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Abstract

The authors previously developed the so-called local discriminant basis (LDB) method for signal and image classi3cation
problems. The original LDB method relies on di4erences in the time–frequency energy distribution of each class: it selects
the subspaces where these energy distributions are well separated by some measure such as the Kullback–Leibler divergence.
Through our experience and experiments on various datasets, however, we realized that the time–frequency energy distribution
is not always the best quantity to analyze for classi3cation. In this paper, we propose to use the discrimination of coordinates
based, instead, on empirical probability densities. That is, we estimate the probability density of each class in each coordinate in
the wavelet packet=local trigonometric bases after expanding signals into such bases.We then evaluate a power of discrimination
of each subspace by selecting the m most discriminant coordinates in terms of the “distance” among the corresponding
densities (e.g., by the Kullback–Leibler divergence among the densities). This information is then used for selecting a basis
for classi3cation. We will demonstrate the capability of this algorithm using both synthetic and real datasets. ? 2002 Pattern
Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recently, the authors introduced the concept of the
so-called local discriminant basis (LDB) for signal and
image classi3cation problems [1, 2 (Chapter 4), 3, 4]. This
method 3rst decomposes available training signals in a
time–frequency dictionary (also known as a dictionary of
orthonormal bases), which is a large collection of basis
functions (such as wavelet packets and local trigonometric
functions) localized both in time and in frequency. Then,
signal energies at the basis coordinates are accumulated
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for each signal class separately to form a time–frequency
energy distribution per class. Based on the di4erences
among these energy distributions (measured by a certain
“distance” functional), a complete orthonormal basis called
LDB, which “can see” the distinguishing signal features
among signal classes, is selected from the dictionary. After
the basis is determined, the expansion coeEcients in the
most important several coordinates (features) are fed into
a traditional classi3er such as linear discriminant analysis
(LDA) or a classi3cation tree (CT). Finally, the corre-
sponding coeEcients of test signals are computed and fed
to the classi3er to predict their classes.

This LDB concept has become increasingly popular and
has been applied to a variety of classi3cation problems in-
cluding geophysical acoustic waveform classi3cation [5,6],
radar signal classi3cation [7], and classi3cation of neuron
3ring patterns of monkeys to di4erent stimuli [8]. Through
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these studies, we have found that the criterion used in the
original LDB algorithm—the one based on the di4erences
of the time–frequency energy distributions among signal
classes—is not always the best one to use. Consider an arti-
3cial problem as follows. Suppose one class of signals con-
sists of a single basis function in a time–frequency dictionary
with its amplitude 10 and they are embedded in white Gaus-
sian noise (WGN) with zero mean and unit variance. The
other class of signals consists of the same basis function but
with its amplitude −10 again embedded in the WGN pro-
cess. Their time–frequency energy distributions are clearly
identical. Therefore, we cannot select the right basis func-
tion as a discriminator. This simple counterexample suggests
that we should also consider the di4erences of the distribu-
tions of the expansion coeEcients in each basis coordinate.
In this example, all coordinates except the one correspond-
ing to the single basis function have the same Gaussian dis-
tribution. The probability density function (PDF) of the pro-
jection of input signals onto this one basis function should
reveal twin peaks around ±10.

In this paper we propose a new LDB algorithm based
on the di4erences among coordinate-wise PDFs as a basis
selection criterion and we explain similarities and di4er-
ences among the original LDB algorithm and the new LDB
algorithm.

2. Steps toward the original LDB

In this section, we review various feature extraction strate-
gies and the original LDB algorithm. Before proceeding fur-
ther, let us set up some notation. Let X × Y be the set of
all pairs of input signals and their corresponding class la-
bels (x; y). We call X ⊆ Rn an input signal space and
Y = {1; : : : ; K} an output response space which is simply
a set of possible class labels (names). For most of the sig-
nal classi3cation problems in which we are interested, the
dimension n is rather large. For example, in medical X-ray
tomography, we typically have n ≈ 5122, and in seismic
signals, n ≈ 4000. A classi8er is a function d :X → Y

which assigns a class name to each input signal x∈X. Note
that if we de3ne Ay,{x∈X :d(x) = y}, then the Ay’s are
disjoint and X=

⋃K
y=1 Ay. A learning (or training) dataset

T consists of N pairs of input signals and the correspond-
ing class names: T = {(x1; y1); : : : ; (xN ; yN )}. Let Ny be a
number of class y signals in T, and, hence, N =

∑K
y=1 Ny.

