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1. INTRODUCTION

Recently, the authors introduced the concept of the so-
called Local Discriminant Basis (LDB) for signal and im-
age classification problems [6], [17, Chap. 4], [19], [20].
This method first decomposes available training signals
in a time-frequency dictionary (also known as a dictio-
nary of orthonormal bases ) which is a large collection
of the basis functions (such as wavelet packets and lo-
cal trigonometric functions) localized both in time and in
frequency. Then, signal energies at the basis coordinates
are accumulated for each signal class separately to form
a time-frequency energy distribution per class. Based on
the differences among these energy distributions (mea-
sured by a certain “distance” functional), a complete or-
thonormal basis called LDB, which “can see” the distin-
guishing signal features among signal classes, is selected
from the dictionary. After the basis is determined, ex-
pansion coefficients in the most important several coordi-
nates (features) are fed into a traditional classifier such as
linear discriminant analysis (LDA) or classification tree
(CT). Finally, the corresponding coefficients of test sig-
nals are computed and fed to the classifier to predict their
classes.

This LDB concept has been increasingly popular and
applied to a variety of classification problems includ-
ing geophysical acoustic waveform classification [18],
radar signal classification [11], and classification of neu-
ron firing patterns of monkeys to different stimuli [22].
Through these studies, we have found that the criterion
used in the original LDB algorithm—the one based on
the differences of the time-frequency energy distributions
among signal classes—is not always the best one to use.
Consider an artificial problem as follows. Suppose one
class of signals consists of a single basis function in a
time-frequency dictionary with its amplitude

���
and they

are embedded in white Gaussian noise (WGN) with zero
mean and unit variance. The other class of signals con-

sists of the same basis function but with its amplitude� ��� and again they are embedded in the same WGN
process. Then their time-frequency energy distributions
are identical. Therefore, we cannot select the right ba-
sis function as a discriminator. This simple counterexam-
ple suggests that we should also consider the differences
of the distributions of the expansion coefficients in each
basis coordinate. In this example, all coordinates except
the one corresponding to the single basis function have
the same Gaussian distribution. The probability density
function (pdf) of the projection of input signals onto this
one basis function should reveal twin peaks around � ��� .

In this paper we propose a new LDB algorithm based
on the differences among coordinate-wise pdfs as a ba-
sis selection criterion and we explain similarities and dif-
ferences among the original LDB algorithm and the new
LDB algorithm.

2. STEPS TOWARD THE ORIGINAL LDB

In this section, we review various feature extraction
strategies and the original LDB algorithm. Before pro-
ceeding further, let us set up some notations. Let ���
	
be a set of all pairs of input signals and the correspond-
ing class labels �
������� . We call ������� an input signal
space and 	���� � �����������! an output response space
which is simply a set of possible class labels (names).
Most of the signal classification problems we are inter-
ested in, the dimension " is rather large. For example, in
medical X-ray tomography, we typically have "$#&% ��')( ,
and in seismic signals, "
#�* ����� . A classifier is a func-
tion +-,.�0/�	 which assigns a class name to each input

signal �213� . Note that if we define 46587�9�:�;13�<,+=�>�?�@�A�B , then 465 s are disjoint and �9�ACED5�FHG 465 .
A learning (or training) dataset I consists of J pairs of
input signals and the corresponding class names; IK����
�LG����)GM�N�������O�N�>�QPR����PS�M . Let JT5 be a number of class� signals in I . So, JU�WV D5�FHG JT5 . We often write �?X 5�YZ
to emphasize that this belongs to class � . We also assume
the availability of another dataset I\[ which is indepen-
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dent of I and still are sampled from the same probabil-
ity model. This is called a test dataset and used for eval-
uation of classifiers. Let us now introduce a probability
model. Let ]E�^4������ be a probability on ���
	 ( 42_W� ,�$1`	 ). Let �baW�dc��e1`���$	 be a random sample from
this probability distribution:

]E�^4������ 7�f]g�bah1i4E�jcW�&���\�&k 5 ]E�bal1$40mncW�3�)�o�
where k=5p7�A]E�^cq�l��� is a prior probability of class� . In practice, we often assume k�5-�rJT5�s�J where JT5
is the number of available class � samples in the training
dataset I (i.e., V 5 JT5t�&J ).

The first and most direct approach to the classification
problem seems:

Approach 0: Construct the best possible classifier using
information of ]E�^4������ .

This naturally leads to the concept of the Bayes classifier,
but we quickly realize that it is impossible to obtain in
practice.

