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Abstract

We propose an Iterative Nonlinear Gaussianization Algorithm (INGA) which seeks a nonlin-

ear map from a set of dependent random variables to independent Gaussian random variables. A

direct motivation of INGA is to extend principal component analysis (PCA), which transforms

a set of correlated random variables into uncorrelated (independent up to second order) random

variables, and Independent Component Analysis (ICA), which linearly transforms random vari-

ables into variates that are \as independent as possible." A modi�ed INGA is then proposed

to nonlinearly transform ICA coe�cients into statistically independent components. To quan-

tify the performance of each algorithm: PCA, ICA, INGA, and modi�ed INGA, we study the

Edgeworth Kullback-Leibler Distance (EKLD) which serves to measure the \distance" between

two distributions in multi-dimensions. Several examples are presented to demonstrate the supe-

rior performance of INGA (and its modi�ed version) in situations where PCA and ICA poorly

simulate the images of interest.
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1 INTRODUCTION

Given n samples of a random vector X of p dimensions (n > p), we are interested in resam-

pling/simulating the dependent components of X in such a way that the resampled/simulated

data and the observed samples obey the same p-variate distribution. In the case of one dimension,

the classical bootstrap (Efron and Tibshirani, 1993) \random resampling with replacement" has

been a popular choice. Another direction is to use copulas (Nelsen, 1998), which join multivariate

distributions to their one-dimensional marginal distributions. In the high dimensional case, how-

ever, both methods have limitations. Only linear models have been used in bootstrap analyses

(Efron and Tibshirani, 1993), and the copula-based algorithms are hard to apply for problems of

dimension greater than three (Nelsen, 1998).

Separately from these resampling ideas, the method of Independent Component Analysis (ICA)

(Comon, 1994) has become very popular, in particular, in the neural network community (Bell

and Sejnowski, 1995). The objective of ICA is to �nd a linear transformation so that the given

random vector can be represented \as independent as possible." ICA methodologies were originally

motivated by the problems of blind source separation and blind deconvolution (see e.g., Cardoso,

1998, for a comprehensive review).

In this paper, we propose a statistical algorithm called the Iterative Nonlinear Gaussianization

Algorithm (INGA) | an extension to principal components analysis (PCA). While PCA merely

transforms a set of correlated random variables into a set of uncorrelated random variables, INGA

nonlinearly transforms them to the standard multivariate Gaussian variables in an attempt to

minimize the statistical dependence among the transformed coordinates, at a similar computational

cost to PCA. The di�erence between INGA and ICA lies in two aspects, although both seek

statistically-independent coordinate systems. First, INGA seeks a nonlinear transform whereas

ICA seeks a linear one. Second, the motivation of INGA is really resampling and simulation rather

than blind source separation and blind deconvolution.

There are two parts to INGA: the forward and backward processes. The forward process

iteratively transforms a given set of dependent random variables by: 1) applying PCA to decorrelate

the random components; 2) matching their one-dimensional marginal distributions to the standard

Gaussian distribution N (0; 1); and 3) transforming the components linearly to improve the joint

Gaussianity. At each iteration, the closeness of the resulting transformed variables to the standard
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joint Gaussian variates N (0; I) is checked by statistical tests evaluated with the empirical P-value

of certain distance measures such as the squared Mahalanobis distance, multivariate skewness,

and kurtosis. The backward process generates new samples which presumably obey the same

distribution as the original samples at our disposal. Section 3, 4 and 5 discuss these in details.

Evaluation of the resamples or simulated data is often done subjectively by visually comparing

them with the original samples. This subjective evaluation is particularly dominating in the area

of texture modeling and simulation (e.g., (Portilla and Simoncelli, 1999), (Zhu et al., 1998)). In

order to objectively evaluate the similarity (or di�erence) between the original samples and the

generated resamples, we use the Kullback-Leibler distance (Lin et al., 2001), which is summarized

in Section 6.

Our motivation to develop INGA lies in image modeling and simulation from the given samples

without knowledge of the underlying true probability model. However, the most di�cult problem

in image modeling is the \curse of dimensionality." In particular, a reliable estimate of probability

density functions (pdf's) of high dimensional data from a �nite (and potentially small) number of

samples are hard to obtain in general. Also, INGA itself is a relatively expensive algorithm (i.e., a

constant multiple of the cost of PCA). Therefore, before actually applying INGA to image samples,

we need to e�ciently compress images (dimension reduction). Either PCA or wavelet transforms

can be used for this dimension reduction. However, it is important to realize that PCA achieves

only decorrelation and the wavelet transforms in general produce highly statistically dependent

coe�cients across di�erent scales (Portilla and Simoncelli, 1999), (Saito et al., 2000). On the other

hand, ICA provides a less statistically dependent coordinate system to be successful for samples that

come from a linear combination of statistically independent sources (Comon, 1994), (Hyv�arinen,

1999).

The organization of this paper is as follows. In Section 2, we use a few simple synthetic datasets

to motivate the development of INGA by showing the failure of the simple simulation methods using

PCA and ICA. Then, Section 3 describes the basic structure of our proposed algorithm, INGA,

which consists of the forward and backward (or analysis and synthesis) processes. This is followed

by the detail analysis of the nonlinear Gaussianization step in the forward process in Section 4.

Section 5 proposes statistical tests to check the closeness of the resulting transformed variables in

each iteration in the INGA forward process to the standard joint Gaussian variables N (0; I). These
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tests are important to check the convergence of the iteration. Section 6 describes our strategy to

objectively quantify the similarity between the original samples and the simulated samples using

the sample distributions of the EKLDs between the original samples and simulated samples. We

then present several simulation results with INGA and compare its performance with those based

on PCA and ICA in Section 7. Since INGA is an iterative algorithm, the speed of the convergence

relies on how good the initial coordinate system is (or how close the initial coordinate system

is to the statistically independent one). Therefore, for a certain stochastic process, much faster

convergence is obtained if we start with the ICA coordinates rather than the PCA coordinates. In

Section 8, we propose a modi�ed version of INGA, which replaces the initialization step using PCA

by ICA, with the hope to speed up the convergence.