We often write x(y)i to emphasize membership in class y.
We also assume the availability of another datasetT′ which
is independent ofT and sampled from the same probability
model. This is called a test dataset and is used for evalua-
tion of classi3ers. Let us now introduce a probability model.
Let P(A; y) be a probability on X×Y(A ⊂ X; y∈Y). Let
(X ; Y )∈X ×Y be a random sample from this probability
distribution

P(A; y),P(X ∈A; Y = y) = �yP(X ∈A |Y = y);

where �y,P(Y = y) is a prior probability of class y. In
practice, we often assume �y = Ny=N .

The 3rst and most direct approach to the classi3cation
problem is

Approach 0. Construct the best possible classi8er using
information of P(A; y).

This naturally leads to the concept of the Bayes classi8er,
but we quickly realize that it is extremely diEcult to obtain
in practice.

2.1. The Bayes classi8er

If we know the true probability distribution P(A; y), then
the optimal classi3er is the so-called Bayes classi8er dB and
is de3ned as

P(dB(X) 
= Y )6P(d(X) 
= Y );

for any other classi3er d(X). Then, the Bayes misclassi-
3cation rate RB,P(dB(X) 
= Y ) is clearly the minimum
among the rates obtained by all possible classi3ers using in-
formation of P(A; y). In fact, assuming the existence of the
conditional PDF p(x |y) such that P(A |y)=∫

A p(x |y) dx,
it is well known (see e.g., Ref. [9, p.14]) that the Bayes
classi3er is to assign x to class k if x∈A∗

k , where
A∗

k = {x∈X :p(x | k)�k =maxy∈Yp(x |y)�y}. This Bayes
classi3er, however, is impossible to construct. First of all,
p(x |y) is not known in practice. It is even diEcult to
estimate p(x |y) computationally using available training
samples because of the high dimensionality of the input
space X (curse of dimensionality); we need a huge number
of training samples to get a reliable estimate of p(x |y).
Therefore, we need to reduce the dimensionality of the prob-
lem without losing important information for classi3cation.

2.2. Feature extraction, dimension reduction, and
projection pursuit

Faced with the curse of dimensionality and having such
diEculty in constructing Bayes classi3ers, the extraction of
important features becomes essential. We want to keep only
important information and discard the irrelevant informa-
tion for classi3cation purposes. Humans perform this kind
of “feature compression” on a daily basis when facing clas-
si3cation and discrimination tasks. As Scott mentions in his
book [10, Chapter 7], this strategy is also supported by the
empirical observation that multivariate data in Rn are almost
never n-dimensional, and lower dimensional structures often
exist within the data. In other words, a signal classi3cation
problem often has an intrinsic dimension m¡n. (Note that
this problem is clearly di4erent from that of signal compres-
sion, even for the same dataset. In this sense, the intrinsic
dimension is goal-dependent.) Therefore, it would be much
more eEcient and e4ective to analyze the data and build
classi3ers in this smaller dimensional subspace F of X,
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if possible. We call F a feature space, and a map f:
X → F a feature extractor. Then, the key is how to con-
struct this “good” feature spaceF consisting of discriminant
features and design the corresponding feature extractor f. If
we precisely know the underlying physical and mathemati-
cal models of the problem, then we can design a mechanism
to extract speci3c features relevant for that problem and may
obtain its intrinsic dimension. It is often diEcult, however,
to set up exact mathematical models for the problem we are
interested in, such as medical and geophysical diagnostics.
Therefore, we want to adopt exploratory approaches; we
want to 3nd discriminant features by automatic procedures
and examine their e4ectiveness. In turn, this may shed light
on the underlying physics of the problem.

Based on the above observations, the next approach to
signal classi3cation problems can be stated as follows.

Approach 1. Extract the best possible features from the
signals and construct the best possible classi8er on these
features.

This approach can be symbolically written as

d = g ◦ f; (1)

where f is a feature extractor and g :F → Y is a classi3er
using signal features. Ideally, mapping input signals to F

should reveal separate clusters of points corresponding to
signal classes and ease the subsequent classi3cation tasks.
In general, f can be nonlinear, e.g., neural network fea-
ture extractors such as self-organizing maps [11]. Although
these types of feature extractors have interesting capabili-
ties, they almost always require nonlinear optimization pro-
cedures which are computationally expensive and have dif-
3culty in 3nding global optima. What about using some lin-
ear transforms as f? This question naturally leads to the
concept of projection pursuit (PP).
Projection pursuit (PP), which was originally proposed

