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ABSTRACT

We describe an extension to the “best-basis” method to construct an orthonormal basis which
maximizes a class separability for signal classification problems. This algorithm reduces the dimen-
sionality of these problems by using basis functions which are well localized in time-frequency plane
as feature extractors. We tested our method using two synthetic datasets: extracted features (expan-
sion coefficients of input signals in these basis functions), supplied them to the conventional pattern
classifiers, then computed the misclassification rates. These examples show the superiority of our
method over the direct application of these classifiers on the input signals. As a further application,
we also describe a method to extract signal component from data consisting of signal and textured
background.
keywords: wavelet packets, local trigonometric transforms, classification, feature extraction, dimen-
sionality reduction, linear discriminant analysis, classification and regression trees

1 INTRODUCTION

Extracting relevant features from signals or images is an important process for data analysis, such as
classifying signals into known categories (classification) or predicting a response of interest based on
these signals (regression). In this paper, we focus our attention on methods of selection of coordinate
systems to enhance the performance of a few classification schemes.

More precisely, let £ = {(z;,4:)}Y, C X x Y be a training (or learning) dataset with N pairs of
measurement vectors (or discrete signals) @; and responses y;, where X C R" is called a signal space,
n is a dimensionality of each signal «; (in this paper, we assume n = 2" for some ng), and Y is called
a response space. For classification problems, we set Y = {1,..., L} where L is the number of known
classes (for regression problems, we generally set Y = R). Let N; be the number of signals belonging to
class [, i.e., N = Ny 4+ --- 4 Ny, and let us denote a set of class [ signals by {:):Z(»Z) 5\21. Now we want
to find a map called feature extractor f : X — F C R, (k < n) for extracting relevant features and
reducing the dimensionality of the problem without losing important information as much as possible
so that the following classification process can be improved in its accuracy and efficiency. The resulting
range F is called a feature space. The final classification process now can be written as a map (generally

*in Mathematical Imaging: Wavelet Applications in Signal and Image Processing 11, A. F. Laine and M. A. Unser,
Editors, Proc. SPIE Vol. 2303, 1994



nonlinear) g : & — Y. Preferably, the performance of the whole process should be measured by the
misclassification rate using a test dataset J (which has not been used to construct the feature extractors
and classifiers) as (1/|T|) 3", c5 6(yi —go f(;)), where |T| is a number of samples in T, and é(r # 0) = 1
and 6(0) = 0. If we use the training dataset for computing misclassification rates, we obviously have
overly optimistic figures.

In this paper, we focus the feature extractors of the form f = @) o®, where ®%) : X — F represents
the selection rule (e.g., picking most important & coordinates from n coordinates), and ¥ € O(n), i.e.,
an n-dimensional orthogonal matrix. As a classifier g, we adopt Linear Discriminant Analysis (LDA)
of R. A. Fisher [6] (see also [7]) (in fact LDA itself does further feature extraction followed by a simple
classification scheme) and Classification and Regression Trees (CART) [2] although other classifiers such
as k-nearest neighbor (k-NN) [7], or artificial neural networks (ANN) [10] are all possible. The reader
interested in comparisons of different classifiers is referred to the excellent review article of Ripley [10].

LDA first tries to find a linear map AT : X — J (in this case not necessarily orthogonal matrix)
which simultaneously minimizes the scatter of sample vectors (signals) within each class and maximizes
the scatter of mean vectors {m,;}~, around the total mean vector m = S°L | mmy where 7 is the prior
probability of class [ (which can be set to N;/N without the knowledge on the true prior probability).
The scatter of samples within each class can be measured by the within-class covariance matrix X,, =
EZL:1 m X, where X} is the covariance matrix of class [. The scatter of mean vectors around the total
mean can be measured by the between-class covariance matrix Xy = S°E, m(my — m)(m; — m)’.
Then, LDA equivalently maximizes a class separability index J(A) = tr[(AT X, A)~1(AT X, A)] which
measures how much these classes are separated in the feature space. This requires solving the so-called
generalized (or pencil-type) eigenvalue problem, X3, A = Y, AA, where A is a diagonal matrix containing
the eigenvalues. Once the map A is obtained (normally £ = L — 1 for LDA), then the feature vector
ATz, is computed for each i, and finally it is assigned to the class which has the mean vector closest to
this feature vector in the Euclidean distance in this coordinate system. This is equivalent to bisecting
the feature space F by hyperplanes. In this paper we regard LDA as a classifier although, as explained,
it also includes its own feature extractor A. LDA is the optimal strategy if all classes of signals obey
multivariate normal distributions with different mean vectors and an equal covariance matrix. However,
in reality, it is hard to assume this condition. Moreover, since it relies on solving the eigensystem, LDA
can only extract global features (or squeezes all discriminant information into a few [L — 1] basis vectors)
so that the interpretation of the extracted features becomes difficult, it is sensitive to outliers and noise,
and it requires O(n?) calculations.

