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Abstract

In 2006, Saito and Remy proposed a new transform called Laplace Local Sine Transform (LLST) in
image processing as follows. Let f be a twice continuously differentiable function on a domain Ω. First
we approximate f by a harmonic function u such that the residual component v = f − u vanishes on the
boundary of Ω. Next, we do the odd extension for v, and then do the periodic extension, i.e. we obtain
a periodic odd function v∗. Finally, we expand v∗ into Fourier sine series. In this paper, we propose to
expand v∗ into a periodic wavelet series with respect to a biorthonormal periodic wavelet basis with the
symmetric filter banks. We call this the Harmonic Wavelet Transform (HWT). HWT has an advantage over
both LLST and the conventional wavelet transforms. On one hand, it removes the boundary mismatches
as LLST does. On the other hand, the HWT coefficients reflect the local smoothness of f in the interior
of Ω. So the HWT algorithm approximates data more efficiently than LLST, periodic wavelet transform,
folded wavelet transform, and wavelets on interval. We demonstrate the superiority of HWT over the other
transforms using several standard images.

Key words: Harmonic wavelet transform, Laplace local sine transform, biorthonormal wavelets, peri-
odic wavelets, folded wavelets, wavelets on interval, periodic wavelet coefficient, symmetry, odd extension.

1 Introduction

Wavelet analysis is an important tool in image processing. In order to approximate or compress data, there

are two common wavelet algorithms: the periodic wavelet algorithm, and the folded wavelet algorithm. More

precisely, let an image f be supported on a square Ω ∈ R
2. In the periodic wavelet algorithm, one extends f

to a periodic function f∗, and then expands f∗ into a periodic wavelet series using Daubechies wavelets [1] or

polyharmonic spline wavelets [9]. Since f∗ is discontinuous at the boundary points ∂Ω in general, the decay rate

of the corresponding periodic wavelet coefficients is very slow. Hence, in order to obtain a good approximation

of the image, we need many periodic wavelet coefficients. In the folded wavelet algorithm, in order to avoid

the boundary mismatches caused by the brute-force periodization, one does an even extension of f , and then

extends it to a periodic function f∗, and finally expands f∗ into a periodic wavelet series with respect to a

biorthonormal periodic wavelet basis. If f is smooth, then f∗ ∈ lip1 on R
2. This makes the decay rate of the
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corresponding wavelet coefficients faster than that in periodic wavelets algorithm. But, since ∂
∂x
f∗ and ∂

∂y
f∗

are discontinuous at the boundary points, the decay rate of the periodic wavelet coefficients is still relatively

low.

It is natural to ask how to ensure the continuity of derivatives of the periodized function across the

boundary. In 2006, Saito and Remy [8] presented a good method: the Laplace Local Sine Transform (LLST)

that ensures the derivatives of the periodized functions are continuous across the boundary. It decomposes an

image f supported on a square Ω into f = u+v, where u is a harmonic component satisfying Laplace’s equation

∆u = 0 in Ω and u = f on the boundary. After an odd extension, the residual component v is periodized to

be v∗, i.e., v∗ is a periodic odd function. If f is smooth, then ∂
∂x
v∗ ∈ lip 1, ∂

∂y
v∗ ∈ lip 1 on R

2. We call this

method LLST decomposition. When one applies LLST to image approximation, one expands v∗ into Fourier

sine series.

In this paper, combining the LLST decomposition and the wavelet algorithm, we expand v∗ into the

periodic wavelet series. More precisely, we propose the harmonic wavelet transform (HWT). In the HWT

algorithm, the first step is the same as LLST, i.e., we decompose f = u+ v and obtain a periodic odd function

v∗. Next, we choose a pair of real-valued biorthonormal wavelets ψ, ψ̃ of L2(R) generated by the real-valued

even scaling functions ϕ, ϕ̃. Using a method of the tensor product and periodization, one gets a pair of

biorthonormal periodic wavelet bases. Finally, we expand v∗ into the periodic wavelet series with respect to

this pair of biorthonormal periodic wavelet bases. Since ∂
∂x
v∗ ∈ lip 1 and ∂

∂y
v∗ ∈ lip 1 on R

2, the decay rate

of the corresponding periodic wavelet coefficients is faster than that of the periodic wavelet algorithm or the

folded wavelet algorithm.

In general, the decay rate of the Fourier sine coefficients depends on global smoothness, while that of

the periodic wavelet coefficients depends on local smoothness. Since the global smoothness of a function is

determined by its rough part, we need fewer periodic wavelet coefficients than the Fourier sine coefficients in

order to approximate the image with the same quality. Comparing the above several algorithms, the HWT
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algorithm compresses data most efficiently among them.

In the HWT algorithm, we carefully study the symmetry of the periodic wavelet coefficients and show

where these coefficients vanish. From this, we see that in order to recover the image exactly, the number of

the efficient coefficients is just the same as the size of the sample points of f . So the HWT is not a redundant

transform.

Our HWT algorithm is quite different from polyharmonic wavelets proposed by Van De Ville et al. [9],

which are a kind of wavelet bases constructed by polyharmonic functions. The HWT has a different strategy:

we approximate a target function by a harmonic function such that the residual part vanishes on the boundary,

and then expand the residual part into wavelet series.

This paper is organized as follows. In Section 2, we recall the notions of biorthonormal periodic wavelet

bases and the corresponding Mallat algorithm as well as the LLST algorithm. In Section 3, we present the

HWT algorithm and show that in the one-dimensional case, the periodic wavelet algorithm, the folded wavelet

algorithm, and the HWT algorithm generate periodic wavelet coefficients at the level m with the decay rates

O(2−
m

2 ), O(2−
3m

2 ), and O(2−
5m

2 ), respectively. When we use first 2M periodic wavelet coefficients, the

obtained approximation error are o(1), O(2−M ), and O(2−2M ), respectively. In the two-dimensional case, the

decay rates of the corresponding periodic wavelet coefficients are O(2−m), O(2−2m), and O(2−3m), respectively.

When we use first 22M periodic wavelet coefficients, the obtained approximation error are o(1), O(2−M ), and

O(2−2M ), respectively. In Section 4, first, we discuss one-dimensional discrete HWT and the symmetry of

the sequences consisting of the corresponding periodic wavelet coefficients. From this, we precisely show the

efficient number of the periodic wavelet coefficients in order to recover a signal perfectly. Second, we discuss two-

dimensional discrete HWT and the symmetry of the matrices of the corresponding periodic wavelet coefficients.

From this, we precisely show the efficient number of the periodic wavelet coefficients in order to recover an

image perfectly. In Section 5, we apply the HWT algorithm to approximate images and show that the HWT

algorithm approximates images better than the LLST algorithm, the periodic wavelet algorithm, and the folded
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wavelet algorithm.

2 Preliminaries

We state the well-known notions [4, 7] of biorthonormal periodic wavelet bases. After that, we recall the

corresponding Mallat algorithms.

2.1 One-dimensional biorthonormal periodic wavelets

It is well-known that using the method of periodization, one can construct biorthonormal periodic wavelet bases

with the help of the biorthonormal wavelets [4, 7].

Let ψ and ψ̃ be a pair of compactly supported smooth biorthonormal wavelets of L2(R) generated by

compactly supported smooth scaling functions ϕ and ϕ̃. For m ∈ Z, n ∈ Z, we denote the function family

gm,n := 2
m

2 g(2m · −n). Its periodization (with period 1) is gper
m,n :=

∑
l∈Z

gm,n(· + l). The families

Ψper
1 := {ϕper}

⋃
{ψper

m,n, m ∈ Z+, n = 0, . . . , 2m − 1},

Ψ̃per
1 := {ϕ̃per}

⋃
{ψ̃per

m,n, m ∈ Z+, n = 0, . . . , 2m − 1}

are called a pair of biorthonormal periodic wavelet bases for L2
([
− 1

2 ,
1
2

])
.

