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Abstract. We describe an extension to the "best-basis" method to select an orthonormal basis suitable for sig- 
nal/image classification problems from a large collection of orthonormal bases consisting of wavelet packets or 
local trigonometric bases. The original best-basis algorithm selects a basis minimizing entropy from such a "library 
of orthonormal bases" whereas the proposed algorithm selects a basis maximizing a certain discriminant measure 
(e.g., relative entropy) among classes. Once such a basis is selected, a small number of most significant coordinates 
(features) are fed into a traditional classifier such as Linear Discriminant Analysis (LDA) or Classification and 
Regression Tree (CARTTM). The performance of these statistical methods is enhanced since the proposed methods 
reduce the dimensionality of the problem at hand without losing important information for that problem. Here, the 
basis functions which are well-localized in the time-frequency plane are used as feature extractors. We applied 
our method to two signal classification problems and an image texture classification problem. These experiments 
show the superiority of our method over the direct application of these classifiers on the input signals. As a further 
application, we also describe a method to extract signal component from data consisting of signal and textured 
background. 
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1 Introduction 

In analyzing and interpreting signals such as musi- 
cal recordings, seismic signals, or stock market fluc- 
tuations, or images such as mammograms or satellite 
images, extracting relevant features from them is of 
vital importance. Often, the important features for 
signal analysis, such as edges, spikes, transients, or 
textures, are characterized by local information either 
in the time (or space) domain or in the frequency (or 
spatial frequency/wave number) domain or in both: 1 
for example, to discriminate seismic signals caused by 
nuclear explosions from the ones caused by natural 
earthquakes, the frequency characteristics of the pri- 
mary waves, which arrive in a short and specific time 
window, may be a key factor; to distinguish benign 
and malignant tissues in mammograms, the sharpness 
of the edges of masses may be of critical importance. 

In this paper, we explore how to extract relevant fea- 
tures from signals/images and discard irrelevant infor- 
mation for signal/image classification problems. In 
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particular, we propose a fast algorithm to select an ef- 
ficient basis (or coordinate system) from a large col- 
lection of orthonormal bases (consisting of wavelet 
packets and local trigonometric bases) to enhance the 
performance of a few classification schemes. This al- 
gorithm reduces the dimensionality of the problems by 
using these basis functions (which are well-localized in 
the time-frequency plane) as feature extractors. Since 
this basis illuminates the differences among classes, it 
can also be used to extract signal component from data 
consisting of signal and textured background. 

The organization of this paper is as follows. In 
Section 2, we formulate the problem of feature 
extraction and classification and briefly review some 
pattern classification schemes used in our study. Then, 
in Section 3, we review file "best-basis paradigm" 
and a dictionary and a library of orthonormal bases 
which play a critical role for local feature extraction. 
Section 4 is a core material of this paper: we de- 
scribe a fast algorithm for constructing a good local 
basis for classification problems. This is immedi- 
ately followed by signal classification examples in 
Section 5 and an image texture classification problem 
in Section 6. In Section 7, we discuss a method of 
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signal/"background" separation as a further applica- 
tion of such a basis. 

We note that a concise version of this paper was an- 
nounced earlier in [1] which also contains an algorithm 
for constructing a local basis for regression problems, 
and was presented in the SPIE conference [2]. The 
other aspects of  our proposed method, including its ap- 
plications to regression problems and examples using 
real datasets, can be found in [3-5]. 

2 Problem Formulation and Review 
of Pattern Classifiers 

2.1 Formulation of  a Signal Classification Problem 

Let us first define appropriate spaces of input signals 
(or patterns), extracted features, outputs (or responses), 
and mapping functions among them. Let 3C C R n 
denote a signal space (or a pattern space) which is 
a subset of  the standard n-dimensional vector space 
and which contains all signals (or samples/patterns) 
under consideration. In this case, the dimensionality 
of the signal space or equivalently the length of each 
signal is n. L e t ~  = {1,2 . . . . .  C} be a set of the 
class or category names to which the input signals be- 
long. We call this space a response space. Signal 
classification can be considered as a mapping func- 
tion (usually many-to-one) d: 3C --+ ~ between these 
two spaces. Direct manipulation of signals in the 
signal space for classification is prohibitive because: 
1) the signal space normally has very high dimension- 
ality (e.g., n ~ 1000 for a typical exploration seismic 
record per receiver, and for a typical CT scanner im- 
age, n = 512 × 512 = 262, 144), and 2) the existence 
of noise or undesired components (whether random or 
not) in signals makes classification difficult. On the 
other hand, the signal space is overly redundant com- 
pared to the response space. Therefore, it is extremely 
important to reduce the dimensionality of the prob- 
lem, i.e., extract only relevant features for the problem 
at hand and discard all irrelevant information. If we 
succeed in doing this, we can greatly improve classifi- 
cation performance both in its accuracy and efficiency. 
For this purpose, we set up a feature space 9: C IR k 
where k < n between the signal space and the re- 
sponse space. A feature extractor is defined as a map 
f :  ~C --+ 9:, and a classifier (or predictor) as a map 

X ,  N g: Y --+ ~. Let 3" = {( i Yi )} i=l  C ~ × ~ be a train- 
ing (or learning) dataset with N pairs of signals xi and 
responses (class names) Yi. This is the dataset to be 

used to construct a feature extractor f .  Let Nc be the 
number of signals belonging to class c so that we have 
N = N1 +.  • • + Nc. Also, let us denote a set of class c 
signals by {x}C)}N=~ 1 = {xi} i~ic  where Ic C {1 . . . . .  N} 
is a set of indices for class c signals in the training 
dataset with I/c[ = gc. 

Preferably, the performance of the whole process 
should be measured by the misclassification rate using 
a test dataset ~Y' = t~Yi,lt" / X/'~l N'ijli=l (which has not been 
used to construct the feature extractors and classifiers) 
as (1 /N ' )  ~'=1 3 (y~-d(x l ) ) ,  where ~(r 7~ 0) = 1 and 

(0) = 0. If  we use the resubstitution (or apparent) 
error rates (i.e., the misclassification rates computed 
on the training dataset), we obviously have overly op- 
timistic figures. 

In this paper, we focus on the feature extractors of 
the form 

f = ®(k) otI/, 

where ®(k): ~ __> Sr represents the selection rule 
(e.g., picking most important k coordinates from n 
coordinates), and • c O(n), i.e., an n-dimensional 
orthogonal matrix. In particular, we consider matrices 
representing the orthonormal bases in the basis library 
(consisting of wavelet packets or local trigonometric 
bases) as candidates for ~ .  As a classifier g, we adopt 
Linear Discriminant Analysis (LDA) of R.A. Fisher [6] 
and Classification and Regression Trees (CART TM) [7]. 

In the following, we briefly review these two clas- 
sification schemes. We note that other classifiers such 
as k-nearest neighbor (k-NN) [8], or artificial neural 
networks (ANN) [9] are all possible to use in our algo- 
rithm. Thereaderinterestedincomparisons ofdifferent 
classifiers is referred to the excellent review article of 
Ripley [9]. The useful information on pattern classi- 
fiers in general can be found in the books [10-13]. 

