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Abstract

We propose a new method to analyze and represent data recorded on a domain of gen-

eral shape in R
d by computing the eigenfunctions of Laplacian defined over there and

expanding the data into these eigenfunctions. Instead of directly solving the eigenvalue

problem on such a domain via the Helmholtz equation (which can be quite complicated

and costly), we find the integral operator commuting with the Laplacian and diagonal-

ize that operator. Although our eigenfunctions satisfy neither the Dirichlet nor the Neu-

mann boundary condition, computing our eigenfunctions via the integral operator is

simple and has a potential to utilize modern fast algorithms to accelerate the compu-

tation. We also show that our method is better suited for small sample data than the

Karhunen-Loève Transform/Principal Component Analysis. In fact, our eigenfunctions

depend only on the shape of the domain, not the statistics of the data. As a further ap-

plication, we demonstrate the use of our Laplacian eigenfunctions for solving the heat

equation on a complicated domain.
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1 Introduction

Most of the currently available signal and image processing tools were designed

and developed for signals and images that are sampled on regular/uniform grids

and supported on a rectangular or cubic domain. For example, the conventional

Fourier analysis using complex exponentials, sines and/or cosines, have been

the crown jewels for such data. On the other hand, there is an increasing desire

to analyze data sampled on irregular grids (e.g., meteorological data sampled

at weather stations) or objects defined on a domain of general shape (e.g., cells

in histological images). Unfortunately, the conventional tools cannot efficiently

handle such data and objects. In this paper, we propose a new technique that

can analyze spatial frequency information of such data and objects, filter the

frequency contents if one wishes, and synthesize the data and objects at one’s

disposal. This is a direct generalization of the conventional Fourier analysis and

synthesis. Our new tool explicitly incorporates geometric configuration of the

domain or spatial location of the sensors. This is quite a contrast to the pop-

ular Karhunen-Loève Transform (KLT) or Principal Component Analysis (PCA),

which only implicitly incorporate such geometric information via covariance.

One of the goals of this paper is to demonstrate our tool’s superiority over the

KLT/PCA for such datasets.

Let us consider a bounded domain of general shape Ω⊂R
d , where typically d =

2 or 3. Let us also assume that the boundary Γ = ∂Ω consists of piecewise C 2
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surfaces (although one may be able to weaken this assumption by more subtle

arguments). We want to analyze the spatial frequency information inside of the

object (i.e., the data measured in Ω) without the annoying interference by the

Gibbs phenomenon due to the boundary Γ. We also want to represent the object

compactly for analysis, interpretation, discrimination, and so on, by expanding

it into a basis that generates fast decaying expansion coefficients.

There are at least two approaches to this problem. One is to extend (or extrap-

olate) a general shape object smoothly to its outside, cut it by a circumscribed

rectangle, and use the conventional tools to analyze the extended object on this

rectangle. Using the idea from potential theory and elliptic partial differential

equations, we developed the so-called generalized polyharmonic local trigono-

metric transform to do this extension and subsequent analysis [26], [35, Chap. 4].

Although this approach can analyze the spatial frequency contents of the ob-

ject without being bothered by the Gibbs phenomenon, the resulting analysis

(e.g., the Fourier cosine coefficients of the extended object) is still affected by

the extended part which is smooth (in fact, harmonic) regardless of the intrinsic

smoothness of the object inside the original domain Ω.

Instead, this paper proposes a second approach: find a genuine orthonormal ba-

sis tailored to the domain of general shape. To do so, we use the eigenfunctions of

the Laplacian defined on the domain. After all, complex exponentials, sines, and

cosines are the eigenfunctions of the Laplacian on a rectangular domain with

specific boundary conditions, i.e., the periodic, the Dirichlet, and the Neumann

boundary conditions, respectively. Also, our favorite special functions, e.g., spher-

ical harmonics, Bessel functions, and prolate spheroidal wave functions, are again

the part of the eigenfunctions of the Laplacian (via separation of variables) for

spherical, cylindrical, and spheroidal domains, respectively.
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The organization of this paper is as follows. In Section 2 we describe our pro-

posed strategy for computing Laplacian eigenfunctions via eigenanalysis of an

integral operator commuting with the Laplacian. In Section 3 we analyze a few

simple examples that allow us to explicitly and analytically compute our Lapla-

cian eigenfunctions using our proposed approach, which will be contrasted with

the usual ones satisfying the Dirichlet or the Neumann boundary conditions. In

Section 4, we examine our Laplacian eigenfunctions as a tool for approximating

data on a complicated domain, compare its performance with that of the stan-

dard wavelet-based methods, and demonstrate the efficiency of our approach.

In Section 5, we use our Laplacian eigenfunctions as a statistical data analysis

tool, compare its performance with the standard KLT/PCA, and demonstrate

that our tool can separate the statistics of data from the geometry of the domain

where the data are supported, which is impossible for KLT/PCA. As a further ap-

plication, we solve the heat equation on a complicated domain in Section 6 using

our Laplacian eigenfunctions. In Section 7, we discuss a couple of strategies to

speed up the Laplacian eigenfunction computations. Finally, we conclude this

paper with our future research plan in Section 8.

2 Properties of the Laplacian Eigenfunctions and Their Computation

In this section, after briefly outlining the properties of the eigenfunctions of the

Laplacian on a general domain, we describe our main idea on how to compute

them.

Consider an operator L=−∆=−
∂2

∂x1
2
−·· ·−

∂2

∂xd
2

in L2(Ω) with an appropriate

boundary condition (we will be more specific about it later). The direct analysis

of L is difficult due to its unboundedness that is well known and often covered

4



in any elementary functional analysis course (see e.g., [20]). A much better ap-

proach is to analyze its inverse L−1, which is referred to as the Green’s operator

because it is a compact and self-adjoint operator and consequently we can have

a good grip of its spectral properties. In fact, L−1 for a reasonably regular bound-

ary Γ has discrete spectrum (i.e., a countable number of eigenvalues with finite

multiplicity) except 0 spectrum [8, Chap. 6, 7]. Moreover, thanks to this spectral

property, L has a complete orthonormal basis of L2(Ω), and this allows us to do

eigenfunction expansion in L2(Ω) [8,21].

The key difficulty is to compute such eigenfunctions. Directly solving the Helmholtz

equation on a general domain, i.e., finding non-trivial solutions of −∆φ = λφ

that satisfy Bφ = 0 (where B is an operator specifying the boundary condition)

is quite tough. Unfortunately, computing the Green’s function for a general Ω

satisfying the usual boundary condition such as the Dirichlet or the Neumann

condition is also very difficult.

2.1 Integral operator commuting with the Laplacian

Our idea to avoid those difficulties is to find an integral operator commuting with

the Laplacian without imposing the strict boundary condition a priori. Then,

from the following well-known theorem (see e.g., [13, pp.63–67]), we know that

the eigenfunctions of the Laplacian is the same as those of the integral operator

that is much easier to deal with.

Theorem 1 Let K and L be operators acting on L2(Ω). Suppose K and L com-

mute and one of them has an eigenvalue with finite multiplicity. Then, K and L

share the same eigenfunction corresponding to that eigenvalue, i.e., there exists a
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function φ ∈ L2(Ω) such that Kφ=µφ and Lφ=λφ.

Here is the key step in our development. Let us replace the Green’s function

G(x , y) (the kernel of the Green’s operator) by the fundamental solution of the

Laplacian or the harmonic kernel:

K (x , y)
∆=



































−1
2
|x − y | if d = 1,

− 1
2π

ln |x − y | if d = 2,

|x−y |2−d

(d−2)ωd
if d > 2,

(1)

where ωd
∆= 2πd/2

Γ(d/2)
is the surface area of the unit ball in R

d , and | · | is the standard

Euclidean norm. The price we pay for this replacement is to have rather implicit

and non-local boundary condition (which we will discuss shortly) although we

do not have to deal with this boundary condition directly. Let K be the integral

operator with its kernel K (x , y):

K f (x)
∆=

∫

Ω

K (x , y) f (y)dy , f ∈ L2(Ω). (2)

We now have the following theorem.

Theorem 2 The integral operator K commutes with the Laplacian L = −∆ with

the following non-local boundary condition:

∫

Γ

K (x , y)
∂φ

∂νy

(y)ds(y ) =−
1

2
φ(x) + pv

∫

Γ

∂K (x , y)

∂νy

φ(y)ds(y), (3)

for all x ∈ Γ, where ∂/∂νy is the normal derivative operator at the point y ∈ Γ and

ds(y) is the surface measure on Γ.

The proof of this theorem is given in Appendix A.

Consequently, we also have the following theorem (see e.g., [21, Sec. 4.5]).
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Theorem 3 The integral operator K is compact and self-adjoint on L2(Ω). Thus,

the kernel K (x , y) has the following eigenfunction expansion (in the sense of mean

convergence):

K (x , y) ∼
∞
∑

j=1

µ jφ j (x)φ j (y),

and {φ j } j∈N forms an orthonormal basis of L2(Ω).

We will use the basis {φ j } j∈N to expand and represent the data supported on Ω.

