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Abstract

This paper proposes an approximation for the Kullback-Leibler information based on Edge-
worth expansions. In information theory, entropy is a useful criterion for identifying a multivari-
ate normal distribution. Comon (1994) proposed an Edgeworth-based expansion of neg-entropy
in the univariate case. Based on the Edgeworth expansion of neg-entropy, a diagnosis is proposed
here for checking multi-normality. Moreover, a measurement for Kullback-Leibler information
is also proposed. We present numerical examples to demonstrate computational complexity and
applications to diagnose multivariate normality, evaluate the differential entropy and choose the

least statistically dependent basis from the wavelet packet dictionaries.

Keywords: Neg-entropy, differential entropy, cumulants, multivariate normal diagnostic, least

statistically dependent basis, wavelet packet dictionary

1 Introduction

Given an m dimensional random vector X with density px, the differential entropy S(px ), a measure

of dispersion of the density px, is defined by

S(px) = - / px (u)log px () du. (1)

Then the standardized neg-entropy is defined by

J(px, ¢x) = S(¢x) — S(px), (2)
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where ¢x stands for the m-dimensional Gaussian density with the same mean and variance as px.

Neg-entropy may be written in another form, known as Kullback-Leibler information :

T 6x) = [ pxwlog ZEE)) du. 3)

Kullback-Leibler information, invariant under any invertible linear transformation, is a measure of
“distance” in problems of discrimination. This measure can be built through density estimates of px
(see Joe, 1989; Hall, 1987; and Hall and Morton, 1993). Density estimation, however, relies on the
choice of kernel function and window size or bandwidth for each estimator. The computational and
conceptual complexity in specifying these parameters limits the applicability of density estimation
methods for estimating (3).

We propose an alternative method based on Edgeworth expansions to evaluate the Kullback-
Leibler information. Comon (1994) and Jones and Sibson (1987) approximated the neg-entropy in

one dimension by

1

1 7 1 _
J(pz,9z) = Epg + EPZ + EP% - §P§P4 +o(n"?), (4)

using an Edgeworth expansion. Here, p, is the rth standardized cumulant of the standardized
random variable Z, standardized sum of the random variables X3, ..., X,, with independent and
identically distributon, and n is the number of available samples. The relationship between p, and

the cumulant &, of the random variable Z is

pr = /K3

We generalize this method towards an approximation of the neg-entropy for an m-dimensional ran-
dom vector X. In particular, the analogous Edgeworth expansion for neg-entropy of the standardized

random vector Z is

1 m o m o 1 m o s
Tz, 92) = 5 [ D) +3 D (6792 + o D0 (549)| + O H), (5)
i=1 i i#j#s

where the cumulant ki>% of Z is of order n'~%. Moreover, the Edgeworth expansion can be

applied to evaluate the Kullback-Leibler information of the m-vector X
px(u)
gx(u)

Here, px and gx must have the same first and second moments to apply the Edgeworth expansion.

T(oxqx) = / pre(u) log 2 gy (6)

In one dimension, the KL distance is

T7,07) = =5 (s — fs)? + O ), (7



where p, and j, denote the rth standardized cumulants of the random variable Z and Z corre-

sponding to pz and gz. While in m dimensions, the KL distance will be

1 m o o m o o 1 m B B
J(pZ,QZ) = - Z(Km,z _ kz,z,z)z +3 Z(HMJ _ gjm,J)2 + 6 Z (Hl,J,S _ kz,],s)2 + O(TL*%),
i=1 i#£j i£j#s

(8)
where the cumulants &% and &% ¥ corresponding to pz and gz, are of order n'~%.

For the general cases where px and g, have different first and second moments, we also derive
the formulas analogous to (7) and (8) in Section 7.

This paper elucidates two facts: First, the convergence rate of the corresponding Kullback-Leibler
information based on the Edgeworth expansion is O(n~3/2). On the other hand, the alternative
density estimation approach to computing the Kullback-Leibler information can provide only root-
n consistent estimators (Hall and Morton, 1993). Furthermore, the error rate of the histogram
estimator not only depends on sample size n, but also on the choice of ‘bin width’ value h (Hall,
1987). The total error is, roughly, O(h?) + o(n~'/?). In the case of kernel estimation, the error is
o(n~'/?) when the dimension is less than (or equal to) 3; the estimator is much less sensitive to
choices of the bandwidth h compared to the associated histogram estimator.

Second, the Kullback-Leibler information based on the Edgeworth expansion can be evaluated
for any dimensional distribution as compared to density estimation (both histogram and kernel
estimator) which can be performed only on low-dimensional distributions (1, 2, and 3 dimensions)
in practice.

The paper is organized as follows. Section 2 is devoted to generalizing the Edgeworth expansion of
the neg-entropy in m dimensions as shown in (5). Section 3 presents the derivation of the Edgeworth
expansion of the generalized Kullback-Leibler information in both one and m dimensions displayed
in (7) and (8). Section 4 discusses estimation of the generalized neg-entropy and Kullback-Leibler
information via sample cumulants. In Section 5 we study the performance of our approximated
distance measures through numerical examples. In Section 6, we illustrate our methods through
three applications: diagnosing multivariate normality, evaluating neg-entropy, and compressing and
decomposing an multidimensional image. In Section 7, we derive the general one-dimensional and
m-dimensional Kullback-Leibler information where both densities have different first and second

moments.