2.2 Linear Diseriminant Analysis 

Fisher's LDA first tries to do its own feature extrac- 
tion by a linear map At :  3C ~ 3" (in this case not 
necessarily orthogonal matrix). This map A simulta- 
neously minimizes the scatter of sample vectors (sig- 
nals) within each class and maximizes the scatter of 
mean vectors of classes around the total mean vec- 

Z2 tor. To be more precise, let mc = ( I /Nc)  1 xi be a 
mean vector of class c signals. 2 Then the total mean 

vector m can be defined as m zx c Z c = l  7rcmc, where 
roe is the prior probability of class e (which can be 
set to Nc/N  without the knowledge on the true prior 
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probability). The scatter of samples within each class 
can be measured by the within-class covariance ma- 

trix ~w zx c = ~c=~ 7rc]ec, where ]Ec is the sample co- 

variance matrix of class c: ~2c A= (1/Nc) Z~=I (x} c) - 

mc)(x} c) - m c )  r. The scatter of mean vectors around 
the total mean can be measured by the between- 

class covariance matrix ~b zx ~cCl rCc (me - m) (mc - 
m) r. Then, LDA maximizes a class separability 

index J (A) z~ tr[(AT ~bA)-I (A T ~w A)], which mea- 
sures how much these classes are separated in the fea- 
ture space. This requires solving the so-called gen- 
eralized (or pencil-type) eigenvalue problem I2bA = 
NwAA, where A is a diagonal matrix containing the 
eigenvalues. Once the map A is obtained (normally 
k = C - 1), then the feature vector ATxi is computed 
for each i, and finally it is assigned to the class which 
has the mean vector closest to this feature vector in the 
Euclidean distance in the feature space. This is equiv- 
alent to bisecting the feature space 5 ~ by hyperplanes. 
In this paper we regard LDA as a classifier although, as 
explained, it also includes its own feature extractor A T. 
LDA is the optimal strategy if all classes of signals obey 
multivariate normal distributions with different mean 
vectors and an equal covariance matrix [10, 12]. In 
reality, however, it is hard to assume this condition. 
Moreover, since it relies on solving the eigensystem, 
LDA can only extract global features (or squeezes all 
discriminant information into a few [C - l] basis vec- 
tors) so that the interpretation of the extracted features 
becomes difficult, it is sensitive to outliers and noise, 
and it requires O (n 3) calculations. 

2.3 Classification and Regression Trees 

Another popular classification/regression scheme, 
CART [7] is a nonparametric method which recur- 
sively splits the input signal space along the coordi- 
nate axes and generates a partition of the input signal 
space into disjoint blocks so that the process can be 
conveniently described as a binary tree where nodes 
represent blocks. Such a tree for classification prob- 
lems is called a classification tree (CT). At each node 
in a CT, a class label is assigned by the majority vote at 
that node. Then, candidate splits are evaluated by the 
"information gain" or the quantity called deviance and 
the most "informative" split is selected. The popular 
measure as the deviance for the classification is entropy 
of a node which is defined as - ~cC=l Pc log2 Pc, where 
Pc is the proportion of class c samples over the whole 
samples at that node. (From now on, we use "log" for 

the logarithm of base 2, unless mentioned otherwise.) 
Thus, the best split amounts to maximally reducing the 
entropy of that node. Once the best split is determined, 
all the input signals belonging to that node is split into 
two groups (children nodes). Splitting is continued 
recursively until nodes become "pure", i.e., they con- 
tain only one class of signals, or become "sparse", i.e., 
they contain only a few signals) Finally, the pruning 
process to eliminate unimportant branches is usually 
applied after growing the initial tree to avoid the "over- 
training". We refer the reader to [7] for the details 
of splitting, stopping, and pruning rules. For pruning 
methods using information-theoretic criteria, see [ 17, 
Chapter 7], [18, 19], and [3, 4]. 

CART requires searching and sorting all the coor- 
dinates of training signals for the best splits. Thus, it 
is computationally expensive for the problem of high 
dimensionality. This is more emphasized if we want 
to split the signal space "obliquely" by taking linear 
combinations of the coordinates to generate a tree. 

3 The Best-Basis Paradigm and a Library  
of Bases 

3.1 The Best-Basis Paradigm 

The approach to the feature extraction for classification 
explored in this paper is guided by the so-called best- 
basis paradigm [20, 21], [3]. This paradigm consists 
of three main steps: 

1. select a "best" basis (or coordinate system) for the 
problem at hand from a library of  bases (a fixed yet 
flexible set of bases such as wavelets and their rel- 
atives, i.e., wavelet packets and local trigonometric 
bases), 

2. sort the coordinates (features) by "importance" for 
the problem at hand and discard "unimportant" co- 
ordinates, and 

3. use the surviving coordinates to solve the problem 
at hand. 

What is "best" and "important" clearly depends on 
the problem. For signal compression, a basis which 
provides only a few large components in the coordi- 
nate vectors should be used since we can then discard 
the other components without much signal degrada- 
tion. Thus, to measure the efficiency of the coordi- 
nate system for compression, an information cost such 
as entropy may be appropriate since entropy measures 
the number of significant coordinates in a vector. For 
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classification, a basis through which we can "view" 
classes as maximally-separated point clouds in the n- 
dimensional space is a choice. In this case, the class 
separability index or "distances" among classes should 
be used as a measure of the efficiency of the coordinate 
system, which we consider in detail in Section 4. 

One may ask why we use wavelets and their relatives 
as library members. The main reason is that they, as 
a library, provide flexible and efficient coordinate sys- 
tems to capture and represent local features in the time- 
frequency plane. Moreover, they can be obtained in a 
computationally efficient manner: to find a good coor- 
dinate system for one's problem, it costs O (n[log niP), 
where p = 0, 1, 2 depending on the basis type. This 
paradigm leads us to a vastly more efficient represen- 
tation, processing, and analysis of signals, compared 
with strategies of confining ourselves to a single ba- 
sis, or of seeking the absolutely best solution without 
restricting the library. 

Throughout this paper, we only consider a li- 
brary of orthonormal bases mainly because of their 
computational efficiency and simplicity in implemen- 
tation of numerical algorithms. For a library of 
"non-orthogonal" bases and its applications, see e.g., 
[3, Chapter 7], [22]. 