Let f ∈ L2
([
− 1

2 ,
1
2

])
. For m ∈ Z+, n ∈ Z, we denote the periodic wavelet coefficients

c(1)m,n :=

1
2∫

−
1
2

f(t)ϕper
m,n(t)dt, d(1)

m,n :=

1
2∫

−
1
2

f(t)ψper
m,n(t)dt. (2.1)

Here the sequences {c(1)m,n} and {d(1)
m,n} are periodic sequences (with period 2m) with respect to the index n, i.e.,

c
(1)
m,n+2ml = c(1)m,n, d

(1)
m,n+2ml = d(1)

m,n (l ∈ Z).

It is well known that

f = c
(1)
0,0 +

∞∑

m=0

2m
−1∑

n=0

d(1)
m,nψ̃

per
m,n (2.2)
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in the space L2([− 1
2 ,

1
2 ]). For M ∈ Z+, its 2M−partial sum is

S2M (f) = c
(1)
0,0 +

M−1∑

m=0

2m
−1∑

n=0

d(1)
m,nψ̃

per
m,n. (2.3)

Let the space Ṽm be the span of {ϕ̃per
m,n}n=0,...,2m−1. One can decompose the projection of f in Ṽm as

follows [7].

PeVm
(f) =

2m
−1∑

n=0

c(1)m,nϕ̃
per
m,n =

2m−1
−1∑

n=0

c
(1)
m−1,nϕ̃

per
m−1,n +

2m−1
−1∑

n=0

d
(1)
m−1,nψ̃

per
m−1,n. (2.4)

Now we assume that ϕ and ϕ̃ are both compactly supported. Denote the coefficients of the filter banks

ak :=
√

2

∫

R

ϕ(t)ϕ̃(2t− k)dt, bk :=
√

2

∫

R

ψ(t)ϕ̃(2t− k)dt. (2.5)

Without loss of generality, we assume that for some N ∈ Z+,

an = bn+1 = 0 (|n| ≥ N). (2.6)

Mallat showed that the fast algorithm to compute periodic wavelet coefficients is similar to the fast

algorithm of wavelet coefficients [7, Sec. 7.5.1]. Along Mallat’s idea, one can obtain the following algorithm for

the one-dimensional periodic wavelet coefficients.

Proposition 2.1. Let the filters ak, bk be defined in (2.5) and c
(1)
m,n, d

(1)
m,n be defined in (2.3). Define

a∗n := an, b∗n+1 := bn+1 (|n| ≤ 2J−1), a∗n+2J := a∗n, b∗n+2J := b∗n (n ∈ Z). (2.7)

Then for 2J−1 ≥ N , we have

c
(1)
J−1,k =

2J
−1∑

n=0

a∗n−2k c
(1)
J,n, d

(1)
J−1,k =

2J
−1∑

n=0

b∗n−2k c
(1)
J,n, k ∈ Z (2.8)

2.2 Two-dimensional biorthonormal periodic wavelets

Let ψ and ψ̃ be a pair of biorthonormal wavelets generated by the scaling functions ϕ and ϕ̃. Take the tensor

products of ϕ, ψ. Denote

ϕ0(x, y) := ϕ(x)ϕ(y), ψ1(x, y) := ϕ(x)ψ(y),
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ψ2(x, y) := ψ(x)ϕ(y), ψ3(x, y) := ψ(x)ψ(y).

Similarly, taking the tensor products of ϕ̃ and ψ̃, we get ϕ̃0(x, y), ψ̃1(x, y), ψ̃2(x, y), and ψ̃3(x, y). Then {ψµ}3
1

and {ψ̃µ}3
1 are a pair of biorthonormal wavelets generated by the scaling functions ϕ0 and ϕ̃0, respectively.

The families

Ψper
2 = {ϕper

0 }
⋃

{ψper
µ,m,n, µ = 1, 2, 3, m ∈ Z+, n = (n1, n2), n1, n2 = 0, . . . , 2m − 1},

Ψ̃per
2 = {ϕ̃per

0 }
⋃

{ψ̃per
µ,m,n, µ = 1, 2, 3, m ∈ Z+, n = (n1, n2), n1, n2 = 0, . . . , 2m − 1}.

are called a pair of biorthonormal periodic wavelet bases for L2
([

− 1
2 ,

1
2

]2)
.

Let f ∈ L2
([

− 1
2 ,

1
2

]2)
. For µ = 1, 2, 3, m ∈ Z+, n ∈ Z

2, we denote the periodic wavelet coefficients

c(2)m,n :=

1
2∫

1
2

1
2∫

−
1
2

f(x, y)ϕper
0,m,n(x, y)dxdy, d(2)

µ,m,n :=

1
2∫

−
1
2

1
2∫

−
1
2

f(x, y)ψper
µ,m,n(x, y)dxdy. (2.9)

Here the sequences {c(2)m,n} and {d(2)
µ,m,n} are periodic sequences with respect to n, i.e.

c
(2)
m,n+2ml = c(2)m,n, d

(2)
µ,m,n+2ml = d(2)

µ,m,n

(
l ∈ Z

2
)
.

It is well known that

f = c
(2)
0,0 +

3∑

µ=1

∞∑

m=0

2m
−1∑

n1,n2=0

d(2)
µ,m,nψ̃

per
µ,m,n. (2.10)

For M ∈ Z+, its 22M−partial sum is

S22M (f) = c
(2)
0,0 +

3∑

µ=1

M−1∑

m=0

2m
−1∑

n1,n2=0

d(2)
µ,m,nψ̃

per
µ,m,n

in the space L2
([

− 1
2 ,

1
2

]2)
, where n = (n1, n2).

Let the space Ṽm be the span of {ϕ̃per
0,m,n}n=(n1,n2), n1, n2=0,...,2m−1. One can decompose the project of f

in Ṽm as follows.

PeVm
(f) =

2m
−1∑

n1, n2=0

c(2)m,nϕ̃
per
0,m,n =

2m−1
−1∑

n1, n2=0

c
(2)
m−1,nϕ̃

per
0,m−1,n +

3∑

µ=1

2m−1
−1∑

n1, n2=0

d
(2)
µ,m−1,nψ̃

per
µ,m−1,n. (2.11)
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From the Mallat algorithm of the one-dimensional periodic wavelet, one can easily conclude the following

Mallat algorithm for two-dimensional tensor product periodic wavelets.

Proposition 2.2. Let the filters {a∗n}, {b∗n} be stated in (2.7) and the periodic wavelet coefficients

c
(2)
m,n, d

(2)
µ,m,n be stated in (2.9). Then for J > N and k = (k1, k2) ∈ Z

2, we have

(i) c
(2)
J−1,k =

2J
−1∑

n1,n2=0
a∗n1−2k1

a∗n2−2k2
c
(2)
J,n1,n2

,

(ii) d
(2)
1,J−1,k =

2J
−1∑

n1,n2=0
a∗n1−2k1

b∗n2−2k2
c
(2)
J,n1,n2

,

(iii) d
(2)
2,J−1,k =

2J
−1∑

n1,n2=0
b∗n1−2k1

a∗n2−2k2
c
(2)
J,n1,n2

,

(iv) d
(2)
3,J−1,k =

2J
−1∑

n1,n2=0
b∗n1−2k1

b∗n2−2k2
c
(2)
J,n1,n2

.