We note that a preliminary version of this paper was presented at the Second International

Workshop on Independent Component Analysis and Blind Signal Separation that was held in June

2000 at Helsinki, Finland (Lin et al., 2000).

2 MOTIVATION OF INGA THROUGH SYNTHETIC EXAM-

PLES

In this section, we �rst formally de�ne PCA and ICA, and then describe the shortfalls of PCA and

ICA using a few synthetic datasets and motivate the development of INGA.

2.1 PCA and ICA

The Principal Component Analysis (PCA), also known as transformation through a Karhunen-

Lo�eve basis (KLB), provides a decorrelated coordinate system. Watanabe (1965) showed that

the PCA basis is characterized by minimizing the entropy of the energy distributions over its

coordinates:

BPCA = argmin
B2L
CPCA(B j T );

where L is a set of possible bases under consideration, and

CPCA(B j T ) =
nX
i=1

h(
̂[B]):

4



The entropy function h is de�ned by

h(
[B]) = �
nX
i=1


i[B] log 
i[B];

where 
i[B] is a normalized energy of the ith coordinate of B. In practice, we use the sample

estimate 
̂i[B] of 
i[B] from a training dataset T .

To lift the PCA from its limitation to the second order statistics, Comon (1994) proposed the so-

called Independent Component Analysis (ICA); see also Jutten and Herault (1991), Cardoso (1998).

Bell and Sejnowski (1995) discussed the closely related concept of \information maximization" and

its neural network implementation. Given a training dataset T , the ICA tries to �nd an invertible

linear transformation that minimizes the statistical dependence among its coordinates. In our

notation, ICA can be written as

BICA = argmin
B2L
CICA(B j T );

where CICA(B j T ) is a measure of statistical dependence, and often the mutual information or its

approximation by the higher-order moments are used. In fact,

CICA(B j T ) = I(Y ) = �H(Y ) +
nX
i=1

H(Yi)

where Y = B�1X is a random vector represented in the basis B, I(Y ) is the mutual informa-

tion of the random vector in the transformed coordinates, and H(Y ) = �
R
fY (y) log fY (y)dy

is its di�erential entropy. See Cover and Thomas (1991) for more details on the di�erential en-

tropy and mutual information. In this paper, we use a particular version of ICA algorithm called

fastICA developed by Hyv�arinen (1999), which is a computationally highly e�cient method for

estimating the independent components from given multidimensional signals. He used a �xed-

point iteration scheme to provide a general-purpose data analysis method that can be used both

in an exploratory fashion and for estimation of independent components (source). The term

\source" means the original unknown independent component that can be represented by a ran-

dom variable in general. The fastICA package for MATLAB r
1 is available at the web site

http://www.cis.hut.fi/projects/ica/fastica/.

1MATLAB is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, USA.
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2.2 Motivating Examples: Cigar, Boot, and Square Datasets

The development of INGA was motivated by the failure of the simple simulation methods based

on PCA and ICA. In the following three examples, we, using PCA and ICA, simulate the data as

follows. Let X be a random vector in the standard basis, and let Y = B�1X be a random vector

relative to the coordinate system B, where B is the PCA basis or the ICA basis. Let FN;i(y) be

an empirical cumulative distribution function (ecdf) of the ith coordinate Yi and let Fi(y) be an

interpolated version of FN;i so that the inverse exists. If U � unif(0; 1), then F�1
i (U) obeys Fi,

i.e., Yi and F
�1
i (U) share the same ecdf Fi since PrfF

�1
i (U) < yg = PrfU < Fi(y)g = Fi(y). Once

we sample all the coordinates to get ~Y = (F�1
1 (U1); : : : ; F

�1
n (Un))

0 where U1; : : : ; Un are di�erent

realizations of the unif(0; 1) distribution, then we can simulate typical data by the inverse transform

~X = B ~Y . We call this simple simulation method mCDF (the marginal cdf-based) method in this

paper. See Ripley (1987) for simulation methods other than the inversion method.

We demonstrate the failure of the mCDFmethods using the following relatively simple examples.

2.2.1 Cigar Data

The \cigar" data, two obliquely overlapping distributions, illustrate a situation where PCA fails to

capture the correct coordinate system. The cigar dataset is obtained as follows.

1. Let X = (X1;X2)
0 be a two-dimensional random sample where X1 and X2 are drawn inde-

pendently from unif(0; 1) and N (0; 1) distributions respectively.

2. Form the cigar-shaped data. One leaf of it is obtained by

Y =

0
@Y1
Y2

1
A =

0
@cos(�=12) � sin(�=12)

sin(�=12) cos(�=12)

1
A
0
@X1

X2

1
A ;

the other leaf is by

Z =

0
@Z1

Z2

1
A =

0
@cos(5�=12) � sin(5�=12)

sin(5�=12) cos(5�=12)

1
A
0
@X1

X2

1
A :

3. Let W = (W1;W2)
0 be a random vector that selects Y and Z with equal probability, i.e.,

1=2.
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Figure 1 shows the original cigar samples and the simulations obtained by the mCDF method

with PCA and ICA. Note the poor quality of the simulations. The reason is that the mCDF-PCA

method cannot capture the correct basis and the mCDF-ICA method generates the coe�cients

marginally which cannot represent the joint information among the original coe�cients.

2.2.2 Boot Data

This is an example of a nonlinear combination of two independent sources (random variables).