Remark 4 These eigenfunctions of the Laplacian are closely related to the so-called

Geometric Harmonics proposed by Coifman and Lafon [6]. After all, our eigen-

functions are a specific example of the geometric harmonics with a specific ker-

nel (1). Nevertheless, there are some important differences between their objectives

and methods with those of ours. First of all, their motivation is to obtain the ex-

trinsic geometric information of a given dataset or a manifold, i.e., how to extend

a given function to the outside of the domain for various machine learning and

statistical regression purposes. On the contrary, our objective is to use the Lapla-

cian eigenfunctions for the intrinsic analysis of the data defined on the domain.

Secondly, the geometric harmonics defined by Coifman and Lafon include not

only harmonic kernel (1) but also the kernels that do not commute with the usual

Laplacian. Two such examples are: 1) the so-called bandlimited kernel:

KB (x , y)
∆=

(

B

2

)d/2 Jd/2(πB |x − y |)
|x − y |d/2

,

where Jd/2(·) is the Bessel function of the first kind of order d/2 and B > 0 is the

bandwidth. The eigenfunctions of the integral operator with this kernel are the

direct generalization of the prolate spheroidal wave functions [27] 1 ; and 2) the

1 Although such bandlimited kernels do not commute with the usual Laplacian, they

may commute with more general elliptic operators. For example, for d = 1, KB (x, y) be-
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popular Gaussian kernel:

GB (x , y)
∆= e−B 2|x−y |2 .

There are some intrinsic differences between these kernels and the harmonic ker-

nel (1). Without going into too much details, let us say that the integral operator

with the bandlimited kernel is more difficult to deal with numerically due to its

oscillatory nature. The eigenfunctions associated with the Gaussian kernel have

intrinsic “scale” related to the parameter B while the Laplacian eigenfunctions

are “global” in nature. We rather prefer to use the harmonic kernel K (x , y) (1) for

our intrinsic data analysis purposes because it is: 1) easier to deal with math-

ematically; 2) possible to make it multiscale by explicitly splitting the domain;

and 3) more amenable to fast algorithms such as the wavelets and Fast Multipole

Method; see Section 7 for more about these aspects.

2.2 Discretization of the eigenvalue problem

Let us recall our original aim once again. We would like to analyze an object of

general shape defined on a digitized image or 3D dataset using the Laplacian

eigenfunctions. Therefore, we must discretize our eigenvalue problem in order

to compute the eigenfunctions and analyze such an object. In this subsection,

we describe our discretization strategy and assumptions on the dataset.

Let us first assume that the whole dataset consists of a collection of data sampled

on a regular grid, and that each sampling cell is a box of size
∏d

i=1∆xi . Let us also

assume that the shape of an object of our interest Ω consists of a subset of those

cells or boxes (i.e., pixels in 2D and voxels in 3D), and the object itself is defined

comes the sinc kernel
sinπB(x−y)

π(x−y)
, and the corresponding integral operator commutes

with the differential operator L= d
dx

(1−x2) d
dx

−π2B 2x2.
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as a collection of the data samples taken on those cells. Let {x i }N
i=1

⊂ Ω be the

centers of those cells in Ω. Under these assumptions, we can approximate the

integral eigenvalue problem Kφ = µφ, where K is defined in (2), with a simple

quadrature rule with node-weight pairs (x j , w j ) as follows.

N
∑

j=1

w j K (x i , x j )φ(x j ) =µφ(x i ), i = 1, . . . , N .

Let us use the simplest weights w j =
∏d

i=1∆xi , with which the above quadra-

ture rule becomes the midpoint rule. Let Ki , j
∆= w j K (x i , x j ), φi

∆= φ(x i ), and

φ
∆= (φ1, . . . ,φN )T ∈ R

N . Then, the above equation can be written in a matrix-

vector form as: Kφ = µφ, where K = (Ki j ) ∈ R
N×N . Under our assumptions, the

weight w j does not depend on j , which makes K symmetric.

Once the discretized eigenvalue problem, Kφ= µφ, is formed, we can compute

its eigenvectors (and the corresponding eigenvalues). In this paper, we use the

conventional technique to compute the eigenvalues and eigenvectors of such a

matrix, i.e., a slow algorithm of O(N 3), where N is the number of samples in the

discretization process. We note, however, that we can considerably speed up the

eigenvector computation, i.e., up to O(N log N ) or O(N 2) using the wavelets or

the Fast Multipole Method, which we will briefly discuss in Section 7.

Remark 5 For analyzing data generated by a distributed sensor network, the lo-

cation of the sensors are often very irregular and we cannot assume the weight w j

above is independent of the sensor location {x j }N
j=1

. In order to set up a correct dis-

cretized eigenvalue problem under such circumstances, we may need to either: 1)

compute w j using the Voronoi diagram (or some other computational geometric

tools); or 2) interpolate on regular grids from the given sample points {x j }N
j=1

. We

are currently investigating these cases and will report our findings at a later date.
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3 Examples

In this section, we will show a few analytic examples to contrast our eigenfunc-

tions with the conventional basis functions to deepen our understanding of those

eigenfunction-based representation.

3.1 1D Example

Consider the unit interval Ω = (0,1). Then, the kernel of the integral operator

becomes K (x, y) = −|x − y |/2, and we can obtain the Laplacian eigenfunctions

explicitly as the following corollary of Theorem 2 shows.

Corollary 6 The eigenfunctions of the integral operator K for the unit interval

Ω= (0,1) satisfy the following Laplacian eigenvalue problem:

−φ′′ =λφ, x ∈ (0,1);

φ(0)+φ(1) =−φ′(0) =φ′(1), (4)

which can be solved explicitly as follows.

• λ0 ≈ −5.756915 is the smallest (and the only negative) eigenvalue and is the

solution of the following secular equation:

tanh

√

−λ0

2
=

2
√

−λ0

. (5)

The corresponding eigenfunction is:

φ0(x) = A0 cosh
√

−λ0

(

x − 1
2

)

, (6)

where A0 =
p

2

(

1+ sinh
p

−λ0p
−λ0

)−1/2

≈ 0.7812598 is a normalization constant to

have ‖φ0‖L2(Ω) = 1.
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• λ2m−1 = (2m −1)2π2, m = 1,2, . . ., and the corresponding eigenfunction is:

φ2m−1(x) =
p

2cos(2m −1)πx. (7)

These are canonical cosines with odd modes.

• λ2m , m = 1,2, . . ., is the solution of the secular equation:

tan

√

λ2m

2
=−

2
√

λ2m

, (8)

and the corresponding eigenfunction is:

φ2m(x) = A2m cos
√

λ2m

(

x − 1
2

)

, (9)

where A2m =
p

2

{

1+ sin
p

λ2mp
λ2m

}−1/2

is a normalization constant.

The proof of this corollary is given in Appendix B.

Figure 1 shows these Laplacian eigenfunctions of the lowest five frequencies.

Remark 7 The kernel K (x, y) is of Toeplitz form in this case, and consequently,

the eigenvectors must have even and odd symmetry [4], which is indeed the case.

Remark 8 The Laplacian eigenfunctions for the Dirichlet boundary condition on

the unit interval satisfy −φ′′ = λφ, φ(0) =φ(1) = 0, and they are sines. The Green’s

function in this case is:

GD (x, y) = min(x, y)−x y.

Those satisfying the Neumann boundary condition, i.e.,φ′(0) =φ′(1) = 0, are cosines,

and its Green’s function is:

GN (x, y)=−max(x, y)+
1

2
(x2 + y2)+

1

3
.

One can easily imagine that it is a rather difficult task to find these Green’s func-

tions for a general domain in higher dimensions. Incidentally, when we discretize
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Fig. 1. The first five eigenfunctions of the Laplacian on the unit interval with the non-lo-

cal boundary condition (4). The eigenfunctions with odd symmetry are in fact usual co-

sine functions. Those with even symmetry are cosh function or cosines with non-integer

periodicity (also known as nonharmonic or almost-periodic cosines).

and approximate the Green’s operator for the Dirichlet boundary condition by the

gridpoint sampling (i.e., sampling at
{

x j = j /N
}N

j=0
over the interval [0,1]) and

the trapezoidal rule, then the eigenvectors are the so-called Discrete Sine Trans-

form Type I (DST-I for short). The same discretization scheme for the Neumann

boundary condition leads to the Discrete Cosine Transform Type I (DCT-I for short).

In other words, these matrices commutes with the differentiation matrices with

appropriate boundary conditions listed in [28, p. 140]. Here, one can also see that

the asymmetry of the discretized kernel matrix for the Neumann boundary con-

dition due to the trapezoidal rule corresponds to the special weighting at the two

end points used for the DCT-I basis vectors to be orthonormal. On the other hand,

12



when we discretize these Green’s operators with midpoint sampling (i.e., sampling

at
{

x j = ( j +0.5)/N
}N−1

j=0
over the interval [0,1]) and use the midpoint rule for the

integration, then we obtain DST-II/DCT-II basis vectors as the eigenvectors, which

do not require any special weighting of the end points.

Remark 9 It is interesting to note that our boundary condition (4) is somewhat

similar to the so-called the Robin boundary condition, i.e.,

u(0)−a0u′(0) = 0 = u(1)+a1u′(1),

where a0 and a1 are some constants. These boundary conditions happen to gen-

erate similar eigenfunctions as ours and the eigenvalues are also determined by

solving similar secular equations. See [29, Sec. 4.3] for the details. However, these

are still different from ours, i.e., these are local boundary condition whereas ours

are nonlocal.