2 Neg-Entropy in m-dimensional space

We use the covariant and contravariant system (indexing random variables by lower and upper in-

dices) to denote operations in high dimensional spaces (McCullagh, 1987). We present the definition



of covariant-contravariant system and the corresponding properties of cumulants and covariant-
contravariant Hermite polynomials in Appendix A.

Let Xy,...,X,, be independent and identically distributed m-dimensional random vectors. De-
note the components of each random vector by X = (X1,..., X™), with mean u = (p',...,u™)
and moments

Riti = B(XH i) (X - i),
where 1 < i <m, 1<k <m. Let S, =Y. | X; and Z = (S, — nu)/+/n such that the cumulant

kit of Z is of the order n'~ 2. Then the Edgeworth expansion of pz up to order five about its

best normal approximate is given by (Barndorf-Nielsen and Cox, 1989; Kendall and Stuart, 1977)

pz(2; k)
L ik L Gk 10 ik g
= om(z;K) |1+ 55” hijr(2z; k) + Zn” “hijri (2; K) +a/<a” K P Rikipg (2; K)

+  om %) 9)

where

(75 ) = (2m) ™ {det(s)) ™ exp(~ hi2127)

denotes the m-dimensional multivariate normal distribution of zero mean and covariance matrix
k = [7], with k% = E(Z1Z7) and [k; ;] represents k1.

Using the covariant-contravariant system and the corresponding properties, we may simplify (9)
by letting v1(z; &), v2(2; k), v3(2; k) be the corresponding terms in the sum £9*h;j (z), £%*h;j1(z),
and k¥FELPAD 00 (2), with v(z; k) = v1(2;K) + v2(2; k) + v3(z; k). Note that there are m?, m?
and m® terms contained in the v;(z; k), v2(2; k), and v3(z; k) respectively. Then (9) can be written

as

pz(z;K) = bz k) [L+v(z;K)] +O(n 2).

Substituting this approximation into the neg-entropy defined in (3), we have the following expansion

J(pz,9z) = /PZ(Z;K)IOg%dZ

/ b (2 ) [1+v(2; 5)]log(1 + v(z; 5)) dz + O(n~ %)

Q

Q

[ ont@n) o) + 5007 da + 00t
1

m m .
= —12 Z(HZ,ZJ)? +3 E (K},h])Q 4 6 E : (KZZ’J’S)2 + O(H_%) (10)

since
/¢m(z;/<;)v(z;/<a) dz = /¢m(z;m)v1(z;m) dz +/¢m(z;/€)v2(z;n) dz —|—/¢m(z;/~a)v3(z;n) dz = 0.
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Note that there are m, m(m — 1) and gm(m — 1)(m — 2) terms in each summation of (10).
In particular, the two-dimensional neg-entropy J(pz, ¢z) can be approximated by the Edgeworth

expansion as follows (see Appendix B for details):

_ _ pz(2; K)
J(pz,dz) = /pz(za"v') log bz(2; k) dz
1 1 10
~ /¢2(z; K) [1 + gvl(z; K) + ﬂw(z; K) + aw(z; /@)]
1 1 10 _3
x log (1 + g1 (z; k) + ﬁvg(z; k) + a’l}g(z; KZ)) dz+0(n™2)
— % [(K:l,l,l)Q +3(’{1,1,2)2 +3(’£1,2,2)2 + (ﬁ2,2,2)2] + O(n—%)

3 Kullback-Leibler information

The Kullback-Leibler information measure J(px, ¢x), also called relative entropy or cross-entropy,

is a measure of the ‘distance’ between two distributions px and gx and is defined by

J(px,qx) = /px(u) log 5:8; du. (11)
The neg-entropy
J(px, éx) = / px () log gj‘;; du (12)

is a special case of the Kullback-Leibler information. In Section 2, we derived the Edgeworth
expansion of neg-entropy in one and m dimensions. Edgeworth expansions of the Kullback-Leibler
information is analogous. In the case of one dimension, the Edgeworth expansion of ¢z up to order

five about its best normal approximate is given by (Barndorff-Nielsen and Cox, 1989)
4z(2) = $1(x)(1 + u(2)) + O(n™ %),

where
1. 1. 10 _,
u(z) = §P3H3(Z) + EP4H4(Z) + 1P Hg(z),

and all other terms as defined in the previous sections. Substituting this expansion into the Kullback-

Leibler information J(pz,qz), we obtain

J(pz,qz) = /Pz(z)longEj; dz

= / pz(2)log ¢1(z%(j)u<z>) dz

— [ patenog B4 - [ paeytot +uie)) dz. (13)




The Edgeworth expansion of the first term, as shown by Comon (1994), is

J(pz, ¢1) = /pz(z) log ng; dz = %pg +0(n"%).