Another popular classifier, CART, is a nonparametric method which recursively splits the input
signal space along the coordinate axes and generates a partition of the input signal space into disjoint
blocks so that the process can be conveniently described as a binary tree where nodes represent these
splits. At each node, the split which best classifies the signals in the left and right branches is selected.
Splitting is continued until nodes become “pure”, i.e., they contain only one class of signals, or become
“sparse”, i.e., they contain only a few signals. Then the class label is assigned for each terminal node
usually by majority vote of the samples belonging to that node. The pruning process to eliminate
unimportant branches is usually applied after growing the initial tree to avoid the “overtraining.” We
refer the reader to [2] for the details of splitting, stopping, and pruning rules. Although CART does
not assume any parametric model for the data distributions, we still face the difficulty of dealing with
too many parameters in the original signal space and with too many computations if we consider linear
combinations of the coordinates to generate a tree.

In order to fully utilize these classifiers, we must supply them good features (preferably just a few)
and throw out useless part of the data. This improves both accuracy and speed of these classifiers. In



this paper, we address how to construct good feature extractors. In particular, we use the “best-basis”
paradigm [4] which permits a rapid [e.g., O(nlogn)] search among a large collection of orthogonal bases
for the problem at hand; we select basis functions which are well localized in the time-frequency (or
space-wave number) plane and most discriminate given classes, and then the coordinates (expansion
coefficients) of these basis functions are fed into LDA or CART.

The organization of this paper is as follows. In Section 2, we propose a fast algorithm for construct-
ing such a local basis for classification problems after reviewing the “best-basis” algorithm for signal
compression. This is immediately followed by examples in Section 3. Then we discuss a method of sig-
nal/”background” separation as a further application of such a basis in Section 4 and finally conclude
in Section 5.

We note that the concise version of this paper was announced earlier in [3] which also contains an
algorithm for constructing a local basis for regression problems. The details of all these algorithms,
their applications to regression problems, and examples using both synthetic and real datasets can be
found in [12].

2 CONSTRUCTION OF LOCAL DISCRIMINANT BASIS

In this section, we describe a fast algorithm to construct an adaptive orthonormal basis which is localized
in the time-frequency plane and which discriminates given signal classes.

2.1 Review of the best-basis algorithm

The best-basis algorithm of Coifman and Wickerhauser [4] was developed mainly for signal compression.
This method first expands a given signal or a given collection of signals into a library of orthonormal
bases, i.e., a redundant set of wavelet packet bases or local trigonometric bases having a binary tree
structure where the nodes of the tree represent subspaces with different time-frequency localization
characteristics. Then a complete basis called a best basis which minimizes a certain information cost
functional (e.g., entropy) is searched in this binary tree using the divide-and-conquer algorithm. More
precisely,

Definition 1 A library of orthonormal bases is a binary tree if it satisfies:

(a) Subsets of basis vectors can be identified with subintervals of I = [0,1[ of the form I;; =
277k, 277 (k+ 1), for j=0,1,...,J, k=0,1,...,27 — 1, where J < ny.

(b) Each basis in the library corresponds to a disjoint cover of I by intervals I; 4.
(c) If Q; is the subspace identified with I;, then Q; = Q41 2k B Q41 2k41-

Let Bjx = (W0, W; 4 qno—s_1)" be a set (matrix) of basis vectors belonging to the subspace €.
Note that each basis vector w;y ., is specified by the triplet (7, %, m) representing scale, frequency
band, and time position respectively for wavelet packet bases, or scale, time window index, frequency
respectively for local trigonometric bases. Also, we note that By is the standard Fuclidean system for
wavelet packet libraries and is the usual discrete cosine (or sine) basis for local cosine (or sine) basis
library. Now let A;; be the best basis for the signal @ restricted to the span of B;; and let J be an
information cost functional measuring the goodness of nodes (subspaces) for compression. Then, the
best-basis algorithm works as:

Algorithm 1 (The Best-Basis Algorithm [4]) Given a vector z,



Step 0: Choose a time-frequency decomposition method [i.e., specify wavelet packet transform (i.e., a
pair of quadrature mirror filters), local cosine transform, or local sine transform].