3.2 A Dictionary of Orthonormal Bases 

We now define a dictionary of orthonormal bases more 
precisely. But, first, let us briefly review the wavelet 
and wavelet packet transforms. The detailed proper- 
ties of these transforms and bases can be found in the 
literature, most notably, in [23-25]. These essentially 
partition the frequency axis smoothly and analyze each 
segment with a resolution matched to its scale. An 
input signal is first decomposed into low and high fre- 
quency bands by the convolution-subsampling oper- 
ations with the pair consisting of a "lowpass" filter 

L-1 r h ~L-1 and a "highpass" filter {gk}k=0 directly on the "t k lk=O 
discrete time domain. Let H and G be the convolution- 
subsampling operators using these filters. These are 
called (perfect reconstruction) quadrature mirror fil- 
ters (QMFs) if they satisfy the following orthogonality 
(or perfect reconstruction) conditions: 

H G * = G H * = O  and H * H + G * G = I ,  

where I is the identity operator. Various design cri- 
teria (concerning regularity, symmetry etc.) on the 
lowpass filter coefficients {hk} can be found in [23]. 
Once {h~} is fixed, we can have QMFs by setting 
gk = (--1)khL-l-k • 

In the wavelet transform, this decomposition (also 
known as expansion or analysis) process is iterated 
only on the low frequency bands and each time the 
high frequency coefficients are retained intact. In 

n-1 ~ n  other words, let x ~- {Xk}k=0 ~ with n = 2 n° 
be a vector to be expanded. Then, the convolution- 
subsampling operations transform the vector x into 
two subsequences Hx and Gx of lengths n/2. Next, 
the same operations are applied to the vector of the 
lower frequency band Hx to obtain H2x and GHx 
of lengths n/4. If the process is iterated J (< 
no) times, we have the discrete wavelet coefficients 
(Gx, GHx, GHZx . . . . .  GHJx, HJ+lx) of length n. 
At the last iteration, both low and high frequency co- 
efficients are kept. As a result, the wavelet transform 
analyzes the data by partitioning its frequency content 
dyadically finer and finer toward the low frequency 
region (i.e., coarser and coarser in the original time do- 
main). The reconstruction (or synthesis) process is also 
very simple thanks to the perfect reconstruction con- 
ditions: starting from the lowest two frequency bands 
HJ+lx and GHJx, the adjoint operations are applied 
and added to obtain HSx = H*HJ+lx + G*GHJx. 
This process is iterated to reconstruct the original vec- 
tor x. The computational complexity of the decompo- 
sition and reconstruction process is O(n) in both cases 
as easily seen. 

On the other hand, the wavelet packet transform de- 
composes even the high frequency bands which are 
kept intact in the wavelet transform. Thus, the wavelet 
packet transform is more suitable for analyzing oscil- 
latory signals such as acoustic signals or textured im- 
ages. The first level decomposition generates Hx and 
Gx just like in the wavelet transform. The second level 
generates four subsequences, H2x, G Hx, H Gx, G2x. 
If we repeat this process for J times, we end up hav- 
ing Jn expansion coefficients. It is easily seen that 
the computational cost of this whole process is about 
O(Jn) < O(nlogn). 

Because of the perfect reconstruction condition on 
H and G, each decomposition step is also considered 
as a decomposition of the vector space into mutually 
orthogonal subspaces. Let f20,0 denote the standard 
vector space IR n. Let f21,0 and f21,1 be mutually or- 
thogonal subspaces generated by the application of 
the projection operators H and G respectively to the 
parent space S20.0, i.e., f20,0 = f21.0 @ f21,1. The it- 
erative decomposition process in the wavelet packet 
transform naturally generates subspaces of R n of a bi- 
nary tree structure where the nodes of the tree rep- 
resent subspaces with different frequency localization 
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Fig. 1. A decomposition of ~2o,0 into the tree-structured subspaces 
using the wavelet packet transform (with J = 3). This tree includes 
the subspaces used in the wavelet transform which are indicated by 
bold fonts. 

characteristics with f2o,o as the root node. The node 
f2j,k splits into the two orthogonal subspaces S2i+l,2k 
and ~)+~,2k+I by the operators H and G, respectively: 

f2j,k = f2j+l,2k @ S2j+~.2k+l 

for j = 0 ,  1 . . . . .  J, k = 0  . . . . .  2 ) - 1 .  

The above figure shows the binary tree of the subspaces 
of S'20.0: 

As shown in Fig. 1, this binary tree includes the 
wavelet basis as a special case. Clearly, we have a re- 
dundant set of subspaces in the binary tree. In fact, it is 
easily proved that there are more than 22(J<) possible or- 
thonormal bases in this binary tree; see e.g., [25, Chap- 
ter 7]. This binary tree is our main tool in this paper: 

\ 

DEFINITION l. A dictionary of orthonormal bases 9a 
for IR" is a binary tree if it satisfies: 

(a) Subsets of basis vectors can be identified with 
subintervals of I = [0, n) of the form Ij,k = 
[2n°-Jk, 2~°-)(k + 1)), for j = 0, 1 . . . . .  J, k = 
0, 1 . . . . .  2 i - 1, where J < no. 

(b) Each basis in the dictionary corresponds to a dis- 
joint cover of  I by intervals I),k. 

(C) I f  S2j,e is the subspace identified with Ij,k, then 

~-2j,k -~" ~-~j+l,2k (~ ~-'~j+l,2k+l. 

Each subspace ~j,k is spanned by 2 ~°-j basis vectors 
~2 n0-j --1 wj,e., )l=0 . In the wavelet packet dictionary, the pa- 

rameters k and l roughly indicate frequency bands and 
the location of the center of wiggles, respectively: 4 the 
vector wj,kd is roughly centered at 2Jl, has length of 
support ~ 2 j, and oscillates ~ k times. By specifying 

a pair of  QMFs, we obtain one dictionary which con- 
tains a large number of orthonormal bases of ]R ~. In 
other words, we now have a large number of  coordi- 
nate systems to "view our signals" at our disposal. An 
important question is how to select the best coordinate 
system efficiently for the problem at hand from this 
dictionary. 

The local trigonometric transforms [26, 27, 21, 25] 
or lapped orthogonal transforms [28, 29] also form dic- 
tionaries of orthonormal bases. These can be consid- 
ered as conjugates of the wavelet packet transforms: 
they partition the time axis smoothly and perform fre- 
quency analysis in each segment. In fact, Coifman and 
Meyer [26] showed that it is possible to partition the 
real-line into any disjoint intervals smoothly and con- 
struct orthonormal bases on each interval. Each basis 
function on an interval uses the signal values on the 
interval itself and on the adjacent intervals; hence it 
is named the "lapped" orthogonal transform. Since it 
partitions the time axis smoothly, these local cosine and 
sine transforms (LCT/LST) have less edge (or' block- 
ing) effects than the conventional discrete cosine/sine 
transforms (DCT/DST). A natural way to partition a 
given interval hierarchically is to segment it into dyadic 
subintervals recursively. This segmentation makes the 
number of signal samples contained in each subinter- 
val a dyadic number (2 ~°-j at step j )  if the length 
of the original signal is also a dyadic number (2~°). 
This enables one to utilize the fast DCT/©ST-IV algo- 
rithm [30]. By this segmentation, the original interval 
I = [0, n) is split into [0, n/2) and In~2, n), and each 
subinterval is further split into half in a recursive man- 
ner. Let us set Io.o = 1 and let ILk be a subinterval of  
I after j th  iteration of the splitting process. Then we 
have a familiar relation 

ILk = I)+1,2k U Ij+I,2k+~ 

for j = 0 ,  1 . . . . .  J, k = 0 , 1  . . . . .  2 ) - 1 .  