To obtain the expansion of the second term of (13), the Edgeworth expansion of pz, similar to

that of ¢z, is also needed:
p2(2) = $1(2)(1 +v(2)) +O(n™3),
where

1 1
v(z) = ingg(Z) +t o

Then the second term of (13) can be expanded as

10
paH(2) + ﬁpgﬂe(z) :

/¢1 (2)(1 +v(2))log(1l + u(z)) dz

~ /¢1(z)(1 +0(2)) (u(z) — “22(Z) +0(m ) dz
u2 z 3
— /qbl(z)(u(z)— 2( )+u(z)v(z)) dz+0(n™%)
1 _, 1
= TP T gl
since
/¢1(z)u(z) dz = 0
5 [a@eE e = - e
[o@uepeds = o,

Finally, the Edgeworth expansion of the Kullback-Leibler information is given by

1 - _3
J(pz,4z) = 35 (ps = ) + O(n %),

In the case of m dimensions, the Edgeworth expansion of pz and gz up to order five about their

best normal approximate is given by (Barndorff-Nielsen and Cox, 1989)

pa(ziK) = $m(zik) [L+v(zk)] +0(n Y
az(z:K) = ém(z;k) [L+u(z; k)] + O(n~32),
where v(z;5) = vi(2;K) + v2(256) + v3(Z; k), v1(2;K), v2(2;k), vs3(z;K) are the corresponding

terms in the summations over k*"*h; ;1 (2), K595 hjp (2), and £59F£LP9R 10, (2) Tespectively, and
u(z; k) = u1(z; k) +ua(z; k) +us(z; K), u1(2; K), us(z; K), uz(z; k) are the corresponding terms in the

summations over &49* b1 (z), 495 hik (2), and &9 FEYPUhy 0, (2), Tespectively.



Similarly to the one-dimensional case, the Kullback-Leibler information has the expansion

J(pz,9z) z/pz(z;n)log%

The first term is the neg-entropy obtained in Section 2, namely

_ / pa(z; 5) log(1 + u(z; k) da. (14)

J(pz,9z) = /pz(zm)logmdz

¢z (2; k)
LI i iz . 1N g2 s
M ogg | 2B () g D )+ 0mTE). (15)
i=1 i#j i#jts

The second term can be expanded in an analogous way to the one-dimensional case
/¢z(z; k) (1 4+ v(z; k) log(1 + u(z; k)) dz
[ dati) (14 (a0 (i) -

u(z K)

Q

+0(n~ )) dz
_ /¢z ) (utair) - " R ”)+u<z;m)v<zm)) dz +O(n~?)

2
L1 TN i
BT Z K1) +3Z R4 Y (A
=1 i 0 s

1 | ~— s
+E Qanzz RbbE 46 ant,J zz,]+ Z PO —I—O(n_%)
i#] z;éjqés

Combining the first term (15) with the Edgeworth expansion of Kullback-Leibler information (14)

we obtain
1 | & g 1 =, iia iiang 3
J(pZ;qZ) — E Z(K/z,z,z Hz,z,z +3 Z 1,4, _ z z,] 4= 5 Z (Hz,],s _ K,Z’]’S) + 0(7175)
i=1 it itits

(16)

4 Sample Cumulants

Both the Edgeworth expansion of the neg-entropy J(pz, ¢z) and the Kullback-Leibler information
J(pz,qz) involve the third order cumulants k"7 and "% of the random vector Z and Z, corre-

sponding to pz and gz respectively, where

KW = B(Z— i) (27 - W )(Z° - )
RO = B(ZN = f)Z - )2 - )

In the case of one dimension, the third order standardized cumulants ps; and g3 are needed. To

apply all the approximations in Sections 2 and 3, we need to estimate all the third order cumulants.



The sample cumulants, the so-called k-statistics, are unbiased estimates of cumulants. Here, we
use the notation introduced by McCullagh(1987). Let Xy,---,X,, be independent and identically
distributed m-dimensional random vectors where X; has components X}, --- X™. For each cumulant
of X;, k, with appropriate superscripts, there is a unique polynomial symmetric function, denoted

by k£ with matching superscripts, such that k is an unbiased estimate of k. For example,

n
kT = n_lz z;
i=1

1 ..
Emt o= E(;S”mfx;-
1 ..
Erte = E(]ﬁ”smfwzx;‘. (17)
where
y 1, ifi=j ;
v = .
_%7 Z;é] .
1, fi=j=s:
p = {-ilh. i=i#s

2 . .
Dy (FIFS

ensure the estimators are unbiased.
Another way to calculate the sample cumulants is to use the sample moments: k! = % Zle xl;
ki = LS aixd; kW' = LS xizixs, and the relationship between cumulants and moments

from (19). Then the third order cumulant can be expressed in terms of moments as

2

(n—1)(n-2) |

ke = K9 — KK — KK — kR + 2K R k7]

In this paper, we use the sample cumulants defined in (17). In the two dimensional case, there are
four terms: k1!, k222 k112 and k122, In the general case of m dimensions, there are m terms
of k%", m(m — 1) terms of k»*7, and Z(m — 1)(m — 2) terms of k*/»*. See Anscombe (1961) for
applications of k-statistics in detecting departures from the usual linear model assumption. Bickel
(1978), Hinkley (1985), McCullagh and Pregibon (1987) and Brillinger (1994) have some more recent

developments.

5 Numerical Examples

Sections 2 and 3 presented the expansions of four measures: the neg-entropy for one dimension and
m dimensions; and the Kullback-Leibler information for one dimension and m dimensions. In this
section, we illustrate the computation of these four approximations with random samples from the

normal, ¢, Binomial, and Poisson distributions.



For the one-dimensional experiments, we use Normal (0,1), ¢-distribution (df=1000), Binomial
distribution (N = 1000,p = 0.1), and Poisson distribution (A=1000). The true expected values of
the neg-entropy of these distributions are all zero. The Edgeworth expansion of one-dimensional
neg-entropy is

1 _3
Tp=10:) = 1503+ On~).