2.3 Laplace local sine transforms

First we consider the one-dimensional case. Let Ω1 :=
[
0, 1

2

]
and the function f be defined on Ω1 and f ∈ C2(Ω1).

We split the function f into two components

f(x) = u(x) + v(x) on Ω1.

The first function u(x) = 2
(
f
(

1
2

)
− f(0)

)
x+ f(0) and the second function satisfies

v(0) = v

(
1

2

)
= 0.

After an odd extension, the second function v is periodized to be v∗, i.e., v∗ is a periodic odd function. Finally

we expand v∗ into Fourier sine series.

Next, we consider the two-dimensional case. Let Ω2 :=
[
0, 1

2

]2
and the function f be defined on Ω2 and

f ∈ C2(Ω2). We split the function f into two components

f(x, y) = u(x, y) + v(x, y) on Ω2.

where u(x, y) is the harmonic function which satisfies Laplace’s equation ∆u(x, y) = 0 ((x, y) ∈ Ω2) and

u(x, y) = f(x, y) on the boundary of Ω2. So the residual satisfies

v(x, y) = 0 ((x, y) ∈ ∂Ω2) .
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After an odd extension, the residual component v is periodized to be v∗, i.e., v∗ is a periodic odd function.

Finally we expand v∗ into Fourier sine series.

3 Harmonic Wavelet Transform

Now we present a notion of the Harmonic Wavelet Transform (HWT). We show that for the HWT algorithm,

the decay rate of periodic wavelet coefficients is the faster than those generated by the periodic wavelet transform

algorithm and the folded wavelet algorithm.

3.1 One-dimensional HWT algorithm

We assume that f is defined on
[
0, 1

2

]
. Let

f(t) = u(t) + v(t)

(
t ∈

[
0,

1

2

])
,

where u(t) = 2
(
f
(

1
2

)
− f(0)

)
t+ f(0) and the residual component v(t) satisfies v(0) = v

(
1
2

)
= 0.

We do the odd extension vodd of the residual component v to
[
− 1

2 ,
1
2

]
. We again do the 1-periodic

extension of vodd, denoted by v∗. Finally, we expand v∗ into the biorthonormal periodic wavelet series. We call

this process the one-dimensional HWT.

Now we examine the decay rates of the coefficients of various wavelet algorithms in the one-dimensional

case.

(i) The 1D periodic wavelet algorithm. Let f ∈ C2
([
− 1

2 ,
1
2

])
. In the periodic wavelet algorithm, we

directly expand f into biorthonormal periodic wavelet series. Clearly, the coefficients

d(1)
m,n =

1
2∫

−
1
2

f(t)ψper
m,n(t)dt =

∫

R

f∗(t))ψm,n(t)dt = 2
m

2

∫

R

f∗(t)ψ(2mt− n)dt, (3.1)

where f∗ is the 1-periodic extension of f . Since f∗ ∈ L∞(R), ψ ∈ L1(R), we have

d(1)
m,n = O(2

m

2 )

∫

R

|ψ(2mt− n)|dt = O(2−
m

2 )

∫

R

|ψ(t− n)|dt = O(2−
m

2 )

∫

R

|ψ(t)|dt = O(2−
m

2 ). (3.2)
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(ii) The 1D folded wavelet algorithm. Let f ∈ C2
([

0, 1
2

])
. In the folded wavelet algorithm, we do an even

extension of f

feven(x) =





f(t), t ∈
[
0, 1

2

]
,

f(−t), t ∈
[
− 1

2 , 0
)
.

Then

feven(x) ∈ C

[
−1

2
,
1

2

]
and feven

(
−1

2

)
= feven

(
1

2

)
,

Again let f∗(t) be a 1-periodic extension of feven(t), we have

Proposition 3.1. The periodic wavelet coefficients of f∗ satisfy

d(1)
m,n = O

(
2−

3m

2

)
. (3.3)

The partial sum S2M (f∗) of the periodic wavelet expansion of f∗ satisfies

‖f∗ − S2M (f∗)‖
L2([− 1

2
, 1
2 ])

= O
(
2−M

)
. (3.4)

Proof. Since f ∈ C2
[
0, 1

2

]
, we have f∗ ∈ lip 1 on R, i.e., there is a constant K such that

∣∣∣f∗(t) − f∗
( n

2m

)∣∣∣ ≤ K
∣∣∣t− n

2m

∣∣∣ (t ∈ R) .

Since f∗ ∈ lip 1,
∫
R

ψ(t) dt = 0, and (3.1), we have

∣∣∣d(1)
m,n

∣∣∣ =

∣∣∣∣∣∣
2

m

2

∫

R

f∗(t)ψ(2mt− n) dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
2

m

2

∫

R

(
f∗(t) − f∗(

n

2m
)
)
ψ(2mt− n) dt

∣∣∣∣∣∣

≤ K 2
m

2

∫

R

∣∣∣t− n

2m

∣∣∣ |ψ(2mt− n)| dt = K 2−
3m

2

∫

R

|t− n| |ψ(t− n)| dt

= K 2−
3m

2

∫

R

|tψ(t)| dt = O
(
2−

3m

2

)
.

So (3.3) holds.

By (2.2) and (2.3), we know that the difference between f∗ and the partial sum of its periodic wavelet

series

f∗ − S2M+1(f∗) =

∞∑

m=M

2m
−1∑

n=0

d(1)
m,n ψ̃

per
m,n
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is in the space L2
([
− 1

2 ,
1
2

])
. Using the Parseval equality and (3.3), we get

‖f∗ − S2M (f∗)‖2
L2([− 1

2
, 1
2 ])

=
∞∑

m=M

2m
−1∑

n=0

∣∣∣d(1)
m,n

∣∣∣
2

= O(1)
∞∑

m=M

2m
−1∑

n=0

(
2−

3m

2

)2

= O(1)
∞∑

m=M

2−2m = O
(
2−2M

)
.

So (3.4) holds. Proposition 3.1 is proved. �

(iii) The 1D HWT algorithm. Let f ∈ C2
([

0, 1
2

])
. Now we introduce the HWT algorithm.

(a) We first decompose f on
[
0, 1

2

]
as follows

f(x) = u(x) + v(x)

(
x ∈

[
0,

1

2

])
,

where u(x) = 2
(
f
(

1
2

)
− f(0)

)
x+ f(0). So v(0) = v

(
1
2

)
= 0.

(b) We do the odd extension of v, i.e., let

vodd(t) = v(t)

(
t ∈

[
0,

1

2

])
and vodd(−t) = −v(t)

(
t ∈

[
0,

1

2

])
.

So vodd

(
1
2

)
= vodd

(
− 1

2

)
= vodd(0) = 0. Since vodd(−x)

−x
= vodd(x)

x
, letting x → 0+, we get (vodd)′

−
(0) =

(vodd)′+(0). Hence vodd(t) is differentiable at t = 0.

(c) We do the 1-periodic extension v∗ of vodd, i.e., v∗ is a 1-periodic function and v∗(t) = vodd(t)
(
|t| ≤ 1

2

)
.

Furthermore, we easily prove d
dt
v∗ ∈ lip 1 on R.

Proposition 3.2. Let v∗ be stated as above, i.e., v∗ is a 1−periodic function and dv∗

dt
∈ lip 1 on R. Then

the periodic wavelet coefficients of v∗ satisfy

d(1)
m,n = O

(
2−

5m

2

)
. (3.5)

The partial sum S2M+1(v∗) of the periodic wavelet expansion of v∗ satisfies

‖v∗ − S2M+1(v∗)‖
L2([− 1

2
, 1
2 ])

= O
(
2−2M

)
. (3.6)

Proof. Since
∫
R

ψ(t) dt = 0 and
∫
R

tψ(t) dt = 0, we have

d(1)
m,n = 2

m

2

∫

R

v∗(t)ψ(2mt− n) dt = 2
m

2

∫

R

(
v∗(t) − v∗

( n

2m

)
− v∗′

( n

2m

)(
t− n

2m

))
ψ(2mt− n) dt. (3.7)
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Again, since dv∗

dt
∈ lip 1 on R, we know that there is a constant K such that for any t0 ∈ R,

|v∗′(t) − v∗′(t0)| ≤ K|t− t0| (t ∈ R) .