Now we can consider the subspaces faj,~ associated 
with the interval I),~. Then we obtain a binary tree 
of the subspaces with the same structure as the one 
shown in Fig. 1. Each subspace is spanned by the ba- 

sis vectors  {Wj,k,l}2;; -j-1 where the triplet ( j ,  k, l) now 
corresponds to scale, location (or window index) and 
frequency, respectively. For j = 0, this reduces to a 
simple DCT/DST. Hence, we can obtain two additional 
dictionaries of  orthonormal bases using LCT/LST. The 
computational complexity to obtain this dictionary 
(or expanding a signal into this dictionary) is about 
O ( n [ l o g  n]2); see e.g., [25, Chapter 4]. 
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For higher dimensional versions of wavelets, wavelet 
packets, and local trigonometric bases, see e.g., [23, 
Chapter 10], [31, 32], [25, Chapter 9], [33]. 

Once we obtain a dictionary of orthonormal bases, 
the question is how to select the best possible basis 
for the problem at hand from this collection of bases. 
Next, we review the best-basis algorithm of Coifman- 
Wickerhauser for signal compression since this con- 
trasts very well with the basis selection algorithm for 
signal classification in Section 4. 

3.3 Selection o f  a "Best B a s i s ' f r o m  a Dictionary 
of  Orthonormal Bases 

An efficient coordinate system for representing a sig- 
nal should give large magnitudes along a few axes and 
negligible magnitudes along most axes when the signal 
is expanded into the associated basis. We then need a 
measure to evaluate and compare the efficiency of many 
bases. Let 3 denote this measure which is often called 
"information cost" function. There are several choices 
for 3; see e.g., [25, Chapter 8], [10, Chapter 9], [34]. 
All of them essentially measure the "energy concen- 
tration" of the coordinate vector. A natural choice for 
this measure is the Shannon entropy of the coordinate 
vector [35]. Let us define the entropy of a nonnegative 
sequencep = {Pi} with ~ i  Pi ----- 1 by 

H ( p )  A= _ ~ Pi log Pi, (1) 
i 

with the convention 0 • log 0 = 0. For a signal x, we 
set pi :_ (Ixil/[IX[[r) r where 11" I[r is the U norm and 
1 < r < oc and define 

Hr(x) A _ ~ [xi[ r [xi] r 
= z...., ,-7Si?7 log - - .  (2) 

e Ilxllr IlxY 

Often r = 1 or r ----- 2 is used. In this paper, we always 
use r = 2. 

The "best-basis" algorithm of Coifman and Wicker- 
hauser [20] was the first realization of the "best-basis 
paradigm" mainl 2 aimed at signal compression. This 
method first expands a given single signal into a spec- 
ified dictionary of orthonormal bases. Then a com- 
plete basis called a best basis (BB) which minimizes 
a certain information cost function such as entropy 
(2) is searched in this binary tree using the divide-and- 
conquer algorithm. More precisely, let Bj,k denote a 
set of basis vectors belonging to the subspace f2j,k ar- 
ranged as a matrix 

Bj,k = (Wj&O . . . . .  Wj,k,2no-J_l) r. (3) 

Now let Aj,k be the best basis for the signal x restricted 
to the span of Bj,k and let 3 be an information cost 
function measuring the goodness of nodes (subspaces) 
for compression. The following best-basis algorithm 
essentially "prunes" this binary tree by comparing effi- 
ciency of each parent node with that of its two children 
nodes: 

ALGORITHM 1 (The 
Given a 

Step 0: 

Step 1: 

Step 2: 
Step 3: 

Aj,g = 

Best-Basis Algorithm [20]). 
vector x, 

Choose a dictionary of  orthonormal bases 
(i. e., specify QMFs for  a wavelet  packet dic- 
tionary or decide to use either the local cosine 
dictionary or the local sine dictionary) and 
specify the maximum depth o f  decomposition 
J and an information cost 3. 
Expand x into the dictionary ~ and obtain co- 

efficients { B j,kX}o< j<_j ' 0_<k<2J-1. 
Set Ag,k = B j , k f o r k  = 0 . . . . .  2 ~ - 1. 
Determine the best subspace Aj ,k for  j = J - 
1 , . . . , 0 ,  k m O , . . . , 2 g - l b y  

Bj,k 
i f  3( B j,kx) < 2(A j+l,2kx U A j+l,2k+lX), 

Aj+l,2k (~ Aj+l,2k+l 

otherwise. 
(4) 

To make this algorithm fast, the cost functional 
3 needs to be additive: 

DEFINITION 2. A map 3 from sequences {xi } to R is 
said to be additive if 3(0) = 0 and 3({xi}) = ~ i  3(xi). 

Thus, if 2 is additive, then in (4) we have 

3(Aj+l,2kX I) Aj+l,2k+lX ) 

= 3(Aj+l,2kx) + 3(Aj+l,2k+lx). 

This implies that a simple addition suffices instead of 
computing the cost of union of the nodes. Although 
(1) is additive with respect to p, H~ (x) is not additive 
with respect to x in general. But it is easy to show that 
minimizing the additive measure 

hr(x)  ~ - ~ ]xi[ r log Ixi] r (5) 
i 

implies minimizing H~(x) since Hr(x) = hrQc)/ 
Ilxll r + log Ilxll%. 
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With the additive information cost function, we have 
the following proposition: 

PROPOSITION 1 (Coifman & Wickerhauser [20]). Al- 
gorithm 1 yields the best basis relative to ~ and 5 if5 
is additive. 

See [20], [25, Chapter 8] for the proof. 
The computational complexity of computing the best 

basis from a dictionary is O(nlogn) for a wavelet 
packet dictionary and O (n [log n] 2) for a local trigono- 
metric dictionary; it is dominated by the expansion of 
a signal into the dictionary and the cost for searching 
the best basis is about O (n) because of the use of the 
divide-and-conquer algorithm. The reconstruction of 
the original vector from the best-basis coefficients has 
the same computational complexity. 

3.4 The Joint Best Basis 

To compress a given set of signals {X i}il~1 C % C 

R n rather than a single signal, one of the well-known 
traditional methods is the Karhunen-Lokve transform 
(KLT). Although it gives the minimum entropy basis 
among all possible orthonormal bases o fR ~ [36], there 
are several drawbacks; the main problem of the KLT 
is its computational cost O (n 3) for diagonalizing the 
sample autocorrelation matrix of the signal set. In fact, 
its dependence on the eigenvalue system creates more 
problems: the sensitivity to the alignment of the signals 
and difficulty in capturing local features in the signals. 

In [37] Wickerhauser proposed a method to over- 
come these problems of the KLT using the "best-basis 
paradigm," which is an extension to the best-basis 
method. Let us fix a dictionary ~ .  Then, the idea is to 
use the energy distribution of the set of the signals to 
the coordinate axes in ~ by computing V'N rw~ x.~2 Z.--.i=I\ j,k,l t., 
for each (j, k, I) and organize them into a binary tree 
so that the divide-and-conquer algorithm can search a 
basis minimizing the entropy of the energy distribution 
from the tree-structured subspaces. Such a best basis 

X N is called the joint best basis (JBB) for { i}i=l. In this 
paper, we will also use the term "best basis" as a joint 
best basis for simplicity. See [37], [25, Chapter 11] for 
the details of the algorithm and its computational cost. 

3.5 A Library of Orthonormal Bases 

We now consider a "meta" algorithm for the best-basis 
selection. 