Step 1: Expand z into the library of orthonormal bases and obtain coefficients { B x® }o< <7, o<k<2i-1-
Step 2: Set Ay = By fork=0,... ,2‘]— 1.

Step 3: Determine the best subspace Ay forj=J—1,...,0, k=0,...,2/ — 1 by
(1) Ao, = Bik it I(Bjrz) < I(Ajy12k2 U Ajp12k412),
» Ajyiok @ Aj41 2841  otherwise.

To make this algorithm fast, the cost functional J needs to be additive:

Definition 2 A map J from sequences {z;} to Ris said to be additive if J(0) = 0 and J({z;}) = >, I(z;).

Thus, if J is additive, then in (1) we have J(A;41 k2 U Aj41 okp12) = J(Ajs12k2) + I(A 41 26412), Le,
a simple addition suffices instead of computing the cost of union of the nodes. A popular measure as J
is an entropy of a nonnegative sequence p with Y p;, = 1:

(2) H(p) = —Zpi log pi,

with the convention 0-log0 = 0. For a general sequence or signal , we set p; = (|z;|/||z||)? where || - ||

is the £2 norm and define Hy(z) a H(z/||z||). Although (2) is additive with respect to p, but Hy(x)

is not additive with respect to . However, it is easy to show that minimizing the additive measure
h(z) = =Y, |2:]* log |z;|* implies minimizing Ho(z).

2.2 Discriminant measures

The cost functional J such as (2) measures the flatness of the energy distribution of the signal so that
minimizing this leads to an efficient representation (or coordinate system) for the signal. Because of
this cost functional, the best-basis algorithm is good for signal compression but is not necessarily good
for classification problems; for classification, we need a measure to evaluate the power of discrimination
of the nodes in the tree-structured bases. Once the discriminant measure (or discriminant information
functional) is specified, we can compare the goodness of each node for the classification problem to that
of union of the two children nodes and can judge whether we should keep the children nodes or not, in
the same manner as the best-basis search algorithm.

There are many choices for the discriminant measure (see e.g., [1]); all of them essentially measure
“statistical distances” among classes. For simplicity, let us first consider the two-class case. Let p =
{p:i}’—y, @ = {¢:}7—; be two nonnegative sequences with >_p; = > ¢ = 1 (which can be viewed as
normalized energy distributions of signals belonging to class 1 and class 2 respectively in a coordinate
system). The discriminant information functional D(p, g) between these two sequences should measure
how differently p and g are distributed. One natural choice for D is the so-called relative entropy (also
known as cross entropy, Kullback-Leibler distance, or I-divergence) [9]:

A Di
(3) I(p,q) =) pilog e
i=1 K



with the convention, log0 = —oo, log(z/0) = +o0o for z 2 0, 0-(+o0) = 0. It is clear that I(p,q) > 0
and equality holds iff p = ¢g. This quantity is not a metric since it is not symmetric and does not satisfy
the triangle inequality. But it measures the discrepancy of p from g. Note that if ¢; = 1/n for all i, i.e.,
¢; are distributed uniformly, then I(p,q) = —H(p), the negative of the entropy of the sequence p itself.

The relative entropy (3) is asymmetric in p and g. For certain applications the asymmetry is
preferred (see e.g., Section 4). If, however, a symmetric quantity is preferred, one should use the
J-divergence between p and ¢q [9]:

(4) J(p,q) 2 I(p,q) + I(q,p).

Another possibility of the measure D is a ¢? analogue of I(p,q) [14]:

n

(5) Wi(p.q)=Ilp—aql>=>_(ri — @)

=1

Clearly, €7 (p > 1) versions of this measure are all possible.
To obtain a fast computational algorithm, the measure D should be additive similarly to J:

Definition 3 The discriminant measure D(p, q) is said to be additive if

n

(6) D{piticy Aayizr) = D Dlpis )

=1

The measures (3) (subsequently (4) as well) and (5) are both additive.
For measuring discrepancies among [ distributions, pM. ... p) one may take (g) pairwise com-
binations of D:

-1 L
(7) PPN 23T 3 D, p).
i=1 j=:i+1

2.3 The local discriminant basis algorithm

Given an additive discriminant measure D, what quantity should be supplied to D to measure the
discrimination power of each node in the library? In order to fully utilize the time-frequency localization
characteristics of our libraries of bases, we compute the following time-frequency energy map for each
class and supply them to D:

Definition 4 Let {m,ﬁl)}fﬁl be a set of training signals belonging to class [. Then the time-frequency
energy map of class [, denoted by I';, is a table of real values specified by the triplet (j,k, m) as

N, N,
(8) LG, kym) 2 (wly 2?2 S 1202,
for j=0,...,J, k=0,...,27 -1, m=0,...,2%"7 — 1,

In other words, I'; is computed by accumulating the squares of expansion coefficients of the signals at
each position in the table followed by the normalization by the total energy of the signals belonging



to class [. (This normalization is important especially if there is significant differences in number of
samples among classes.) In the following, we use the notation:

2m0 = —1
D({Fl(j7 k, )}lel) = E (D(Fl(j7 k, Tn)? SRR FL(ja k, m))
m=0

Here is an algorithm to select a local orthonormal basis (from the library) which best discriminates
the given classes in terms of their time-frequency energy distributions. We call this a local discriminant
basis (LDB). Similarly to the best-basis algorithm, let A;; represent the LDB restricted to the span
of B;j which is a set of basis vectors at (j,k) node. Also, let A;; be a work array containing the
discriminant measure of the node (j, k). We assume the additive discriminant measure D here.

Algorithm 2 (The Local Discriminant Basis Algorithm) Given a training dataset L consisting

of L classes of signals {{a:l(l)}f\gl L,

Step 0: Choose a time-frequency decomposition method [i.e., specify wavelet packet transform (i.e., a
pair of quadrature mirror filters), local cosine transform, or local sine transform].

Step 1: Construct time-frequency energy maps I'; for [ =1,..., L.
Step 2: Set Ajr = By and Ay, = D(H{L(J, k,-) {;1) fork=0,...,27 —1.
Step 3: Determine the best subspace Ay forj=J-1,...,0, k=0,... ,2) — 1 by the following rule:

Set A]yk = D({Fl(]vka ) [L:1)-

If Ayyk > Aj+1,2k + Aj+1,2k+1,

then A]'Jg = Bj,k;

else A = Aj 1108 D Ajp12k41 and set Ajp = Ajyq ok + Ajp12k41.

Step 4: Order the basis functions by their power of discrimination (see below).

Step 5: Use k(< n) most discriminant basis functions for constructing classifiers.

The selection (or pruning) process in Step 3 is fast, i.e., O(n) since the measure D is additive. After this
step, we have a complete orthonormal basis LDB. Once the LDB is selected, we can use all expansion
coefficients of signals in this basis as features; however, if we want to reduce the dimensionality of the
problem, the following two steps are still necessary.
In Step 4, there are several choices as a measure of discriminant power of an individual basis function.
For simplicity in notation, let A = (4, k,m) € Z> be a triplet specifying the LDB selected in Step 3, and
(0 T,

. . . ) . .
let o), = wy®;”, i.e., an expansion coefficient of a:l( ) in the basis vector w.
, )

(a) the discriminant measure of a single basis function wy:

(b) the Fisher’s class separability of the expansion coefficients onto the basis function w:

sk ﬂ;(meani(a&g) — mealll(meani(ag\{)i)))Q
(l)) ’

Sk Vari(aM

(10)

where mean;(-) and var;(-) are operations to take the sample mean and variance with respect to
the samples indexed by 7, respectively.



(c) the robust version of (b):

Y F, m|med;(a)) — medj(med;(al.))|
SE, mmadi(al) ’

(11)

where med;(-) and mad;(-) are operations to take the sample median and median absolute deviation
with respect to the samples indexed by 7, respectively.

See [1, 8] for more examples. We note that this step can also be viewed as a restricted version of the
projection pursuit algorithm [8].

Step 5 reduces the dimensionality of the problem from n to k& without losing the discriminant infor-
mation in terms of time-frequency energy distributions among classes. Thus many interesting statistical
techniques which are usually computationally too expensive for n dimensional problems become feasi-
ble. How to select the best k is a tough interesting question. One possibility is to use model selection
methods such as the minimum description length (MDL) criterion [11, 13].