by Kruskal [12] and was implemented, experimented upon,
and named by Friedman and Tukey [13], is one of the few
techniques which does dimensionality reduction. The origi-
nal purpose of PP was to pick “interesting” low-dimensional
projections of high-dimensional point clouds automatically
by numerically optimizing a certain objective function or
projection index. One can 3nd a sequence of best 1D pro-
jections by optimizing the projection index, then removing
the structure that makes this direction interesting, and iter-
ating. As one can see, the idea of PP is very general and
was extended for various purposes including density estima-
tion, regression, classi3cation, and clustering (see excellent
expository papers by Huber [14] and by Jones and Sibson
[15]). In particular, by changing the projection index ap-
propriately, many of the classical multivariate data analy-
sis techniques, such as principal component analysis (PCA)
and linear discriminant analysis (LDA), are shown to be
the special cases of PP. Therefore, PP with a projection in-
dex measuring discriminant power of projections (or coor-

dinates) seems an attractive approach for feature extraction
and dimension reduction. The problem, however, still ex-
ists: (1) a straightforward application of PP may still be
computationally too expensive for high-dimensional prob-
lems; (2) sequentially obtaining the best 1D projections may
be too “greedy”. It may miss the important 2D structures.
After all, “the best two measurements are not the two best”
[16]; (3) interpretation of the results may also become dif-
3cult because the best 1D projection squeezes all discrimi-
nant features in the signals—however separated in time and
frequency domains—into a single feature vector.

2.3. The original LDB method

Faced with the above diEculties, one may wonder how
to approach the problem. One point of view involves the
use of a so-called time–frequency dictionary. This is a large
collection of speci3c basis vectors in X organized in a hier-
archical binary tree structure. This dictionary is redundant
and contains up to n(1 + log2 n) basis vectors (also called
time–frequency atoms) which have speci3c time–frequency
localization properties. Examples include wavelet packets
and local trigonometric functions of Coifman and Meyer;
see [17–19] and references therein for the detailed prop-
erties of these basis functions. This dictionary of bases is
huge, containing more than 2n di4erent complete orthonor-
mal bases [18, p. 256]. This dictionary, however, o4ers us
at least two things: (1) eEciency in representing features
localized both in time and in frequency; (2) eEciency in
computing such features. The former is particularly useful
for representing nonstationary signals or discontinuous sig-
nals. Moreover, this property makes interpretation of clas-
si3cation results far easier than does either Approach 0
or Approach 1. In terms of computational eEciency, ex-
panding a signal of length n into such a tree-structured
bases is fast, i.e., O(n log n) for a wavelet packet dictionary
and O(n[log n]2) for a local trigonometric dictionary. More-
over, the Coifman–Wickerhauser best-basis algorithm [18,
(Chapter 8)] provides an O(n) search for a basis tailored
to some speci3c need.

The best-basis algorithm of Coifman and Wickerhauser,
however, was developed mainly for signal compression
problems. The LDB algorithm was developed to fully uti-
lize these properties of the time–frequency dictionaries
and the best-basis algorithm for signal classi3cation and
discrimination problems [1,2 (Chapter 4), 3,4]. It is much
more speci3c than Approach 0 and 1, but it o4ers a com-
putationally eEcient dimension reduction and extraction of
local signal features. It is also “modest” in the sense that it
picks a set of good coordinates from a 3nite collection of
orthonormal bases rather than a sequence of the absolutely
best 1D projections without constraint. This philosophy can
be phrased as

Approach 2. Extract the most discriminant features
from a time–frequency dictionary; construct several
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classi8ers on these features; and pick the best one among
them.

For a speci3c classi3er g (which can be any conventional
classi3er of one’s choice, such as LDA, CT, or neural net-
works, etc.), this approach can be written as

d = g ◦ �m ◦ �: (2)

The feature extractor here consists of �∈O(n), an
n-dimensional orthogonal matrix (i.e., an orthonormal
basis) selected from a time–frequency dictionary, and a
feature selector �m which selects the most important
m(¡n) coordinates (features) from n-dimensional coordi-
nates. Most statistical literature focuses on the performance
and statistical properties of various classi3ers g used in Eqs.
(1) and (2). Some literature discusses the feature selector
�m given a set of features. On the other hand, both the orig-
inal and the new LDB methods focus on f, in particular,
how to select � from a 3nite collection of bases.

Let D be this time–frequency dictionary consisting of a
collection of basis vectors {wi}, i = 1; : : : ; n(1 + log2 n).
D can also be expressed as a list of all possible or-
thonormal bases {Bj}; j = 1; : : : ; M with M ¿ 2n. Let
Bj = {wj1 ; : : : ;wjn} and let E(Bj) be a measure of eEcacy
of the basis Bj for classi3cation tasks. Then, both the origi-
nal and the new LDB are selected rapidly by the best-basis
algorithm using the following criterion:

� = arg max
Bj∈D

E(Bj): (3)

The heart of the matter is this measure of eEcacy E. Here
we describe the one adopted in the original LDB method.
In the next section, we consider the various possibilities of
this measure and propose the new LDB method.