DEFINITION 3. A library oforthonormal bases for R n 
is a collection of the dictionaries of orthonormal bases 
for R n. 

This library of bases is more adaptable and ver- 
satile for representing various transient signals than 
a single dictionary of bases is. For example, if the 
signal consists of blocky functions such as acoustic 
impedance profiles of subsurface structure, the Haar- 
Walsh dictionary captures those discontinuous features 
both accurately and efficiently. If the signal con- 
sists of piecewise polynomial functions of order p, 
then the Daubechies wavelets/wavelet packets with fil- 
ter length L > 2(p + 1) or the coiflets with filter 
length L > 3(p + 1) would be efficient because of 
the vanishing moment property (see e.g,, [231 for the 
details of this property). If the signal has a sinu- 
soidal shape or highly oscillating characteristics, the 
local trigonometric bases would do the job. More- 
over, computational efficiency of this library is also 
attractive; the most expensive expansion in this library, 
i.e., the local trigonometric expansion, costs about 
O (n[log n]2). 

How can we choose the best dictionary from this 
library? The strategy of Coifman and Majid [38] is 
very simple: pick the one giving the minimum entropy 
among them. 5 More precisely, let ~ = {~l . . . . .  ~3M} 
denote a library of orthonormal bases where ~m rep- 
resents a dictionary of orthonormal bases. For each 
dictionary ~m, the best basis ~,~ of the signal x is 
computed by Algorithm 1. This generates M different 

OZ M sets of the expansion coefficients { m }m=1 of the signal. 
For each expansion coefficient set, entropy h2(ozm) de- 
fined in (5) is computed and then the basis which gives 
the minimum entropy among M entropy values is se- 
lected as the "best of the best bases." 

4 Construction of Local Discriminant Basis 

In this section, we describe a fast algorithm to construct 
a good feature extractor. In particular, we follow the 
"best-basis paradigm" discussed in the previous section 
which permits a rapid [e.g., O(n log n)] search among 
a library of orthonormal bases for the problem at hand. 
We first select basis functions which are well-localized 
in the time-frequency plane and which most discrimi- 
nate given classes, and then the coordinates (expansion 
coefficients) of these basis functions are fed into LDA 
or CART. In order to fully utilize these classifiers, we 
must supply them good features (preferably just a few) 
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and throw out useless part of the data. This improves 
both accuracy and speed of these classifiers. 

4.1 Discriminant Measures 

Recall that in the best-basis algorithm of Coifman and 
Wickerhauser, the efficiency of each subspace in the 
dictionary/library is measured by the Shannon entropy 
(1). This quantity measures the flatness of the energy 
distribution of the signal so that minimizing this leads 
to an efficient representation (or coordinate system) 
for the signal. For the classification problems, how- 
ever, we need a measure to evaluate the power of 
discrimination of each subspace in the tree-structured 
subspaces rather than the efficiency in representation. 
Once the discriminant measure (or discriminant in- 
formation function) is specified, we can compare the 
goodness of each node (subspace) for the classification 
problem to that of union of the two children nodes and 
can judge whether we should keep the children nodes 
or not, in the same manner as the best-basis search 
algorithm. 

There are many choices for the discriminant mea- 
sure (see e.g., [40, 41]); all of them essentially mea- 
sure "statistical distances" among classes. For sim- 
plicity, let us first consider the two-class case. Let 

n P "= {Pi }i=1' q = {qi }i=1 be two nonnegative sequences 
with y~. Pi = ~ qi = 1 (which can be viewed as nor- 
malized energy distributions of signals belonging to 
class 1 and class 2, respectively). The discriminant 
information function 23(p, q) between these two se- 
quences should measure how differentlyp and q are dis- 
tributed. One natural choice for 23 is the so-called rel- 
ative entropy (also known as cross entropy, Kullback- 
Leibler distance, or 1-divergence) [42]: 

1 (p, q) a= ~ Pi log p_~i, (6) 
i = l  qi 

with the convention, log0 = - e c ,  log(x/0) = 
+ e c  f o r x > 0 ,  0 .  (:tzec) = 0. It is clear that 

¢ 
I (p, q) > 0 and equality holds iff p = q. This quantity 
is not a metric since it is not symmetric and does not sat- 
isfy the triangle inequality. But it measures the discrep- 
ancy of p from q. Note that if qi -= 1/n for all i, i.e., 
qi s are distributed uniformly, then I (p, q) = - H (p), 
the negative of the entropy of the sequence p itself. 

The relative entropy (6) is asymmetric in p and q. 
For certain applications the asymmetry is preferred (see 
e.g., Section 7). However, if a symmetric quantity is 
preferred, one should use the J-divergence betweenp 

and q [42]: 

J (p ,q )  ~= I ( p , q )  + I(q,p) .  (7) 

Another possibility of the measure 23 is a £2 analogue 
of l (p, q) [13]: 

?1 

W(p,  q) A_ lip - qll e = ~__,(pi - qi) 2. (8) 
i=1 

Clearly, ep (p >_ 1) versions of this measure are all 
possible to use as 23. 

To obtain a fast computational algorithm, the mea- 
sure 23 should be additive: 

DEFINITION 4. The discriminant measure ©(p,  q) is 
said to be additive if 

n 

23({Pi}in=1, {qi}in=l) = ~_~ ~D(pi, qi) (9) 
i=1 

The measures (6) (subsequently (7) as well) and (8) are 
both additive. 

For measuring discrepancies among C distributions, 
p(ll . . . . .  p(C), one may take (c 2 ) pairwise combinations 
of ©: 

C - I  C 

(lo) 
i=1  j = i + l  

4.2 The Local Discriminant Basis Algorithm 

The first step of our strategy for classification is to 
select a basis which attains the maximum discrimi- 
nant information for given classes from a library of 
orthonormal bases. Let us first consider the selection 
of such a basis from a dictionary of orthonormal bases 
in the library. Given an additive discriminant measure 
©, what quantity should be supplied to © to evaluate 
the discrimination power of each subspace S2j,k in the 
binary-tree-structured subspaces in the dictionary? In 
order to fully utilize the time-frequency localization 
characteristics of our dictionary of bases, we compute 
the following time-frequency energy map for each class 
and supply them to ©: 

, (c)~Nc DEFINITION5. Letlxi l i=lbeaset°ftrainingsignals 
belonging to class c. Then the time-frequency energy 
map of class c, denoted by 17c, is a table of real numbers 
specified by the triplet (j, k, l) as 

N,. Nc 
U~(j ,k, l)  ~ ~_,(wjrk,tX}¢))2/~l]x}C)[[2, (11) 

i=1 i=1 
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for j = 0  . . . . .  J ,  k = 0  . . . . .  2 J - l ,  l = 0  . . . . .  
2 n°-j - 1. 

