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ABSTRACT

We propose an Iterative Nonlinear Gaussianization Algo-
rithm (INGA), which seeks a nonlinear map from a set of
dependent random variables to independent Gaussian ran-
dom variables. A direct motivation of the INGA is to extend
the principal component analysis (PCA) which transforms
a set of correlated random variables into uncorrelated (inde-
pendent up to second order) random variables. An obvious
advantage of deriving independent components is that we
can simulate a stochastic process of dependent multivari-
ate variables by sampling univariate independent variables.
The quality of the transformation is evaluated by statis-
tical tests on the Kullback-Leibler (KL) distance between
the distribution of the transformed variables the standard
multivariate Gaussian distribution N(0,). The quality of
the simulations is evaluated quantitatively by the statistics
of the KL distances between the sample mean distribution
of the original samples and that of the simulated samples.
Several numerical examples including synthetic and real-
life image databases show the capabilities and limitations
of INGA.

1. INTRODUCTION

Given n samples of a dependent random vector X of p di-
mensions (n > p), we are interested in resampling the de-
pendent components in such a way that the resampled data
and the observed samples obey the same p-variate distribu-
tion. In the case of one dimension (aside from the depen-
dence), the classical bootstrap [1] “random resampling with
replacement” has been a popular choice. Another direction
is to use copulas [2], which join multivariate distributions
to their one-dimensional marginal distributions. In the high
dimensional case, however, both methods have limitations.
Only linear models have been used in bootstrap analyses
[1], and the copula-based algorithms are hard to apply for
problems of dimension greater than 3 [2].

Independently from these resampling ideas, the method
of Independent Component Analysis (ICA) [3] has become
very popular, in particular, in the neural network commu-
nity [4]. The objective of ICA is to find a linear transfor-
mation so that the given random vector can be represented
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“as independent as possible.” Their motivations originally
came from the problems of blind source separation and
blind deconvolution (see e.g., [5] for a comprehensive re-
view).

We propose a statistical algorithm called the Iterative
Nonlinear Gaussianization Algorithm (INGA) — an exten-
sion to PCA. INGA tries to nonlinearly transform a set
of correlated random variables to the standard multivari-
ate Gaussian N(0,I), at a similar computational cost to
PCA, in an attempt to minimize the statistical dependence
among the transformed coordinates. The difference be-
tween INGA and ICA lies in two aspects, although both
seek statistically-independent coordinate systems. First,
INGA seeks a nonlinear transform whereas ICA seeks a lin-
ear one. Second, the motivation of INGA is really resam-
pling and simulation rather than blind source separation
and blind deconvolution.

There are two parts to INGA: the forward and back-
ward processes. The forward process iteratively transforms
a given set of dependent random variables by: 1) applying
PCA to decorrelate the random components; 2) matching
their one-dimensional marginal distributions to the stan-
dard Gaussian distribution N (0, 1); and 3) transforming the
components linearly to improve the joint Gaussianity. At
each iteration, the closeness of the resulting transformed
variables to the standard joint Gaussian variates N(0,I)
is checked by statistical tests evaluated with the empirical
P-value of certain distance measures such as the Kullback-
Leibler distance, multivariate skewness, and kurtosis. The
backward process generates new samples which presumably
obey the same distribution as the original samples at our
disposal. Section 2 and 3 discuss these in details.

Evaluation of the resamples or simulated data is of-
ten done subjectively by visually comparing them with the
original samples. This subjective evaluation is particularly
dominating in the area of texture modeling and simulation
(e.g., [6], [7]). In order to objectively evaluate the similarity
(or difference) between the original samples and the gen-
erated resamples, we use the Kullback-Leibler distance [8],
which is summarized in Section 4.

Our motivation to develop INGA lies in image model-
ing and simulation from the given samples without knowl-
edge of the underlying true probability model. However, the
most difficult problem in image modeling is the “curse of
dimensionality.” In particular, a reliable estimate of prob-
ability density functions (pdf’s) of high dimensional data



from a finite (and potentially small) number of samples
are hard to obtain in general. Also, INGA itself is a rel-
atively expensive algorithm (i.e., a constant multiple of the
cost of PCA). Therefore, before actually applying INGA
to image samples, we need to efficiently compress images
(dimension reduction). Either PCA or wavelet transforms
can be used for this dimension reduction. However, it is
important to realize that PCA achieves only decorrelation
and the wavelet transforms in general produce highly sta-
tistically dependent coefficients across different scales [6].
(See [9] and references therein for more about sparsity and
statistical independence.)