3.2 2D Example

Let us now consider the unit disk Ω in R
2, where the kernel of our integral oper-

ator K becomes K (x , y) = − 1
2π

ln |x − y | for x , y ∈Ω. Tailoring Theorem 2 for the

unit disk, we have the following corollary:

Corollary 10 The eigenfunctions of the integral operator K for the unit disk in R
2

satisfies the following Laplacian eigenvalue problem:

−∆φ=λφ, in Ω;

∂φ

∂ν

∣

∣

∣

∣

Γ

=
∂φ

∂r

∣

∣

∣

∣

Γ

=−
∂Hφ

∂θ

∣

∣

∣

∣

Γ

, (10)
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where H is the Hilbert transform on the unit circle in R
2, i.e.,

H f (θ)
∆=

1

2π
pv

∫π

−π
f (η)cot

(

θ−η

2

)

dη θ ∈ [−π,π].

Moreover, these eigenfunctions are of the form:

φm,n(r,θ) =



















Jm(βm−1,nr )
(cos

sin

)

(mθ) if m = 1,2, . . . , n = 1,2, . . .,

J0(β0,nr ) if m = 0, n = 1,2, . . .,

where βk,ℓ is the ℓth zero of the Bessel function of the first kind of order k, i.e.,

Jk (βk,ℓ) = 0. The corresponding eigenvalues are

λm,n =



















β2
m−1,n , if m = 1, . . . , n = 1,2, . . .,

β2
0,n if m = 0, n = 1,2, . . ..

(11)

See Appendix C for the proof. Note that βk,ℓ are tabulated in many places, e.g.,

[1, Table 9.5].

Remark 11 This corollary suggests that out of the Laplacian eigenfunctions com-

puted with our formulation, those corresponding to J0, i.e., the radially symmetric

eigenfunctions satisfy the Dirichlet boundary condition, but the other eigenfunc-

tions do not. Also, we note that there are three eigenfunctions corresponding to

each β0,n , namely, J0(β0,nr ), J1(β0,nr )cosθ, and J1(β0,nr )sinθ, which can also be

numerically confirmed.

It is also interesting to compare (11) with the eigenvalues λD
m,n of the Dirichlet-

Laplacian and λN
m,n of the Neumann-Laplacian:

λD
m,n =β2

m,n , λN
m,n =α2

m,n , for m = 0,1, . . ., n = 1,2, . . .,

where J ′m(αm,n) = 0.
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Fig. 2. The first 25 Laplacian eigenfunctions on the unit disk.

Figure 2 shows the Laplacian eigenfunctions corresponding to the lowest 25 fre-

quencies that were computed numerically using our formulation. In other words,

they are the eigenfunctions of the integral operator commuting with the Lapla-

cian with the boundary condition (10). Note that the lowest frequencies (i.e., the

smallest eigenvalues) in the Laplacian side correspond to the largest eigenvalues

in the integral operator side. These eigenfunctions can be viewed as “modes” of

the vibration of the domain if the domain is interpreted as a “drum” although

not all of them satisfy the Dirichlet boundary condition.
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(a) χΩ
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(b) χΩ· Barbara

Fig. 3. The characteristic function of the Japanese Islands (a) and the Barbara image over-

laid over the islands (b).

4 Application to Image Approximation

In this section, we examine the approximation capability of our Laplacian eigen-

functions for given image data on a rather irregular domain, and compare the

performance with that of the standard wavelet-based methods.

As an example of irregularly-shaped domains, we decided to use a coarsely digi-

tized image of the islands of Japan, as shown in Figure 3(a), which was obtained

by the google image search. We then defined the characteristic function χΩ(x)

to indicate the shape of the islands. As for the data living on this domain Ω, we

multiplied the standard Barbara image with χΩ, which is shown in Figure 3(b).

The number of samples (i.e., pixels) forming the data on the islands is 1625. We

computed the Laplacian eigenfunctions defined on Ω from the kernel matrix of

1625×1625. We display the first 25 eigenfunctions in Figure 4.

We then computed the 1625 expansion coefficients relative to this Laplacian

eigenbasis, sorted in terms of their magnitudes, and approximated the data us-

ing the top 100 coordinates. In other words, we performed 100-term nonlinear
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Fig. 4. The first 25 Laplacian eigenfunctions over the islands of Japan.

approximation using the Laplacian eigenfunctions. The result is shown in Fig-

ure 5(a) and the reconstruction error (or the residual) is shown in Figure 5(b).

Note that these two figures are displayed with different dynamic ranges in order

to the details. We note that the scarf region of the Barbara image was not cap-

tured well by these 100 terms of the Laplacian eigenfunctions. To capture the

high frequency features, we need more terms.

We also approximated the same image using the top 100 coefficients computed

by the standard 2D wavelet basis called “Symmlet 8” [7, pp. 198–199]. Note that

this comparison is not really fair in the sense that the input image to the 2D

wavelet transform is the whole rectangular image shown in Figure 3(b), i.e., in-

cluding not only the islands, but also the outer ocean part. The approximation
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(a) 100-term Approx.
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(b) Error

Fig. 5. The 100-term approximation and the residual error using the Laplacian eigen-

functions.
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(a) 100-term Approx.

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

(b) Error

Fig. 6. The 100-term approximation and the residual error using the 2D Wavelets (Symm-

let 8).

and its residual error are shown in Figure 6. In this case, most of the top 100

wavelet coordinates were used to capture the boundary of the islands and could

not afford to capture the internal structure within the domain. It is clear that

simply keeping the top 100 wavelet coefficients was not enough to capture even

the boundary of the domain precisely for this image.

To be fairer, we organized these 1625 data points into a one-dimensional array

by scanning each column of Figure 3(b), and applied the 1D wavelet transform
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(b) Error

Fig. 7. The 100-term approximation and the residual error using the 1D Wavelets (Symm-

let 8).

using the Symmlet 8 filter to the resulting 1D array. Then, the 100-term approxi-

mation and its residual error were computed. The results are shown in Figure 7.

In this case, the boundary shape was not blurred because we explicitly used the

geometric information. However, observe the stripe-shape artifacts in the ap-

proximation and in the residual. This is because we deconstructed the 2D spatial

coherency of the original data by putting them into the 1D array.

Figure 8 compares the relative ℓ2 errors of the m-term approximations of various

methods. From these plots, we can observe that the nonlinear approximation

using the Laplacian eigenfunctions was the best in terms of both the ℓ2 error

and the visual fidelity. We also would like to note that the difference in ℓ2 error

between the approximation using the Laplacian eigenfunctions and that by the

1D wavelet transform is not great while the visual fidelity of the former is far

better than the latter as can be seen in Figures 5(a) and 7(a). It is important to

realize that the visual fidelity may not be measured well by the ℓ2 error; see e.g.,

[32] for the details about this intricate problem.

For a variety of applications, we wish to prove the following conjecture:
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Fig. 8. Comparison of the relative ℓ2 errors of the m-term nonlinear approximations of

various transforms. ‘2D Symmlet 8 Tensor’ means the tensor product of 1D Symmlet

8 wavelet transform along rows and columns whereas ‘2D Symmlet 8’ means the 2D

wavelet transform based on the genuine 2D multiresolution analysis.

Conjecture 12 Let Ω be a C 2-domain of general shape and let f ∈ C
(

Ω

)

with

∂ f

∂x j
∈ BV

(

Ω

)

for j = 1, . . . ,d. Let {ck = 〈 f ,φk〉}k∈N be the expansion coefficients

of f with respect to our Laplacian eigenbasis on this domain. Then, |ck | decays

with rate O(k−α) with 1 < α < 2 as k →∞. Thus, the approximation error using

the first m terms measured in the L2-norm, i.e., ‖ f −
∑m

k=1
ckφk‖L2(Ω) should have

a decay rate of O(m−α+0.5) as m →∞.

Essentially, this conjecture implies that what our Laplacian eigenfunctions do

for data on a general domain is similar to what the Fourier cosine/DCT basis

functions do for data fully supported on a rectangular domain. This should be
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contrasted with the Fourier sine or complex (i.e., periodic) Fourier bases for data

on a rectangular domain, which provide only α = 1 in the above approximation

statement in general. See [25,34] for the details about the boundary effect of the

conventional Fourier/trigonometric bases.

This conjecture was derived from our numerous numerical experiments and we

shall show some of them here to support the above conjecture. In the following

experiments, we prepared four different domains, all of which were derived from

the Japanese Islands discussed above. More presicely, we set

Ω1: the Japanese Islands (doubly enlarged from the original one in Figure 3 to

match the number of sampling points approximately to those of the other do-

mains below);

Ω2: the smoothed and connected version of Ω1;

Ω3: the same asΩ2 but with a “jaggy” boundary curve (more precisely, two bound-

ary pixels are added to each odd row and column of Ω2 and two are removed

from each even row and column of Ω2 to form Ω3); and

Ω4: the two-component version of Ω2.

The shapes of these domains are displayed in the top row of Figure 9. As for the

data on these domains, we adopted three functions with different smoothness:

1) a discontinuous function (in fact, a simple step function whose discontinuity

is a straight line along the “spine” or the main axis of the domain); 2) a pyramid-

shaped function, which is continuous and its first order partial derivatives are of

bounded variation; and finally 3) the standard Gaussian function.