In other words, l~c is computed by accumulating the 
squares of  expansion coefficients of the signals at each 
position in the binary tree followed by the normaliza- 
tion by the total energy of the signals belonging to class 
c. (This normalization may be important especially if 
there is significant differences in number of  samples 
among classes.) In the following, we use the notation: 

: 9 ( ( r d j ,  k, c 

2n0-J_l 

= ~ ~ ( F l ( j , k , l )  . . . . .  r c ( j , k ,  1)). 
/=0 

Here is an algorithm to select an orthonormal basis 
(from the dictionary) which maximizes the discrimi- 
nant measure on the time-frequency energy distribu- 
tions of classes. We call this a local discriminant basis 
(LDB). Similarly to the best-basis algorithm, let Bj,~ 
denote a set of  basis vectors at the subspace f2/,k as 
defined in (3). Let Aj,k represent the LDB (which we 
are after) restricted to the span of Bj,k. Also, let z~j,k 
be a work array containing the discriminant measure 
of  the subspace f2],~. 

ALGORITHM 2 (The Local Discriminant Basis Selection 
Algorithm). Given a training dataset ~T consisting of 
C classes of signals "~ (c)~N,. ,C ~l~Xi ~iLl ~c=l' 

Step 0: Choose a dictionary of orthonormal bases 
(i.e., specify QMFs for a wavelet packet dic- 
tionary or decide to use either the local cosine 
dictionary or the local sine dictionary) and 
specify the maximum depth of decomposition 
J and an additive discriminant measure ~D. 

Step 1 : Construct time-frequency energy maps Fc for 
c = l  . . . . .  C. 

Step 2: Set 
A j , k  = B j ,  k and Aj,k = ~D({Fc(J, k, ")}c=l)c 
for k = 0 . . . . .  2 J - -  1. 

Step 3: Determine the best subspace Aj,kfor j = J - 
1 . . . . . .  O, k = 0 . . . . .  2J - 1 by the following 
rule: 

Set Aj,k ©({Fc( j ,k ,  c = ")}c=l)" 

I f  A j, k > Aj+l,2k + Aj+l,2k+b 

then  Aj,k = Bj,k, 

else A j, k -= A j + l , 2 k  (~ A j+l ,2k+l  and zXj, k = 

/~j+l ,2k -~ L~j+l,2k+l.  

Step 4: Order the basis functions by their power of 
discrimination (see below). 

Step 5: Use k (< n) most discriminant basis functions 
for constructing classifiers. 

The selection (or pruning) process in Step 3 is fast, i.e., 
O(n) since the measure ~D is additive. After this step, 
we have a complete orthonormal basis LDB. We now 
have the following proposition: 

PROPOSITION 2. The basis obtained by Step 3 of Algo- 
rithm 2 maximizes the additive discriminant measure 
© on the time-frequency energy distributions among 
all the bases in the dictionary ~ obtainable by the 
divide-and-conquer algorithm. 

See [4] or [3] for the proof. 
Once the LDB is selected, we can use all expansion 

coefficients of signals in this basis as features; however, 
if we want to reduce the dimensionality of  the problem, 
Steps 4 and 5 are still necessary. In Step 4, there are 
several choices as a measure of  discriminant power of  
an individual basis function. For simplicity in notation, 
let )~ = (j,  k, l) c Z 3 be a triplet specifying one of the 
LDB functions selected in Step 3, and let c~(~l = " T_(~) , w;~ "~i 

i.e., an expansion coefficient of x} c) in the basis vector 
wz. In the following, we list a few candidates for that 
measure: 

(a) the discriminant measure of a single basis function 
W)o: 

©(r~ ()~) . . . . .  Fc  0~))- (12) 

(b) Fisher's class separability of the expansion coeffi- 
cients in the basis function w~: 

~cC=17Cc(meani Ztol;~,i )(c), _ meanc (meani (o%i)))(c) 2 
~ c  r (c),~ ' 

c=l Y~c Vari ~ X , i  ] 
(13) 

where meani (-) and vari (.) are operations to take 
the sample mean and variance with respect to the 
samples indexed by i, respectively. 

(c) the robust version of (b): 

~ c  rrc[medi (oei~l) - medc(medi (ee~)) [ 

~cc1:rcmadi(ol(~l ) , (1_4) 

where medi(.) and mad/(.) are operations to take 
the sample median and median absolute deviation 
with respect to the samples indexed by i, respec- 
tively. 

See [40, 43] for more examples. We note that this 
step can also be viewed as a restricted version of the 
projection pursuit algorithm [43]. 
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Step 5 reduces the dimensionality of the problem 
from n to k without losing the important discriminant 
information in terms of time-frequency energy distribu- 
tions among classes. Thus many interesting statistical 
techniques which are usually computationally too ex- 
pensive for n dimensional problems become feasible. 
How to select the best k is a tough interesting question. 
One possibility is to use model selection methods such 
as the minimum description length (MDL) criterion 
[17] (see also [3, Chapter 3]). 

We can easily extend Algorithm 2 to a library of or- 
thonormal bases. Let £ = {~1 . . . . .  ~M} denote a li- 
brary. Let ~3 m be the LDB selected from the dictionary 
~m. Each LDB ~3m is associated with the maximum 
value of a discriminant measure on the time-frequency 
energy distributions (relative to ~m) as shown in Propo- 
sition 2. Let A~ denote this maximum value. Then we 
can simply pick the basis giving the maximum value 

{Am}. the "best" of the LDBs, ~3m., is given among * • 
by choosing m* such that A~.  = maxl<m<M A~. 

An extension of our algorithm to image classifica- 
tion problems is quite straightforward; one has only 
to replace the one-dimensional bases in the library by 
their two-dimensional versions. See e.g., [23, Chap- 
ter 10], [25, Chapter 9] for the details of the higher 
dimensional bases. 

REMARK. Our LDB method can be used for cer- 
tain regression problems which are closely related 
to the classification problems. Let a training 
dataset {(xi, yi)}N= 1 consist of C classes of samples 
{{(xi, c Yi)}iel~ }c=l as before. Let us assume that the re- 
sponse Yi for i 6 Ic is now a real number conditioned 
as Yi c Rc -~ [ac, bc] and that n c Rc ~ 0. Under c= l  

this assumption, suppose one wants to estimate the re- 
sponse Yi for a given input signal xi rather than its class 
label or assignment. This situation is not really special; 
we often encounter this type of regression problems in 
medical and geological sciences where the objects are 
made in the course of nature. In [3, Chapter 6], [5], 
one can find real-life examples from the field of geo- 
physical prospecting using the algorithms described in 
this paper. 

5 Signal Classification Examples 

To demonstrate the capability of the LDB method, we 
conducted two classification experiments using syn- 
thetic signals. In both cases, we specified three classes 
of signals by analytic formulas. For each class, we 
generated 100 training signals and 1000 test signals. 

We first constructed LDA-based classifiers and CTs 
using the training signals represented in the original 
coordinate (i.e., standard Euclidean) system. Then we 
fed the test signals into these classifiers. Next, we com- 
puted the LDB (using (10) as a discriminant measure 
and (12) for ordering the individual basis functions) on 
the training signals. Then we selected a small number 
of most discriminant basis functions, say about 10% of 
the dimensionality of the signals, and used these coor- 
dinates to construct LDA-based classifier and CTs. Fi- 
nally the test signals were projected onto these selected 
LDB functions and then fed into these classifiers. For 
each method, we computed the misclassification rates 
on the training dataset and the test dataset. We repeated 
this procedure (including dataset generation) 10 times 
to get the average misclassification rates. 

