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Abstract — We describe extensions to the “best-
basis” method to select orthonormal bases suitable
for signal classification (or regression) problems from
a collection of orthonormal bases using the relative
entropy (or regression errors). Once these bases are
selected, the most significant coordinates are fed into
a traditional classifier (or regression method) such
as Linear Discriminant Analysis (LDA) or a Clas-
sification and Regression Tree (CART). The perfor-
mance of these statistical methods is enhanced since
the proposed methods reduce the dimensionality of
the problems by using the basis functions which are
well-localized in the time-frequency plane as feature
extractors.

I. SUMMARY

The best-basis algorithm of Coifman and Wickerhauser [3]
was developed mainly for signal compression. This method
first expands a given signal into a dictionary of orthonormal
bases, i.e., a redundant set of wavelet packet bases or local
sine/cosine bases having a binary tree structure. The nodes
of the tree represent subspaces with different time-frequency
localization characteristics. Then a complete basis called a
best basis which minimizes a certain information cost func-
tion (e.g., entropy) is searched in this binary tree using the
divide-and-conquer algorithm. This cost function measures
the flatness of the energy distribution of the signal so that
minimizing this leads to an efficient representation (or coordi-
nate system) for the signal. Because of this cost function, the
best-basis algorithm is good for signal compression but is not
necessarily good for classification or regression problems.

For classification, we need a measure to evaluate the dis-
crimination power of the nodes (or subspaces) in the tree-
structured bases. There are many choices for the discrim-
inant measure D (see e.g., [1]). For simplicity, let us first
consider the two-class case. Let p = {pi}iz1, ¢ = {@:}i=1
be two nonnegative sequences with Y p; = Y ¢q; = 1 (which
can be viewed as normalized energy distributions of signals
belonging to class 1 and class 2 respectively in a coordi-
nate system). One natural choice for D is relative entropy:
D(p,q) 2 Y or  pilog(pi/q;). If a symmetric quantity is
preferred, one can use the J-divergence between p and g:
J(p,q) 2 D(p,q) + D(q,p). The measures D and J are both
additive: for any j, 1 < j <n, D(p,q) = D{{p:}_,{a: )+
D({pi}i=j+1,14i}i=j+1)- For measuring discrepancies among
L distributions, one may take (15 ) pairwise combinations of D.
The following algorithm selects an orthonormal basis (from
the dictionary) which maximizes the discriminant measure on
the time-frequency energy distributions of classes. We call
this a local discriminant basis (LDB).

Algorithm 1 Given L classes of training signals,

Step 0: Choose a dictionary of orthonormal bases (i.e., specify
QMFs for a wavelet packet dictionary or decide to use either
the local cosine dictionary or the local sine dictionary).

Step 1: Construct a time-frequency energy map for each class
by: normalizing each signal by the total energy of all signals of
that class, erpanding that signal into the tree-structured sub-
spaces, and accumulating the signal energy in each coordinate.
Step 2: At each node, compute the discriminant measure D
among L time-frequency energy maps.

Step 3: Prune the binary tree: eliminate children nodes if the
sum of their discriminant measures is smaller than or equal
to the discriminant measure of their parent node.

Step 4: Order the basis functions by their discrimination
power and use k(<& m) most discriminant basis vectors for
constructing classifiers.

For regression problems, we use the same algorithm by
modifying Step 2 and 3 above. In Step 2, we compute the
prediction (or regression) error at each node instead of the
time-frequency energy distributions. In Step 3, we prune the
binary tree by comparing the prediction errors of each par-
ent node and the union of its two children nodes: eliminate
the children nodes if their prediction error is larger than their
parent node. We call the basis so obtained a local regression
basis (LRB). One disadvantage is that the prediction error is
not an additive measure so that the algorithm is slower than
the LDB algorithm.

We tested our method using the triangular waveform classi-
fication (three-class problem) described in [2]. We first gener-
ated 100 training signals and 1000 test signals for each class.
Then, we supplied the raw signals to LDA and CART and
obtained the misclassification rates 20.90%, 29.87%, respec-
tively, using the test signals. Finally, we computed the LDB
from the wavelet packet dictionary with the 6-tap coiflet fil-
ter, and supplied five most discriminant coordinates to LDA
and CART. The misclassification rates become 15.90% and
21.37%. Note that the Bayes error of this example is about
14% [2]. The details as well as other examples and applica-
tions of LDB/LRB can be found in [4], [5], and [6].
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