For the m-dimensional experiments, we simply use m-dimensional tensor products of the above
four one-dimensional distributions, i.e., each m-dimensional distribution is a product of the same
marginal distributions. The true expected values of the m-dimensional neg-entropy under these four

distributions are again zero. The Edgeworth expansion of m-dimensional neg-entropy is

Jarda) = 75 | DU(EH)? 43D (B 4+ 5 3 (69| + O(n7F).
i=1 i#j i#j#s

As for the Kullback-Leibler information, we consider the following six cases for both one di-
mension and m dimensions: Normal(0, I)/Normal(0, I), #(df=1000)/t(df=1000), Binomial(N =
1000, p = 0.1) /Binomial(N = 1000, p = 0.1), Poisson(A=1000) /Poisson(A=1000), Uniform(1, 100)/Uniform(1, 100),
and Normal (0,1)/¢(df=1000). The expected values of the Kullback-Leibler information of the first
five cases are exactly zero, and the last case is approximately zero. Recall that the approximate
Kullback-Leibler information for the one-dimensional case is

1 - 3
J(p:4:) = 15(ps — )’ + O(n™ %),

and that for the m-dimensional case is

1 mo mo L1 & - o
Tpa0a) = 35 | DR —RON)R 43 3 (KA — R 4 2 T (B — K|+ O 7).
i=1 i#j i#jFs

5.1 Numerical Analysis and Simulation of Neg-entropy

Table 1 displays the results of the simulation studies on the Edgeworth expansion of the neg-entropy
of four distributions mentioned above. For each of the four distributions, we consider m = 1,5, 8, and
10 dimensions. At each dimension of the four distributions, we evaluate the neg-entropy with 100
different sample sizes : n = 50,150, ---,5000. For each sample size, 100 simulations are conducted
and the approximate neg-entropy is taken as the average over these 100 simulations. The expected
error is O(n~3/2) from (10), we thus have the expected convergence rate O(n~!) in the expansion
expression. To investigate the convergence rate O(n~!), we consider the slope, log(neg-entropy) over
log(n), among these 100 simulations. Theoretically, the slope should be —1, and as expected, our

numerical results in Table 1 give slope values very close to -1 for all the cases.



distribution m=1 m=2>5 m =28 m =10
Normal(0, 1) 0.00014 (-1.042) | 0.00262 (-1.004) | 0.00617 (-0.985) | 0.00912 (-1.003)
t(1000) 0.00016 (-1.031) | 0.00272 (-1.009) | 0.00609 (-1.004) | 0.01025 (-0.991)
Binomial(1000,0.1) | 0.00018 (-1.014) | 0.00283 (-1.035) | 0.00643 (-1.005) | 0.01067 (-0.987)
Poisson(1000) 0.00025 (-1.031) | 0.00293 (-1.082) | 0.00641 (-0.993) | 0.01108 (-0.989)
Table 1: m-dim neg-entropy (slope) of four distributions
distributions m=1 m=>5 m =8 m =10
Normal(0, I') /Normal(0, I') 0.00023 (-1.009) | 0.00445 (-1.016) | 0.00921 (-1.055) | 0.01369
£(1000) /t(1000) 0.00047 (-1.008) | 0.00458 (-0.999) | 0.01021 (-1.012) | 0.01523
B(1000,0.1)/B(1000,0.1) 0.00044 (-1.011) | 0.00481 (-1.073) | 0.01221 (-1.057) | 0.01372
Poisson(1000) /Poisson(1000) | 0.00082 (-1.019) | 0.00538 (-1.054) | 0.01232 (-1.034) | 0.01361
U(1,100)/U(1,100) 0.00093 (-1.005) | 0.00237 (-1.032) | 0.00544 (-1.061) | 0.00987
Normal(0, I') /t(1000) 0.00028 (-1.023) | 0.00052 (-1.033) | 0.01026 (-1.049) | 0.01012

Table 2: m-dim Kullback-Leibler information (slope) between m-dim distributions

5.2 Numerical Analysis and Simulation of Kullback-Leibler Information

Table 2 presents the results of simulation studies on the Kullback-Leibler information of the six cases
mentioned in the beginning of this section. Similarly to the neg-entropy cases, we again consider
m =1,5,8, and 10. For each m, the approximate Kullback-Leibler information is evaluated for 100
different sample sizes n = 50,150, - - -, 5000. For each sample size, 100 simulations are conducted and

the approximate Kullback-Leibler information is taken as the average over these 100 simulations.

Again, to investigate the convergence rate O(n~!), we consider the slope, log(neg-entropy) over

log(n), among these 100 simulations. Theoretically, the slope should be —1, and as expected, our

numerical results in Table 2 reach this slope value in all the cases.

Note that the Kullback-Leibler information measures the difference or entropy distance between
two densities. It is known that the ¢-distribution can be approximated by normal distribution when
degree of freedom tends to infinity. The sixth case of Table 2 shows the Kullback-Leibler information

between the normal distribution and ¢-distribution with 1000 degrees of freedom. This Kullback-

Leibler information tends to zero with the rate O(n 1) as suggested by the slope measure.
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6 Applications

The Kullback-Leibler information, as a distance measure, is commonly used in practice to differenti-
ate between distributions. In this section, we apply the Kullback-Leibler information approximations
presented to three problems: validating an assumed multivariate normal target population, comput-

ing the differential entropy, and choosing an approximate basis set for image decomposition.