Therefore, it doubly makes sense to apply INGA on
the compressed representations of the original data. This
compression strategy is always employed in this paper if the
original dimension p exceeds about 50. We present such an
example in Section 5.

2. ITERATIVE NONLINEAR
GAUSSIANIZATION ALGORITHM (INGA)

2.1. The INGA forward process

Let X = (X1,...,X,)" be a random (column) vector of in-
terest, which obeys a cumulative distribution function (cdf)
Fy. Let x be a realization (or an observed version) of this
random vector. Let ® denote the cdf of the standard p-
variate Gaussian distribution N (0, I), where I, is the px p
identity matrix. The INGA forward process consists of the
following steps:

(i) Initialize x(¥) =x and set k = 0.

(ii) Apply PCA to the images, i.e., y = B'x¥), where B
is an orthogonal matrix for decorrelating x.

(iii) Transform u = Fy(y) so that each of the p random
variates u = (u1,...,up)" is uniformly distributed on
the interval (0, 1).

(iv) Transform z = ®~'(u) so that each of the p random
variates z = (21,...,2p) obeys the standard Gaus-
sian distribution N(0,1).

(v) Transform zZ = Az through a linear operator A, such
that z obeys the standard multivariate Gaussian dis-
tribution N (0, Ip,).

(vi) Check convergence to the multivariate Gaussian dis-
tribution. If satisfactory convergence not attained,
increment k, set x*) = z, and go to (ii).

Step (iv) does not guarantee us to produce standard
multivariate Gaussian random variates N(0,I,) although
each marginal distribution is the standard Gaussian N (0, 1).
This is why we need to apply the transformation of Step (v)
to make the random variates more like standard multivari-
ate Gaussian.

The operator A in Step (v) is obtained by minimizing
the L? error between the characteristic function of Z and
that of the standard multivariate Gaussian N(0, I,). Sec-
tion 3 describes how to compute such an operator A in
detail.

The variables transformed by A may be neither truly
multivariate Gaussian nor independent at a given iteration.
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Figure 1: Resampling of the “cigar” data by PCA and
INGA. Counter-clockwise from the top left: Original sam-
ples; Resamples from PCA coordinates; Resamples by
INGA; Yet another set of resamples by INGA.

We thus need to iterate over the z variates until the max-
imum correlation of the components of Z (i.e., the size of
the off-diagonal components of the covariance matrix of z)
becomes less than a given tolerance €, and the Monte Carlo
estimates of the multivariate skewness, kurtosis, and neg-
entropy test of multivariate Gaussianity [8] reach satisfac-
tory levels. Section 4 describes these validation procedures
in detail.

2.2. INGA backward process

With the records of the INGA forward process (i.e., stor-
ing all the information about A, Fy for each iteration), we
can go backward: starting from the INGA coefficients, we
can get the original sample x by reversing the forward steps
(ii)—(v). If we assume that the final INGA coefficients obey
the standard multivariate Gaussian, it is easy to generate a
new set of such coefficients. We then can go backwards to
synthesize the data in the starting coordinates (i.e., resam-

pling).
(i) Generate INGA coeflicients.

(ii) Invert all the iterations of the INGA forward process
to synthesize the data in the starting coordinates.

Although Section 5 will present several applications of the
INGA, it is motivating to show a simple example at this
point. Figure 1 displays data generated from the infamous
“cigar” data, two obliquely overlapping bivariate Gaussian
distributions. Resampling of this data under the PCA coor-
dinates performs poorly and fails to capture the two cigar
shapes. On the other hand, the INGA successfully simu-
lates this distribution (See Section 5 for the quantitative
analysis of this simulation).