2.1. The Bayes classifier

If we know the true probability distribution ]g�b4������ , then
the optimal classifier is the so-called Bayes classifier (or
rule) +)u and is defined as

]g�>+)uv�ba&�6w�xcR�\yf]E�
+��^af�Tw�8cR�o�
for any other classifier +=�ba3� . Then, the Bayes misclas-

sification rate zeu{7�|]g�>+)uv�ba&�2w�}c�� is clearly the
minimum among the rates obtained by all possible clas-
sifiers using information of ]E�^4������ . In fact, assuming
the existence of the conditional pdf ~Q�
�imd��� such that]E�^4������v�W�N�T~Q�>�$md����+B� , it is well known (see e.g., [3,
p. 14]) that the Bayes classifier is to “assign � to class�

if �r124S�� ,” where 4T��0���:��1��A,�~��>�
m � �jk � ��i�:� 5����\~��>�$mj�)�jk=5B . This Bayes classifier, however, is
impossible to construct. First of all, ~Q�
�imd��� is not known
in practice. It is even difficult to estimate ~Q�
�imd��� compu-
tationally using available training samples because of the
high dimensionality of the input space � (curse of dimen-
sionality); we need a huge number of training samples to
get reliable estimate of ~Q�
�imd��� . Therefore, we need to
reduce the dimensionality of the problem without losing
important information for classification.

2.2. Feature extraction, dimension reduction, and
projection pursuit

Faced with the curse of dimensionality and having such
difficulty in constructing the Bayes classifiers, the extrac-
tion of important features becomes essential. We want
to keep only important information and discard the irrel-
evant information for classification purposes. Humans
perform this kind of “feature compression” on a daily ba-
sis when facing classification and discrimination tasks.
As Scott mentions in his book [21, Chap. 7], this strategy
is also supported by the empirical observation that mul-
tivariate data in ��� are almost never " -dimensional and
there often exist lower dimensional structures of data. In
other words, a signal classification problem often has an
intrinsic dimension �r�0" . (Note that this is clearly dif-
ferent from that of signal compression problem even for
the same dataset; the intrinsic dimension is goal depen-
dent.) Therefore, it would be much more efficient and
effective to analyze the data and build classifiers in this
smaller dimensional subspace � of � , if possible. We call� a feature space, and a map �!,��0/�� a feature extrac-
tor. Then, the key is how to construct this “good” feature
space � consisting of discriminant features and design the
corresponding feature extractor � . If we precisely know
the underlying physical and mathematical models of the
problem, then we can design a mechanism to extract spe-
cific features relevant for that problem and may obtain its
intrinsic dimension. It is often difficult, however, to set
up exact mathematical models for the problem we are in-
terested in, such as medical and geophysical diagnostics.
Therefore, we want to adopt exploratory approaches; we
want to find discriminant features by automatic proce-
dures and examine their effectiveness. In turn, this may
lead to our understanding of the underlying physics of the
problem.

Based on the above observations, the next approach to
signal classification problems can be stated as follows.

Approach 1: Extract the best possible features from the
signals and construct the best possible classifier on
these features.

This approach can be symbolically written as:+t�x�6�v��� (1)

where � is a feature extractor and �0,?��/�	 is a clas-
sifier using signal features. Ideally, mapping input sig-
nals to � should reveal separate clusters of points corre-
sponding to signal classes and ease the subsequent classi-
fication tasks. In general, � can be nonlinear, e.g., neural
network feature extractors such as self-organizing maps
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[14]. Although this type of feature extractors have inter-
esting capabilities, they almost always require a nonlin-
ear optimization procedure which is computationally ex-
pensive and is difficult to find the global optimum. Then,
how about using some linear transforms as � ? This ques-
tion naturally leads to the concept of projection pursuit.

The projection pursuit (PP), which was originally pro-
posed by Kruskal [15] and was implemented, experi-
mented, and named by Friedman and Tukey [10], is one
of the few techniques to do the dimension reduction.
The original purpose of PP was to pick “interesting”
low-dimensional projections of high-dimensional point
clouds automatically by numerically optimizing a cer-
tain objective function or projection index. One can find
a sequence of best one-dimensional projections by op-
timizing the projection index, then removing the struc-
ture that makes this direction interesting, and iterating.
As one can see, the idea of PP is very general and was
extended for various purposes including density estima-
tion, regression, classification, and clustering; see excel-
lent expository papers by Huber [12] and by Jones and
Sibson [13]. In particular, by changing the projection in-
dex to the appropriate ones, many of the classical multi-
variate data analysis techniques, such as principal com-
ponent analysis (PCA) and linear discriminant analysis
(LDA), are shown to be the special cases of PP. There-
fore, PP with a projection index measuring discriminant
power of projections (or coordinates) seems an attractive
approach for feature extraction and dimension reduction.
The problem, however, still exists: 1) A straightforward
application of PP may still be computationally too ex-
pensive for high dimensional problems. 2) Sequentially
obtaining the best 1D projections may be too “greedy.”
It may miss the important 2D structures. After all, “the
best two measurements are not the two best” [7]. 3) In-
terpretation of the results often becomes difficult because
the best 1D projection squeezes all discriminant features
in the signals—however separated in time and frequency
domains—into a single feature vector.