This implies that

|v∗(t) − v∗(t0) − v∗′(t0)(t− t0)| =

∣∣∣∣∣∣

t∫

t0

(v∗′(t) − v∗′(t0)) dt

∣∣∣∣∣∣
≤ K(t− t0)

2 (t ∈ R).

Taking t0 = n
2m in this formula, by (3.7) we have

∣∣∣d(1)
m,n

∣∣∣ ≤ K 2
m

2

∫

R

(
t− n

2m

)2

|ψ(2mt− n)| dt = K 2−
5m

2

∫

R

t2|ψ(t)|dt = O
(
2−

5m

2

)
. (3.8)

By the similar argument to (3.4), from (3.8) we now have

‖v∗ − S2M (v∗)‖
L2([− 1

2
, 1
2 ])

= O
(
2−2M

)
.

So (3.6) holds. Proposition 3.2 is proved. �

3.2 Two-dimensional HWT algorithm

We assume that f is defined on
[
0, 1

2

]2
. Let

f(x, y) = u(x, y) + v(x, y)

(
(x, y) ∈

[
0,

1

2

]2)
,

where u(x, y) is a harmonic function and v(x, y) satisfies v(x, y) = 0 for (x, y) ∈ ∂
([

0, 1
2

]2)
. We do the odd

extension vodd of the residual component v to
[
− 1

2 ,
1
2

]2
, that is,

vodd(x, y) = v(x, y)

(
(x, y) ∈

[
0,

1

2

]2)

and

vodd(−x, y) = vodd(x,−y) = −vodd(x, y)

(
(x, y) ∈

[
−1

2
,
1

2

]2)
.

Again we do the 1-periodic extension of vodd, denoted by v∗. Finally, we expand v∗ into a biorthonormal

periodic wavelet series. We call this process the two-dimensional HWT.
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Now we examine the decay rates of the coefficients of various wavelet algorithms in the two-dimensional

case.

(i) The 2D periodic wavelet algorithm. Let f ∈ C2
([

− 1
2 ,

1
2

]2)
. Denote the 1-periodic extension of f on

R
2 by f∗. By (2.9), the periodic wavelet coefficients are

d(2)
µ,m,n =

∫

R

∫

R

f∗(x, y)ψµ,m,n(x, y)dxdy (µ = 1, 2, 3).

So, for each µ, we have

∣∣∣d(2)
µ,m,n

∣∣∣ =

∣∣∣∣∣∣
2m

∫

R

∫

R

f∗(x, y)ψµ(2mx− n1, 2my − n2) dxdy

∣∣∣∣∣∣

= O (2−m)

∫

R

∫

R

|ψµ(x− n1, y − n2)| dxdy

= O (2−m)

∫

R

∫

R

|ψµ(x, y)|dxdy = O
(
2−m

)
.

(ii) The 2D folded wavelet algorithm. Let f ∈ C2
([

0, 1
2

]2)
, we do an even extension to

[
− 1

2 ,
1
2

]2
, and

then we do a 1-periodic extension to R
2, denoted by f2. Then f2 ∈ lip 1 on R

2.

Proposition 3.3. Let f2 be stated as above, i.e., f2 is a 1−periodic function and f2 ∈ lip 1 on R
2. Then

the periodic wavelet coefficients of f2 satisfy

d(2)
µ,m,n = O

(
2−2m

)
. (3.9)

The partial sum S22M of the periodic wavelet expansion of f2 satisfies

‖f2 − S22M (f2)‖L2

“
[− 1

2
, 1
2 ]

2
” = O

(
2−M

)
. (3.10)

Proof. Let z = (x, y). Since f2 ∈ lip 1(R2) and
∫
R

ψ(z) dz = 0, we have

d(2)
µ,m,n =

∫

R2

f2(z)ψµ,m,n(z) dz =

∫

R2

(
f2(z) − f2

( n

2m

))
ψµ,m,n(z) dz,

so

∣∣∣d(2)
µ,m,n

∣∣∣ = O (2m)

∫

R2

∣∣∣z − n

2m

∣∣∣ |ψµ(2mz − n)| dz = O
(
2−2m

) ∫

R2

∫

R2

|ψµ(z)|dz = O
(
2−2m

)
.
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So (3.9) holds.

By (2.10), we know that the difference between f2 and the partial sum of its periodic wavelet series

f2 − S22M (f2) =

3∑

µ=1

∞∑

m=M

2m
−1∑

n=0

d(2)
µ,m,n ψ̃

per
µ,m,n

is in the space L2
([

− 1
2 ,

1
2

]2)
. Using the Parseval equality, we have

‖f2 − S22M (f2)‖2

L2

“
[− 1

2
, 1
2 ]

2
” =

3∑

µ=1

∞∑

m=M

2m
−1∑

n1=0

2m
−1∑

n2=0

∣∣∣d(2)
µ,m,n

∣∣∣
2

,

where n = (n1, n2) ∈ Z
2
+. Again, by d

(2)
µ,m,n = O

(
2−2m

)
, we have

‖f2 − S22M (f2)‖2

L2

“
[− 1

2
, 1
2 ]

2
” = O(1)

∞∑

m=M

2−2m = O
(
2−2M

)
.

So we get (3.10). Proposition 3.3 is proved. �

(iii) The 2D HWT algorithm. We can easily prove that 1-periodic function v∗ satisfies

∂v∗

∂x
(x, y) ∈ lip 1 and

∂v∗

∂y
(x, y) ∈ lip 1

(
(x, y) ∈ R

2
)
. (3.11)

Proposition 3.4. Let v∗ be stated as above, i.e., v∗ is a 1−periodic function and (3.11) holds. Then the

periodic wavelet coefficients of v∗ satisfy

d(2)
µ,m,n = O(2−3m). (3.12)

The partial sum S22M (v∗) of the periodic wavelet expansion of v∗ satisfies

‖v∗ − S22M (v∗)‖
L2

“
[− 1

2
, 1
2 ]

2
” = O

(
2−2M

)
. (3.13)
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Proof. For z = (x, y) and z0 = (x0, y0), we have

v∗(z) − v∗(z0) − ∂v∗

∂x
(z0)(x− x0) − ∂v∗

∂y
(z0)(y − y0) =

x∫

x0

(
∂v∗

∂x
(x, y0) −

∂v∗

∂x
(x0, y0)

)
dx

+

y∫

y0

(
∂v∗

∂y
(x, y) − ∂v∗

∂y
(x, y0)

)
dy

+

y∫

y0

(
∂v∗

∂y
(x, y0) −

∂v∗

∂y
(x0, y0)

)
dy

=: J1 + J2 + J3.

(3.14)

By (3.11), we get

|J1| ≤ K(x− x0)
2 ≤ K|z − z0|2,

|J2| ≤ K(y − y0)
2 ≤ K|z − z0|2,

|J3| ≤ K|x− x0| |y − y0| ≤
K

2

(
(x− x0)

2 + (y − y0)
2
)

=
K

2
|z − z0|2.