The middle and the bottom rows of Figure 9 show the magnitudes of the expan-

sion coefficients of these three functions of different smoothness with respect

to our Laplacian eigenbases in the linear order (i.e., the order of increasing fre-
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Fig. 9. Comparison of the decay rates of the expansion coefficients (with respect to the

Laplacian eigenbases) of functions of various smoothness over four different domains.

These are plotted in the log-log scale. The blue, red, and green curves correspond to the

discontinuous, pyramid-shape, and Gaussian functions, respectively. The three straight

lines plotted with the ‘dashdot’ pattern are for the reference: they indicate decay rates of

k−1, k−1.5, k−2, respectively. The top row shows the four different domains we examined.
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quencies). There are several things we can observe from this figure.

• The decay rates reflect the intrinsic smoothness of the functions living in the

domain, but are not affected by the existence of the boundary of the domains.

If we were to extend these datasets to the outside of Ωi ’s by zeros up to the

circumscribed rectangles and apply the conventional bases appropriate for

data on a rectangular domain (e.g., 2D wavelets or 2D Fourier cosine bases)

to these extended datasets, then the results would be much worse than those

by our Laplacian eigenfunctions, i.e., at most O(k−1) or slower. In other words,

these conventional basis functions view such extended datasets as discontin-

uous functions across the boundaries where as our Laplacian eigenfunctions

do not sense such artificial discontinuities.

• The decay rates are rather insensitive to the smoothness of the boundary curves.

In particular, the plots for Ω2, Ω3, and Ω4 are virtually the same whereas those

for Ω1—the most complicated domain among these four—seem slightly worse

than the others. Yet all behave better than O(k−1). It will be interesting to com-

pare the performance of our Laplacian eigenfunctions with the conventional

ones satisfying the Dirichlet or the Neumann boundary conditions because it

is well known that the latter eigenfunctions reveal complicated behavior near

the rough boundary. We will compare the behavior of these Laplacian eigen-

functions satisfying different boundary conditions with ours and report our

findings at a later date.

• The decay rates are rather insensitive to the number of the separated subdo-

mains. Again, it will be also of interest to investigate the behavior the conven-

tional Laplacian eigenfunctions in this respect.

• Although the coefficient plots oscillate around the linear lines (in the log-log

scale), the decay rates O(k−α), regardless of the domain shapes, behave as fol-
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lows. For the discontinous functions, α < 1. For the pyramid-shape function,

1 < α < 1.5. For the Gaussian function, α ≥ 1.5. In Figure 10, we plot the de-

creasing rearragement of these coefficients. The oscillations around the lin-

ear lines are of course completely suppressed and the decay rates get faster

than those in the linear canonical order. This is one of the reasons why non-

linear approximation [10] provides better approximation than linear ones. Al-

though it is interesting and important to investigate what is a good approxima-

tion space for nonlinear approximation using our Laplacian eigenfunctions, it

would be most likely quite tough to nail down the best approximation space

considering the nature of our general shape domains and their boundaries.

Based on the above numerical experiments as well as other numerous experi-

ments we conducted, we have reached to Conjecture 12. Although the assump-

tions of the conjecture such as the C 2 boundary smoothness and the first partial

derivatives being in BV might be weakened, we would like to keep the conjecture

“as is” to be on a safe side.

Remark 13 The example of the Japanese Islands discussed in this section was of

small size. We recently obtained a digital map called “Japan Engineering Geomor-

phologic Classification Map” (JEGM) [31]. The number of sampling points in this

map is 387,924 over the Japanese Islands. Each point is associated with a vector of

length 11 representing a type of geological layer, an elevation, a slope, etc. In other

words, this is a vector-valued dataset. The coordinate of each point is specified by

four values because each point here approximately represents a square region of

1km × 1km. These four values are the longitude and the latitude of South West

corner and North East corner of each square. The corresponding kernel matrix

would be 387,924× 387,924, which is just too huge to handle with usual eigen-

value solvers. A fast algorithm that will be discussed in Section 7 and that was
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Fig. 10. Comparison of the decay rates of the decreasing rearrangement of the expansion

coefficients (with respect to the Laplacian eigenbases) of functions of various smooth-

ness over four different domains. These are plotted in the log-log scale. The blue, red,

and green curves correspond to the discontinuous, pyramid-shape, and Gaussian func-

tions, respectively. It is obvious that these curves show no oscillations and their decay

rates are faster than those in Figure 9. Moreover, the decay rates can be read off eas-

ily from the plots. The three straight lines plotted with the ‘dashdot’ pattern are for the

reference: they indicate decay rates of k−1, k−1.5, k−2, respectively.

implemented and tested in the Ph.D. thesis of Xue [33] is indispensable to com-

pute the Laplacian eigenfunctions for such a large scale problem.

25



5 Comparison with KLT/PCA

In this section, we shall discuss the use of the Laplacian eigenfunctions for anal-

ysis of a stochastic process that lives on a general domain and generates its re-

alizations over there, and compare them with KLT/PCA. As we mentioned in In-

troduction, KLT/PCA implicitly incorporate geometric information of the mea-

surement (or sampling) location through the autocorrelation or covariance ma-

trices whereas our Laplacian eigenfunctions use explicit geometric information

through the integral operator (2) defined on the domain Ω. Moreover, it is im-

portant to point out that our Laplacian eigenfunctions are computed once and

for all when the geometry of the domain is fixed, and they are independent of

the statistics of the stochastic process and do not require any autocorrelation or

covariance information of the process. This means that we can compute these

eigenfunctions even if we have only one realization of the stochastic process.

Furthermore, the statistics of the data are completely reflected in the expansion

coefficients, not in the basis functions themselves. On the other hand, KLT/PCA

requires a good number of realizations of the underlying stochastic process for

stably estimating the autocorrelation or covariance matrices. Hence the KLT/PCA

basis functions, being the eigenvectors of these matrices, heavily depend on the

statistics of the data. In other words, our Laplacian eigenfunctions allow us to

separate geometry and statistics of the underlying data for data analysis purposes,

which can never be realized by KLT/PCA.

The dataset we use for demonstration is the so-called “Rogue’s Gallery” dataset

that we obtained through the courtesy of Prof. Larry Sirovich at Mount Sinai

School of Medicine. See [18,23] for more about this dataset. Out of 143 face im-

ages in the dataset, 72 are used as a training dataset from which we compute the
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Fig. 11. Three samples (or realizations) of the eye data.

autocorrelation matrix for KLT/PCA. The remaining 71 faces are used as a test

dataset to check the validity of KLT/PCA. We cut out the left and right eye re-

gions from the face images and set them as our domain Ω as shown in Figure 11.

Therefore in this case, Ω consists of two separate components. The total num-

ber of pixels in Ω is 190, i.e., this is a relatively small scale problem. Figure 12

shows the first 25 KL basis vectors. Note that all the KL basis vectors are simply

linear combinations of the eyes in the training dataset. This is the reason why

they all look like some variations of the actual eyes. Figure 13 shows the Lapla-

cian eigenvectors that have the lowest 25 frequencies. These basis vectors are

completely independent from the statistics of the eye training dataset; they only

depend on the shape of the domain. Note also that they reveal the even and odd

symmetry similar to cosines and sines in the conventional Fourier analysis. This

property turns out to be decisive for certain applications such as the detection

of “asymmetric eyes” that will be discussed later in this section. Figure 14 shows

the log magnitude distribution of the data over the first 25 KLT/PCA coordinates

and that over the Laplacian eigenvector coordinates corresponding to the low-

est 25 spatial frequencies. As we can observe from these figures, KLT/PCA push

more energy of the data into the top few coordinates. In terms of interpretability

of the coordinates, however, the Laplacian eigenvectors are far more intuitive.

For example, we can see that there are several Laplacian eigencoordinates with
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Fig. 12. Top 25 KL basis vectors for the eye region.

high energy, e.g., the coordinates #7 and #13. If we check what these coordinates

are in Figure 13, the Laplacian eigenvector #7 correlates well with the iris in the

eyes as shown in Figure 15, which also includes the actual eyes with high and

low correlations with this particular eigenvector. Similarly, the Laplacian eigen-

vector #13 indicates how wide the eyes are open as shown in Figure 16. On the

other hand, it is very difficult to do this type of interpretation with the KLT/PCA

coordinates, as one can easily see from Figures 12 and 14(a).

Figures 17 and 18 well demonstrate the high dependence of the KLT/PCA on the

training dataset mentioned earlier. Figure 17 compares the mean energy of the

training data distributed over the KLT/PCA coordinates with that over the Lapla-

cian eigencoordinates. From this figure, one can observe a few things. First, the
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Fig. 13. The Laplacian eigenvectors with the lowest 25 spatial frequencies for the eye

region.
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Fig. 14. Log magnitudes of the eye data over the first 25 PCA coordinates (a); those over

the Laplacian eigencoordinates corresponding to the 25 lowest frequencies (b).
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Fig. 15. φ7, the 7th Laplacian eigenfunction and the actual eyes with high and low corre-

lations with φ7.

energy of the KLT/PCA coordinates drops suddenly at the coordinate #73. This is

because the training dataset consists of 72 realizations (eyes), and consequently

the rank of the autocorrelation matrix is only 72. Thus, the KLT/PCA coordinates

beyond #72 are useless. Second, the mean energy of the training data distributed

over the KLT/PCA coordinates monotonically and nicely decreases as expected.
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Fig. 16. φ13, the 13th Laplacian eigenfunction and the actual eyes with high and low

correlations with φ13.