3 EXAMPLES

To demonstrate the capability of the local discriminant basis, we conducted two classification experi-
ments using synthetic signals. In both cases, we specified three classes of signals by analytic formulas.
For each class, we generated 100 training signals and 1000 test signals. We first applied LDA and
Classification Tree (CT) to the training signals of the original coordinate (i.e., standard Euclidean)
system, and obtained the classification rules. Then the test signals were fed into these classifiers and
the misclassification rates were computed. Next we computed the LDB (using the relative entropy as
D) from the training signals, selected a small number of most discriminant basis functions [in terms
of the component-wise relative entropy (9)], and applied LDA and CT to the resulting coefficients.
Finally the test signals were projected onto the LDB functions and fed into these classifiers; then the
misclassification rates were computed. For each method, we also computed the misclassification rate on
the training dataset.

Example 1 Triangular waveform classification. This is an example for classification originally ex-
amined in [2]. The dimensionality of the signal was extended from 21 in [2] to 32 for the dyadic
dimensionality requirement of the bases under consideration. Three classes of signals were generated
by the following formulas:

(i) = uhy (1) + (1 — u)ho(i) + €(i) for Class 1,
2 (i) = uhy (i) + (1 — w)hs(i) + €(i) for Class 2,
2B)(i) = uhg(i) + (1 — u)hs(i) + ¢(i) for Class 3,

where 7 = 1,...,32, hy(7) = max(6 — |t — 7],0), ho(7) = h1(i — 8), h3(i) = hi(? — 4), u is a uniform
random variable on the interval (0, 1), and ¢(7) are standard normal variates. Figure 1 shows five sample
waveforms from each class. The LDB was computed from the wavelet packet coefficients with the 6-tap
coiflet filter [5]. Then the five most discriminant coordinates were selected. In Figure 2, we compare
the top five vectors from LDA and LDB. Only top two vectors were useful in LDA in this case. The top
five LDB vectors look similar to the functions A; or their derivatives whereas it is difficult to interpret
the LDA vectors. The misclassification rates are given in the table:



Method Error rate (%)

Training Test
LDA on the standard coordinate system 13.33 20.90
CT on the standard coordinate system 6.33 29.87
LDA to Top 5 LDB coordinates 14.33 15.90
CT to Top 5 LDB coordinates 7.00 21.37

The best result so far was obtained applying LDA to the LDB coordinates. We would like to note that
according to Breiman et al. [2], the Bayes error of this example is about 14 %.

Example 2 Signal shape classification. The second example is a signal shape classification problem.
In this example, we try to classify synthetic noisy signals with various shapes, amplitudes, lengths, and
positions into three possible classes. More precisely, sample signals of the three classes were generated
by:

e(i)=(6+mn)- X[a,b](i) + (1) for “cylinder” class,

b(7) = (6 + 1) X[a,n(?) - (i —a)/(b—a) + (i) for “bell” class,
(1) = (6+n) Xap(i) - (b—1i)/(b—a)+ (i) for “funnel” class,

where i = 1,...,128, a is an integer-valued uniform random variable on the interval [16,32], b — a also
obeys an integer-valued uniform distribution on [32,96],  and (i) are standard normal variates, and
X[a,b](i) is the characteristic function on the interval [a,b]. Figure 3 shows five sample waveforms from
each class. If there is no noise, we can characterize “cylinder” signals by two step edges and constant
values around the center, “bell” signals by one ramp and one step edge in this order and positive slopes
around the center, and “funnel” signals by one step edge and one ramp in this order and negative slopes
around the center.

The 12-tap coiflet filter [5] was used for the LDB selection. Then the 10 most important coordinates
were selected. In Figure 4, we compare the top 10 LDA and LDB vectors. Again, only the top two
vectors were used for classification in LDA case. These LDA vectors are very noisy and it is difficult
to interpret what information they captured. On the other hand, we can observe that the top 10 LDB
vectors are located around the edges the centers of the signals. Also note that some of the vectors
work as a smoother (low pass filter) and the others work as a edge detector (band pass filter), so
that the resulting expansion coefficients carry the information on the edge positions and types. The
misclassification rates in this case are:

Method Error rate (%)

Training Test
LDA on the standard coordinate system 0.33 13.17
CT on the standard coordinate system 3.00 13.37
LDA to Top 10 LDB coordinates 3.67 6.20
CT to Top 10 LDB coordinates 3.00 3.83

As expected, LDA applied to the original coordinate system was almost perfect with respect to the
training data, but it adapted too much to the training data, so it lost flexibility; when applied to
the new test dataset, it did not work well. The best result was obtained using the CT on the LDB
coordinates in this case. In this case, the misclassification rates of the training data and test data are
very close; that is, the algorithm really “learned” the structures of signals.