Let �(y)(wj) be a normalized total energy of class y sig-
nals along the direction wj:

�(y)(wj),

∑Ny
i=1 |wj · x(y)i |2∑Ny

i=1 ‖x(y)i ‖2
; (4)

where · denotes the standard inner product in Rn. We
refer to the tree-structured set of normalized energies
{�(y)(wj) :wj ∈D} as the normalized time–frequency
energy map of class y. Let �(y)(Bj) = (�(y)(wj1 );
: : : ; �(y)(wjn)) be a vector of such normalized energies
corresponding to the basis Bj which is extracted from the
time–frequency energy map. In the original LDB algorithm,
we examined several functionals E measuring “distances”
among K vectors, �(1)(Bj); : : : ;�(K)(Bj), such as relative
entropy, Hellinger distances, and simple ‘2 distances. See
Eqs. (2)–(5) in Ref. [6] where we compared their classi-
3cation performance. We note that the functionals such as
relative entropy and Hellinger distance were originally cre-
ated to measure the “distances” or deviations among PDFs
[20], and in the original LDB algorithm, the normalized
time–frequency energy maps are viewed as PDFs and the
distances among them are computed for basis evaluation.

3. The new local discriminant bases

In this section, we use the probability model to reinterpret
the original LDB algorithm and then propose the new basis
selection criteria.

3.1. Discriminant measures for 1D projections

Let us 3rst reconsider what is a good 1D projection
for classi3cation and discrimination in general. The more
speci3c issues for the LDB methods are treated in the next
subsection.

If we project an input signal X ∈X onto a unit vector
wi ∈D, then its projection (or coordinate) Zi , wi · X is a
random variable. We use the notation Z (y)

i if we want to em-
phasize the projection of class y signals. We are interested
to know how Zi is distributed for each signal class so that
we can quantify the eEcacy of the direction wi for classi-
3cation. We refer to such a projection index as a discrimi-
nant measure. We also use the term discriminant power of
wi which is the actual value of such a measure evaluated at
wi. We can think of four possibilities of such a measure:

Type I: A measure based on the di4erences of derived
quantities from projection Zi, such as mean class energies
or cumulants.
Type II: A measure based on the di4erences among the

PDFs of Zi.
Type III: A measure based on the di4erences among the

cumulative distribution functions (CDFs) of Zi.
Type IV: A measure based on the actual classi3cation

performance (e.g., a rate of correct classi3cation) using the
projection of the available training signals.

Type I measure is the one used in the original LDB
method. As we will show below, this is a special case of a
Type II measure, and the method adopted for the new LDB
algorithm is also of Type II. This requires the estimation
of the PDFs of Zi for each class and we will describe the
details below. Type III and IV measures are currently under
investigation. Buckheit suggested using Type III measures
since computing an empirical CDF is simpler and easier
than estimating a PDF. This includes the Anderson–Darling
distance which he used for measuring non-Gaussianity of
projections in his paper [21]. As for Type IV measures,
there are two approaches. One is to estimate the 1D PDFs,
assume them as the “true” 1D PDFs, and invoke the Bayes
classi3er to get the misclassi3cation rate. The other is to use
any simple classi3er (e.g., LDA, CT, k-nearest neighbor,
etc.) or a combination of them to get the least misclassi3ca-
tion rate. The Type IV strategy is essentially the same as the
local regression basis proposed by the authors [1,2 (Chapter
5)]. We note that the misclassi3cation rate in this context
is simply used to evaluate the direction wi, and is di4erent
from the 3nal misclassi3cation rate obtained by the entire
system d.
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In the following, we focus on Type II measures and their
relationship to Type I measures. If we knew the “true” con-
ditional PDF p(x |y), then the PDF of Zi for class y signals
would be

q(z |y;wi),

∫
wi·x=z

p(x |y) dx: (5)

For notational convenience, we write q(y)i (z) instead of
q(z |y;wi). In practice, however, Eq. (5) cannot be com-
puted since p(x |y) is not available as mentioned in the
previous section. Therefore, we must estimate q(y)i (z) em-
pirically using the available training dataset. Let q̂(y)i (z)
denote such an estimate. There are many empirical density
estimation techniques as described in Ref. [10]. In fact,
PDF estimation using wavelets and their relatives is a quite
interesting subject itself [22]. In Section 5, we use a partic-
ular estimation method called averaged shifted histograms
(ASH) [10, Chapter 5] which is computationally fast and
has an interesting connection with the “spin cycle” algo-
rithm of Coifman and Donoho [23] for signal denoising
problems.