6.1 Checking Multinormality

The first application is to validate a multivariate Gaussian distribution. Figure 1 demonstrates a
two-dimensional non-Gaussian and Gaussian distributions. The Principal/Independent Component
Analysis (PICA) algorithm (Lin et al., 1999) attempts to transform an image into a Gaussian
distributed data. We wish to validate the performance of this algorithm using our neg-entropy
computations. In particular, we test whether the PICA transformed data does in fact follow a
bivariate Gaussian distribution. The empirical p-value of this test is computed as follows: Under the
assumption of multivariate normality with the sample mean and the sample covariance matrix, we
generate 100 samples from this multivariate normal distribution and evaluate the neg-entropy. We
repeat this process 200 times to estimate the distribution of the neg-entropy. The empirical p-value
is the proportion of the neg-entropies above the sample neg-entropy.

The PICA algorithm is an extension of the principal component analysis (PCA) and transforms
a set of dependent random variables into approximately independent Gaussian random variables.
There are forward and backward processes in the PICA algorithm. The PICA forward process, in its
entirety, applies a nonlinear transformation to the PCA coordinates to obtain independent Gaussian
coordinates. The transformation into marginally normal random variates follows from probability
transformation and simulation theory. The PICA backward process has the advantage to sample
correlated multivariate variables by sampling univariate independent Gaussian variables. We need
only the forward PICA process in this example.

The left hand data in Figure 1 is a two-dimensional non-Gaussian original cigar data (Lin et
al. 1999) to be transformed by the PICA algorithm. The right hand data is the two-dimensional
Gaussian distribution which is the result of 5 iterations of the PICA algorithm applied to the cigar
data. From the empirical p-value (0.001, 0.98) in Table 3, we can easily verify the transformed data
does in fact follow a two-dimensional normal distribution.

We also illustrate diagnosing multivariate normality in a higher dimensional space. Table 4
presents the validation of a 15-dimensional transformation by PICA using the eye data of Lin et
al. (1999). The results validate the performance of PICA (p-value = 1.00) in transforming the

15-dimensional non-Gaussian data into variates from a 15-dimensional Gaussian distribution.
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2-dim non-Gaussian data 2-dim Gaussian data
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Figure 1: Plots of two-dimensional non-Gaussian and Gaussian distributions.

statistic non-Gaussian distribution | Gaussian distribution
Neg-entropy | 0.52 0.0013
emp. p-value | 0.001 0.98

Table 3: Validation of multi-normality on the two-dimensional case

statistic non-Gaussian distribution | Gaussian distribution
Neg-entropy | 0.53 0.0034
emp. p-value | 0.001 1.0

Table 4: Validation of multi-normality on the 15-dimensional case
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n via neg-entropy/abs.err via differential entropy/abs.err
(by Edgeworth expansion) | (by density estimation)

100 | 1.439/0.019 1.389/0.031

200 | 1.425/0.005 1.392/0.028

300 | 1.424/0.004 1.404/0.016

400 | 1.424/0.004 1.413/0.007

500 | 1.422/0.002 1.425/0.005

Table 5: Numerical results of S(¢x) ( 1.42 , theoretical value)

6.2 Evaluation of the differential entropy

In this section, we illustrate computation of the differential entropy using our Edgeworth approx-
imation. We use this application to compare our approach to the estimated entropy of Hall and

Morton (1993) based on density estimation. Note that the differential entropy

S(px) = - / px (1) log px (u) du (18)

may be written in terms of the neg-entropy

S(px) = S(éx) — J(px, ¢x) -

Table 5 shows the numerical results of S(px) when px = ¢x, (the theoretical value is 1.42) using
neg-entropy and density estimation for samples of size n = 100, 200, 300, 400, and 500.

Table 6 presents the 2-dimensional numerical results of S(px) when px = ¢x with three different
covariances. Table 7 displays the 3-dimensional numerical results of S(px) when px = ¢x with two
different covariances. Table 8 shows the 4-dimensional, 5-dimensional and 8-dimensional numerical
results of S(pz) when pz = ¢z, Z denotes the standard normal random vectors. Here, in Table 5 —
Table 8, we use the Edgeworth expansion with order O(n~!-3). The convergence rate, as mentioned
in Section 5, is O(n™!) in these expansion expression . Recall that the density estimation approach
is not applicable to populations of dimension larger than three.

The theoretical value of differential entropy for the p-dimensional normal random vector Z with

covariance V is

S(¢2) = ~ [ #2(a)log éa(2) dz = 5 lp+ plog(2r) + log(det(V)]

As mentioned by Joe (1989) and Hall (1987), the method of density estimation is slow due to
the choice of ‘bandwidth’ and kernel functions. Furthermore, density estimation is not applicable

to evaluate differential entropy for dimensions of X greater than three. Of course, the Edgeworth
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. 10 1 03 1 08
covariance | cov = <0 1) cov = <0.3 ) ) cov = (0.8 ) )
true vale | 2.8379 2.7907 2.3271
n via neg-entropy/abs.err | via neg-entropy/abs.err | via neg-entropy/abs.err
100 2.5642/0.2737 2.6181/0.1726 2.4041/0.0769
200 2.7545/0.0833 2.6751/0.1156 2.2617/0.0653
300 2.7874/0.0505 2.8281/0.0374 2.2739/0.0530
400 2.8090/0.0288 2.7820/0.0086 2.3442/0.0172
500 2.8529/0.0149 2.7897/0.0009 2.3169/0.0101