3. HOW TO COMBINE THE MARGINALLY
GAUSSIAN DATA TO FORM JOINTLY
GAUSSIAN DATA?

3.1. Theoretical analysis of Step (iv)

After we have the marginal Gaussian variables Z; in Step
(iii) of the INGA forward process, Step (iv) finds a linear
transform A so that Z = AZ closely obeys the standard
multivariate Gaussiaq distribution. How can we find such
an A? Let ¢(t;) = e~ 2% be the characteristic function of Z;
and let f(Alt) = E(e™'?%) = E(e™' %) be the characteristic
function of Z. Then, we define a cost function, which is an
L? error between these two characteristic functions:
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D(A) = (1)

‘f(Alt) o B2

i=1

The operator A is obtained by minimizing D(A). A
straightforward way to minimize (1) is to use the perturba-
tion of D(A) about Ag, the orthogonal matrix used in PCA
to decorrelate the Z;’s:

A= Ao+ A 2)

where JA is a perturbation matrix with components da;;
which are the elements obtained from the Taylor expansion
of D(A) about Ao,
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Although this perturbation is straightforward, one can eas-
ily see that this becomes quickly impractical even for mod-
erate sizes of p.

3.2. Numerical minimization of D(A)

There is an additional challenge for numerically minimizing
(1) via the perturbation in (2) and (3). Let us first rewrite
D(A) in (1) as

D(A) = /

To find the minimizer A to (4), we need numerical eval-
uation of both (4) and (3). To perform these, we use the
Gaussian quadrature method, i.e., a weighted sum of the in-
tegrand evaluated at the nodest;,;,i=1,...,p,j=1,...,J
of t, where J is the required number of nodes. This sum
can be written as

2
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This approximation is also used to compute the quanti-
ties in (3). In this problem, we use the Gauss-Chebyshev
quadrature method, which simply uses the nodes —.538;
0; .538 in each dimension in (5). For the two-dimensional
case, the required number of nodes is nine. For the gen-
eral p dimensional case, t = (t1,--+,tp), we need 3” nodes.
This numerical approach is again only feasible for small to
moderate p. One reason is that the limitation of INTEGER
numbers in the computer is (23!) — 1 = 2.1475¢ + 009 which
is even smaller than 3?° = 3.4868e + 009 (p = 20). The
other reason is the CPU time: in the case of p = 20 dimen-
sions, the estimated CPU time is 2.71 days; for p = 100, it
is out of question.

Instead of finding A by going through the 3” nodes all
at once, which we call the regular optimization process,
we use a sequential process to find A approzimately. This
sequential process consists of the following steps:

[Initial Step] Let Z> = (Z1,Z>)’ be the first two com-
ponents of Z. Find the 2 X 2 matrix A> = (a11 a12) by

a21 a22
minimizing the cost function (5) using the regular optimiza-
tion process. Then the transformed vector Z> = As Z» has
a two-dimensional distribution with mean zero and identity
covariance matrix. _

[General Step, m > 3] Once An—1 and Z,,—1 are ob-
tained, append Z, t0 Zy, 1 to form Zy, = (Zl,_1,Zn) =
(Z1,-+, Zm—1,Zm)'. Then, look for the linear transforma-
I’,"_1 0 ) where
Am—1 Amm
al,_1 = (ami, **;am,m—1). The transformed random vec-
tor Zm = AmZm then minimizes

tion with the special structure /im = (

2

D(4An) = Hf(ﬁmnm) ~[Iew)| - (6)
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for which we make the approximation
F(Anltm) = B(e*n?m) m B(e™m—17m=1) B(e!m7m),

where t,, = (t1,---,tn). This is the key assumption, but
is reasonable because Z, is eventually expected to be the
standard multivariate Gaussian. The last row vector a;,, =
(al,—1,@mm) of Ap, in (6) can be found by minimizing

D(am) = || B @m-1Zm-ttammZn)y _ o=3tn |2 (7)

Since only one characteristic variable t,, is involved, we
need only to find a,, by one-dimensional 3-point Gaussian
quadrature using the perturbation a,, = ag,, + da,, in a
similar manner as (2), where ag,, = (0,0,---,0,1)’. Com-
bining this optimal a,, with the previous A,,—1, we have the
m X m optimal transformation matrix with the structure

A, = (A/m_l 0 ) _ (8)

A1 Amm

Note the relationship Z,, = AmZm = Am(Z1, -, Zm)'.
Section 5 demonstrates the validity of the sequential opti-
mization process by comparing it with the regular optimiza-
tion process using simple examples. This step is repeated
until m = p. For more details, see [10].



4. MODEL VALIDATION MEASURES AND
STRATEGIES

In essence, INGA builds a probability model of the underly-
ing distribution for the data of interest. This model is used
to synthesize/simulate new samples, which can be used for
a variety of important tasks, such as diagnostics and clas-
sification. It is then of critical importance to know the
accuracy of our model in a quantitative manner.