Having estimated PDFs, q̂(1)i ; : : : ; q̂(K)
i , what kind of dis-

criminant measure E should we use to evaluate the direc-
tion wi? The worst direction is the one which makes all the
PDFs look identical and for this direction the value of E
should be 0. The best direction is the one which makes all
the PDFs look most di4erent or “distant” from one another
which in turn should ease the subsequent classi3cation tasks.
Therefore, E should attain a maximum positive value in that
direction. Also, we should have E(q̂(1)i ; : : : ; q̂(K)

i )¿ 0 and
the equality should hold if and only if q̂(1)i ≡ · · · ≡ q̂(K)

i .
These conditions indicate that E should be a “distance-like”
quantity among PDFs. There are many “distance” measures
to quantify the di4erence or discrepancy of PDFs; see e.g.,
Ref. [20]. Among them, two popular distance measures
(between two PDFs p and q) are:

• Relative entropy (also known as cross entropy and
Kullback–Leibler divergence):

D(p; q),

∫
p(x) log

p(x)
q(x)

dx: (6)

• Hellinger distance:

H (p; q),

∫
(
√

p(x)−
√

q(x))2 dx: (7)

We also note that relative entropy (6) is not a metric since it
satis3es neither symmetry nor triangle inequality. For mea-
suring discrepancies among K PDFs, p(1); : : : ; p(K), the sim-
plest approach is to take ( K

2 ) pairwise combinations of E:

E(p(1); : : : ; p(K)),

K−1∑
i=1

K∑
j=i+1

E(p(i); p(j)): (8)

Remark 3.1. For a small number of classes; say 2–4; this
approach may be suEcient. The more signal classes one

has in a problem; the more obscure the meaning of Eq. (8)
becomes; a large value of Eq. (8) may be due to a few sig-
ni3cant terms with negligible majority (a favorable case) or
to the accumulation of many terms with relatively small val-
ues (an unfavorable case). For such a situation; we can take
a di4erent approach suggested by Watanabe and Kaminuma
[24]. Instead of constructing a single classi3er for the entire
problem; consider K sets of two-class problems by splitting
the training dataset into class y and nonclass y. Then con-
struct a classi3er for each two-class problem. Suppose the
probability of a signal x being classi3ed to class y using
the yth classi3er is p(y)(y |x). Then we assign x to class k
where k =argmaxy∈Y p(y)(y |x). We are currently investi-
gating this approach in the LDB setting and comparing with
the one based on Eq. (8).

Now, let us consider a particular Type I measure, the
normalized energy (or the normalized second moment) of
signals along the direction wi. This quantity for class y
signals can be written as

V (y)
i ,

E[Z2
i |Y = y]∑n

i=1 E[Z
2
i |Y = y]

: (9)

Therefore, once we get the estimate q̂(y)i , we can estimate
the energy as well:

V̂
(y)
i =

∫
z2q̂(y)i (z) dz∑n

i=1

∫
z2q̂(y)i (z) dz

: (10)

This shows that this Type I measure can be derived once we
get an estimate of the PDFs. This is true for other derived
quantities such as cumulants. Now, how are Eqs. (9) and
(10) related with the normalized time–frequency energymap
used in the original LDB algorithm?With the available 3nite
samples in the training dataset, we have

E[Z2
i |Y = y] ≈ 1

Ny

Ny∑
j=1

|wi · x(y)j |2 =
∫

z2q̂(y)i (z) dz:

Also, because of the orthonormality of {wi},
n∑

i=1

E[Z2
i |Y = y] = E[‖X‖2 |Y = y]

≈ 1
Ny

Ny∑
j=1

‖x(y)j ‖2:

Thus from Eq. (4), we conclude

�(y)(wi) = V̂
(y)
i :

In other words, the normalized time–frequency energies
used in the original LDB algorithm turn out to be 3nite
sample versions of the Type I measure (9) in the prob-
abilistic context. For a 3xed wi, both V (y)

i and �(y)
i are

point estimates, and the same is true of the discriminant
measure E(�(1)(wi); : : : ; �(K)(wi)). On the other hand, the
discriminant measure E(q̂(1)i ; : : : ; q̂(K)

i ) makes use of the full
probability distribution. Therefore, Type II measures using
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PDFs are able to capture more subtle discriminant features,
such as phase information, than can the Type I measures
based on Eqs. (9) and (4).