As shown in Figure 18, however, the mean energy of the test data distributed over

those KLT/PCA coordinates does not monotonically decrease anymore and the

considerable energy are still distributed over the coordinates beyond the coordi-

nate #73. In other words, the behavior of the mean energy distribution of the test

data over the KLT/PCA coordinates and that of the training data are quite differ-
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Fig. 17. Comparison of the mean energy of the training data over the KLT/PCA coordi-

nates and the Laplacian eigencoordinates.

ent. On the other hand, because the Laplacian eigenfunctions do not depend on

the statistics of the data at all, the behavior of the mean energy distribution of

the test data over the Laplacian eigencoordinates is essentially the same as that

of the training data.

Finally, we shall discuss another pattern analysis/recoginition application that

KLT/PCA cannot handle: the detection of asymmetry of the eyes. Our eye do-

main has two mirror symmetric subdomains as shown in Figure 11, i.e., the left

and right eye regions. It turns out that our Laplacian eigenfunctions naturally

consist of those having mirror symmetry (i.e., even functions with respect to the

center line between the left and right eyes) and those having mirror antisym-

metry (i.e., odd functions) as shown in Figure 13. Note also that the eigenfunc-
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Fig. 18. Comparison of the mean energy of the test data over the KLT/PCA coordinates

and the Laplacian eigencoordinates.

tions φ7 and φ13 shown in Figures 15 and 16 are mirror symmetric. Observe that

the eigenfunctions with odd indices correspond to the mirror symmetric ones

and vice versa. Therefore, by computing the energy of the eye data distributed

only along the antisymmetric eigenfunctions φ2k , k = 1, . . . ,95, we can form a

“asymmetry detector”. Figure 19 shows the asymmetry detector for the eyes of

these 143 people at work. From this figure, we can easily see that the eyes with

high asymmetry (the top row) have inhomogeneous illumination conditions or

asymmetric eye features (e.g., eye locations) whereas those with low asymmetry

(the bottom row) have rather uniform illumination conditions and symmetric

eye features. It is clear from both its construction and Figure 12 that KLT/PCA

cannot handle this type of asymmetry detection at all because KLT/PCA basis
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Fig. 19. The “asymmetry detector” at work. The three peaks in the asymmetry detector

plot shown in the middle row indicate that there are three sets of eyes that are highly

asymmetric compared to the others, which are displayed in the top row. The bottom

row shows the most symmetric eyes, i.e., those having the smallest energy in the anti-

symmetric Laplacian eigencoordinates.
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functions do not have any well-defined symmetry or antisymmetry.

6 Solving the Heat Equation on a Complicated Domain

In this section, we shall discuss yet another application of our Laplacian eigen-

functions: solving the heat equation on a general shape domain in R
d . It is well

known that the semigroup et∆ can be diagonalized using the Laplacian eigenba-

sis, i.e., for any initial heat distribution u0(x) ∈ L2(Ω), we have the heat distribu-

tion at time t formally as

u(x , t ) = et∆ u0(x) =
∞
∑

j=1

e−tλ j 〈u0,φ j 〉φ j (x),

which is based on the expansion of the Green’s function for the heat equation

pt (x , y) via the Laplacian eigenfunctions as follows (see e.g., [11]).

pt (x , y) =
∞
∑

j=1

e−λ j t φ j (x)φ j (y) (t , x , y) ∈ (0,∞)×Ω×Ω.

In practice, the domain Ω must be discretized by a finite number (i.e., N ∈N) of

sample points (or pixels) as discussed in Section 2.2. Consequently, the Lapla-

cian eigenfunctions become the Laplacian eigenvectors of length N as in the

previous sections. Therefore, we can write et∆ in the matrix-vector form as

Φ e−tΛ
Φ

T =Φ diag
(

e−tλ1 , . . . ,e−tλN

)

Φ
T =

N
∑

j=1

e−λ j t φ jφ
T
j ,

where Φ=
(

φ1, . . . ,φN

)

is the Laplacian eigenbasis matrix of size N ×N , and Λ is

the diagonal matrix consisting of the eigenvalues of the Laplacian, which are the

inverse of the eigenvalues of the discretized kernel matrix, i.e., Λk,k =λk = 1/µk .

Given an initial heat distribution over the domain, u0 ∈R
N , we can compute the
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Fig. 20. The propagation of the heat distribution over the Japanese Islands. The initial

point heat source was put at the location of Mt. Fuji.

heat distribution at time t as

u(t ) =Φ e−tΛ
Φ

T
u0. (12)

Figure 20 shows our simple numerical experiment using the Japanese Islands

of Section 4 as our Ω. The physical meaning of our boundary condition (3) is

not completely obvious: it is different from the Dirichlet, the Neumann, and the

Robin boundary conditions as we discussed in Sections 2 and 3. Therefore, it is

important to investigate how to synthesize those standard physically-meaningful

Laplacian eigenfunctions using our own Laplacian eigenfunctions. All we can

say at this point is that the heat distribution over the Japanese Islands eventu-

ally ceases to zero regardless of the initial heat distribution as can be observed

in Figure 20 because the Laplacian eigenvalues are all positive in this example.
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Remark 14 It is interesting to examine the positivity of the eigenvalues of the

Laplacian in our setting. Although the 1D example in Section 3.1 has one nega-

tive eigenvalue, many examples of higher dimensional domains without symme-

try (e.g., the Japanese Islands) that we examined have only positive eigenvalues. It

is well known that the Laplacian associated with the Dirichlet (or the Neumann)

boundary condition has only positive (or nonnegative) eigenvalues. The basis of

the proof is the following argument (see also [29, Sec. 10.1]). Let φ be an eigen-

function of the Laplacian over Ω satisfying either the Dirichlet or the Neumann

boundary condition, and let λ be the corresponding eigenvalue. Then, using the

Green’s first identity (see e.g., [17, p.94]), we have

‖∇φ‖2
L2(Ω)

=
∫

Ω

∇φ ·∇φdx

=
∫

Ω

φ(x)(−∆φ(x))dx +
∫

Γ

φ(x)
∂φ

∂ν
(x)ds(x)

=λ‖φ‖2
L2(Ω)

+
∫

Γ

φ(x)
∂φ

∂ν
(x)ds(x).

Therefore, if φ satisfies either the Dirichlet or the Neumann condition, then the

second term in the righthand side vanishes. Thus we have:λ = ‖∇φ‖2
L2(Ω)

/‖φ‖2
L2(Ω)

> 0 for the Dirichlet case and ≥ 0 for the Neumann case where φ = const. is the

first eigenfunction. In the case of the Robin boundary condition,
∂φ

∂ν
+ aφ = 0,

it is known that λ ≥ 0 if a ≥ 0. This is because the above equation leads to λ =
(

‖∇φ‖2
L2(Ω)

+a‖φ|Γ‖2
L2(Γ)

)

/‖φ‖2
L2(Ω)

. The above proof critically depends on the Dirich-

let/Neumann/Robin boundary conditions. As for our Laplacian eigenvalue prob-

lem with our special boundary condition (3), it would be rather difficult to derive

exact conditions on the shape of the domain where all the eigenvalues become

positive.

Remark 15 Our approach to solving heat equations and to computing Laplacian
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eigenfunctions via the integral operator commuting with the Laplacian in general

may become a useful tool for machine learning problems, in particular, clustering

of high dimensional data. Popular procedures for such tasks include Laplacian

eigenmaps [3] and diffusion maps [5]. Both start with constructing a graph from

available data. Then, the former forms a graph Laplacian or a diffusion kernel

while the latter form a normalized diffusion kernel. Finally, both compute the

eigenvectors of these kernel matrices and embed the original data into a smaller

number of those eigencoordinates to seek their clustering structure. Computing

the eigenvectors of the graph Laplacian on a complicated graph is often difficult

due to the slow convergence of iterative eigenvalue solvers for such matrices even

if the graph Laplacian matrix is usually quite sparse. On the other hand, our ap-

proach based on the integral operator commuting with the Laplacian is computa-

tionally quite stable although it uses dense matrices. Using an approach using the

celebrated Fast Multipole Method (FMM) [15] that we shall discuss in the next sec-

tion and that was implemented and tested in [33], we should be able to speed up

the eigenvector computations despite of the denseness of the kernel matrices. As for

computing eigenvectors of diffusion kernels, one may want to use the improve fast

Gauss transform [22], which is an improved version of the fast Gauss transform of

Greengard and Strain [16], which in turn is based on FMM again. But if one wants

to compute the evolution of the diffusion process by varying the time parameter t ,

then this method seems less effective since it requires computing the eigenvectors

of the diffusion kernel for each fixed t . On the other hand, our method once and

for all computes the eigenvectors of the underlying Laplacian and can compute

the diffusion process at any time t quite easily as shown in Eq. (12).
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Fig. 21. The autocorrelation matrix of the eye data (a) vs. the harmonic kernel (1) for the

eye region as a matrix (b).