Again, by (3.14),

∣∣∣∣v
∗(z) − v∗(z0) −

∂v∗

∂x
(z0)(x− x0) −

∂v∗

∂y
(z0)(y − y0)

∣∣∣∣ ≤ 3K|z − z0|2. (3.15)

By the definition of ψµ(x, y) (µ = 1, 2, 3), we obtain that for µ = 1, 2, 3,

∫

R2

xψµ(z) dz =

∫

R2

yψµ(z) dz =

∫

R2

ψµ(z) dz = 0. (3.16)

By (2.9) and (3.16), taking z0 = (x0, y0) = n
2m (n = (n1, n2)), we deduce that

d
(2)
µ,m,n = 2m

∫

R2

v∗(z)ψµ(2mz − n) dz

= 2m

∫

R2

(
v∗(z) − v∗

( n

2m

)
− ∂v∗

∂x

( n

2m

)(
x− n1

2m

)
− ∂v∗

∂y

( n

2m

)(
y − n2

2m

))
ψµ(2mz − n) dz.

From this and (3.15), noticing that x0 = n1

2m and y0 = n2

2m , we have

∣∣∣d(2)
µ,m,n

∣∣∣ ≤ 3K 2m

∫

R2

∣∣∣z − n

2m

∣∣∣
2

|ψµ(2mz − n)| dz ≤ 3K 2−3m

∫

R2

|z|2 |ψµ(z)|dz = O
(
2−3m

)
. (3.17)
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So (3.12) holds.

By the similar argument to (3.10) above, from (3.7) we now have

‖v∗ − S22M (v∗)‖
L2

“
[− 1

2
, 1
2 ]

2
” = O

(
2−2M

)
.

Proposition 3.4 is proved. �

4 Discrete HWT

In this section, we will discuss the discrete HWT and study the symmetry property of the coefficients.

We always assume that ψ and ψ̃ be a pair of biorthonormal wavelets generated by the scaling functions

ϕ, ϕ̃ that are compactly supported real-valued even functions. We also assume that ψ and ψ̃ are real-valued

functions. Let the filters {ak} and {bk} be defined in (2.5) and let us assume the formula (2.6) holds. Since

ϕ and ϕ̃ are symmetric at t = 0, by the known result [4], we know that ψ and ψ̃ are symmetric at t = 1
2 and

t = − 1
2 , respectively.

4.1 Definition of one-dimensional discrete HWT

Let f ∈ C2
([

0, 1
2

])
be a signal of the interval

[
0, 1

2

]
. We are given the discretized version of f sampled at

{
n
2J

}2J−1

n=0
:

xn = f
( n

2J

) (
n = 0, . . . , 2J−1

)
.

Then x0 = f(0) and x2J−1 = f( 1
2 ). Using the HWT decomposition, we get

f(t) = 2

(
f

(
1

2

)
− f(0)

)
t+ f(0) + v(t) = 2(x2J−1 − x0)t+ x0 + v(t)

(
0 ≤ t ≤ 1

2

)
.

So, for n = 0, . . . , 2J−1,

yn := v
( n

2J

)
= xn − (x2J−1 − x0)

n

2J−1
− x0.

In particular, y0 = y2J−1 = 0.
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Since the odd extension vodd of v to
[
− 1

2 ,
1
2

]
satisfies

vodd(t) = −v(−t)
(
t ∈

[
−1

2
, 0

])
,

the sequence {yodd
n }2J−1

n=−2J−1 , where yodd
n := vodd

(
n
2J

)
, satisfies the conditions

yodd
n = −yodd

−n

(
−2J−1 ≤ n ≤ 2J−1

)
and yodd

0 = yodd
2J−1 = yodd

−2J−1 = 0.

Let v∗ be a 1-periodic extension of vodd. We define the sequence {zn}n∈Z:

zn := v∗
( n

2J

)
(n ∈ Z) . (4.1)

So we obtain that for n ∈ Z and l ∈ Z,

z−n = −zn, zn+2J = zn and z2J−1l = 0. (4.2)

Hence {zn}n∈Z can be determined by 2J−1 − 1 different values z1, . . . , z2J−1−1.

4.2 The relationships between the coefficients in the HWT representation

Let
{
c
(1)
m,n

}
and

{
d
(1)
m,n

}
be periodic wavelet coefficients of v∗ ∈ L2

([
− 1

2 ,
1
2

])
. Taking J sufficiently large, the

following formula holds [1].

v∗(t) ≃
2J

−1∑

n=0

c
(1)
J,nϕ̃

per
J,n(t)

and

c
(1)
J,n ≃ v∗

( n
2J

)
= zn. (4.3)

By (2.4), we get
2J

−1∑

k=0

c
(1)
J,kϕ̃

per
J,k =

2J−1
−1∑

k=0

c
(1)
J−1,kϕ̃

per
J−1,k +

2J−1
−1∑

k=0

d
(1)
J−1,kψ̃

per
J−1,k.

By Proposition 2.1, we know that

c
(1)
J−1,k =

2J
−1∑

n=0

a∗n−2kzn and d
(1)
J−1,k =

2J
−1∑

n=0

b∗n−2kzn, (4.4)

where {a∗n} and {b∗n} are stated in (2.7).
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Proposition 4.1. Let c
(1)
J−1,k = αk (k = 1, . . . , 2J−2 − 1) and d

(1)
J−1,k = βk (k = 0, . . . , 2J−2 − 1). Then

(i)
{
c
(1)
J−1,k

}2J−1
−1

k=0
= {0, α1, . . . , α2J−2−1, 0, −α2J−2−1, . . . , −α1};

(ii)
{
d
(1)
J−1,k

}2J−1
−1

k=0
= {β0, . . . , β2J−2−1, −β2J−2−1, . . . , −β0}.

We need a couple of lemmas.

Lemma 4.2. Let {a∗n} and {b∗n} be stated in (2.7). Then, for any n ∈ Z,

a∗
−n = a∗n and b∗n = b∗2−n.

Proof. Since ϕ, ϕ̃ are both real-valued even functions and an =
√

2
∫
R

ϕ(t)ϕ̃(2t− n)dt (by (2.5)), we have

a−n =
√

2

∫

R

ϕ(t)ϕ̃(2t+ n)dt

=
√

2

∫

R

ϕ(−t)ϕ̃(−2t+ n)dt =
√

2

∫

R

ϕ(t)ϕ̃(2t− n)dt = an.

From this and (2.7), we get

a∗
−n = a∗n, a∗2J+n = a∗n (n ∈ Z) . (4.5)

By (2.5), bn =
√

2
∫
R

ψ(t)ϕ̃(2t− n)dt. Since ψ
(

1
2 − t

)
= ψ

(
1
2 + t

)
, we have

bn =
√

2

∫

R

ψ

(
1

2
+ t

)
ϕ̃(2t+ 1 − n)dt =

√
2

∫

R

ψ

(
1

2
− t

)
ϕ̃(2t+ 1 − n)dt

=
√

2

∫

R

ψ(t)ϕ̃(−2t+ 2 − n)dt =
√

2

∫

R

ψ(t)ϕ̃(2t− 2 + n)dt

= b2−n.

So we get b1+n = b1−n. By (2.7), we have

b∗1+n = b∗1−n

(
|n| ≤ 2J−1

)
.