2.3. The original LDB method

Faced with the above difficulties, one may wonder how
to approach the problem. Here, the so-called time-
frequency dictionary comes in. This is a large collec-
tion of specific basis vectors in � organized in a hi-
erarchical binary tree structure. This dictionary is re-
dundant and contains up to "H� �e�&���)� ( "Q� basis vectors
(also called time-frequency atoms) which have specific
time-frequency localization properties. Examples in-
clude wavelet packets and local trigonometric functions

both of which were created by Coifman and Meyer; see
[16], [24] and references therein for the detailed proper-
ties of these basis functions. See also [18] in this proceed-
ing. This dictionary of bases is huge; it contains more
than

' � different complete orthonormal bases [24, p.256].
This dictionary, however, offers at least two things for
us: 1) Efficiency in representing features localized both
in time and in frequency. This is particularly useful for
representing nonstationary signals or discontinuous sig-
nals. Moreover, this property makes interpretation of
classification results far easier than Approach 0 and 1. 2)
Computational efficiency. Expanding a signal of length" into such a tree-structured bases is fast, i.e., �E�
" ���)� "Q�
for a wavelet packet dictionary and �g�>"?� ����� "=  ( � for a
local trigonometric dictionary. Moreover, the Coifman-
Wickerhauser best-basis algorithm [24, Chap. 8] allows
one to search a “good” basis for her needs in �E�>"Q� .

The best-basis algorithm of Coifman and Wicker-
hauser, however, was developed mainly for signal com-
pression problems. The LDB algorithm was developed to
fully utilize these properties of the time-frequency dictio-
naries and the best-basis algorithm for signal classifica-
tion and discrimination problems [6], [17, Chap. 4], [19],
[20]. It is much more specific than Approach 0 and 1, but
it offers a computationally efficient dimension reduction
and extraction of local signal features. It is also “mod-
est” in the sense that it picks a set of good coordinates
from a finite collection of orthonormal bases rather than
a sequence of the absolutely best 1D projections without
constraint. This philosophy can be phrased as

Approach 2: Extract the most discriminant features
from a time-frequency dictionary, construct several
classifiers on these features, and pick the best one
among them.

For a specific classifier � (which can be any conventional
classifier of one’s choice, such as LDA, CT, or artificial
neural networks, etc.), this approach can be written as+t�f�T��¡e¢f�v£E� (2)

The feature extractor here consists of £U1�¤¥�>"Q� , an " -
dimensional orthogonal matrix (i.e., an orthonormal ba-
sis) selected from a time-frequency dictionary, and a fea-
ture selector ¡ ¢ selects the most important �&�j�¦"Q�
coordinates (features) from " -dimensional coordinates.
Most statistical literature focuses on the performance and
statistical properties of various classifiers � in (1), (2).
Some literature discusses the feature selector ¡ ¢ given
a set of features. On the other hand, both the original and
the new LDB methods focus on � , in particular, how to
select £ from a finite collection of bases.
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Let § be this time-frequency dictionary consisting of
a collection of basis vectors ��¨ Z  , ©`� � ����������"H� �t������ ( "Q� . § can also be expressed as a list of all possible
orthonormal bases ��ª\«B , ¬i� � ����������­ with ­¯® ' � .
Let ª\«R����¨t«N°����������d¨t«N±² and let ³R�
ª\«B� be a measure
of efficacy of the basis ª\« for classification tasks. Then,
both the original and the new LDB are selected rapidly by
the best-basis algorithm using the following criterion:

£&� �.´ � �$���uQµo��¶ ³·�>ª\«B�o� (3)

The heart of a matter is this measure of efficacy ³ . Here
we describe the one adopted in the original LDB method.
In the next section, we consider the various possibilities
of this measure and propose the new LDB method.