EXAMPLE 5.1 (Triangular Waveform Classification). 
This is an example for classification originally ex- 
amined in [7]. The dimensionality of the signal was 
extended from 21 in [7] to 32 for the dyadic dimen- 
sionality requirement of the bases under consideration. 
Three classes of signals were generated by the follow- 
ing formulas: 

x(1)(i) = uhl( i )  + (1 - u)hz(i)  + E(i) for Class 1, 

x(2)(i) = Uhl(i) + (1 - u)h3(i) + E(i) for Class 2, 

x(3)(i) = uh2(i) + (1 - u)h3(i) + e(i)  for Class 3, 

where i = 1 . . . . .  32, hi( i )  = max(6 - [i - 71,0), 
h2(i) = hl(i  - 8), h3(i) = hl( i  - 4), u is a uniform 
random variable on the interval (0, 1), and E(i) are the 
standard normal variates. Figure 2 shows five sample 
waveforms from each class. 

The LDB was computed from the wavelet packet 
coefficients with the 6-tap coiflet filter [23]. Then the 
five most discriminant coordinates were selected. In 
Fig. 3, we compare the top five vectors from LDA and 
LDB. Only the top two vectors were useful in LDA in 
this case. The top five LDB vectors look similar to the 
functions hj o r  their derivatives whereas it is difficult 
to interpret the LDA vectors. 

The misclassification rates are given in Table 1.6 The 
best result so far was obtained by applying LDA to the 
top 5 LDB coordinates. We would like to note that 
according to Breiman et al. [7], the Bayes error of this 
example is about 14%. 

EXAMPLE 5.2 (Signal Shape Classification). The sec- 
ond example is a signal shape classification problem. In 
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Fig. 2. 
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Sample waveforms of Example 5.1: (a) Class 1, (b) Class 2, and (c) Class 3. 
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Fig. 3. Comparison of LDA and LDB vectors of Example 5.1: (a) Top five LDA vectors. (b) Top 5 LDB vectors. (c) The subspaces selected 
as the LDB. 
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Table l. Misclassification rates (averages over 10 simulations) of 
Example 5. I. 

Error rate (%) 

Method Training Test 

LDA on STD 12.00 22.65 
CT on STD 7.03 29.31 
LDA on LDB5 14.13 16.16 
CT on LDB5 8.13 21.86 
CT on LDB 6.30 23.78 

Notation: STD = the standard Euclidean 
coordinates; LDB5 = the top 5 LDB coor- 
dinates; LDB = all the LDB coordinates. 
The smallest error on the test dataset is 
shown in bold font. 

this example,  we try to classify synthetic noisy signals 
with various shapes, amplitudes, lengths, and positions 
into three possible classes. More precisely, sample sig- 
nals of  the three classes were generated by: 

c(i) = (6 + r~) • Z[a,b](i) + E(i) 

b(i) = (6 + 7)" ZEa,b](i) 
• (i - a ) / ( b -  a)  + ~(i)  

f ( i )  = (6 + ~/). XEa,bl(i) 
• ( b -  i ) / ( b - a )  + E(i) 

for "cylinder" class, 

for "bell" class, 

for "funnel" class, 

where i = 1 . . . . .  128, a is an integer-valued uniform 

random variable on the interval [16,32],  b - a  
also obeys an integer-valued uniform distribution on 
[32, 96], t / a n d  E(i) are the standard normal variates,. 
and ZEa,bl(i) is the characteristic function on the in- 
terval [a, b]. Figure 4 shows five sample waveforms 
from each class. If  there is no noise, we can char- 
acterize the "cylinder" signals by two step edges and 
constant values around the center, the "bell" signals by 
one ramp and one step edge in this order and positive 
slopes around the center, and the "funnel" signals by 
one step edge and one ramp in this order and negative 
slopes around the center. 

The 12-tap coiflet filter [23 ] was used for the LDB se- 
lection. Then the 10 most important coordinates were 
selected. In Fig. 5, we compare the top 10 LDA and 
LDB vectors• Again, only the top two vectors were 
used for classification in LDA case. These LDA vec- 
tors are very noisy and it is difficult to interpret what 
information they captured. On the other hand, we can 
observe that the top 10 LDB vectors are located around 
the edges or the centers of  the signals. Also note that 
some of the vectors work as a smoother (low pass fil- 
ter) and the others work as a edge detector (band pass 
filter), so that the resulting expansion coefficients carry 
the information on the edge positions and types. 

The misclassification rates in this case are displayed 

in Table 2. 

Fig. 4. 
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Sample waveforms of Example 5.2: (a) "cylinder" class, (b) "bell" class, and (c) "funnel" class. 
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Fig. 5. Comparison of LDA and LDB vectors of Example 5.2: (a) Top 10 LDA vectors. (b) Top 10 LDB vectors. (c) The subspaces selected 
as the LDB. 

As expected, LDA applied to the original coordinate 
system was almost perfect with respect to the training 
data, but it adapted too much to the features specific 
to the training data, and lost its generalization power; 
when applied to the new test dataset, it did not work 
well. The best result was obtained using the CT on the 
top 10 LDB coordinates in this example. The misclas- 
sification rates of the training data and the test data are 
very close here; that is, the algorithm really "learned" 
the structures of signals. This best CT is shown in 
Fig. 6. 

If the tree-based classification is combined with the 
coordinate system capturing local information in the 
time-frequency plane, the interpretation of the result 

Table 2. Misclassification rates (averages over 10 simulations) 
of Example 5.2. 

Error rate (%) 

Method Training Test 

LDA on STD 0.83 12.31 
CT on STD 2.83 11.28 
LDA on LDB 10 7.00 8.37 
CT on LDB 10 2.67 5.54 
CT on LDB 2.33 7.60 

becomes so explicit and easy: in Fig. 6 we find thai: the 
LDB coordinate #1 is checked first. If this is less than 
10.0275, it is immediately classified as "bell." From 
Fig. 5(b), we observe that the LDB function #1 is lo- 
cated around i = 30 which, in fact, coincides with the 
starting position (the parameter a in the formuIas) of 
various signals. Around this region, both the cylin- 
der and the funnel signals have sharp step edges. On 
the other hand, the bell signals start off linearly. Thus 
CART algorithm found that the LDB function #1 is 
the most important coordinate in this example. Sepa- 
rating the cylinder class from the funnel class turned 
out to be more difficult because of the large variabil- 
ity of the ending positions. This resulted in the more 
complicated structure of the right branch from the root 
node. But we can still obtain the intuitive interpreta- 
tion: the first node in the right branch (with "cylinder" 
label) from the root node is split into either "funnel" or 
"cylinder" depending on the LDB coordinate #5 which 
is located around the middle of the axis (i = 64). If 
there were no noise, the cylinder signals would have 
constant values around this area whereas the funnel sig- 
nals would decrease linearly here; the LDB obtained 
this important information by removing the noise. (See 
also [4], [3, Chapter 4] for the details of the relation 
between LDB and denoising.) One can continue the 
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x. 1 < 10.0275 
x.1>10.0275 

x.5<o.743967 x.5<] 7.31 ] ] 

1/5 0/94 / 21/120 ~ 0/81 
x.7<20.4196 

x.7>20.4196 

x, 1 <12.2765 x.3<1.53606 

3/7 0/12 
x.5<14.8119 

x.5>14,811~ 

2/5 
x.9<-0.709864 

x.9>-0.709864 

0/68 
x.9<-0.930807 

0118 2/5 

x.3>1.53606 

1/5 

Fig. 6. The best classification tree generated on the LDB coefficients in Example 5.2. Nodes are represented by ellipses (interior nodes) and 
rectangles (terminal nodes/leaves). The node labels are the predicted class names which are "cylinder," "bell," and "funnel" in this case. The 
ratio displayed under each node represents the misclassification rate of the cases reached to that node. The splitting rules are displayed on the 
edges connecting nodes. The rule "x. ] < ] 0.0275" implies "if the first coordinate value of the input signal is less than 10.0275, then go to this 
branch" 

interpretat ion in  a similar  manne r  for all remain ing  

nodes. 