Remark 3.2. Once it is noticed that the quantity (9) is
essentially a point estimate of the nonlinear function (square
function in this case) of a random variable Zi; we may fur-
ther improve the original LDB by the use of other nonlinear
transformations of the coordinate values. That is; instead of
using Z2

i in Eq. (9); we can use other nonlinear functions
&(Zi); e.g.; arctan Zi; log(1 + |Zi|); and so on. We can also
use this idea for the discriminant measure E by estimating
the PDF of &(Zi) instead of that of Zi.

3.2. Discriminant power of bases in dictionaries

Instead of just a single direction, suppose we are given a
basis B = (w1; : : : ;wn) in a time–frequency dictionary. Be-
cause it is diEcult to estimate the n-dimensional PDF di-
rectly for a large n, we evaluate each basis vector separately
and sum up their discriminant powers. For notational conve-
nience, let 'i,E(q̂(1)i ; : : : ; q̂(K)

i ), i.e., the discriminant power
of a single direction wi. Then, a simple-minded measure of
the discriminant power of B may be

En(B),

n∑
i=1

'i: (11)

This coincides with the true discriminant power of the
n-dimensional PDF if all the coordinates in the basis B are
statistically independent. In general, this is not the case,
i.e., there exists some dependency among the basis coordi-
nates. Therefore, Eq. (11) is simply an approximation to
the true discriminant power of the basis B.

Once we start comparing the discriminant power of var-
ious bases in the dictionary, we quickly realize the short-
coming of Eq. (11): many small 'i’s may add up to a large
discriminant power for the basis, as mentioned in Remark
3.1. Therefore, we want to sum only the k(¡n) largest
terms, i.e.

Ek(B),

k∑
i=1

'(i): (12)

where {'(i)} is the decreasing rearrangement of {'i}. In fact,
it may be better not to take the most useless (i.e., nondis-
criminant) vectors into consideration. However, automating
the choice of k is not necessarily easy and needs further re-
search.

Another possibility is to measure only the discriminant
powers of the directions that carry signal energies larger
than a certain threshold t ¿ 0

E′
t (B),

n∑
i=1

)i'i; (13)

where )i = 1 if E[Z2
i ]¿t and =0 otherwise. The selection

of t should be done carefully. It should be large enough to

remove all the noisy coordinates, but also should be small
enough not to discard subtle discriminant features which are
not noise. Unfortunately, there is no automatic procedure of
threshold selection in this case unlike in simple denoising
problems as described by Donoho and Johnstone [25].

Remark 3.3. It is interesting to use joint distributions
of pairs of projections (wi ;wj) instead of 1D projections
because hidden structures (such as holes) may be captured
by a 2D projection but not by any 1D projection. Since
it is too expensive to estimate all possible combinations;
i.e.; ( n

2 ) joint PDFs; for each class; we select the most dis-
criminant k(¡n) coordinates in B using the 1D projections;
then deal with ( k

2 ) joint PDFs. 2D joint PDFs are indis-
pensable for feature extraction using a dictionary of local
Fourier bases. There; each expansion coeEcient is a com-
plex number. Taking magnitudes of the coeEcients in this
case clearly ignores important phase information. We are
currently investigating this approach.

3.3. The new LDB selection algorithm

We summarize the new procedure here with its computa-
tional cost.

Step 0: Expand each training signal xj into a speci3ed
time–frequencydictionaryD: [O(n log2 n) orO(n(log2 n)

2)].
Step 1: For each vector wi in the dictionary, estimate the

PDFs q̂(y)i of the projection for y=1; : : : ; K: [O(n(1+log2 n))
using ASH estimates].
Step 2: For each vector wi in the dictionary, compute its

discriminant power 'i: [O(n log2 n)].
Step 3: Evaluate E(B) for each basis B in the dictionary

and obtain the best basis via

� = argmax
B∈D

E(B);

where E is either Ek in Eq. (12) or E′
t in Eq. (13). [O(n)].

Step 4: Select m vectors from � corresponding to the m
largest 'i.
Step 5: Construct classi3ers g with features derived from

the m vectors.

We note that it is not necessary to have k =m in general,
although we set k = m in the experiments in Section 5.

4. “Spin cycle”: a data stabilization procedure for
time–frequency dictionaries

Our bases in the dictionaries, i.e., wavelets, wavelet pack-
ets, and local trigonometric bases, are not translation invari-
ant. If we shift the original signal, its expansion coeEcients
change (signi3cantly in some cases) from those of the orig-
inal signal so that one cannot tell the amount of shift from
the coeEcients. Depending on the application, this lack of
translation invariance may be problematic. For example, for
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image texture classi3cation, we are not concerned with the
locations of individual edges or transients which form tex-
ture elements. Thus, it is preferable to make the analysis and
classi3cation processes more insensitive to translations in
such problems. On the other hand, if the time delay of a cer-
tain waveform is an important discriminant feature in one’s
problem, we should not use translation invariant features.