Let ¸ X 5�Y �b¨t«�� be a normalized total energy of class �
signals along the direction ¨�« :

¸ X 5�Y �^¨ « � 7� V P\¹Z FHG m ¨t«Tº�� X 5�YZ m (V P\¹Z FHG�» � X 5�YZ » ( � (4)

where º denotes the standard inner product in ��� . We
refer to the tree-structured set of normalized energies�:¸ X 5�Y �^¨ « �¦,�¨ « 1 §$ as the normalized time-
frequency energy map of class � . Let ¼ X 5�Y �>ª½«��{��>¸ X 5�Y �^¨�«N°¾�o�������O�¾¸ X 5�Y �b¨�«N±��j� be a vector of such normal-
ized energies corresponding to the basis ª\« which is ex-
tracted from the time-frequency energy map. In the origi-
nal LDB algorithm, as the measure ³ , we have examined
several functionals measuring “distances” among � vec-
tors, ¼ X GjY �>ª « �o����������¼ X D Y �
ª « � , such as relative entropy,
Hellinger distances, and simple ¿ ( distances. See Equa-
tions (2)–(5) in [18] where we compared their classifica-
tion performance. We note that the functionals such as
relative entropy and Hellinger distance were originally
created to measure the “distances” or deviations among
pdfs [1], and in the original LDB algorithm, the normal-
ized time-frequency energy maps are viewed as pdfs and
the distances among them are computed for basis evalu-
ation.

3. THE NEW LOCAL DISCRIMINANT BASES

In this section, we use the probability model to reinterpret
the original LDB algorithm and then propose the new ba-
sis selection criteria.

3.1. Discriminant measures for 1D projections

Let us first reconsider what is a good 1D projection for
classification and discrimination in general. The more

specific issues for the LDB methods are treated in the next
subsection.

If we project an input signal aq1
� onto a unit vector¨ Z 1
§ , then its projection (or coordinate) À Z 7�f¨ Z ºda
is also a random variable. We also use the notation À X 5�YZ
if we want to emphasize the projection of class � signals.
We are interested to know how À Z is distributed for each
signal class so that we can quantify the efficacy of the di-
rection ¨ Z for classification. We refer to such a projec-
tion index as a discriminant measure. We also use the
term discriminant power of ¨ Z which is the actual value
of such a measure evaluated at ¨ Z . We can think of four
possibilities of such a measure:

Type I: A measure based on the differences of derived
quantities from projection À Z , such as mean class en-
ergies or cumulants.

Type II: A measure based on the differences among the
pdfs of À Z .

Type III: A measure based on the differences among the
cumulative distribution functions (cdfs) of À Z .

Type IV: A measure based on the actual classification
performance (e.g., a rate of correct classification)
using the projection of the available training signals.

Type I measure is the one used in the original LDB
method. As we will show later, this is a special case of
Type II measure. Type II measure is the one we adopt
for the new LDB method. This requires the estimation
of the pdfs of À Z for each class and we will describe the
details below. Type III and IV measures are currently
under investigation. J. Buckheit suggested using Type
III measures since computing an empirical cdf is sim-
pler and easier than estimating a pdf. This includes the
Anderson-Darling distance which he used for measuring
non-Gaussianity of projections in his paper [4]. As for
Type IV measures, there are two approaches. One is to
estimate the 1D pdfs, assume them as the “true” 1D pdfs,
and invoke the Bayes classifier to get the misclassifica-
tion rate. The other is to use any simple classifier (e.g.,
LDA, CT,

�
-nearest neighbor, etc.) or a combination of

them to get the least misclassification rate. The Type IV
strategy is essentially the same as the local regression ba-
sis proposed by the authors [6], [17, Chap. 5]. We empha-
size that the misclassification rate in this context is simply
used to evaluate the direction ¨ Z , and is different from the
final misclassification rate obtained by the entire system+ .

In the following, we focus on Type II measures and its
relationship to Type I measures. If we knew the “true”
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conditional pdf ~Q�
�imd��� , then, the pdf of À Z for class �
signals would be:

Á �
Â6md���d¨ Z � 7�&ÃBÄvÅÇÆ È FOÉ ~Q�
�imd����+B�L� (5)

For notational convenience, we write Á X 5�YZ �
Â�� instead ofÁ �>Âemj�=�j¨ Z � . In practice, however, (5) cannot be com-
puted since ~Q�
�imd��� is not available as mentioned in the
previous section. Therefore, we must estimate Á X 5�YZ �>Â��
empirically using the available training dataset. LetÊÁ X 5�YZ �
Â�� denote such an estimate. There are many empir-
ical density estimation techniques as described in [21].
In fact, the pdf estimation using wavelets and their rela-
tives are a quite interesting subject itself [8]. In Section 5,
we use a particular estimation method called averaged
shifted histograms (ASH) [21, Chap. 5] which is compu-
tationally fast and has an interesting connection with the
“spin cycle” algorithm of Coifman and Donoho [5] for
signal denoising problems.