7 Strategies for Fast Computation

For computing our Laplacian eigenfunctions for a domain sampled by a large

number of cells, the use of fast algorithms becomes indispensable. There are at

least two possibilities, both of which we are currently actively investigating and

hope to report the result of our investigation at a later date. Xue’s Ph.D. thesis

[33] contains our effort along this direction to date. Both of them use the spe-

cial properties of the harmonic kernel (1). Unlike the autocorrelation matrix of

the eye data we examined in Section 5, which is not really structured except that

it is symmetric as we can see from Figure 21(a), the kernel matrix displayed in

Figure 21(b) is similar to a block Toeplitz form and the entries in each block de-

cays logarithmically away from the diagonal. Potentially, we may get a better (i.e.,

smoother) kernel matrix by rearranging its entries. Therefore, one possibility is

to use the “Alpert wavelets” [2] to sparsify this matrix (possibly with some re-

arrangement), and then use the sparse eigenvalue solver for the resulting ma-

trix. Another more promising possibility is to use the Krylov subspace method
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(such as the Lanczos iteration) [30] combined with the fast matrix-vector mul-

tiplication derived by the celebrated Fast Multipole Method (FMM) [15]. This is

possible because our integral operator (2) with the harmonic kernel (1) is the

one for computing the electrostatic potential field caused by the point charges

distributed on the domain Ω. See [33] for the details on and the further develop-

ment of the use of FMM for our Laplacian eigenvalue problem.

If a domain consists of disconnected components, then one can reduce the orig-

inal problem into a set of smaller problems. For example, let us consider the

example of the Japanese Islands shown in Figure 3, where there are four clearly

separated major islands (or components). Figure 22(a) shows the kernel matrix

for the whole islands from which we computed the Laplacian eigenfunctions

show in Figure 4. We can clearly see four main diagonal blocks corresponding

to the four islands. Note also that the size of each block is proportional to the

volume of (i.e., the number of samples on) the corresponding component. But

we can also see in this figure that there are nonzero entries in the off-diagonal

blocks. These resulted from the “communication” between the geographically-

separated islands when we constructed this kernel matrix. In other words, we

computed Ki , j = K (x i , x j ) 6= 0 even if x i belongs to one island and x j belongs to

the other. Now, it is at our disposal to decide whether we keep the communica-

tion among the separated components alive or cut that communication down

when we construct the kernel matrix. If we decide to disconnect the communi-

cation among the separated components, the only thing we need to do is to set

Ki , j = K (x i , x j ) = 0 if x i and x j belong to the different components. Such dis-

connection operations set the entries of the off-diagonal blocks of the matrix to

completely zero and decouple the original matrix into a set of smaller matrices

as shown in Figure 22(b). This means that we can decompose a large eigenvalue
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Fig. 22. The kernel matrix where the communications between and within the islands

are kept (a) and the one without the communication between the islands (b).

problem into a set of smaller subproblems, each of which can be solved defi-

nitely faster than the original large problem. Moreover, because of the supports

of the eigenfunctions are disjoint, their orthogonality is maintained. Figure 23

shows the five lowest frequency eigenfunctions for each major island in Japan.

Of course the user has the ultimate responsibility for cutting such communica-

tion among the components. There may be some cases where keeping the com-

munication between separated components makes pattern analysis tasks easier.

In fact, we have already seen one such example: the asymmetry detector of eyes

in Section 5.

8 Conclusion

In this paper, we proposed a new method to compute the Laplacian eigenfunc-

tions for a domain of general shape Ω ⊂ R
d via the eigenanalysis of the integral

operator commuting with the Laplacian, and demonstrated their usefulness for

a variety of applications. In particular, we demonstrated: 1) the expansion coeffi-
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Fig. 23. Top five Laplacian eigenfunctions for separated islands.

cients of a function on Ω with respect to our Laplacian eigenfunctions reflect the

intrinsic smoothness of that function on Ω and are not affected by the boundary

Γ, which form the basis for efficient approximation; 2) our Laplacian eigenfunc-

tions achieve the separation of geometry and statistics, i.e., they are determined

once and for all when the domain Ω and the data sampling strategy on Ω are

determined, and are independent from the statistics of the measured data over

there, which should be contrasted with KLT/PCA; 3) implementing a stable nu-

merical algorithm to compute our Laplacian eigenfunctions is quite straightfor-

ward and our formulation is amenable to modern fast algorithms.

There are a number of potential areas to which our Laplacian eigenfunctions

may contribute. On the fundamental side, we can list interpolation, extrapola-
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tion, and local feature computation. On the applied side, medical and geological

image analysis and analysis of distributed sensor networks immediately come to

mind. We plan to investigate those important areas in the near future.

Now, there are several challenges in front of us that we also plan to investigate.

First, computing the Laplacian eigenfunctions on 3D domains. This is rather

straightforward as long as the number of samples N on the domain is not too

huge; one just needs to switch the kernel to K (x , y) =
(

4π|x − y |
)−1

. As a matter

of fact, we computed the Laplacian eigenfunctions for simple 3D shapes such

as the unit ball in R
3 without any difficulty. If N is huge, however, computing

3D Laplacian eigenfunctions becomes a major challange; we need the 3D FMM,

which is not trivial to implement. Mathematical analysis of the boundary condi-

tion for a 3D domain also becomes a challenge. For example, it seems quite cum-

bersome to derive a neat boundary condition (like Eq. 10 of the 2D unit disk) for

the 3D unit ball. To do so, we may need to employ a higher dimensional analog

of the Hilbert transform involving “Clifford Analysis” (see e.g., [9] and the refer-

ences therein).

Second, understanding the physical meaning of our unconventional non-local

boundary condition (3). This is important for physical applications such as the

heat equation that we discussed in Section 6. Since the conventional Laplacian

eigenfunctions satisfying either the Dirichlet or the Neumann boundary condi-

tion are used in numerous applications and yet difficult to compute on a com-

plicated domain, it is also important to investigate whether we can synthesize

the conventional eigenfunctions using our own Laplacian eigenfunctions and to

compare the mathematical and numerical properties of our eigenfunctions with

those of the conventional eigenfunctions.
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Last but not least, computing the eigenfunctions of the polyharmonic opera-

tors ∆m with m > 1. Although these may be computed easily by simply replacing

the harmonic kernel by the polyharmonic kernel and we may not need to worry

about the boundary condition as in the Laplacian case, analyzing mathematical

properties of such eigenfunctions may become a real challege.

Finally, we would like to conclude this article by noting that our method has a

connection to many interesting mathematics such as spectral geometry, Toeplitz

operators, PDEs, potential theory, radial basis functions, almost-periodic func-

tions, etc., and we expect further interplay among these fields!
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A Proof of Theorem 2

PROOF. Let L = −∆ and K be defined as (2). Then, for f ∈ C 2(Ω)∪C 1(Ω), we

have

LK f (x) =−∆xK f (x) = f (x) x ∈Ω,

which is referred to as “Poisson’s formula” [17, p.99]. On the other hand, using

the Green’s second identity (see e.g., [17, p.94]), we have

KL f (x) =−
∫

Ω

K (x − y)∆y f (y)dy

= f (x)−
∫

Γ

K (x − y)
∂ f

∂νy

(y)ds(y )+
∫

Γ

∂K

∂νy

(x − y) f (y)ds(y).

Thus, K and L commute if and only if

∫

Γ

K (x − y)
∂ f

∂νy

(y)ds(y ) =
∫

Γ

∂K

∂νy

(x − y) f (y)ds(y ) x ∈Ω. (A.1)

We now would like to move x ∈ Ω to the boundary Γ in Eq. (A.1). While we do

not have any problem in the lefthand side (the single layer potential), we must

treat the righthand side (the double layer potential) carefully. Here, we will follow

Folland [12, Chap. 2] (see also Kress [19, Sec. 6.3]). Let us consider the righthand

side at x + tνx ∈Ω for x ∈ Γ with a sufficiently small t < 0 instead of x ∈Ω. Thus,

for x ∈ Γ, we have

∫

Γ

∂K

∂νy

(x + tνx − y) f (y)ds(y ) = f (x)

∫

Γ

∂K

∂νy

(x + tνx − y)ds(y )

+
∫

Γ

∂K

∂νy

(x + tνx − y)( f (y)− f (x))ds(y).

(A.2)

The first term in the righthand side is − f (x) thanks to the following
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Lemma 16 (a variant of Lemma (3.19) in [12])

∫

Γ

∂K

∂νy

(x − y)ds(y ) =



































−1 if x ∈Ω;

−1
2

if x ∈ Γ;

0 if x ∉Ω.