Table 6: 2-dim numerical results of S(¢x)
1 00 1 08 0.6
covariance | cov=| 0 1 O coo=108 1 04
0 01 0.6 04 1
true vale 4.2568 3.5087
n via neg-entropy/abs.err | via neg-entropy/abs.err
100 4.0904/0.1663 3.2448/0.2639
200 4.3208/0.0640 3.4428/0.0659
300 4.1976/0.0591 3.4757/0.0330
400 4.2800/0.0232 3.4737/0.0350
500 4.2730/0.0162 3.4899/0.0187
Table 7: 3-dim numerical results of S(¢x)
dimension | 4-dim 5-dim 8-dim
true vale | 5.6757 7.0946 11.35151
n via neg-entropy/abs.err | via neg-entropy/abs.err | via neg-entropy/abs.err
100 5.3947/0.2810 6.7851/0.3095 11.0698/0.2816
200 5.4864/0.1893 7.3411/0.2464 11.1345/0.2169
300 5.5043/0.1714 6.9629/0.1317 11.1246/0.2268
400 5.5904/0.0852 6.9771/0.1175 11.1223/0.2291
500 5.7089/0.0331 7.0451/0.0495 11.2801/0.0713
Table 8: 4-dim, 5-dim, 8-dim numerical results of S(¢z) with identity covariance
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expansion is not without drawbacks. If we want to include the high order cumulants (higher than
fourth order), then the Edgeworth expansion will become more complicated and computationally
complex, though we would attain a better order of approximation. Recall, though, that the order
of approximation is O(n~"), while the way via density estimation is O(n~'/2) approximately. This

difference in order explains the difference in absolute error between two techniques.

6.3 LSDB from the local basis dictionaries

Recent advances in imaging technology produce a large quantity of images over almost a continuous
spatial spectrum as well as resolution. Image modeling is essential for the description and charac-
terization of image features, large scale computations using images, and image compression. The
most difficult problem in image modeling is the ‘curse of dimensionality’. In particular, reliable
estimates of probability density functions of high dimensional data, such as images, from a finite
number of samples are hard to obtain in general. It is thus of paramount importance to extract
relevant features from the images, reduce the dimensionality of the problem, and simplify the model
by assuming statistical relationship among these features.

Image features are defined as the expansion coefficients of an image relative to some basis.
Karhunen-Loeve Basis is a decorrelated system. Saito (1994) developed and considered a local basis
library to extract feature from image for classification and regression. The basis library consists of a
collection of local basis dictionaries such as wavelet packets, local cosine/sine bases, or local Fourier
bases. Each dictionary consists of a redundant number of the basis vectors with the specific charac-
ters in scale, position, and frequency. These basis vectors are organized as a quadtree in a hierarchical
manner ranging from very localized spikes to global oscillations with different frequencies.

Image modeling techniques using the feature extractors have been proposed by various group
of scientists. Saito (1998) developed an algorithm to find the least statistically-dependent basis
(LSDB) by quickly selecting a basis from the local basis library mentioned above that is statistically
independent coordinate system in the sense of relative entropy. He used the differential entropy

S(px) estimated by the method of density estimation as the selection criterion of LSDB:
n
B = i ).
LSDB arg}rgnel% ;S(PXJ
1=
Based on the relationship of differential entropy S(px) and neg-entropy J(px, ¢x)

J(px, ¢x) = S(¢x) — S(px)

we can rewrite the selection criterion as the form

n

Brsps = arg glel% Z (S(¢X1) - J(an¢Xi))
i=1

15
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Figure 2: Comparison of LSDB chosen by using density estimation and Edgeworth Expansion with

order O(n~!%) and O(n~2)

where neg-entropy J(px,,¢x,) can be estimated by the method of Edgeworth expansion.

To demonstrate the comparison between the LSDB selected by the method of density estimation
and Edgeworth expansion, we use the data set of face images, ‘Rogues’ Gallery Problem’. This
dataset consists of digitized pictures of faces of 143 people, provided by Prof. L. Sirovich at Brown
University via Prof. M.V. Wickerhauser of Washington University. Among this dataset, we selected
randomly 72 faces to be the training set. Each picture has the size of 128 x 128. Figure 2 (a) is the
average face of the training set.

Figure 2 (b)—(d) show the partition patterns of LSDB selected from the local cosine dictionary
by using density estimation and Edgeworth expansion with order O(n=!-%) and O(n~2). Here, there
are 103 LSDB segments generated by the method of density estimation (Figure 2(b)); 142 LSDB
segments are chosen by the method of Edgeworth expansion up to the order 1.5 ((Figure 2(c)); and
190 LSDB segments are chosen by the method of Edgeworth expansion up to the order 2 (Figure
2(d)). We observe that as the order of the Edgeworth expansion increases, the LSDB tries to split
the image into finer segments. In particular, the LSDB segments in Figure 2(d) using the Edgeworth
expansion up to the order 2, catches more information around the eye area than Figure 2(b), which

was selected by density estimation.
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7 General Kullback-Leibler information

In this section, we derive the Edgeworth expansion of the general Kullback-Leibler information (px
and gx do not share the same first and second moments). We present the expansion formula without
the numerical results since the expansion is very complicated.