The Kullback-Leibler (KL) distance [11], also known
as the relative entropy or cross-entropy, is a measure of
the difference between two probability models, and is de-

fined as J(px,qx) = [ px(u)log 2’)’:%3;
gx are two pdf’s of interest. The KL distance between the
model distribution and the standard Gaussian distribution
is called the neg-entropy. We use the KL distance in two
ways in INGA and its applications. One is to check the
closeness of the transformed variables to the standard mul-
tivariate Gaussian variables in Step (vi) of the INGA for-
ward process by estimating the neg-entropy. The other is to
quantify the closeness of the obtained distribution and the
original unknown distribution via the generated resamples
and the original observed samples.

The difficulty in these validations lies in the estima-
tion of the KL distance. Jones and Sibson [12] and Comon
[3] independently showed the neg-entropy for an univari-
ate random variable can be approximated by a function of
their cumulants using an Edgeworth expansion. The neg-
entropy thus can be estimated from the sample estimates of
the corresponding cumulants. For higher dimensional cases,
we derived the sample estimates of neg-entropy as well as
those of the general KL distances between the two pdf’s
using an Edgeworth expansion in [8].

To evaluate the quality of the resamples using the KL
distance, there is still one problem: The Edgeworth-based
estimation of the KL distance only applies to distributions
not far from Gaussian [8]. Hence we estimate the KL dis-
tance of the the sample mean distributions rather than the
distributions of the original samples and resamples.

du, where px and

5. NUMERICAL EXAMPLES

We now demonstrate the capabilities and limitations of
INGA using several examples ranging from simple synthetic
stochastic processes to a real-life image database. All of the
simulations using INGA work as follows:

[Step 1 (optional)] Compress the original data using
PCA (or wavelets or any other sparsifying transformation).

[Step 2] Apply INGA to generate new samples relative
to the coordinates used in Step 1.

[Step 3 (optional)] Rotate the new samples back to
the original (i.e., standard) coordinate system.

Step 1 and 3 are necessary if the dimensionality of the
original data is high (e.g., p > 50). These steps are neces-
sary in the eye database example below.

5.1. Three-dimensional cigar data for justification
of the sequential optimization process

In order to investigate the stability of the sequential opti-
mization process discussed in Section 3, we constructed the
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Figure 2: Neg-entropy of the regular and sequential op-
timization processes during the first 30 INGA iterations.
Right figure shows the difference between these two neg-
entropy values.

three-dimensional cigar data (i.e., three anisotropic Gaus-
sian distributions overlapping in R?) as follows: 1) Cre-
ate samples of the random variable Y = (Y1, Y2,Y3) with
Y1 ~ N(0,1), Y2 ~ Unif(0, 1), and Y3 ~ Gamma(3); 2) Ap-
ply three different rotations R, /12,0, Rsx/12,0, Ro,x/12 t0 Y
(Rg,s represents a rotation with angle 6 in the plane spec-
ified by the first two coordinates and angle ¢ in the plane
specified by the last two coordinates in R3); and 3) Collapse
three components of each rotated version of Ry, 4, Y to a
new coordinate X;, ¢ = 1,2, 3 to create a new random vec-
tor X. Now the samples of X are overlapping obliquely. We
chose p = 3 since we really wanted to compare the perfor-
mance between the sequential and regular optimization pro-
cesses. For this p = 3 case, the regular optimization process
is computationally feasible since it only requires 27 (= 3%)
Gauss-Chebyshev quadrature nodes. As we discussed in
Section 4, the neg-entropy was used to measure the dis-
tance between the transformed variables and the standard
multivariate Gaussian. Figure 2 shows the neg-entropy of
the regular and sequential optimization processes during the
first 30 iterations. The neg-entropy difference between the
sequential and regular processes are essentially gone after
20 iterations.

5.2. Examples for testing the independence

To perform the test of the standard multivariate Gaussian-
ity (i.e., this also implies the test of independence), we use
the Monte Carlo method to obtain the empirical P-value of
multivariate skewness and kurtosis, and neg-entropy. Fig-
ure 3 shows these empirical P-values for the cigar data
(p = 2) and eye data (p = 5,15,25) (see Subsection 5.4
for the details of the eye data). The multivariate kurtosis
and skewness for N(0, ;) are 3 and 0, respectively. From
these plots, we may conclude that the INGA forward pro-
cess successfully transforms the original random variables
to independent standard Gaussian variables within four to
five iterations.