Once we applied the sample matrix to the fastICA package in MATLAB, the output showed the

information of \non-convergence". This example illustrates a situation where ICA fails to give

convergent independent sources. Note that the key assumption of ICA is that the input random

vectors consist of a linear combination of statistically independent sources while this example is a

nonlinear combination of sources. The boot dataset is obtained by the following procedure:

1. Let X = (X1;X2)
0 be a two-dimensional random sample where both X1 and X2 are indepen-

dently drawn from a unif(0; 1) distribution.

2. Form the boot-shaped data Y = (Y1; Y2)
0 by the following nonlinear combinations of X1 and

X2:

Y1 =
e�3X2

X1
+ 1;

Y2 =
eX1

X2
2

+ 1:

Figure 2 shows the original boot samples and simulated data obtained by PCA. Note that the

simulated boot is a poor representation of the original data since PCA cannot handle a nonlinear

structure like this dataset.

2.2.3 Square Data

The square data illustrate a situation where the ICA basis essentially provides the independent

coordinate system whereas the PCA basis provides merely a decorrelated coordinate system. A

random vector X = (X1;X2)
0 representing this dataset is obtained by sampling X1 and X2 inde-

pendently from the unif(0; 1) distribution.
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Figure 3 shows the original square samples and the simulations obtained by the mCDF method

with PCA and ICA. Note that the mCDF-PCA simulation poorly represents the square data since

PCA uses the wrong basis. The mCDF-ICA simulation looks better although the angles of the

upper and lower right corners deviate from the right angle. In other words, ICA could not provide

the exact statistically independent basis, which is the standard basis in this case. This is due to

the approximate numerical procedure from a �nite number of samples.

3 ITERATIVE NONLINEARGAUSSIANIZATIONALGORITHM

INGA extends PCA by seeking a nonlinear map of a set of dependent random variables to a

set of independent Gaussian random variables. An immediate advantage of deriving independent

standard Gaussian components is that we can simulate a general multivariate stochastic process

by sampling univariate independent standard Gaussian variables.

There are two parts of INGA: the forward and backward processes. The forward process itera-

tively transforms a given set of dependent random variables; the backward process generates new

samples which presumably obey the same distribution as the original samples at our disposal.

3.1 The INGA Forward Process

Let X = (X1; : : : ;Xp)
0 be a dependent random (column) p-vector of interest which obeys a cumu-

lative distribution function (cdf) FX . Let x be a realization (or an observed version) of this random

vector. Let � denote the cdf of the standard p-variate Gaussian distribution N (0; Ip), where Ip is

the p� p identity matrix. The INGA forward process consists of the following steps:

(i) Initialize x(0) = x and set k = 0.

(ii) Apply PCA to the images, i.e., y = B0x(k), where B is an orthogonal matrix for decorrelating

x(k).

(iii) Transform u = FY (y) so that each of the p random variates u = (u1; : : : ; up)
0 are uniformly

distributed on the interval (0; 1).

(iv) Transform z = ��1(u) so that each of the p random variates z = (z1; : : : ; zp)
0 obeys the

standard Gaussian distribution N (0; 1).
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(v) Transform ~z = Az through a linear operator A such that the distribution of ~z becomes closer

to the standard multivariate Gaussian distribution N (0; Ip).

(vi) Check the convergence to the multivariate Gaussian distribution. If a satisfactory convergence

is not attained, then set k  k + 1, x(k) = ~z, and go to (ii).

Note that step (iv) does not guarantee to generate the joint Gaussian random variates even if

each zi is marginally Gaussian. That is the reason why we need to apply the transformation of

step (v) to ensure the random variates are at least approximately jointly Gaussian.

The operator A in Step (v) is obtained by minimizing the L2 error between the characteristic

function of ~z and that of the standard multivariate Gaussian distribution N (0; Ip). Section 4

describes how to compute such an operator A in detail.

The variables transformed by A may be neither truly multivariate Gaussian nor independent

at a given iteration. We thus need to iterate over the ~z variates until the maximum correlation of

the components of ~z (i.e., the size of the o�-diagonal components of the covariance matrix of ~z)

becomes less than a given tolerance � and the tests of multivariate Gaussianity using the Monte

Carlo estimates of the multivariate skewness, kurtosis, and squared Mahalanobis distance reach

satisfactory levels. Section 5 describes these validation procedures in detail. We note that we do

not have a proof of convergence of this iterative nonlinear procedure. However, all the examples we

have examined so far, INGA reached to the satisfactory levels of joint Gaussianity within several

iterations.

3.2 INGA Backward Process

With the records of the INGA forward process (i.e., storing all the information about A and FY

for each iteration), we can go backwards: starting from the INGA coe�cients, we can obtain

the original sample x by reversing the forward steps (ii){(v). If we assume that the �nal INGA

coe�cients obey the standard multivariate Gaussian distribution, it is easy to generate a new set of

such coe�cients. We then can proceed backwards to synthesize or simulate the data in the starting

coordinates.

(i) Generate INGA coe�cients.
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(ii) Invert all the iterations of the INGA forward process to synthesize the data in the starting

coordinates.

We will, in Section 7, present several simulation examples and compare the performance of

INGA with that of mCDF-PCA and mCDF-ICA.

