

O(N)].
(3) Threshold the edge magnitude file (choose edges with intensityTe). Call this collection of edgesV .
(4) Compute the Hough transform of this edge collection. Repeat the following until the number of

in the setV becomes less than some numbernv or until there are at leastnf failures at steps 4d, 4
and 4g:
(a) If nf � Nf , exit Hough processing loop. Otherwise, select at random a group,G, of P edges

from V ;
(b) Compute a parametric curve passing though theP edge locations;
(c) Compute the derivative of this parametric curve at the edge locations;
(d) Test whether the edge data is consistent with the derivative information (e.g., if their differe

less than the uncertainty of the edge data). If yes, proceed to the next step. Otherwise in
nf and return to step (4a);

(e) Count the number,C, of bright edges which fall along the parametric curve. Call this setG̃;
(f) TestC > Tl . If yes, proceed to the next step. Otherwise incrementnf and return to step (4a);
(g) Test ifTc% of these bright edges,̃G, are consistent with the derivative information. If yes, p

ceed to the next step. Otherwise incrementnf and return to step (4a);
(h) V = V \G̃;
(i) Compute a least-squares estimate of curve parameter values using the collectionG̃;
(j) Compute a the minimum and maximum of the window locations for the edges inG̃.
[Cost: proportional to number of edge groups processed.]
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Fig. 6. Experiment E: Time–frequency image of signal consisting of several linear chirps so that their signatures form
of segments and an image of the extracted segments.

Output: List of detected phase function parameters along with their onset and termination windo

6.2. Experiments using Algorithm II

In Experiment E, we perform Algorithm II on a group of piecewise linear chirps. In Fig. 6, we sho
time–frequency image of our signal that consists of a series of chirp segments and the detected s
Note that we have multiple returns for some of the chirp segments.

In Experiment F, we perform Algorithm II on a group of sinusoidal chirps. In this case, we
manage a new obstacle in that the equation for the chirps’ phase is nonlinear, and given three p
the time–frequency image, there can be more than one sinusoid passing through the three poin
software supplied with this paper, we illustrate this state of affairs). In step (4b), we introduce an
loop over these multiple sinusoidal curves and thereby sort through which of them are consiste
the edge information. In Fig. 7a we display the time–frequency image for a signal consisting
sinusoidal chirp components with SNR-5. In Fig. 7b we show the detected components. Note ag
we do have multiple returns for each component.

7. Discussion

In this paper we have presented a collection of new algorithms which employ a local Fourie
and variants of the randomized Hough transform to compute estimates for parameters of multipa
chirps. We have made particular emphasis on the usefulness of edge information in lowering the v
of parameter estimates and in decreasing the amount of spurious cross talk observed in the tr
Hough processing techniques. We also shown that the uncertainty of the edge information can be
group edges with consistent orientations.
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Fig. 7. Experiment F: Time–frequency image of signal consisting of two sinusoidal chirp components with para
(α,β, γ ) = (0.5,1.0,0.0), (0.75,1.0,0.0) and SNR-5. The sinusoids detected using Algorithm II.
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