Having estimated pdfs,
ÊÁ X GnYZ ��������� ÊÁ X D YZ , what kind of

discriminant measure ³ should we use to evaluate the di-
rection ¨ Z ? The worst direction is the one which makes
all the pdfs look identical and for this direction the value
of ³ should be

�
. The best direction is the one which

makes all the pdfs look most different or “distant” from
one another which in turn should ease the subsequent
classification tasks. Therefore ³ should attain a maxi-
mum positive value at that direction. Also, we should
have ³·� ÊÁ X GjYZ ��������� ÊÁ X D YZ ��Ë �

and the equality should

holds if and only if
ÊÁ X GjYZ Ì º�º�º Ì ÊÁ X D YZ . These condi-

tions indicate that ³ should be a “distance-like” quan-
tity among pdfs. There are many “distance” measures to
quantify the difference or discrepancy of pdfs; see e.g.,
[1]. Among them, two popular distance measures (be-
tween two pdfs ~ and Á ) are:Í Relative entropy (also known as cross entropy and

Kullback-Leibler divergence):Î ��~H� Á �e7� Ã ~��>ÏO� �����6~��>ÏO�Á �
Ï�� +BÏH� (6)

Í Hellinger distance:Ð ��~Ñ� Á �L7� ÃÓÒ�Ô ~Q�
Ï�� � Ô Á �>ÏO�
Õ ( +BÏH� (7)

We also note that relative entropy (6) is not a metric since
it satisfies neither symmetry nor triangle inequality. For
measuring discrepancies among � pdfs, ~ X GjY �������O�^~ X D Y ,

the simplest approach is to take Ö D (B× pairwise combina-
tions of ³ :

³·��~ X GjY �������O�^~ X D Y � 7� DTØ GÙ Z FHG DÙ«�F ZÛÚ G ³R��~ X Z Y �^~ X «�Y �N� (8)

Remark 3.1. For a small number of classes, say 2 to 4,
this approach may be sufficient. The more signal classes
one has in her problem, the more obscure the meaning
of (8) becomes; a large value of (8) may be due to a
few significant terms with negligible majority (a favor-
able case) or to the accumulation of many terms with
relatively small values (an unfavorable case). For such
a case, we can take a different approach suggested by
Watanabe and Kaminuma [23]. Instead of constructing
a single classifier for the entire problem, consider � sets
of two class problems by splitting the training dataset into
class � and non-class � . Then construct a classifier for
each two class problem. Suppose the probability of a
signal � being classified to class � using the � th classi-
fier is ~ X 5�Y �
�Smd�?� . Then we assign � to class

�
where� � �.´ � �i��� 5.�.� ~ X 5�Y �
�Smd�?� . We are currently investigat-

ing this approach in the LDB setting and comparing with
the one based on (8).

Now, let us consider a particular Type I measure, the
normalized energy (or the normalized second moment) of
signals along the direction ¨ Z . This quantity for class �
signals can be written as

Ü X 5�YZ 7� Ý �ÞÀ (Z mncW�f�� V �Z FHG Ý �ÞÀ (Z m
c��&��  � (9)

Therefore, once we get the estimate
ÊÁ X 5�YZ , we can estimate

the energy as well:

ÊÜ X 5�YZ � � Â (QÊÁ X 5�YZ �
Â���+BÂV �Z FHG � Â ( ÊÁ X 5�YZ �>Â)��+BÂ � (10)

This shows that this Type I measure can be derived once
we get the estimate of pdfs. This is true for other derived
quantities such as cumulants. Now, how are (9) and (10)
related with the normalized time-frequency energy map
used in the original LDB algorithm? With the available
finite samples in the training dataset, we have

Ý �ÞÀ (Z m cp�&�� Ñ# �J 5
P\¹Ù«�FHG m ¨ Z º�� X 5�Y« m ( � Ã Â ( ÊÁ X 5�YZ �>Â)��+BÂ��
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Also, because of the orthonormality of ��¨ Z  ,�Ù Z FHG Ý � À (Z mncp�&�� Ñ� Ý � » a » ( mncp�&�� 
# �JT5

P ¹Ù«�FHG » � X 5�Y« » ( �
Thus from (4), we conclude

¸ X 5�Y �^¨ Z �½� ÊÜ X 5�YZ �
In other words, the normalized time-frequency energies
used in the original LDB algorithm turns out to be the fi-
nite sample version of the Type I measure (9) under the
probabilistic setting. For a fixed ¨ Z , both

Ü X 5�YZ and ¸ X 5�YZ
are point estimates, and the same is true of the discrimi-
nant measure ³R�
¸ X GjY �^¨ Z �N�������O��¸ X D Y �^¨ Z �d� . On the other
hand, the discriminant measure ³R� ÊÁ X GjYZ �������O� ÊÁ X D YZ � uses
the entire probability distribution information. There-
fore, the Type II measures using the pdfs can capture
more subtle discriminant information such as phase in-
formation than the Type I measures based on (9) and (4).