4 ANALYSIS OF THE GAUSSIANIZATION STEP

4.1 Theoretical Analysis of the Linear Operator A

After we have the marginal Gaussian variables Zi in step (iv) of the INGA forward process, step

(v) �nds a linear transform A so that ~Z = AZ closely obeys the standard multivariate Gaussian

distribution. How can we �nd such an A? Let �(ti) = exp(�t2i =2) be the characteristic function of

Zi and let f(A j t) = E[exp(it0 ~Z)] = E[exp (it0AZ)] be the characteristic function of ~Z. De�ne a

cost function measuring the L2 error between these two characteristic functions:

D(A) =






f(A j t)�
pY
i=1

�(ti)







2

: (1)

The operator A is obtained by minimizing D(A). A straightforward way to minimize (1) is to

use the perturbation of D(A) about A0, the orthogonal matrix used in PCA to decorrelate the Zi's,

namely

A = A0 + �A: (2)

Here �A is a perturbation matrix with components �aij which are the elements obtained from the

Taylor expansion of D(A) about A0,

�a = �H�1(A0) �
@D

@a
(A0); (3)

where @D
@a = ( @D

@a11
; @D
@a12

; � � � ; @D
@app

)0, and H is the p2 � p2 Hessian matrix,

H =

0
BBB@

@2D
@a11@a11

@2D
@a11@a12

� � � @2D
@a11@app

...
...

...

@2D
@app@a11

@2D
@app@a12

� � � @2D
@app@app

1
CCCA :

Note that �a = (�a11; � � � ; �app)0 2 Rp
2

is a perturbation vector whose components �aij are the

elements of �A. Although this perturbation is straightforward, one can easily see that this becomes

computationally impractical even for a moderate size of p.
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4.2 Numerical Minimization of D(A)

There is an additional challenge for numerically minimizing (1) via the perturbation in (2) and (3).

Let us �rst rewrite D(A) in (1) as

D(A) =

Z �����f(A j t)�
pY
i=1

�(ti)

�����
2

dt1 � � � dtp: (4)

To �nd the minimizer A to (4), we need numerical evaluation of both (4) and (3). To perform

these, we use the Gaussian quadrature method, i.e., a weighted sum of the integrand evaluated at

the nodes ti;j; i = 1; : : : ; p; j = 1; : : : ; J of t, where J is the required number of nodes. This sum

can be written as

D(A) �
X

j1;��� ;jp

wj1;��� ;jp

�����f(A j t1;j1 ; : : : ; tp;jp)�
pY
i=1

�(ti;ji)

�����
2

: (5)

This approximation is also used to compute the quantities in (3). In this problem, we use the

standard quadrature Gauss-Chebyshev quadrature method which can be found in any textbook on

numerical analysis, for example, Kincaid and Cheney (1991).

For the two-dimensional case, the required number of nodes is nine. For the general p dimen-

sional case, t = (t1; � � � ; tp), we need 3p nodes. This numerical approach is again only feasible for

small to moderate p. One reason is that the limitation of an INTEGER variable representable in

a computer: This is usually (231)� 1 � 2:1475� 109 which is even smaller than 320 � 3:4868� 109

(for p = 20). The other reason is the CPU time: in the case of p = 20 dimension, the estimated

CPU time is 2.71 days (on a Pentium III 500 MHz (586 series) PC with 256MB RAM); for p = 100,

it is out of question.

Instead of �nding A by going through the 3p nodes all at once, which we call the direct op-

timization process, we use a sequential process to �nd A approximately. This sequential process

consists of the following steps:

[Step 1] Let Z2 = (Z1; Z2)
0 be the �rst two components of Z obtained in the step (iv) of INGA

forward process. Find the 2� 2 matrix

A2 =

0
@a11 a12

a21 a22

1
A
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by minimizing the cost function (5) using the direct optimization process. Then the transformed

vector ~Z2 = A2Z2 has a two-dimensional distribution with mean zero and identity covariance

matrix.

Note that in order to obtain A2 from

A2 = A
(0)
2 + �A2;

we need to use the 2-dimensional 9-point Gaussian quadrature to evaluate all the di�erentials in H

and @D
@a . Here �A2 = �H

�1A
(0)
2 �

@D
@aA

(0)
2 and A

(0)
2 is the PCA matrix decorrelating Z2.

[Step 2] By appending Z3 to ~Z2, we let Z3 = ( ~Z
0

2; Z3)
0 = ( ~Z1; ~Z2; Z3)

0 be the next three-

dimensional vector. With these new vectors, we want to �nd the linear transformation with the

special structure

~A3 =

0
@I2 0

a02 a33

1
A ;

where a02 = (a31; a32), so that the transformed vector

~Z3 =

0
@ ~Z2

~Z3

1
A =

0
@I2 0

a02 a33

1
A
0
@ ~Z2

Z3

1
A = ~A3Z3

minimizes

D( ~A3) =






f( ~A3 j t3)�
3Y
i=1

�(ti)







2

;

where t = (t1; t2; t3)
0 = (t02; t3)

0. Assume we may approximate

f( ~A3 j t3) = E
�
eit

0 ~Z3

�
� E

�
eit

0
2
~Z2

�
E
�
eit3

~Z3

�
:

This is the key assumption, but is justi�able because ~Z3 is eventually expected to be joint Gaussian.

D( ~A3) can then be rewritten as follows:

D( ~A3) � e�(t
2

1
+t2

2
)



E �eit3(a31 ~Z1+a32 ~Z2+a33Z3)

�
� e�t

2

3
=2



2 : (6)

Let

~D(a) =



E �eit3(a31 ~Z1+a32 ~Z2+a33Z3)

�
� e�t

2

3
=2



2 (7)

be the the norm term in (6). Then a31, a32, and a33 can be found by minimizing D( ~A3) in (6), or

equivalently, minimizing ~D(a) in (7).
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Since only one characteristic variable t3 is involved, we need only to �nd a = (a31; a32; a33)
0

through one-dimensional three-point Gaussian quadrature. Consider the Taylor expansion G(�a)

of ~D(a) around a0 = (0; 0; 1)0 :

G(�a) = ~D(a0) +
X
i;j

 
@ ~D

@aij
(a0)

!
(�aij) +

1

2

X
i;j;k;l

 
@2 ~D

@aij@akl
(a0)

!
(�aij�akl) :

Then minimizing ~D(a) is carried out by minimizing G(�a). Similarly, by (3), we have

�a = �H�1(a0) �
@ ~D

@a
(a0)

where H is an 9� 9 symmetric matrix. The updated a2 will be

a2 = (a31; a32; a33)
0 = a0 + �a:

Combining a2 with the previous A2, we have the 3� 3 transformation matrix with the structure

A3 =

0
@A2 0

a02 a33

1
A =

0
BBB@
a11 a12 0

a21 a22 0

a31 a32 a33

1
CCCA :

[Step 3]

The following procedure, which produces the m � m transformation matrix, is repeated for

m = 4; : : : ; p.