To compensate for the lack of translation invariance, we
use the so-called spin cycle procedure: increase the number
of training signals in the training and the test datasets by cre-
ating their translated versions. More precisely, we shift each
xi in the training and the test datasets in a circular manner by
−*;−* + 1; : : : ;−1; 1; : : : ; *, where *∈N and *¡n. Then
we have 2*+1 signals for each original signal (counting it-
self) all of which share the same class assignment yi. Next,
we construct the LDB using this increased training dataset,
extract the top m features, and build a classi3er. Then we
feed all the signals to the classi3er and predict the class la-
bels. Finally, for each original signal, we take the majority
vote on the 2* + 1 predicted class labels. This “spin cycle”
procedure also plays an important role for other applications
such as denoising [2 (Chapter 3), 23].

Remark 4.1. It turns out that increasing the number of sam-
ple signals by the spin cycle procedure is; in spirit; very
similar to the “bagging” (bootstrap aggregating) procedure
proposed by Breiman [26]. This method tries to stabilize
certain classi3ers by: generating multiple versions of the
training dataset by the bootstrap method [27]; constructing
a classi3er for each training dataset; and predicting the class
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Fig. 1. Five sample waveforms from: (a) Class 1, (b) Class 2, and (c) Class3.

of test samples by majority vote on the predictions by all
the classi3ers.

5. Examples

In this section, we analyze two classi3cation problems.
The 3rst one is the famous “waveform” classi3cation prob-
lem described in Ref. [9]. The second problem is a dis-
crimination of geophysical acoustic waveforms propagated
through di4erent media [5,6].

Example 5.1. Triangular waveform classi8cation: This is
a three-class classi3cation problem using synthetic triangu-
lar waveform data. The dimensionality of the signal was
extended from 21 in Ref. [9] to 32 for the dyadic dimen-
sionality requirement of the bases under consideration. We
generated 100 training signals and 1000 test signals for each
class by the following formula:

x(1)(i) = uh1(i) + (1− u)h2(i) + )(i) for Class 1;

x(2)(i) = uh1(i) + (1− u)h3(i) + )(i) for Class 2;

x(3)(i) = uh2(i) + (1− u)h3(i) + )(i) for Class 3;

where i = 1; : : : ; 32; h1(i) = max(6 − |i − 7|; 0); h2(i) =
h1(i − 8); h3(i) = h1(i − 4); u is a uniform random vari-
able on the interval (0; 1); and )(i) are standard normal
variates. Fig. 1 shows 3ve sample waveforms from each
class.
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We conducted three sets of di4erent classi3cation exper-
iments.

1. The original LDB method with and without Spin Cycle.
2. The new LDB method with and without Spin Cycle using

the simple histograms as the PDF estimation method.
3. The new LDB method with and without Spin Cycle using

ASH as the PDF estimation method.

In each experiment, we repeated the whole process 10
times by generating 10 di4erent realizations of the training
and test datasets. As a classi3er g in Eq. (2), we used LDA
and a CT. As a dictionary for LDB, we used the wavelet
packet dictionary with the 6-tap CoiTet 3lter [18, Appendix
C]. For the discriminant measure, we adopted the relative
entropy (8) for three classes. As for m, the number of most
important features to be fed to the classi3ers, we set m = 5
by the heuristics that m ≈ 0:1n or 0:2n. For comparison, we
also directly applied LDA and CT to the signals represented
in the standard (or canonical) basis of R32.

The averaged misclassi3cation rates are summarized in
Tables 1–3.

We would like to note that according to Breiman et al.
[9], the Bayes error of this example is about 14%. From
these tables, we observe:

• The best result so far was obtained by applying LDA to
NLDB5SC3, i.e., the top 5 LDB coordinates with ASH
estimates on the spin cycled data (with three shifts).

• Four of the top 5 original and new LDB vectors are the
same except for their order of importance.

• Due to the nature of the problem (three triangles are
located at 3xed positions), Spin Cycle with too many
shifts (3ve shifts here) degraded the performance.

• Overall the LDA gave much better results than CT.
• For the new LDB algorithm, the spin cycle is critical.

Without spin cycle, it is worse than the original LDB.
• Overall ASH-based methods gave better results than the

simple histogram-based methods.

Note that the best results NLDB5SC3 essentially used a
double stabilization procedure: spin cycle on the original
signals and ASH on the expansion coeEcients. In Fig. 2, we
compare the top 5 discriminant vectors from OLDB5 and
NLDB5SC3. The 3fth vectors di4er only by a translation,
and the others are the same excepting their order.