Remark 3.2. Once noticed that the quantity (9) is essen-
tially a point estimate of the nonlinear function (square
function in this case) of a random variable À Z , we may
further improve the original LDB by the use of other non-
linear transformations of the coordinate values. That is,
instead of using À (Z in (9) we can use another nonlinear
function ß=�>À Z � , e.g., ��´�à�á¾�.â À Z , ����� � ��� m À Z m � , and so on.
We can also use this idea for the discriminant measure ³
by estimating the pdf of ß=�>À Z � instead of that of À Z .
3.2. Discriminant power of bases in dictionaries

Instead of just a single direction, suppose we are given a
basis ª��ã�b¨äG:���������d¨ � � in a time-frequency dictionary.
Because it is difficult to estimate the " -dimensional pdf
directly for a large " , we evaluate each basis vector sep-
arately and sum up their discriminant powers. For nota-

tional convenience, let å Z 7�&³R� ÊÁ X GjYZ �������O� ÊÁ X D YZ � , i.e., dis-
criminant power of a single direction ¨ Z . Then, a simple-
minded measure of the discriminant power of ª may be

³ � �>ªt� 7� �Ù Z FHG å Z
However, once we start comparing the discriminant
power of various bases in the dictionary, we quickly real-
ize the shortcoming of this simple measure: many smallå Z s may add up to a large discriminant power of the basis,

as mentioned in Remark 3.1. Therefore, we want to sum
only

� �j�8"Q� largest terms, i.e.,

³ � �>ª¥� 7� �Ù Z FHG å X Z Y � (11)

where �:å X Z Y  is the decreasing rearrangement of �:å Z  . In
fact, it may be better not to take the most useless (i.e.,
non-discriminant) vectors into consideration. However,
the automatic choice of

�
is not necessarily easy and

needs further research.
Another possibility is to measure only the discrimi-

nant powers of the directions that carry the signal ener-
gies larger than a certain threshold æ�® � :

³ [ç �>ª¥� 7� �Ù Z FHGQè Z å Z � (12)

where è Z � �
if Ý � À (Z  <® æ and � �

otherwise.
The selection of æ should be done carefully. It should be
large enough to remove all the noisy coordinates, but also
should be small enough not to discard the subtle discrim-
inant features which are not noise.

Remark 3.3. It is interesting to use joint distribution of
pairs of projections �b¨ Z �j¨ « � instead of 1D projections
because hidden structures (such as holes) may be cap-
tured by a 2D projection but not by any 1D projection.
Since it is too expensive to estimate all possible com-
binations, i.e., Ö � (o× joint pdfs, for each class, we select
the most discriminant

� �d�é"Q� coordinates in ª using
the 1D projections, then deal with Ö � (M× joint pdfs. Two-
dimensional joint pdfs are indispensable for feature ex-
traction using a dictionary of local Fourier bases. There,
each expansion coefficient is a complex number. Taking
magnitudes of the coefficients in this case clearly ignores
important phase information. We are currently investi-
gating this approach.

3.3. The new LDB selection algorithm

We summarize the new procedure here with its computa-
tional cost.

Step 0: Expand each training signal �O« into a speci-
fied time-frequency dictionary § . [ �g�>" ����� ( "Q� or�E�
"H� ����� ( "Q� ( � ]

Step 1: For each vector ¨ Z in the dictionary, estimate the
pdfs

ÊÁ X 5�YZ of the projection, �t� � ���������¾� . [ �g�>"H� �������� ( "Q�j� using ASH estimates]
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Step 2: For each vector ¨ Z in the dictionary, compute its
discriminant power å Z . [ �g�>" ����� ( "Q� ]

Step 3: Evaluate each basis ª in the dictionary and ob-
tain the best basis via

£f� ��´ � �i�:�u½��¶ ³R�
ªt�o�
where ³ is either ³ � in (11) or ³t[ç in (12). [ �E�
"Q� ]

Step 4: Select � vectors from £ corresponding to the �
largest å Z .

Step 5: Construct classifiers � with the features derived
from � vectors.

We note that it is not necessary to have
� �&� in general.

4. “SPIN CYCLE”: A DATA STABILIZATION
PROCEDURE FOR TIME-FREQUENCY

DICTIONARIES

Our bases in the dictionaries, i.e., wavelets, wavelet pack-
ets, and local trigonometric bases, do not have the trans-
lation invariance property: if we shift the original signal,
its expansion coefficients change (significantly in some
cases) from those of the original signal so that one can-
not tell the amount of shift from the coefficients. Depend-
ing on the applications, this lack of translation invariance
may be problematic. For example, for image texture clas-
sification, we do not concern the locations of individual
edges or transients which form texture elements. Thus, it
is preferable to make the analysis and classification pro-
cesses more insensitive to translations in such problems.
On the other hand, if the time delay of a certain wave-
form is an important discriminant feature in one’s prob-
lem, then the lack of translation invariance may not be too
critical.