1. Once Am�1 and ~Zm�1 are obtained, append Zm to ~Zm�1 to form Zm = ( ~Z
0

m�1; Zm)
0 =

( ~Z1; � � � ; ~Zm�1; Zm)
0.

2. Look for the linear transformation with the special structure ~Am =

0
@Im�1 0

a0m�1 amm

1
A where

a0m�1 = (am1; � � � ; am;m�1).

3. The transformed random vector ~Zm = ~AmZm then minimizes

D( ~Am) =






f( ~Am j tm)�
mY
i=1

�(ti)







2

; (8)

for which we make the approximation

f( ~Am j tm) = E
�
eit

0
m
~Zm

�
� E

�
eit

0
m�1

~Zm�1

�
E
�
eitm

~Zm
�
;
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where tm = (t1; � � � ; tm)0. The last row vector a0m = (a0m�1; amm) of ~Am in (8) can be found

by minimizing

~D(am) =



E �eitm(a0m�1

~Zm�1+ammZm)
�
� e�t

2
m=2



2 :

4. Since only one characteristic variable tm is involved, we only need to �nd am by one-

dimensional 3-point Gaussian quadrature using the perturbation am = a0m+�am in a similar

manner as (2), where a0m = (0; 0; � � � ; 0; 1)0. Combining this optimal am with the previous

Am�1, we have the m�m transformation matrix with the structure

Am =

0
@Am�1 0

a0m�1 amm

1
A :

Note the following relationship ~Zm = ~AmZm = Am(Z1; � � � ; Zm)0. More speci�cally, the matrix

Am has the form:

Am =

0
BBBBBBBBBBBBB@

a11 a12 0 � � � � � � 0

a21 a22 0 � � � � � � 0

a31 a32 a33 0 � � � 0
...

...
...

. . .
. . .

...
...

...
...

. . . 0

am1 � � � � � � � � � � � � amm

1
CCCCCCCCCCCCCA
:

5 TESTING INDEPENDENCE AND MULTIVARIATE GAUS-

SIANITY IN THE INGA FORWARD PROCESS

In step (vi) of the INGA forward process in Section 3.1, at each iteration, we diagnose indepen-

dence and Gaussianity (i.e., normality) of the random variables using the multivariate skewness,

multivariate kurtosis, and Mahalanobis distance measures. Recall that the multivariate skewness

and kurtosis for a p-variate Gaussian distribution are zero and three respectively. We use the Ma-

halanobis distance to study the distance from the distribution of ~z of step (v) to the multivariate

Gaussian distribution. We seek a distance measurement close to zero. Evaluation of these measures

is performed through the empirical estimates of the skewness, kurtosis, and Mahalanobis distance

to these known values under the null Gaussian distribution hypothesis.
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In this section, we will �rst de�ne these three measures, multivariate skewness, multivariate

kurtosis, and the Mahalanobis distance, brie
y describing how each �ts into INGA. We then illus-

trate the independence and Gaussian goodness of �t tests to evaluate the INGA forward process.

We note that INGA is modular in that if the user wishes to use alternative diagnostics measures,

we merely substitute or add these alternative routines in INGA step (vi) of Section 3.1. We are

thus not limited to the study of skewness, kurtosis, and Mahalanobis distance, though we choose

to study them here.

5.1 Multivariate Skewness and Kurtosis

Malkovich and A�� (1973) proposed the multivariate skewness and multivariate kurtosis to be the

primary tools for checking whether given samples obey a multivariate Gaussian distribution. The

de�nitions of multivariate skewness and multivariate kurtosis are as follows.

1. The distribution of a random vector X 2 Rp is said to have multivariate skewness if for some

nonzero vector c 2 Rp

�1(c) =
[Ef(c0X � c0E(X))3g]2

[Var(c0X)]3
> 0

2. The distribution has multivariate kurtosis if for some c

[�2(c)]
2 =

�
Ef(c0X � c0E(X))4g

[Var(c0X)]2

�2
> 9:

Let us use the following notation: Zj = c0Xj, and �Z = (1=n)
Pn

j=1 Zj . Then the sample estimates

of multivariate skewness and kurtosis are as follows.

1. sample multivariate skewness:

b1(c) = n
[
Pn

j=1(Zj �
�Z)3]2

[
Pn

j=1(Zj �
�Z)2]3

(9)

2. sample multivariate kurtosis:

b2(c) =
n
Pn

j=1(Zj �
�Z)4

[
Pn

j=1(Zj �
�Z)2]2

: (10)

Using Roy's union-intersection principle (Roy, 1957), the hypothesis of no skewness and no kurtosis

of the distribution of X is accepted if

b�1 = max
c6=0

b1(c) � Kb1 ;
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(b�2)
2 = max

c 6=0
[b2(c)�K]2 � Kb2 ;

where K ! 3 as n ! 1 (Fisher, 1929). The constants Kb1 , Kb2 are obtained by: 1) generating

synthetic Gaussian samples whose mean and variance are the same as the sample mean and variance

of the data fZjg; and 2) compute the sample skewness and kurtosis of those samples using the

formulas the formulas (9) and (10) to set Kb1 and Kb2 , respectively. Then, we also have