Again since b∗
n+2J = b∗n, we have b∗1+n = b∗1−n for all n ∈ Z. So we get

b∗n = b∗2−n (n ∈ Z). � (4.6)
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Lemma 4.3. The periodic wavelet coefficients {c(1)m,n} and {d(1)
m,n} satisfy the following relationships

c
(1)
J−1, k = −c(1)

J−1, 2J−1−k
, d

(1)
J−1, k = −d(1)

J−1, 2J−1−1−k
(k ∈ Z) . (4.7)

Proof. From (4.2) and (4.5), it follows by (4.4) that

c
(1)

J−1,2J−1−k
=

2J
−1∑

n=0
a∗

n+2k−2J zn

= −
2J

−1∑
n=0

a∗n+2kz−n = −
0∑

n=−2J+1

a∗
−n+2kzn

Again thanks to the periodicity of the {an} and {zn}, we have

0∑
n=−2J+1

a∗
−n+2kzn =

2J∑
n=1

a∗
−n+2kzn =

2J
−1∑

n=1
a∗
−n+2kzn + a∗2k−2J z2J

=
2J

−1∑
n=1

a∗
−n+2kzn + a2kz0 =

2J
−1∑

n=0
a∗
−n+2kzn.

(4.8)

So we have

c
(1)

J−1,2J−1−k
= −

2J
−1∑

n=0

a∗
−n+2kzn = −

2J
−1∑

n=0

a∗n−2kzn = −c(1)J−1,k. (4.9)

On the other hand, by (4.4) and (4.6),

d
(1)
J−1,k =

2J
−1∑

n=0
b∗n−2kzn =

2J
−1∑

n=0
b∗2−n+2kzn

= −
2J

−1∑
n=0

b∗2−n+2kz−n = −
0∑

n=−2J+1

b∗2+n+2kzn.

(4.10)

By the similar argument to (4.8), we have

0∑

n=−2J+1

b∗2+n+2kzn =

2J
−1∑

n=0

b∗2+n+2kzn.

So we get

d
(1)
J−1,k = −

2J
−1∑

n=0

b∗n−(2J−2k−2)zn = −d(1)

J−1,2J−1−1−k
. �

Proof of Proposition 4.1. By the first formula of (4.7), we get c
(1)

J−1,2J−2 = −c(1)
J−1,2J−2 , i.e.,

c
(1)

J−1,2J−2 = 0. (4.11)
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Since a∗n = a∗
−n = a∗2J−n

and zn = −z−n = −z2J−n, by (4.4), we have

c
(1)
J−1,0 =

2J
−1∑

n=0
a∗nzn =

2J∑
n=1

a∗nzn

= −
2J∑

n=1
a∗2J−n

z2J−n = −
2J

−1∑
n=0

a∗nzn = −c(1)J−1,0.

So c
(1)
J−1,0 = 0.

Let c
(1)
J−1,k = αk (k = 0, . . . , 2J−1 − 1). Then, by c

(1)
J−1,0 = 0, and (4.9) and (4.11), we get

α0 = 0, α2J−2 = 0, and αk = −α2J−1−k

(
k = 1, . . . , 2J−2 − 1

)
.

i.e., (i) holds. Let d
(1)
J−1,k = βk (k = 0, . . . , 2J−1 − 1). By the second formula of (4.7), we have

βk = −β2J−1−1−k

(
k = 0, . . . , 2J−2 − 1

)
,

i.e., (ii) holds. Proposition 4.1 is proved. �

From Proposition 4.1, we see that in order to recover the signal, we only need 2J−1 − 1 periodic wavelet

coefficients and two boundary values of the signal f , the number of the sampling points {xn}2J−1

0 is just 2J−1+1.

So the 1D HWT is not a redundant transform.

4.3 Two-dimensional discrete HWT

We will now discuss two-dimensional discrete HWT and study the symmetry property of the coefficients.

Let an image f ∈ C2
([

0, 1
2

]2)
. For some large J , take the

(
2J−1 + 1

)2
sample points of f

xn1,n2
= f

(n1

2J
,
n2

2J

) (
n1, n2 = 0, . . . , 2J−1

)
.

Using the HWT decomposition, we get

f(x, y) = u(x, y) + v(x, y)

(
(x, y) ∈

[
0,

1

2

]2)
,

where u(x, y) is a harmonic function satisfying Laplace’s equation ∆u = 0 and u = f on the boundary of
[
0, 1

2

]2
.

We can efficiently and accurately compute u by using the Averbuch-Israeli-Vozovoi (AIV) method [2]. Let us

now discuss the residual component v.

19



Let yn1,n2
= v

(
n1

2J ,
n2

2J

)
. Then

y0,n2
= yn1,0 = y2J−1,n2

= yn1,2J−1 = 0
(
n1, n2 = 0, . . . , 2J−1

)
.

Let vodd be an odd extension of v to
[
− 1

2 ,
1
2

]2
, i.e.,

vodd(x, y) = v(x, y)

(
(x, y) ∈

[
0,

1

2

]2)

and

vodd(x, y) = −vodd(−x, y) = −vodd(x,−y) = vodd(−x,−y),
(

(x, y) ∈
[
−1

2
,
1

2

]2)
.

Denote zn1,n2
= vodd

(
n1

2J ,
n2

2J

)
. Then

zn1,n2
= −z−n1,n2

= −zn1,−n2
= z−n1,−n2

(
n1, n2 = 0,±1, . . . ,±2J−1

)
(4.12)

and

z0,n2
= zn1,0 = z2J−1,n2

= zn1,2J−1 = z−2J−1,n2
= zn1,−2J−1 = 0.

Let v∗ be a 1-periodic extension of vodd to R
2. Denote z∗n1,n2

= v∗
(

n1

2J ,
n2

2J

)
. Then

z∗n1,n2
= zn1,n2

,
(
n1, n2 = 0, ±1, . . . , ±2J−1

)
,

z∗n1+2J ,n2
= z∗n1,n2

, z∗n1,n2+2J = z∗n1,n2
, (n1 ∈ Z, n2 ∈ Z) . (4.13)

For µ = 1, 2, 3, m ∈ Z, n ∈ Z
2, let c

(2)
m,n1,n2

and d
(2)
µ,m,n1,n2

be the periodic wavelet coefficients of v∗ ∈

L2
([

− 1
2 ,

1
2

]2)
(see (2.9)).

Take J sufficiently large such that

v∗(x, y) ≃
2J

−1∑

n1,n2=0

c
(2)
J,n ϕ̃per

0,J,n and c
(2)
J,n ≃ v∗(

n1

2J
,
n2

2J
) = z∗n1,n2

, n = (n1, n2).

Again, by (2.11), we have

v∗(x, y) ≃
2J−1

−1∑

n1,n2=0

c
(2)
J−1, n1, n2

ϕ̃per
0, J−1, n1, n2

+

3∑

µ=1

2J−1
−1∑

n1, n2=0

d
(2)
µ, J−1, n1, n2

ψ̃per
µ, J−1, n1, n2

. (4.14)
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Now we discuss the symmetry property of the coefficients c
(2)
J−1,k1,k2

and d
(2)
µ,J−1,k1,k2

. From Proposition 2.2,

Lemma 4.2, (4.12), and (4.13), we can get

Proposition 4.4. For k1, k2 ∈ Z, we have

(i) c
(2)

J−1, 2J−1−k1, k2
= −c(2)J−1, k1, k2

, c
(2)

J−1, k1, 2J−1−k2
= −c(2)J−1, k1, k2

, c
(2)

J−1, 2J−2, k2
= c

(2)
J−1, 0, k2

= c
(2)

J−1, k1, 2J−2 =

c
(2)
J−1, k1, 0 = 0;

(ii) d
(2)

1, J−1, 2J−1−k1, k2
= −d(2)

1, J−1, k1, k2
, d

(2)

1, J−1,k1, 2J−1−k2−1
= −d(2)

1, J−1, k1, k2
, d

(2)

1, J−1, 2J−2, k2
= d

(2)
1, J−1, 0, k2

=

0;

(iii) d
(2)

2, J−1, 2J−1−k1−1, k2
= −d(2)

2, J−1, k1, k2
, d

(2)

2, J−1, k1, 2J−1−k2
= −d(2)

2, J−1, k1, k2
, d

(2)

2, J−1, k1, 2J−2 = d
(2)
2, J−1, k1, 0 =

0; and

(iv) d
(2)

3, J−1, 2J−1−k1−1, k2
= −d(2)

3, J−1, k1, k2
, d

(2)

3, J−1, k1, 2J−1−k2−1
= −d(2)

3, J−1, k1, k2
.