For compensating the lack of translation invariance,
we use the so-called spin cycle procedure: increase the
number of sample signals in the training and the test
datasets by creating their translated versions. More pre-
cisely, we shift each � Z in the training and the test datasets
in a circular manner by �ëê � �6ê �2� �������O� � � � � �������²� ê ,
where ê 12ì and ê �K" . Then we have

' ê �í� sig-
nals for each original signal (counting itself) all of which
share the same class assignment � Z . Next, we construct
the LDB using this increased training dataset, extract top� features, and build a classifier. Then we feed all the
signals to the classifier and predict the class labels. Fi-
nally, for each original signal, we take the majority vote
on the

' ê �2� predicted class labels. This “spin cycle”

procedure also plays an important role for other applica-
tions such as denoising [17, Chapter 3], [5].

Remark 4.1. It turns out that increasing the number of
sample signals by the spin cycle procedure is, in spirit,
very similar to the “bagging” (bootstrap aggregating)
procedure proposed by Breiman [2]. This method tries
to stabilize certain classifiers by: 1) generating multiple
versions of training dataset by the bootstrap method [9],
2) constructing a classifier for each training dataset, and
3) predicting the class of test samples by the majority vote
on the predictions by all the classifiers.

5. EXAMPLES

In this section, we analyze two classification problems.
The first one is the famous “waveform” classification
problem described in the CART book [3]. The sec-
ond problem is a discrimination of geophysical acoustic
waveforms propagated through different media [18].

Example 5.1. Triangular waveform classification.
This is a three-class classification problem using syn-
thetic triangular waveform data. The dimensionality of
the signal was extended from 21 in [3] to 32 for the dyadic
dimensionality requirement of the bases under considera-
tion. We generated 100 training signals and 1000 test sig-
nals for each class by the following formula:

Ï X GjY �>©^�\�&î�ï�Go�>©^� � � � � îO�jï ( �
©b� �ñð �>©^� for Class 1 �Ï X ( Y �>©^�\�&î�ï�Go�>©^� � � � � îO�jï=ò��
©b� �ñð �>©^� for Class 2 �Ï X òoY �>©^�\�&î�ï ( �>©^� � � � � îO�jï ò �
©b� �ñð �>©^� for Class 3 �
where ©ó� � ����������ô ' , ïQG��>©^�8� �$��� �>õ � m © �Wö m÷� � � ,ï ( �>©^�\�&ïQGN�>© �·ø � , ï=ò��
©b�½�3ï�Go�>© � *²� , î is a uniform ran-
dom variable on the interval � � � � � , and

ð �
©b� are the stan-
dard normal variates. We conducted three sets of differ-
ent classification experiments.

1. The original LDB method with and without Spin
Cycle.

2. The new LDB method with and without Spin Cy-
cle using the simple histgrams as the pdf estimation
method.

3. The new LDB method with and without Spin Cycle
using ASH as the pdf estimation method.

In each experiment, we repeated the whole process 10
times by generating 10 different realizations of the train-
ing and test datasets. As a classifier � in (2), we used
linear discriminant analysis (LDA) and classification tree
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Method (Coordinates) Training Test

LDA on STD 12.0 % 22.7 %
LDA on OLDB5 14.1 % 16.2 %

LDA on OLDB5SC3 14.1 % 16.1 %
LDA on OLDB5SC5 16.2 % 17.4 %

CT on STD 7.0 % 29.3 %
CT on OLDB5 8.1 % 21.9 %

CT on OLDB5SC3 5.8 % 21.4 %
CT on OLDB5SC5 7.7 % 22.5 %

Table 1: The average misclassification rates of the wave-
form classification example over 10 simulations. In
Method column, STD, OLDB5, represent the standard
coordinates and the top 5 coordinates of the original LDB
(based on the time-frequency energy distributions), re-
spectively. SC3, SC5 mean the Spin Cycle with 3 and 5
shifts ( ê � � � ' )

Method (Coordinates) Training Test

LDA on NLDB5 17.0 % 19.6 %
LDA on NLDB5SC3 16.2 % 18.2 %
LDA on NLDB5SC5 17.5 % 18.8 %

CT on NLDB5 9.9 % 26.3 %
CT on NLDB5SC3 6.3 % 24.5 %
CT on NLDB5SC5 7.9 % 23.7 %

Table 2: The average misclassification rates with the new
LDB algorithm using the simple histgrams as the em-
pirical pdf estimation method (averaged over 10 simula-
tions). Here, NLDB5xxx means that ��� � �3% in (11).