(b�2)
2 = maxf[b�2(min)�K]2; [b�2(max)�K]2g

where

b�2(min) = min
c6=0

b2(c) and b�2(max) = max
c6=0

b2(c):

5.2 Squared Mahalanobis Distance

The squared Mahalanobis distance is commonly used to examine multivariate Gaussianity (Johnson

and Wichern, 1998). Let x1; : : : ;xn be independent observations from a p-dimensional multivariate

Gaussian population with mean � and a �nite (nonsingular) covariance matrix �. The squared

Mahalanobis distance is de�ned by

d2i = (xi � �X)0S�1(xi � �X); i = 1; : : : ; n (11)

where �X and S2 are the sample estimates of � and �, respectively. Then the random variable

D with observations d21; : : : ; d
2
n obeys the �2-distribution with p degrees of freedom (Johnson and

Wichern, 1998).

5.3 Evaluating the Forward INGA Process

In this section, we will evaluate the forward INGA process using the cigar, boot and square datasets.

All the datasets were already introduced in Section 2. We will show how to use the skewness, kur-

tosis, and Mahalanobis distance measures to evaluate step (v) of INGA. During the forward INGA

process, we use Monte Carlo tests to compare the empirical estimates of the multivariate skewness,

multivariate kurtosis, and Mahalanobis distance to the corresponding known values (zero, three,

and zero respectively) under the null Gaussian distribution hypothesis. We choose to terminate the

forward INGA iterations when the empirical p-value is greater than 0.8, at which we are reasonably

satis�ed with the multivariate Gaussian assumption.
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Figure 4 presents the empirical p-values for the cigar, boot and square data. From these plots, we

may conclude that the INGA forward process successfully transforms the original random variables

to independent standard Gaussian variables within four to �ve iterations.

6 MODEL VALIDATION MEASURES

In essence, INGA builds a probability model of the underlying unknown distribution from the

available data. This model is then used to simulate new data samples that we wish to behave as

the original samples. This type of simulation can be used for a variety of important tasks such as

diagnostics and classi�cation. It is then of critical importance to know the accuracy of our model in

a quantitative manner. An important question then is how to judge the closeness of these simulated

samples to the originals. In information theory, the Kullback-Leibler distance is a useful validation

measure to evaluate the similarity (or di�erence) between original samples and simulated samples.

The Kullback-Leibler (KL) distance (Kullback, 1959), a measure of the di�erence between two

probability models, is de�ned as

J(f; g) =

Z
f(u) log

f(u)

g(u)
du; (12)

where f and g are two pdf's of interest.

Under some regularity conditions, the Gaussian approximation to f and g, denoted by f̂ and

ĝ, may be obtained through the Edgeworth expansion (Barndor�-Nielsen and Cox, 1989), (Kendall

et al., 1987). The Edgeworth KL distance (EKLD) expansion of f and g is

JE(f̂ ; ĝ) =

Z
f̂(u) log

f̂(u)

ĝ(u)
du:

Of course, our main goal is to derive computationally feasible model validation measures. We may

use the results from Lin et al. (2001) to compute EKLD in practice. Let X and Y be random

vectors whose pdf's are f and g, respectively. Under some regularity conditions on the estimators

f̂ and ĝ, Lin et al. (2001) showed that

JE(f̂ ; ĝ) = J(�X ; �Y ) +O(n�1): (13)

In this equation, �X is the multivariate Gaussian whose mean and covariance are the same as those
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of X obeying the pdf f (similarly for �Y ), and then we have J(�X ; �Y ) = (a+ b+ c� 1)=2, where

a = log
det( ~K)

det(K)
;

b =
X
i

(�i;i)2 + (�i � ~�i)2

(~�i;i)2
;

c =
X
i6=j

2~�i;j

~�i;i~�j;j
f�i;i�i;j + (�i � ~�i)(�j � ~�j)g;

where K = [�i;j ] and ~K = [�i;j ] denote the covariance matrices of X and Y ; that is, �i;j =

E(Xi � �i)(Xj � �j); �i = E(Xi), ~�
i;j = E(Yi � ~�i)(Yj � ~�j), and ~�i = E(Yi). The central

limit theorem guarantees that the sampling distribution of the sample mean (called sample mean

distribution) tends to a Gaussian distribution. Therefore, we can apply this model validation

measure to the sample mean distribution of the simulated samples. In the INGA simulation, X

and Y correspond to the original and the INGA simulated samples, respectively.

Our model validation procedure may be summarized as follows.

1. Simulate the stochastic process of interest with INGA and generate 100 datasets each of

which contains 100 simulated samples.

2. Compute the EKLD in (13) between the original distribution and the simulated distribution

using the sample means and the sample covariance matrices computed from the original

samples and a simulated dataset containing 100 simulated samples. Perform this EKLD

computation for each dataset. This results in 100 EKLDs.

3. Display the distribution of these 100 EKLDs by its boxplot. The smaller EKLD is, the closer

(or more similar) the simulated samples are to the originals.

7 SIMULATIONS

We now demonstrate the simulation capabilities and limitations of INGA using several examples

ranging from simple synthetic stochastic processes to a real-life image database. We will also

compare the simulated data by INGA with those by the mCDF method on the PCA and ICA

coordinates, which we explained in Section 2. To study the quantitative di�erence between the

original samples and these simulated samples, we will consider the sampling distribution of the
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EKLD between the simulated samples and the originals. Namely, we generate 100 simulated sam-

ples and evaluate the EKLD on each simulated sample. Typically, if the value of EKLD is close

to zero with large probability, then we may conclude that the corresponding simulation method

provides realizations from the same probability model as the original data. In order to obtain

Monte Carlo or empirical estimates of the EKLD sampling distribution and the probability EKLD

is in a neighborhood of zero, we repeat this simulation process 1000 times.