As for the second integral in Eq. (A.2), because ψ(y)
∆= f (y)− f (x) is continuous

and ψ(x) = 0 for x ∈ Γ, we can use Lemma (3.21) of Folland [12, p. 127] to con-

clude that as t → 0 the second integral in (A.2) approaches to

∫

Γ

∂K

∂νy

(x − y) f (y)ds(y)− f (x)

∫

Γ

∂K

∂νy

(x − y) f (y)ds(y )

=
∫

Γ

∂K

∂νy

(x − y) f (y)ds(y )+ 1
2

f (x), x ∈ Γ,

where we used Lemma 16 again in the last equality. Therefore, we can finally

have

∫

Γ

K (x − y)
∂ f

∂νy

(y)ds(y ) =−
1

2
f (x)+ pv

∫

Γ

∂K

∂νy

(x − y) f (y)ds(y ) x ∈Γ,

which is the same as (3). This completes the proof. 2

B Proof of Corollary 6

PROOF. Rather than dealing with (3), we will derive the Laplacian eigenvalue

problem directly from the integral eigenvalue problem, Kφ=µφ.
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Kφ(x)=−
1

2

∫1

0
|x − y |φ(y)dy

=−
1

2

(∫x

0
(x − y)φ(y)dy +

∫1

x
(y −x)φ(y)dy

)

=−
1

2

(

x

∫x

0
φ(y)dy −

∫x

0
yφ(y)dy +

∫1

x
yφ(y)dy −x

∫1

x
φ(y)dy

)

=µφ(x).

Differentiating both sides with respect to x, we have

∫x

0
φ(y)dy −

∫1

x
φ(y)dy =−2µφ′(x). (B.1)

By setting x = 0 and x = 1 in this equality, we have

φ′(0) =−φ′(1) =
1

2µ

∫1

0
φ(y)dy. (B.2)

Now, evaluating Kφ(x)=µφ(x) at x = 0,1 yields

φ(0) =−
1

2µ

∫1

0
yφ(y)dy,

φ(1) =−
1

2µ

∫1

0
(1− y)φ(y)dy =−

1

2µ

(∫1

0
φ(y)dy −

∫1

0
yφ(y)dy

)

.

Adding these two equations and using (B.2), we obtain

φ(0)+φ(1) =−
1

2µ

∫1

0
φ(y)dy =−φ′(0) =φ′(1),

which is (4), i.e., what we wanted to show. Differentiating (B.1) in x once again,

we can easily obtain the Laplacian eigenvalue equation as follows.

2φ(x) =−2µφ′′(x) ⇐⇒ −φ′′(x) =λφ(x), λ=
1

µ
.

Let us now compute the solutions to this Laplacian eigenvalue problem with the

boundary condition (4). The characteristic equation for φ′′+λφ= 0 is r 2 +λ= 0.

Therefore, we need to consider the following three cases:
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Case I λ< 0: In this case, the eigenfunction is of the form φ(x) = A cosh
p
−λx+

B sinh
p
−λx where A, B are some constants. Putting this form to the boundary

condition (4), we have

φ(0)+φ(1) = A(1+cosh
p
−λ)+B sinh

p
−λ

=−φ′(0) =−
p
−λB

=φ′(1) =
p
−λ

(

A sinh
p
−λ+B cosh

p
−λ

)

From these equalities, we have the following 2×2 linear system for A and B :















1+cosh
p
−λ

p
−λ+ sinh

p
−λ

sinh
p
−λ 1+cosh

p
−λ





























A

B















=















0

0















.

Thus, in order to have nontrivial eigenfunctions, the determinant of this equa-

tion must be zero. This leads to

0=
(

1+cosh
p
−λ

)2
− sinh

p
−λ

(p
−λ+ sinh

p
−λ

)

= 2+2cosh
p
−λ−

p
−λsinh

p
−λ

= 4cosh2

p
−λ
2

−2
p
−λsinh

p
−λ
2

cosh

p
−λ
2

= 2cosh2

p
−λ
2

(

2−
p
−λ tanh

p
−λ
2

)

.

The last equality is justified because cosh
(p

−λ/2
)

6= 0. Thefore the second

factor must be zero, i.e., tanh
(p

−λ/2
)

= 2/
p
−λ, which is exactly (5). Let λ0

be the solution of this secular equation, which can be found numerically as

λ0 ≈ −5.756915. For this λ0, the relationship between the constants A and B

above must have:

A sinh
√

−λ0 +B(1+cosh
√

−λ0) = 0 ⇐⇒ B =−
sinh

√

−λ0

1+cosh
√

−λ0

A.

Thus, we have
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φ0(x)= A

(

cosh
√

−λ0x −
sinh

√

−λ0

1+cosh
√

−λ0

sinh
√

−λ0x

)

= A′
(

cosh
√

−λ0x +cosh
√

−λ0 cosh
√

−λ0x − sinh
√

−λ0 sinh
√

−λ0x
)

= A′
(

cosh
√

−λ0x +cosh
√

−λ0(1−x)
)

= A0 cosh
√

−λ0

(

x − 1
2

)

,

which is exactly (6). The constant A0 is a normalization constant to have ‖φ0‖L2(Ω) =

1. Thus,

A0 =
(∫1

0

(

cosh
√

−λ0

(

x − 1
2

)

)2
dx

)−1/2

=
(

1
2
+ 1

2

∫1

0
cosh2

√

−λ0

(

x − 1
2

)

dx

)−1/2

=
p

2

(

1+
sinh

√

−λ0
√

−λ0

)−1/2

≈ 0.7812598.

Case II λ= 0: In this case, we haveφ′′(x) = 0. Thusφ(x) = Ax+B . But the bound-

ary condition (4) leads to 2A +B = −A = A, i.e., A = B = 0. Therefore, λ = 0 is

not an eigenvalue for this problem.

Case III λ> 0: In this case, the eigenfunction is of the form φ(x) = A cos
p
λx +

B sin
p
λx. Similarly to Case I, using the boundary condition (4), we have

φ(0)+φ(1) = A(1+cos
p
λ)+B sin

p
λ

=−φ′(0) =−
p
λB

=φ′(1) =
p
λ

(

−A sin
p
λ+B cos

p
λ
)

From these equalities, we have the following 2×2 linear system for A and B :















1+cos
p
λ

p
λ+ sin

p
λ

−sin
p
λ 1+cos

p
λ





























A

B















=















0

0















.

Again, the vanishing determinant of this equation leads to
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0=
(

1+cos
p
λ
)2
+ sin

p
λ

(p
λ+ sin

p
λ
)

= 2+2cos
p
λ+

p
λsin

p
λ

= 2cos

p
λ

2

(

2cos

p
λ

2
+
p
λsin

p
λ

2

)

.

Thus, we have cos
(p

λ/2
)

= 0 or 2cos
(p

λ/2
)

+
p
λsin

(p
λ/2

)

= 0. From the

former, we can easily get the eigenvalues λ=λ2m−1 = (2m−1)2π2 and the cor-

responding eigenfunctions φ2m−1(x)=
p

2cos(2m−1)πx, m = 1,2, . . ., which is

(7). From the latter, we get the secular equation, tan
(p

λ/2
)

= −2/
p
λ, which

is exactly (8). Considering the graph of periodic asymptotes of tan
(p

λ/2
)

at

λ = (2m −1)2π2, we observe that the eigenvalues satisfying (8) and λ2m−1 are

interlacing. Thus, we naturally denote the eigenvalues satisfying (8) by λ2m ,

m = 1,2, . . ., which must be computed numerically. The corresponding eigen-

functions are

φ2m(x)= A

(

cos
√

λ2m x +
sin

√

λ2m

1+cos
√

λ2m

sin
√

λ2m x

)

= A′
(

cos
√

λ2m x +cos
√

λ2m cos
√

λ2m x + sin
√

λ2m sin
√

λ2m x
)

= A′
(

cos
√

λ2m x +cos
√

λ2m(1−x)
)

= A2m cos
√

λ2m

(

x − 1
2

)

,

which is exactly (9). The constant A2m is a normalization constant to have

‖φ2m‖L2(Ω) = 1. Thus,

A2m =
(∫1

0

(

cos
√

λ2m

(

x − 1
2

)

)2
dx

)−1/2

=
(

1
2
+ 1

2

∫1

0
cos2

√

λ2m

(

x − 1
2

)

dx

)−1/2

=
p

2

(

1+
sin

√

λ2m
√

λ2m

)−1/2

,

which completes the proof. 2
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C Proof of Corollary 10

PROOF. In R
2, we have K (x , y) =− 1

2π
ln |x − y |. Thus,

∇y K (x , y) =
1

2π

x − y

|x − y |2
.

Now, the normal derivative of K (x , y) at y ∈ Γ can be computed easily as:

∂K

∂νy

(x − y) =νy ·∇y K (x , y) =
1

2π

(x − y) ·νy

|x − y |2
.

When Ω is the unit disk in R
2, things simplify considerably. Let x = eiθ, y = eiη be

any two boundary points. Then, it is easy to show that

|x − y |2 = 4sin2 θ−η

2
, (x − y) ·νy = (x − y) · y =−2sin2 θ−η

2
,

which lead to

∂K

∂νy

(x − y) =
1

2π

(x − y) ·νy

|x − y |2
=−

1

4π
. (C.1)

Let φ ∈ C 2(Ω)∩C 1(Ω) in (3) be represented in the polar coordinates as φ(r,θ).

Plugging (C.1) and the 2D kernel above into (3) and multiplying 2 on both sides,

we get

−
1

π

∫π

−π
ln

∣

∣

∣

∣

2sin
θ−η

2

∣

∣

∣

∣

∂φ

∂r
(1,η)dη=−φ(1,θ)−

1

2π

∫π

−π
φ(1,η)dη. (C.2)

Note that the second term in the righthand side is a constant. Differentiating

both sides in θ leads to

∂φ

∂θ
(1,θ) =

1

2π

∫π

−π

∂φ

∂r
(1,η)cot

θ−η

2
dη=H

∂φ

∂r
(1,θ),

where H is the Hilbert transform on the unit circle in R
2. We now note that H

2 =

−I d where I d is the identity operator. Thus, we have

∂φ

∂r
(1,θ) =−H

∂φ

∂θ
(1,θ) =−

∂Hφ

∂θ
(1,θ),
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which is exactly (10).