The Edgeworth expansion of the one-dimensional Kullback-Leibler information is

px (u)
J(px, = / u)lo du
DPx (u) ¢px (U) ¢QX (U)
= px (u) log du + /px(u) log du + [ px(u)log - du
/ Ppx (u) bqx (u) ax (u)
1 K,g 1 Ko 1 . i\9 K3a1 K4Q2 I~€§G3
= —— 4+ = |log—= -1+ — - 2 -
12ng+2[°gm2 5y TRt 6 2 T
1 IZJ% 604 902 10!‘133[233 (K',l — 1231)(.‘"\?2 — 1232) _3
—_—— - — 4+ = - 0] 7).
236[6 Ko | RD 78 +O0m2)
where
3o
a = 63— —
K2
662 3
ay = C4— — + —
K2 K2
15¢4 45¢s 15
a3 = C6 — —— —3 =3
Ko k3 s
o — a2 +ﬂ2
3 = a+3a8?
ca = ot +6a2p%+ 36
g = ab+15a"6% +45a%8* + 15438
K1 — FEl
a = —
K2
1
g o= =
K2

Note that this formula reduces to (7) when k1 = K1 = 0 and k3 = K3 = 1.
For the high dimensional case, to avoid the complicated expansion, we derive the expansion up

to order —1. The Edgeworth expansion of the m-dimensional Kullback-Leibler information is

J(px,qx) = /px(u)Ingx(u) du

gx(u)
_ u px(u) u u d)px(u) u u d)lIx(u) u
= [ rxtwios s [ px(uyion Gk + [ ax(oyios =
1 det (7 $)2 4 (i — R1)2 W/ i i
= 3 logdztgg —1+;(f‘6 ) (kff’gz k') +;mfm’j(fs’m’ + (k' = R") (K — "))
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1 ~ 1,4,k
- =) & > : , +— 4 :
6 Hz,k,’%k,.]z (F&z"]l)2 g;z,Jl R’-/k,JQK/’L,Z (kl Jl) I‘&k Ja
i<k J1,J2=1
1 T Z 2(k7 — 1) N Z’" kT2 — g2
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6 7& J ;ﬁ‘] 75‘] ﬁl,Jlkj,ng-/k,Js
1#£J2#Jd3
n 1 iik —/<;J1+Zm /<;J2—/7ah+2m kT — g3
6 Z ,:z,;l,-h,gjyk KIJ2 ik Kk Jsgid
#jF#k J1— Jo=1 Jz=1
+ 1

where k and & represent the covariance mtrices of px and ¢x.
These expressions are very complicated. We are currently conducting the numerical experiments

for these general cases, which we hope to report at a later date.

Appendix A: covariant and contravariant system

To define the covariant and contravariant system more precisely, we start with a vector x with m
components x',22,...,2™. We define u as a d-dimensional array whose elements are functions of
the components of x, taken d at a time. We write u = u®%id = (g% g¥ . g%)T where the

d components need not be distinct and T' denotes the transposition. Consider the transformation

y = g(z) from z',...,z™ to new variables y',...,y™ and let ¢/ = ¢ (z) = gz: having full rank for
all z. If @, the value of u for the transformed variables y",r = 1,2,...,m, satisfies
,L—Lrlrg...rd — Crlcfz R Crduzlzz
11 12

then u is said to be a contravariant tensor. On the other hand, if u is a covariant tensor, we write

U = Ujy4,--i, and the transformation law for covariant tensor is

m — gt i id
urﬂ'g...rd - drlldrz . d u’LlZQ

where di. = ggi , the matrix inverse of ¢, satisfies the relationship ¢/d} = & = cid!.
Let X4,---,X, be independent and identically distributed m-dimensional random vectors. De-

note the components of each random vector by X = (X1!,---, X™), with mean pu = (u*,...,u™)
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and moments
Hil...z’v — E(le _ uil) . (sz _ uz’v) ,
where 1 < i <m, 1 <k <m. The cumulants of X are the coefficients of the cumulant generating

function
(o]

1 TR,
mx(t)zlog(Mx(t))z . Z il!_,_iv!ﬂl til"'tivJ
114000580 =0
where Mx is the moment generating function of X. Here, k%% is called the vth cumulant of X.
The following are the relationships between moments and cumulants.

K9 = kY 4k

= K" 4 (KR 4+ KR+ kRN + kR

= KYIF 4 giIR3] + kT K
KUEL = ghdkil /@i/cj’k’l[4] + lii’jlik’l[3] + I‘Lilijlik’l[ﬁ] + kI KFR! (19)

where x?k7*[3] is the sum over the three partitions of three indices. The following is a complete list
of the 15 partitions of four items, one column for each of the five types (McCullagh, 1987)
ijkl dilgkl ikl di|j|kl  i|g|k|

Jlikl k|5l i|k|jl

kligl dl|ik i|l|jk

lijk Jlklil

Jlllik

k|l|ij
Let S, = Y., X; and Z = (S, — p)/+/n be the sum and standardized sum of random vectors
Xi,---,X,, such that the cumulant x?>% of Z is of the order n' ~3. Then the Edgeworth expansion
of pz up to order five about its best normal approximate is given by (Barndorff-Nielsen and Cox,