7.1 Simulation Procedures

In this section, we describe the INGA simulation method. We already explained the mCDF method

based on PCA or ICA in Section 2 where we used the inversion method in each coordinate. Now,

the simulation by INGA works as follows:

Step 1 (optional) Compress the original data using PCA (or wavelets or any other sparsifying

transformation).

Step 2 Apply INGA to generate new samples relative to the coordinates used in Step 1.

Step 3 (optional) Rotate the new samples back to the original (i.e., standard) coordinate system.

7.2 Analysis of INGA Simulations of the Cigar, Boot, and Square Data

Here, we perform the INGA simulation on the cigar, boot, and square data, and compare the

simulation results with those of mCDF-PCA and mCDF-ICA by Monte Carlo estimates of the

EKLD sampling distribution.

7.2.1 Cigar Data

The top two rows of Figure 5 show the original cigar samples and simulations obtained by INGA,

mCDF-PCA, and mCDF-ICA. The INGA simulation looks better than the others. Moreover, the

third row of Figure 5 shows the boxplots of the EKLD of the INGA, PCA, and ICA. Note that

INGA outperforms PCA and ICA.
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7.2.2 Boot Data

In a similar manner, the top row of Figure 6 shows the case of the boot data. Again, the INGA

simulation looks better than those of PCA. Moreover, the second row of Figure 6 shows the boxplots

of the EKLD of the INGA and mCDF-PCA. Note that INGA outperforms mCDF-PCA. Recall

that the ICA algorithm cannot be applied in this example. If we proceed with the ICA algorithm,

the program will not converge since the boot data is a nonlinear mixture of two independent sources

which con
icts with the assumption of ICA algorithm.

7.2.3 Square Data

The top two rows of Figure 7 show the case of the square data. The INGA simulation looks better

again than the others. The third row of Figure 7 shows the boxplots of the EKLD of the INGA,

PCA, and ICA. Figure 12 column 2 shows the PCA and ICA bases for the square dataset. As one

can easily see, ICA provides the \most" independent coordinate system that coincides well with

the truly independent system. PCA provides only a decorrelated coordinate system, which is still

far from being independent. On the other hand, as far as INGA is concerned, there is no reason to

prevent us from using ICA instead of PCA as the initialization step to start the algorithm. These

observations motivate us to modify INGA even though the present simulations are not bad. We

will introduce the modi�ed INGA in Section 8.

7.3 Analysis of the Eye Data

The data set of eye images consists of digitized pictures of right eyes from 143 people. We randomly

select 100 eyes from this set of 143 eyes as the training set. Each eye image consists of 144 (12�12)

pixels. In the terminology of a data matrix, we have n = 100 samples of p = 144 dimensional

vectors in the eye data set. In order to meet the requirements of INGA (sample size is greater than

the dimension), before performing the forward INGA process, we need to compress the data. In

this experiment, we use PCA to reduce the dimension down to 25 from 144. The top two rows of

Figure 8 show the simulations by INGA, mCDF-PCA, and mCDF-ICA. It is really hard to compare

the simulations visually in this example. The third row of Figure 8 shows the boxplot of the EKLDs

of INGA, mCDF-PCA, and mCDF-ICA. We may conclude that the simulation by INGA is superior

to the others. The simulations by mCDF-PCA and mCDF-ICA are essentially the same.
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7.4 Ramp Data

INGA does not uniformly outperform ICA. The ramp process, a very simple stochastic process,

illustrates such a situation. This process is expressed as:

X(t) = t�H(t� �); 0 � t � 1;

where H(�) is the Heaviside step function, and � obeys the uniform distribution unif(0; 1). For

more detailed discussion about the ramp process including an interesting historical remarks, see

Saito et al. (2000), Buckheit and Donoho (1996), Donoho et al. (1998), and Cardoso and Donoho

(1999). A p-dimensional discrete version of this process can be described as follows. Let ! be

uniformly and randomly chosen from the set of integers f1; : : : ; pg. Then the discrete ramp process

X = (X1; : : : ;Xp)
0 2 Rp can now be generated by the following formula:

Xj =

8><
>:
(j � 1)=(p � 1) if 1 � j < !

�1 + (j � 1)=(p � 1) if ! � j � p:

For each realization of this discrete ramp process, a very small white Gaussian noise (�2 = 10�14) is

added for the numerical stability. The ramp signal dataset is then obtained by randomly sampling

the 32-dimensional ramp process 1000 times. The top two rows of Figure 9 show the original ramp

signal and the simulations obtained by INGA, mCDF-PCA, and mCDF-ICA. The mCDF-ICA

simulation appears better than the others. The third row of Figure 9 denotes the boxplots of the

EKLD of INGA, mCDF-PCA, and mCDF-ICA. mCDF-PCA is signi�cantly worse than mCDF-ICA

and INGA. mCDF-ICA outperforms INGA though the di�erence is not statistically signi�cant.

We note that INGA projects the original data on the PCA coordinate system which is a set of

sinusoidal functions|an ine�cient basis for the ramp process (see also Donoho et al. 1998). The

ICA basis for the ramp example (Figure 10) is more appropriate for compression and modeling. In

this example, unlike the other cases in the previous subsections, the PCA initialization in INGA

turns out to be defective and make the subsequent INGA iterative process ine�ective. There is no

reason to prevent us from using ICA instead of PCA in the initialization step. These observations

motivate us to modify INGA, which we will describe in the next section.
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8 MODIFIED INGA

As we saw in the previous section, INGA did not produce a satisfactory simulation in the case of

the ramp data. Furthermore, the mCDF-ICA simulation was better than INGA. In general, ICA

provides the less statistically dependent coordinate system than PCA does. Therefore, it is natural

to replace PCA in step (ii) of the INGA forward process by ICA, which we call the modi�ed INGA.