Example 5.2. Discrimination of geophysical acoustic
waveforms: For the detailed background of this problem;
see Refs. [5;6]. Here; we want to discriminate the wave-
forms (recorded in a borehole with 256 time samples per
waveform) propagated through sandstone layers in the sub-
surface from the ones through shale layers. We have 201
such “sand waveforms” and 201 “shale waveforms.” We

Table 1
The average misclassi3cation rates for the waveform classi3cation
example over 10 simulations.

Method (coordinates) Training (%) Test (%)

LDA on STD 12.0 22.7
LDA on OLDB5 14.1 16.2
LDA on OLDB5SC3 14.1 16.1
LDA on OLDB5SC5 16.2 17.4
CT on STD 7.0 29.3
CT on OLDB5 8.1 21.9
CT on OLDB5SC3 5.8 21.4
CT on OLDB5SC5 7.7 22.5

Note: In theMethod column, STD and OLDB5 represent the
standard coordinatesand the top 5 coordinates of the original
LDB (based on thetime–frequency energy distributions), respec-
tively. SC3 and SC5refer to the spin cycle with 3 and 5 shifts
(* = 1; 2)

Table 2
The average misclassi3cation rates for the new LDB algorithm
using simple histograms as the empirical PDF estimation method
(averaged over 10 simulations)

Method (coordinates) Training (%) Test (%)

LDA on NLDB5 17.0 19.6
LDA on NLDB5SC3 16.2 18.2
LDA on NLDB5SC5 17.5 18.8
CT on NLDB5 9.9 26.3
CT on NLDB5SC3 6.3 24.5
CT on NLDB5SC5 7.9 23.7

Note: Here, NLDB5xxx means that m = k = 5 in Eq. (12).

Table 3
The average misclassi3cation rates with the new LDB algorithm
using ASH as the empirical PDF estimation method (averaged over
10 simulations)

Method (coordinates) Training (%) Test (%)

LDA on NLDB5 16.0 18.2
CT on NLDB5 8.8 24.5
LDA on NLDB5SC3 14.4 15.9
CT on NLDB5SC3 5.5 20.8
LDA on NLDB5SC5 15.9 17.9
CT on NLDB5SC5 7.5 22.8

used a 10-fold cross-validation procedure to compute the
misclassi3cation rates. We used the local sine dictionary
which is easier in dealing with time information than the
wavelet packet dictionaries. We used relative entropy (6)
as a discriminant measure and ASH as the PDF estimator
again. In this experiment; we examined the dependence
of classi3cation performance on the number of impor-
tant features m to compare with the results obtained in
Ref. [6]. The results for m = k = 5; : : : ; 100 in steps of 3ve
are summarized in Figs. 3 and 4.
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Fig. 2. Top 3ve LDB vectors of the waveform classi3cation example: (a) The original LDB vectors, (b) The new LDB vectors.
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Fig. 3. Misclassi3cation rates using LDA as a classi3er versus the number of top LDB features retained. The plots with symbols O and
N correspond to the results using the original and the new LDB algorithms, respectively. The constant level line about 4% indicates the
performance of the LDA directly applied to the signals represented in the standard coordinate system (of 256 time samples).

From these plots, we observe that

• No misclassi3cation occurs with LDA on the top 20, 25,
and 30 new LDB vectors.

• These good features are mainly concentrated in P wave
components; see also Refs. [5,6].

• Using LDA with ¡ 40 features, the new LDB outper-
forms the original LDB. The di4erence is small for ¿ 45
features.

• Using CT, the original LDB performs better than the
new LDB, but the result on the standard basis is even
better.
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Fig. 4. Misclassi3cation rates using CT as a classi3er versus the number of top LDB features retained. The constant level line about 2%
indicates the performance of the CT directly applied to the signals represented in the standard coordinate system.

6. Conclusion

We described a new LDB algorithm using “distances”
among the estimated PDFs of projections of input signals
onto basis vectors in time–frequency dictionaries. Using a
probabilistic setting for the new LDB method, the mean-
ing of the original LDB method, which is based on the
time–frequency energy distributions of the projections, was
clari3ed. The features derived from the new LDB vectors
can be more sensitive to phase shifts than the original LDB
vectors. For the examples we showed, the new LDB method
performed better than the original one. We are currently
investigating the new LDB method for complex-valued
features derived from the local Fourier dictionary, where
the new method may have a signi3cant advantage over the
original one. However, we would like to emphasize that the
new algorithm should be considered as an option, not as a
better method in all cases than the original one. Depending
on the problem, the original LDB method may give suE-
cient or even better results. In general, one should try both
the original and the new LDB methods for any problem
at hand.
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