1989; Kendall and Stuart, 1977)
pz(2; K)
1 iyj,k 1 i,5k,1 10 3,5,k .0,p,q
= Im(zK) |1+ gk hige (2 6) + R hijr (25 K) + GRS R P hijkipg (25 )

+  O(n?) (20)

where
. _ 1 o
b (73 1) = (2m) 7" {det(R)} Pexp(— Smi '),

denotes the m-dimensional multivariate normal distribution of zero mean and covariance matrix
k = [kb7], with k% = E(Z'Z7) and [k; ;] represents k~'. The covariant Hermite polynomial h;, . ;,

is defined as

G (%5 ) hiy i, (X368) = (=1)%0i; ... 0, dm(X;K),
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where 9; = 8/0z". For the later use, the contravariant Hermite polynomial h%1*"% is defined as

G (X5 6) K1 (x5 6) = (=1)%0" ...0" (X3 k),

with 8¢ = k%79;. The first four covariant and contravariant Hermite polynomials are

h,' = Z;,
hij = zixj = Kij,
hijk = TxjTr — Ki;TE[3],

hijkl = Z;TjTRT] — /ﬁi,jmkml[ﬁ] + Iﬁ?i,jlik7l[3] ,

h’t — ml,
hY = g'z? — k%7,
hidk = pigighk — fe”;ck[?)] ,

RURL = gigd ghgl — il gk gl [6] + kHI kol [3],

where the new notation z; is defined as x; = &; jz7.

Appendix B : Properties of Hermite polynomials

The expansion (9) may be simplified via certain properties of the Hermite polynomials (Skovgaard,
1981). First recall

Wit (k) = BT RG, (%5 ).

If the components of X are uncorrelated and of unit variance, then k¢ = k;; = 1, kK = K; ; =
0. The covariant-contravariant Hermite polynomials for the multivariate distribution of X is then

formed by taking all possible products of the Hermite polynomials (McCullagh, 1987):

hi.i(x) = h*4x)=H,(z%), i...idenotes v repetitions
hi.ij..i(x) = h¥¥-i(x) = Hy_y(x*)Hy(z?), i...i denotes v — ¢ repetitions
j...J denotes t repetitions
Biy..iy(x) = R (x) = Hy(a") ... Hy(z™).

Second, recall the useful orthogonality properties (Abramowitz and Stegun, 1972) in the Hermite

polynomials
[s@t@H, @ = b,
[s@m@HE e = 3,
/ $(@)H2 () He(z)dz = 6!
[o@mi@az = o
/ S(@)HM@)de = 93-37,
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where Hy(z) is the standard kth order Hermite polynomial. In the case of two dimensions (m

with uncorrelated components of unit variance,
_3
pz(z; k) = ¢2(z;K) [1 + v1(2; k) + v2(2; &) + v3(2Z; k)] + O(n™2)
where

vi(z;6) = ﬂl’l’lhnl(z) + 3/‘61’1’2h112(z) + 3/‘61’2’2h122(z) + H2’2’2h222(z) >
vo(z;6) = &VUUUhigi(2) + 4655120y 100(2)

+ 66122 hy190(2) + 465222 hyo9o(2) + K522 hoogs(2) ,

1,1,1

kbl "51’171h111111(z 1,1,1

) + 6650 2 b 11110(2)
15650 K22 h11100 (2) + 20600 6722 1190 (2)
156112222 By 19909 (2) + 6k12 26222 Ry 29990 (2)
)

l‘i2’2’21€2’2’2h222222(

v3(2; K)

+ + +

and

hi11(z) = h'' (2 hi12(z) = h''?(z) = Hay(2')Hi(2%)
h222(z) = h222( ) Hj ( )
(z

) = Hs(2")H;

) = Hs(z")
hi22(z) = h'*(z) = Hi(2") Ha(2%)
hin(z) = W (2) = Ha(z')  hine(z
hiiz2(2) = W12 (2) = Ha(2")Ha (%) hazaa(2
) = Heg(z")
( ()
Ha(2")Ha(z")

1112

h1222( )_ Hl(zl)Hg
h111111( ) hllllll(z

)
) =

hi11112(2) = h111112(z) = H5(Z1 Hl(z2)
h111122( ) h111122( ) H, Zl) 2 22 (
(

)
hi11222(z) = h111222(z) = H3(Z1)H3(Z2)
hi12222(z) = h'1?#22(z) = YH, )

ha22222(2) = %2222 (z) = He (ZZ) .

h122222 z) h122222(z) — Hl(zl

The correlation term vy (z; k), v2(2; k), and v3(z; k) will reduce to

vi(z;6) = kUUTH3(RY) 4 3602 Ho (2N Hy (%) 4 36532 H (1) Ho (2%) + k52 H(27)
va(xiK) =  RVUULHL(2Y) 4+ dkVUV2H (21 Hy (22)

+ o 6RVV22H (21 Hy (22) + AkV222H, (1) Hy(22) + k2222 H, (22),
vs(zk) =  KMVURSUUHG(2Y) 4 6r5 RN Hy (20 H (2)

+ 1550 eN22H, (21 Ho(22) + 20651 k252 Ha (21) Ha (22)

+ 15502222 Hy (21 Hy(22) + 665226222 Hy (21 H(22)

£ RDB2E222[, (22) )
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