[Step 1 ] Project the original data to the ICA coordinate system to obtain the corresponding

coe�cients.

[Step 2 ] Proceed with the Nonlinear Gaussianization (NG) process (step (iii) { step (vi) in the

original INGA forward process) on the coe�cients obtained in Step 1.

To contrast the original and modi�ed INGA, we �rst examine the simulations of the ramp

dataset. Figure 11 shows these simulations. It is clear to see that: 1) the modi�ed INGA produces

better simulated samples than the mCDF simulation does using the PCA or ICA coe�cients; 2)

the simulation using the ICA coe�cients (the middle column of Figure 11) is better than that using

the PCA coe�cients (the right column of Figure 11); and 3) the simulation by the modi�ed INGA

is better than that of the original INGA.

Next, we use the square example from Section 2.2 to further study the di�erences between the

original and modi�ed INGA. The ICA basis (the top row, the 2nd column of Figure 12) is close to

the truly independent coordinate system, but the PCA basis (the bottom row, the 2nd column of

Figure 12) is not. Therefore, there is no wonder why the mCDF-ICA simulation (the top row, the

3rd column of Figure 12) is clearly superior to that with PCA (the bottom row, the 3rd column of

Figure 12).

Applying NG on the ICA coe�cients (i.e., the modi�ed INGA) lead to a very good simulation

even with only one iteration of the NG process (the top row, the 4th column of Figure 12). On

the contrary, the original INGA (i.e., with PCA) could not produce a satisfactory simulation by

one iteration (the bottom row, the 3rd column of Figure 12), and it required several iterations

to improve the simulation (the bottom row, the 4th column of Figure 12). Figure 13 shows the

improvement of the simulations by the original INGA as the number of iterations increases.

To summarize our �ndings, we may conclude that INGA actually consists of two parts: one is

the PCA/ICA to obtain an appropriate initial coordinate system and the NG process to make it less
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statistically dependent. The function of the PCA/ICA is to seek a best coordinate system under

the assumption that the given samples are derived from a multivariate Gaussian distribution (PCA)

or a linear combination of statistically independent random variables. It is therefore expected that

PCA/ICA may produce reasonably good simulations for those cases that meet these assumptions.

However, there is no guarantee that the coe�cients of the samples represented in the PCA/ICA

basis are statistically independent in general; in fact they are often dependent. The NG process

thus plays a critical role in transforming these coe�cients to statistically independent components,

although we do not have a proof of the convergence of this iterative process. By generating variates

from these independent components and reversing INGA, we have developed an algorithm that is

generally successful in statistical image simulations.
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Figure 1: Simulations of the \cigar" data by mCDF-PCA and mCDF-ICA. From left to right:

original samples; simulation by mCDF-PCA; simulation by mCDF-ICA.
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Figure 2: Simulation of the \boot" data by mCDF-PCA. From left to right: original samples;

simulation by mCDF-PCA.
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Figure 3: Simulations of the square data by mCDF-PCA and mCDF-ICA. From left to right: The

original square data; simulation by mCDF-PCA; and simulation by mCDF-ICA.
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Figure 4: Empirical P-values of the squared Mahalanobis distance, multivariate kurtosis, and

multivariate skewness of the INGA simulations of Cigar (left), Boot (middle), and Square (right)

datasets. Solid lines: the squared Mahalanobis distance, Dashed lines: the multivariate skewness,

Dashed-dotted lines: the multivariate kurtosis.
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Figure 5: Simulations of the cigar data by INGA, mCDF-PCA, and mCDF-ICA. Top row from left

to right: the original samples; simulation by INGA. Middle row from left to right: simulations by

mCDF-PCA and mCDF-ICA. Bottom row : boxplot of EKLD of INGA, PCA and ICA.
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Figure 6: Simulations of the boot data by INGA and mCDF-PCA. Top row from left to right: the

original samples; simulation by INGA; and simulation by mCDF-PCA. Bottom row : boxplot of

EKLD of INGA, PCA and ICA.
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Figure 7: Simulations of the square data by INGA, mCDF-PCA, and mCDF-ICA. Top row from

left to right: the original samples; simulation by INGA. Bottom row from left to right: simulations

by mCDF-PCA and mCDF-ICA.
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Figure 8: Simulations of the eye image database by INGA, mCDF-PCA, and mCDF-ICA. Each

original eye image is represented by the top 25 PCA coordinates. Top row from left to right: the

original samples; simulation by INGA. Middle row from left to right: simulations by mCDF-PCA

and mCDF-ICA. Bottom row : boxplot of EKLD of INGA, PCA and ICA.31
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Figure 9: Simulations of the ramp data by INGA, mCDF-PCA, and mCDF-ICA. Top row from

left to right: the original samples; simulation by INGA. Bottom row from left to right: simulations

by mCDF-PCA and mCDF-ICA. 32
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Figure 10: The ICA basis vectors (left) and the PCA basis vectors (right) of the ramp dataset.
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Figure 11: Comparison of various simulations. Top row from left to right: The original ramp data

samples; simulations by mCDF-ICA and mCDF-PCA. Bottom row from left to right: Another set

of the original samples; simulation by the modi�ed INGA; simulation by the original INGA
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Figure 12: E�ect of the initial coordinate system for the square data. Top row from left to right:

The original square data; the ICA basis; simulation by mCDF-ICA; the modi�ed INGA after one

iteration. Bottom row from left to right: The original square data; the PCA basis; simulation by

mCDF-PCA; the original INGA after three iterations.
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Figure 13: Iterative improvement of simulations by the original INGA from �rst to fourth iteration.
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