From these examples, we can see that it is more important to select the good features than to select
the best possible classifier without supplying the good features; each classifier has its advantages and



disadvantages [10], i.e., the best classifier heavily depends on the problem (e.g., LDA was better than
CART in Example 1 whereas the situation was opposite in Example 2.) By supplying a handful of good
features, we can greatly enhance the performance of classifiers.

4 SIGNAL/BACKGROUND SEPARATION BY LDB

LDB vectors can also be used as a tool for extracting signal component from the data obscured by
some unwanted noise or “background” (which may not be random). Let class 1 consist of a signal
plus noise or a signal plus “background” and let class 2 consist of a pure noise or “background” Then,
by selecting the LDB maximizing D between class 1 and class2, we can construct the best basis for
denoising arbitrary noise or pulling a signal out of a textured background. In this application, the
asymmetric relative entropy (3) makes more sense than the symmetric version (4).

We show one example here. As “background” (class 2), we generated 100 synthetic sinusoid with
random phase as b(k) = sin(7(k/32 4+ u)), where k = 1,...,128, and » is a uniform random variable
on (0,1). As class 1 samples, we again generated 100 “backgrounds”, and added a small spike (as a
“signal” component) for each sample vector randomly between 20 < k£ < 60, i.e., z(k) = sin(7(k/32 +
u)) + 0.016; ., where 6, is the Kronecker delta and r is an integer-valued uniform random variable
on the interval [20,60]. Figure 5 shows how these “backgrounds” were removed. Figure 5 (a) shows
10 sample vectors of class 1. We can hardly see the spikes. Then we transformed both class 1 and
2 samples by the discrete sine transform (DST) into “frequency” domain. Figure 5 (b) shows the
transformed version of Figure 5 (a). Then these DST coefficients of both classes were supplied to the
LDB algorithm of Section 2 using the local sine basis library (which essentially does segmentation in
frequency domain). After the LDB was found, the basis vectors were sorted by (9). The top 20 LDB
vectors are displayed in Figure 5 (c). We can clearly see that the top eight basis vectors are concentrated
around low frequency region and other vectors are located in higher frequency region. We regard the
subspace spanned by these eight LDB vectors as “background” using the a priori knowledge that the
“background” component consists of only low frequency component. The reason why these vectors have
large values in (9) is that the “background” parts of class 1 samples are different from class 2 samples in
phase, and the DST is not a shift-invariant transform. After removing the component belonging to this
“background” subspace, we reconstructed the “signal” component of class 1 samples by inverse DST
which are shown in Figure 5 (d). We can clearly see the spikes now.

5 CONCLUSION

We have described an algorithm to construct an adaptive local orthonormal basis (LDB) for classification
problems. The basis functions generated by this algorithm can capture relevant local features (in both
time and frequency) in data. LDB provides us with better insight and understanding of relationships
between the essential features of the input signals and the corresponding outputs (class names), and
enhances the performance of classifiers. We have demonstrated that LDB can also be used for pulling
out signal component from the data consisting of signals plus “backgrounds.”
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Figure 1: Five sample waveforms from (a) Class 1, (b) Class 2, and (c) Class3.
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Figure 2: Plots from the analysis of Example 1: (a) Top five LDA vectors. (b) Top 5 LDB vectors. (c)
The nodes selected as LDB.

11



43210

43210
)

—~——————— e mnne—amim®, ., . . o~
0 20 40 GO(b) 80 100 120
Olmma e MRttt e . . . o A
NPy = - - POPF PPN —~
N Dougsess A A~ a ma A~
e aab - A ———AA
<l A e, s e o .
0 20 40 60 80 100 120

(c)

Figure 3: Five sample waveforms from (a) “cylinder” class, (b) “bell” class, and (c) “funnel” class.
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Figure 4: Plots from the analysis of Example 2: (a) Top 10 LDA vectors. (b) Top 10 LDB vectors. (c)
The nodes selected as LDB.
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Figure 5: (a) Ten samples of Class 1 vectors, i.e., sinusoids plus spikes. (b) DST coefficients of vectors
in (a). (c) Top 20 LDB vectors using the local sine library on the frequency domain. (d) Reconstructed
spikes after removing the “background”.
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