From Proposition 4.4, the symmetry of the matrix (c
(2)
J−1,k1,k2

), k1, k2 = 0, 1, . . . , 2J−1 − 1 is described

as follows:




0 0 · · · 0 0 0 · · · 0

0 α1,1 · · · α1,2J−2−1 0 −α1,2J−2−1 · · · −α1,1

...
...

...
...

...
...

...
...

0 α2J−2−1,1 · · · α2J−2−1,2J−2−1 0 −α2J−2−1,2J−2−1 · · · −α2J−2−1,1

0 0 · · · 0 0 0 · · · 0

0 −α2J−2−1,1 . . . −α2J−2−1,2J−2−1 0 α2J−2−1,2J−2−1 · · · α2J−2−1,1

...
...

...
...

...
...

...
...

0 −α1,1 · · · −α1,2J−2−1 0 α2J−2−1,2J−2−1 · · · α2J−2−1,1




where

αk1,k2
= c

(2)
J−1,k1,k2

(
k1, k2 = 1, . . . , 2J−2 − 1

)
,
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Therefore, the matrix
(
c
(2)
J−1,k1,k2

)
, k1, k2 = 0, 1, . . . , 2J−1 − 1, is determined by

(
2J−2 − 1

)2
values. Similarly,

we have

(i) the matrix
(
d
(2)
1,J−1,k1,k2

)
, k1, k2 = 0, . . . , 2J−1 − 1, is determined by 2J−2

(
2J−2 − 1

)
values;

(ii) the matrix
(
d
(2)
2,J−1,k1,k2

)
, k1, k2 = 0, . . . , 2J−1 − 1, is determined by 2J−2

(
2J−2 − 1

)
values; and

(iii) the matrix
(
d
(2)
3,J−1,k1,k2

)
, k1, k2 = 0, . . . , 2J−1 − 1, is determined by 22J−4 values.

Noticing that

(
2J−2 − 1

)2
+ 2J−2

(
2J−2 − 1

)
+ 2J−2

(
2J−2 − 1

)
+ 22J−4 =

(
2J−1 − 1

)2
.

we know that in order to recover v∗, we only need
(
2J−1 − 1

)2
periodic wavelet coefficients. To obtain the

harmonic function u, we need 4
(
2J−1 − 1

)
+ 4 boundary sample points of the image f on ∂

([
0, 1

2

]2)
. Since

the number

(
2J−1 − 1

)2
+ 4

(
2J−1 − 1

)
+ 4 =

(
2J−1 + 1

)2

is exactly equal to the number of sampling points of f , i.e., the 2D HWT is not redundant.

5 Image Approximation Experiments via HWT

We will examine the approximation performance of the 2D HWT algorithm. The quality of approximation in

this paper is measured by PSNR (or peak signal-to-noise ratio) defined as

PSNR := 20 × log10

(
max
x∈Ω

|f(x)|/RMSE

)
,

where RMSE is the absolute ℓ2 error between the original and the approximation divided by the square root of

the total number of pixels in the original image. The unit of PSNR is decibel (dB).

5.1 Comparison with the periodic and folded wavelet algorithms

To approximate an image sampled on a square by the 2D HWT algorithm, we first decompose the image into

the harmonic component u and the residual v (see Fig. 1). The harmonic component u is determined by the
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data at boundary of the square. Hence in order to approximate u, it suffices to approximate the data on the

boundary of the square. Since the boundary consists of four segments, we simply apply one-dimensional LLST

on each segment. For the residual v, we do an odd extension and a periodic extension (see Fig. 2) and expand

it into a periodic wavelet series with respect to a biorthonormal periodic wavelet basis with the symmetric filter

bank (see Fig. 3). Our image approximation and reconstruction strategy consists of the following steps: 1)

Retain the gray values of the four corner pixels of the image that are necessary to compute the 1D harmonic

component of each boundary segment of the square; 2) Select a certain number of the largest coefficients in

terms of energy from the rest of the coefficients (both 1D and 2D); 3) Reconstruct u and v from these retained

coefficients using the AIV algorithm [2] and the Mallat algorithm, respectively; and 4) Compute u+ v.

For approximation and reconstruction of the image by the periodic wavelet algorithm and the folded

wavelet algorithm, we simply retain a certain number of the largest coefficients in terms of energy from all the

coefficients and reconstruct the image from them.

First, we compare the performance of HWT with that of the periodic wavelet transform (PWT) and the

folded wavelet transform (FWT). We use the 9/7 biorthogonal filter bank (see [7, Sec. 7.4] for the actual filter

coefficients). The depths of decomposition J we test here are J = 2, 4, log2(N) for an image of size N × N .

The original image sizes we use are all dyadic, i.e., N = 2n, which are suitable for PWT and FWT. Hence, for

HWT, we duplicate the last column and row of each image to make it suitable for HWT.

As for the images, we use the face part of Barbara image (with 128 × 128 pixels) as well as the standard

images “Bridge”, “Truck”, and “Moon surface”, each of which consists of 256 × 256 pixels. Fig. 4 shows the

latter three images.

Fig. 5, 6, and 7 show the quality of approximations of these four images when the depth of decomposition

J is set to two, four, and maximum (seven for the Barbara face image and eight for the other three images),

respectively. From these figures, the performance of HWT is consistently superior to that of PWT and FWT. For

J = 2, we observe that the big performance difference between HWT and that of PWT and FWT particularly
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when the ratio f the retained coefficients is less than about 6%. This can be explained as follows. For any image

of size N × N , if the depth of decomposition J is set to 2, then the number of low-pass wavelet coefficients

in PWT and FWT is N2/16, i.e., very large. Since the low-pass wavelet coefficients are not sparse, we need

many coefficients to approximate such an image well. In other words, we cannot efficiently approximate such

an image using a small number of coefficients if J is set to a small number such as 2. In fact, N2/16 is 6.25% of

the original image size N2, which agrees with our observation. On the other hand, HWT decomposes an image

into two components: the harmonic component and the residual. We can approximate the harmonic component

very well using a few 1D LLST coefficients. For the residual, we still have the same problem as PWT and FWT

if J = 2. However, since the norm of the residual is much smaller than that of the original image thanks to the

removal of the harmonic component, the reconstruction error is kept small.

When J = 4 or J is set to its maximum, the performance of HWT is about 0.2 ∼ 0.5dB better than that

of PWT, and the 0.1 ∼ 0.2dB better than that of FWT. In general, the smaller the number of the retained

coefficients, the clearer the performance difference becomes. This is also due to the harmonic component in

HWT.

We now would like to show the reconstructed images because the PSNR plots do not tell the whole story.

Fig. 8, 9, and 10 show the reconstructed Barbara face images using top 5% coefficients of PWT, FWT, and

HWT for J = 2, 4, 7, respectively. From these figures, we can see that the HWT algorithm is also perceptually

better than the PWT algorithm and the FWT algorithm, particularly for J = 2. We can also notice some

difference around the frame boundary of the images. This is due to the use of LLST on the boundary pixels in

HWT. Overall, for each algorithm, the difference between J = 4 and J = 7 is not noticeable.

5.2 Comparison with LLST

We now compare the HWT algorithm with the LLST algorithm. In general, the decay rate of LLST coefficients

depends on global smoothness of the input data while that of HWT coefficients depends on local smoothness.