(CT). As a dictionary for LDB, we used the wavelet
packet dictionary with the 6-tap coiflet filter [24, Ap-
pendix C]). For the discriminant measure, we adopted the
relative entropy (8) for three classes (see also (8)). As
for � , the number of most important features to be fed
to classifiers, we set ���í% by heuristics, �ù# � � � " or� � ' " . For comparison, we also conducted the direct ap-
plication of LDA and CT over the signals represented in
the standard (or canonical) basis of � ò ( .

The averaged misclassification rates are summarized
in Tables 1,2,3.

We would like to note that according to Breiman et al.
[3], the Bayes error of this example is about 14 %. From
these tables, we observe:Í The best result so far was obtained by applying LDA

to NLDB5SC3, i.e., the top 5 LDB coordinates with
ASH estimates on the Spin Cycled data (with three

Method (Coordinates) Training Test

LDA on NLDB5 16.0 % 18.2 %
CT on NLDB5 8.8 % 24.5 %

LDA on NLDB5SC3 14.4 % 15.9 %
CT on NLDB5SC3 5.5 % 20.8 %

LDA on NLDB5SC5 15.9 % 17.9 %
CT on NLDB5SC5 7.5 % 22.8 %

Table 3: The average misclassification rates with the new
LDB algorithm using ASH as the empirical pdf estima-
tion method (averaged over 10 simulations).

shifts).Í The four of the top 5 original and new LDB vectors
are the same except their order of importance.Í Due to the nature of the problem (three triangles are
located at the fixed positions), Spin Cycle with too
many shifts (five shifts here) degraded the perfor-
mance.Í Over all the LDA gave much better results than CT.Í For the new LDB algorithm, the Spin Cycle is criti-
cal. Without Spin Cycle, it is worse than the original
LDB.Í Over all ASH-based methods gave the better results
than the simple histogram-based methods.

Note that the best results NLDB5SC3 essentially used
the double stabilization (or perturbation) procedure: Spin
Cycle on the original signals and ASH on the expansion
coefficients.

Example 5.2. Discrimination of geophysical acoustic
waveforms.
For the detailed background of this problem, see [18] of
this volume. Here, we want to discriminate the wave-
forms (recorded in a borehole with 256 time samples per
waveform) propagated through sandstone layers in the
subsurface from the ones through shale layers. We have
201 such “sand waveforms” and 201 “shale waveforms.”
We used 10-fold cross validation procedure to compute
the misclassification rates. We used the local sine dictio-
nary which is easier to deal with the time information than
the wavelet packet dictionaries. We used the relative en-
tropy (6) as a discriminant measure and ASH as the pdf
estimator again. In this experiment, we examined the de-
pendence of classification performance to the number of
important features � to compare the results obtained in
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Figure 1: Misclassification rates using LDA as a classi-
fier versus the number of the top LDB features retained.
The plots with symbols O and N correspond to the results
using the original and the new LDB algorithms, respec-
tively. The constant level line about 4% indicates the per-
formance of the LDA directly applied to the signals rep-
resented in the standard coordinate system (of 256 time
samples).

[18]. The results for ��� � ��%���������� ����� in steps of 5
are summarized in Figures 1 and 2. From these plots, we
observe thatÍ No misclassification occurs with LDA on the top

20,25, and 30 new LDB vectors.Í These good features are mainly concentrated in P
wave components; see also [18].Í Using LDA with less than 40 features, the new
LDB outperforms the original LDB. The difference
is small for more than 45 features.Í Using CT, the original LDB performs better than the
new LDB, but the result on the standard basis is even
better.

6. CONCLUSION

We described a new LDB algorithm using the “distances”
among the estimated pdfs of the projections of input sig-
nals onto the basis vectors in the time-frequency dictio-
naries. Using the probabilistic setting for the new LDB
method, the meaning of the original LDB method, which
is based on the time-frequency energy distributionsof the
projections, was clarified. The features derived from the
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Figure 2: Misclassification rates using CT as a classifier
versus the number of the top LDB features retained. The
constant level line about 2% indicates the performance of
the CT directly applied to the signals represented in the
standard coordinate system.

new LDB vectors can be more sensitive to phase shifts
than the original LDB vectors. For the examples we
showed, the new LDB method performed better than the
original one. We are currently investigating the new LDB
method for complex-valued features derived from the lo-
cal Fourier dictionary, where the new method may have
significant advantage over the original one. However, we
would like to emphasize that the new algorithm should
be considered as an option, not as an absolutely better
method than the original one. Depending on the problem,
the original LDB method may give sufficient or even bet-
ter results. In general, one should try both the original and
the new LDB methods for her problem at hand.
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