Finally, let us compute the eigenfunctions and the corresponding eigenvalues

satisfying (10). Using the separation of variables (see e.g., [29, Sec. 10.2]), it is

easy to derive that each eigenfunction is of the form:

φ(r,θ) = Jm

(p
λr

)

(

cos

sin

)

(mθ), m = 0,1, . . . . (C.3)

If our boundary condition were the standard Dirichlet condition, then the eigen-

value λ could be obtained by the condition Jm(
p
λ) = 0. However, our boundary

condition is quite different from the Dirichlet case: it must satisfy (10). Let us

first consider the case m > 0. In this case, plugging (C.3) into (10), we have

∂φ

∂r
(1,θ) =

p
λJ ′m

(p
λ
)

(

cos

sin

)

(mθ)

=−
∂Hφ

∂θ
(1,θ)

=−Jm

(p
λ
) ∂

∂θ

(

sin

−cos

)

(mθ)

=−m Jm

(p
λ
)

(

cos

sin

)

(mθ).

From these, we have
p
λJ ′m

(p
λ
)

=−m Jm

(p
λ
)

for m > 0. Now, inserting z =
p
λ

in the following standard recursion formulas (see e.g., [1, Formula 9.1.27]):

z J ′m(z) =−z Jm+1(z)+m Jm(z), z(Jm−1(z)+ Jm+1(z)) = 2m Jm(z) for z ∈C,

we have

p
λJ ′m

(p
λ
)

=−m Jm

(p
λ
)

⇐⇒
p
λJm+1

(p
λ
)

= 2m Jm

(p
λ
)

⇐⇒
p
λJm+1

(p
λ
)

=
p
λ

(

Jm−1

(p
λ
)

+ Jm+1

(p
λ
))

⇐⇒
p
λJm−1

(p
λ
)

= 0.

However, we cannot have λ= 0 because Jm(0) = 0 for all m > 0. Hence, we must

have Jm−1

(p
λ
)

= 0 for m = 1,2, . . ., and consequently the eigenvalues are deter-
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mined as the zeros of Jm−1. In other words, we can set λm,n = β2
m−1,n , m,n =

1,2, . . ..

Now, let us consider the case of m = 0. The eigenfunction is of the form φ(r,θ) =

J0

(p
λr

)

, i.e., a radial function. In this case, we need to go back to (C.2) because

(10) simply says 0 = 0. Now, plugging φ(r,θ) = J0

(p
λr

)

into (C.2), we have

−
1

π

∫π

−π
ln

∣

∣

∣

∣

2sin
θ−η

2

∣

∣

∣

∣

p
λJ0

(p
λ
)

dη=−J0

(p
λ
)

−
1

2π

∫π

−π
J0

(p
λ
)

dη=−2J0

(p
λ
)

.

Since the integral

∫π

−π
ln

∣

∣

∣

∣

2sin
θ−η

2

∣

∣

∣

∣

dη= 0 for any θ ∈ [−π,π] 2 ,

we must have J0

(p
λ
)

= 0. Thus, we have λ0,n = β2
0,n , n = 1,2, . . .. This completes

the proof. 2

References

[1] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Dover

Publications, Inc., New York, 1972, 9th printing.

[2] B. K. Alpert, A class of bases in L2 for the sparse representation of integral operators,

SIAM J. Math. Anal. 24 (1) (1993) 246–262.

[3] M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data

representation, Neural Computation 15 (2003) 1373–1396.

[4] A. Cantoni, P. Butler, Eigenvalues and eigenvectors of symmetric centrosymmetric

matrices, Linear Algebra Appl. 13 (1976) 275–288.

2 This can be derived by the formula
∫π/2

0 lnsin x dx = −
π

2
ln2 via [14, Formula 4.224.3]

and utilizing the periodicity of the integrand.

53



[5] R. R. Coifman, S. Lafon, Diffusion maps, Applied and Computational Harmonic

Analysis 21 (1) (2006) 5–30.

[6] R. R. Coifman, S. Lafon, Geometric harmonics, Applied and Computational

Harmonic Analysis 21 (1) (2006) 32–52.

[7] I. Daubechies, Ten Lectures on Wavelets, vol. 61 of CBMS-NSF Regional Conference

Series in Applied Mathematics, SIAM, Philadelphia, PA, 1992.

[8] E. B. Davies, Spectral Theory and Differential Operators, vol. 42 of Cambridge

Studies in Advanced Mathematics, Cambridge Univ. Press, 1995.

[9] R. Delanghe, On some properties of the Hilbert transform in Euclidean space, Bull.

Belg. Math. Soc. 11 (2004) 163–180.

[10] R. A. DeVore, Nonlinear approximation, in: Acta Numerica, Cambridge Univ. Press,

1998, pp. 51–150.

[11] J. Dodziuk, Eigenvalues of the Laplacian and the heat equation, Amer. Math.

Monthly 88 (9) (1981) 686–695.

[12] G. B. Folland, Introduction to Partial Differential Equations, 2nd ed., Princeton Univ.

Press, 1995.

[13] B. Friedman, Principles and Techniques of Applied Mathematics, John Wiley & Sons,

Inc., New York, 1956, republished by Dover Publications, Inc. in 1990.

[14] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, seventh ed.,

Academic Press, 2007.

[15] L. Greengard, V. Rokhlin, A fast algorithm for particle simulation, J. Comput. Phys.

73 (2) (1987) 325–348.

[16] L. Greengard, J. Strain, The fast Gauss transform, SIAM J. Sci. Stat. Comput. 12 (1)

(1991) 79–94.

54



[17] F. John, Partial Differential Equations, vol. 1 of Applied Mathematical Sciences, 4th

ed., Springer-Verlag, New York, 1982.

[18] M. Kirby, L. Sirovich, Application of the Karhunen-Loève procedure for the

characterization of human faces, IEEE Trans. Pattern Anal. Machine Intell. 12 (1)

(1990) 103–108.

[19] R. Kress, Linear Integral Equations, 2nd ed., Springer-Verlag, New York, 1999.

[20] E. Kreyszig, Introductory Functional Analysis with Applications, Wiley Classics

Library, John Wiley & Sons, Inc., New York, 1989.

[21] D. Porter, D. S. G. Stirling, Integral Equations: A Practical Treatment from Spectral

Theory to Applications, Cambridge Texts in Applied Mathematics, Cambridge Univ.

Press, New York, 1990.

[22] V. C. Raykar, R. Duraiswami, The improve fast Gauss transform with applications to

machine learning, in: L. Bottou, O. Chapelle, D. Decoste, , J. Weston (eds.), Large

Scale Kernel Machines, Neural Information Processing, chap. 8, The MIT Press,

Cambridge, MA, 2007, pp. 175–202.

[23] N. Saito, Image approximation and modeling via least statistically dependent bases,

Pattern Recognition 34 (2001) 1765–1784.

[24] N. Saito, Geometric harmonics as a statistical image processing tool for images

defined on irregularly-shaped domains, in: Proc. 13th IEEE Workshop on Statistical

Signal Processing, IEEE, 2005.

[25] N. Saito, J.-F. Remy, The polyharmonic local sine transform: A new tool for local

image analysis and synthesis without edge effect, Applied and Computational

Harmonic Analysis 20 (1) (2006) 41–73.

[26] N. Saito, K. Yamatani, J. Zhao, Generalized polyharmonic trigonometric transform:

A tool for object-oriented image analysis and synthesis, Tech. rep., Dept. Math.,

Univ. California, Davis, in preparation (2007).

55



[27] D. Slepian, Some comments on Fourier analysis, uncertainty and modeling, SIAM

Review 25 (1983) 379–393.

[28] G. Strang, The discrete cosine transform, SIAM Review 41 (1) (1999) 135–147.

[29] W. A. Strauss, Partial Differential Equations: An Introduction, John Wiley & Sons,

Inc., New York, 1992.

[30] L. N. Trefethen, D. Bau, III, Numerical Linear Algebra, SIAM, Philadelphia, 1997.

[31] K. Wakamatsu, S. Kubo, M. Matsuoka, K. Hasegawa, M. Sugiura, Japan Engineering

Geomorphologic Classification Map, University of Tokyo Press, 2005, (product serial

number: JEGM0001), with CD-ROM.

[32] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: From

error measurement to structural similarity, IEEE Trans. Image Process. 13 (4) (2004)

600–613.

[33] X. Xue, On a fast algorithm for computing the Laplacian eigenpairs via commuting

integral operators, Ph.D. thesis, Dept. Math., Univ. California, Davis (2007).

[34] K. Yamatani, N. Saito, Improvement of DCT-based compression algorithms using

Poisson’s equation, IEEE Trans. Image Process. 15 (12) (2006) 3672–3689, to appear.

[35] J. Zhao, Efficient approximations: Overcoming boundary effects, Ph.D. thesis, Dept.

Math., Univ. California, Davis (2006).

56