5.3. The spike process

The spike process—although it is a very simple stochastic
process—can be used to check the performance of the vari-
ous resampling/simulation techniques in a very clear man-
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Figure 3: Empirical P-values of multivariate kurtosis, skew-
ness, and neg-entropy of the INGA simulations of two-
dimensional cigar data and eye data with various compres-
sion rates (p = 5, 15, 25).

ner. A p-dimensional version of this process is described
as follows: X(w) = e, where w is uniformly and randomly
chosen from the set of integers {1,...,p}, and e is simply
the kth standard basis vector of RP. So, a unit spike is
randomly shifting among the locations k£ = 1,...,p. It is
known that for p = 2 we can obtain the independent coordi-
nates by a simple linear transformation (in fact, a 45 degree
rotation), but for p > 2 no linear transformation can pro-
vide the independent coordinates [9]. Therefore, it is very
interesting to see how INGA performs for this process with
various p.

Figure 4 shows the results for p = 2. In this case, INGA
obtained the independent coordinates perfectly after only
one iteration whereas resampling on the PCA coordinates
failed. We note that a resampling strategy using the PCA
is to: 1) Transform the original samples into the PCA co-
ordinates; 2) Resample each coordinate from the univariate
Gaussian distribution whose mean and variance are empir-
ically computed from the samples; and 3) Rotate the re-
samples back to the original coordinates. This works if the
original data truly obey the multidimensional (correlated)
Gaussian distribution; only in that case is the second step
of resampling each coordinate justified.

Figure 4 also shows histograms and boxplots of the KL
distances between the original samples and 100 resamples
by INGA and PCA using the sample mean distributions.
The the mean KL distance between the original and the
INGA is 0.1847 whereas that of the PCA is 1.0892, respec-
tively. (If the original samples and the resamples are dis-
tributed in exactly the same manner, then the KL distance
would be 0.)

For the spike process of p = 32, the results are shown
in Figure 5. In this case, after two iterations of INGA,
things did not really improve. One can observe that: 1)
INGA could not obtain the truly independent coordinates;

Original samples Resamples by INGA Resamples by PCA
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Figure 4: The spike process simulation (p = 2). The first
row from left to right: original samples; resamples by INGA;
resamples by PCA. The second row: a histogram of KL dis-
tances between the original samples and the INGA resam-
ples; the corresponding histogram for the PCA resamples;
their boxplots.

2) simulation based on PCA is worse than that by INGA.
Yet, the KL distances between the original samples and the
INGA resamples (its mean value = 15.3965) are much closer
than those between the originals and the PCA resamples
(the mean value = 92.10).

5.4. Eye image database

The original eye database contains 100 images of size 12x 12
pixels. Figure 6 compares the simulations by INGA and
PCA. In both cases, the images are first reduced to 25 di-
mensions by PCA. The simulations by INGA and PCA vi-
sually look similar. However, we can clearly see the quanti-
tative difference once we compute the KL distances between
the original samples and these simulations. The mean KL
distance between the originals and the INGA simulations
is 3.1781 whereas that between the originals and the PCA
simulations is 19.6943.

6. CONCLUSION

We have presented a new nonlinear algorithm to seek sta-
tistically independent coordinates—INGA. Although INGA
does not guarantee to produce truly independent coordi-
nates, we have demonstrated that the INGA-based simu-
lations of the dependent variables are quantitatively supe-
rior to the PCA-based simulations through several examples
ranging from synthetic stochastic processes to a real-life eye
image database. We also demonstrated the importance of
the accessibility to the distributions of the KL distances be-
tween the original samples and the simulated samples via
the sample mean distribution since this is one of the very
few ways to measure the quality of the simulations in a
quantitative manner. We are currently comparing the per-
formance of INGA with that of ICA.
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Figure 6: Simulations of the eye image database by INGA
and PCA. The first row from left to right: original image
samples; their top 25 PCA approximations. The second
row: simulated eyes by INGA; simulated eyes by PCA. The
third row: a histogram of KL distances between the orig-
inals and INGA simulations; the corresponding histogram
for INGA; their boxplots.
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