Since the global smoothness of a function is determined by its rough part (even if that part is localized), we

24



need fewer HWT coefficients than LLST coefficients in order to reconstruct the data to the same quality. For

LLST, we divide the image into several blocks and do LLST on each block. The size of block we use in our

experiments is 9×9, 17×17, 33×33, 65×65, 129×129 for all the four images, and in addition, we use 257×257

block for the “Bridge”, “Truck”, and “Moon Surface” images. Note that the largest block size for each image

implies that LLST does not divide it into a set of smaller segments. We first retain all the corner pixel values

of each block, select the certain number of coefficients with the largest energy among all the coefficients (both

1D and 2D) not yet used, reconstruct an approximation from these coefficients, and finally evaluate its quality

of approximation. For HWT, the depth of decomposition is set to the maximum, and we also use the 9/7

biorthonormal filter bank. We apply HWT on the whole image and retain the coefficients with the largest

energy. Fig. 11 shows the quality of approximation by PSNR values when we retain 2%-20% of the original

coefficients. From this figure, we again observe that HWT consistently outperforms LLST regardless of the block

sizes. In particular, HWT’s performance is significantly better (about 1dB) than that of LLST for the “Bridge”,

“Truck”, and “Moon Surface” images while its performance on “Barbara face” image is closely followed by that

of LLST with 17 × 17 blocks, especially around the ratio of the number of the retained coefficients to that of

the original coefficients ranges around 8% to 10%. We believe that this is due to the existence of textures in

the Barbara face image. We also observe that the performance of LLST at a particular ratio of the number of

the retained coefficients to that of the whole coefficient strongly depends on the block size. For example, for

heavy compression (i.e., the ratio is about 2% to 8%), the LLST with the larger block sizes perform better than

that with the smaller block sizes while the situation is opposite if one can afford to keep a larger number of

coefficients (e.g., the ratio is larger than 10%). HWT does not require the user to choose any such block sizes,

which is one of the major advantage of HWT over LLST.

5.3 Comparison with wavelets on the interval

It is appropriate to compare HWT with wavelets on the interval (WOI) introduced by Cohen, Daubechies and

Vial [5] because WOI also tries to overcome boundary effects. Compared to HWT, the periodic wavelets, and
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folded wavelets, however, the construction of WOI is quite complicated. Their starting point is Daubechies’s

compactly supported scaling functions and wavelets. They first construct scaling functions on the interval con-

sisting of three parts: the left edge scaling function, the interior scaling function, and the right edge scaling

function. Then, they use these scaling functions on the interval to construct the corresponding wavelets also

consisting of three parts: the left edge wavelet, the interior wavelet, and the right edge wavelet. Although these

wavelets on the interval have high vanishing moments, we cannot apply its discrete version to image approxima-

tion immediately. This is because their corresponding high pass filter cannot map a simple polynomial sequence

to zero. So when one uses WOI to approximate images, one has to perform a prefiltering (or preconditioning)

on the data first; see [5] for the detail.

We now compare the performance of HWT with that of WOI. Since the harmonic component of HWT

takes care of linear parts on the boundary, in order to be a fair comparison with HWT, we use WOI with two

vanishing moments. For HWT, we use Villasenor 5/3 filter bank [10], which also has two vanishing moments.

Fig. 12 shows the quality of approximation measured by PSNR values when we retain 1%−−10% of the original

coefficients. The depth of decomposition for both HWT and WOI is set to five for the Barbara face image and

six for the other three images since these are the maximal depth of decomposition that the WOI can take. From

this figure, we observe that that HWT again consistently outperforms WOI. Considering the implementation

complexity of WOI, HWT should be used if one wants to reduce the boundary effects.

6 Conclusion

In this paper, we proposed the Harmonic Wavelet Transform (HWT) that is not affected by the boundary of

input data. The idea of removing the boundary mismatches of input data originally proposed in LLST [8] is

quite important since the residual component after odd reflection and periodization, say, the v∗ component, does

not contain any artificial discontinuities caused by the boundary mismatches. Hence, the expansion coefficients

of v∗ with respect to the periodic wavelet basis truly relect the local smoothness of an input image. Moreover,
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HWT captures the intrinsic singularities in the interior of the domain more efficiently than LLST that uses the

Fourier sine series expansion for v∗. Also, the implementation of HWT is simpler than WOI because HWT does

not need any special boundary-dependent filter banks. Finally, our image approximation experiments using

four standard images demonstrated the superiority of HWT over LLST, PWT, FWT, and WOI. We also note

that the extension of HWT to a higher dimension is straightforward thanks to the efficient Laplace solver for

higher dimension [3].
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(a) Original (b) The u component (c) The v component

Figure 1: HWT decomposition of the Barbara face image. Each image is displayed using its full dynamic range.

Figure 2: The odd extension of the residual component v.
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Figure 3: The periodic biorthonormal wavelet coefficients of the odd extension of the residual component v
when the depth of decomposition is one.

(a) Bridge (b) Truck (c) Moon Surface

Figure 4: The three more standard images used in our experiments.
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(b) Bridge
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(c) Truck
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(d) Moon Surface

Figure 5: Quality of approximation of the four standard images measured by PSNR values as a function of
the ratio of the number of the retained coefficients to the total number of the coefficients. The depth of
decomposition is set to two in each case.
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(b) Bridge
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(c) Truck
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Figure 6: Quality of approximation of the four standard images measured by PSNR values as a function of
the ratio of the number of the retained coefficients to the total number of the coefficients. The depth of
decomposition is set to four in each case.
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(b) Bridge
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(c) Truck

1 2 3 4 5 6 7 8 9 10
28

29

30

31

32

33

34

Ratio of retained coefficients (%)

P
S

N
R

 

 

PWT

FWT

HWT
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Figure 7: Quality of approximation of the four standard images measured by PSNR values as a function of
the ratio of the number of the retained coefficients to the total number of the coefficients. The depth of
decomposition is set to the maximum in each case, i.e., seven for the Barbara face image and eight for the
others.
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(a) Original Image (b) PWT

(c) FWT (d) HWT

Figure 8: Approximations of the Barbara face image using the top 5% coefficients when the depth of decom-
position is two. The PSNR values (in dB) of PWT, FWT, and HWT are 17.6182, 17.5961, and 22.0776,
respectively.
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(a) Original Image (b) PWT

(c) FWT (d) HWT

Figure 9: Approximations of the Barbara face image using the top 5% coefficients when the depth of decom-
position is four. The PSNR values (in dB) of PWT, FWT, and HWT are 22.9791, 23.1484, and 23.2651,
respectively.
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(a) Original Image (b) PWT

(c) FWT (d) HWT

Figure 10: Approximations of the Barbara face image using the top 5% coefficients when the depth of decom-
position is seven. The PSNR values (in dB) of PWT, FWT, and HWT are 22.9962, 23.1476, and 23.2688,
respectively.
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9× 9 LLST

17× 17 LLST

33× 33 LLST

65× 65 LLST

129× 129 LLST
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(d) Moon Surface

Figure 11: Quality of approximation of the four standard images measured by PSNR values as a function of the
ratio of the number of the retained coefficients to the total number of the coefficients. These figures compare
the performance of HWT with that of LLST with different block sizes. For HWT, the depth of decomposition
is set to its maximum level.
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Figure 12: Quality of approximation of the four standard images measured by PSNR values as a function of the
ratio of the number of the retained coefficients to the total number of the coefficients. These figures compare
the performance of HWT with that of WOI. For both HWT and WOI, the depth of decomposition is set to its
maximum possible level.
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