F r o m  these examples ,  we can see that it is more  im- 

portant  to select the good features than to select the best  
possible  classifier without  supplying the good features; 
each classifier has its advantages and disadvantages [9], 
i.e., the best  classifier heavily depends on the prob- 
lem (e.g., L D A  was better than CART in Example  5.1 
whereas the si tuat ion was opposite in Example  5.2.) By 

supplying a handful  of good features, we can greatly 
enhance the performance of classifiers. 

6 Image Texture Classification using LDB 

In  this section, we describe our pre l iminary  experi- 
ments  on image texture classification us ing the two- 
d imensional  version of the LDB algorithm. Image  
texture analysis,  classification, and segmenta t ion  are 



Local Discriminant Bases and Their Applications 351 

(a) (b) 

(c) 

Fig. 7. Three texture images from the Brodatz book [45]: (a) Grass lawn (D9), (b) Beach sand (D29), and (c) Plastic bubbles (D112). Each of 
them has 512 x 512 pixels with 8-bit gray levels per pixel. 

very important area of research. Our experiments here 
are of simple nature and thorough investigation is in 
progress. Another approach using the wavelet packets 
can be found in [44]. 

6.1 Data Description and Preparation 

Figure 7 shows three textured images used in this ex- 
periment, i.e., "grass lawn," "beach sand," and "plastic 
bubbles," digitized from the Brodatz book [45]. Each 
of these images has 512 by 512 pixels with 8-bit gray 
levels per pixel. 

As a training dataset, we selected 100 subimages of 
size 128 by 128 pixels from each original image by 
specifying the upper-left coordinates of the subimages 
randomly without replacement. For a test dataset, we 
generated another 100 random upper-left coordinates 
and selected 100 subimages of the same size. We note 
that the coordinates for the training and test datasets 
are mutually exclusive; each subimage in the datasets 
is unique although there exist subimages which share 
some common area in the original image. Then, each 
subimage was normalized to have zero mean and unit 
variance prior to the LDB computation. 
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6.2 Training Process Stabilization by "Spin Cycle" 

Our bases in the library, i.e., wavelets, wavelet pack- 
ets, and local trigonometric bases, do not have the 
translation-invariance property. Since we do want to 
analyze the texture properties, but do not concern the 
locations of individual edges or transients which form 
texture elements (or textons), lack of translation in- 
variance is problematic. Thus, to make the analysis 
and classification processes more insensitive to trans- 
lations, we applied the spin cycle procedure: increase 
the number of samples of the training and the test 
datasets by creating their translated versions. In par- 
ticular, we used translations along the diagonal direc- 
tion of images with periodic boundary condition. This 
"spin cycle" procedure plays an important role for other 
applications such as denoising [46], [3, Chapter 3], 
[47]. 

It turns out that increasing the number of samples 
by the spin cycle procedure is, in spirit, very simi- 
lar to the "bagging" (bootstrap aggregating) procedure 
proposed by Breirnan [48]. This method tries to stabi- 
lize certain classifiers by: 1) generating multiple ver- 
sions of training dataset by the bootstrap method [49], 
2) constructing a classifier for each training dataset, and 

it, 

3) predicting the class of test samples by the majority 
vote on the predictions by all these classifiers. 

For the examples studied in Section 5, the spin cycle 
procedure would not improve the results so much be- 
cause: 1) in Example 5.1, the locations of the triangles 
in each class do not change, and 2) in Example 5.2, the 
signal components in the samples are already shifted 
randomly (within certain intervals) by definition. 

6.3 Experimental Results 

In our experiments, we created 10 translated versions 
of each subimage (i.e., totally 1,100 subimages for 
each class in the training dataset as well as in the 
test dataset) by the spin cycle procedure. Then, we 
computed an energy map on the phase space (a higher 
dimensional version of the time-frequency plane for 
space and spatial frequency characterization) of each 
class using the tensor product of the 12-tap coiflet filters 
into the full scales (seven decomposition levels). Then, 
a quadtree representing subspaces was built and asso- 
ciated with these three phase-space energy maps. Us- 
ing the symmetric relative entropy, a two-dimensional 
LDB was selected from the quadtree-structured sub- 
spaces. Figure 8 shows the partitioning pattern of the 

F× 

Fig, 8. A partition of the spatial-frequency plane by the two-dimensional LDB for the texture classification experiment. The horizontal and 
vertical axes correspond to spatial frequencies on x and y directions, respectively. Thus, the DC component is located at the lower-left corner 
of this figure. 
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Table 3. 
periment. 

Misclassification rates of the texture classification ex- 

Error rate (%) 

Method Training Test 

LDA on LDB10 28.00 34.67 

CT on LDB10 9.00 33.67 

LDA on LDB 100 1.33 5.00 
CT on LDB 100 4.33 28.67 

spatial frequency plane by the LDB. We observe that 
most of the cells axe small except certain regions, in 
particular, around the right edge of the plane (i.e., re- 
gions of high horizontal frequencies). This implies that 
the most of the texture information in this experiment 
are of global nature in the space domain and of local 
nature in the spatial-frequency domain. 

After the LDB selection, each LDB coordinate 
was sorted in terms of its discrimination power using 
the coordinate-wise symmetric relative entropy (12). 
Finally, the most important LDB coefficients (after 
squared for representing energy) were used to con- 
struct CT and LDA classifiers. In this experiment, 
we selected the top 10 and the top 100 coordinates. 
To compute the misclassification rates for the training 
dataset, we adopted the "voting" procedure: we as- 
signed each original subimage (not the translated ver- 
sions) the class label which was the majority of the 
class predictions of the original itself and its 10 trans- 
lated versions, and then computed the misclassification 
rates on these original subimages. In the test stage, we 
expanded each test subimage into the LDB and the top 
10 and 100 coefficients (after squared) were supplied 
to the CT and LDA classifiers. We also applied the 
same voting procedure to compute the misclassifica- 
tion rates for the test dataset. Table 3 summarizes the 
misclassification rates. This table clearly reveals that 
the top 10 LDB coordinates are not enough to classify 
these textures. Even with the top 100 coordinates, the 
CT does not work well, and the resulting CT, in fact, 
has an extremely complicated structure (many branches 
and nodes). On the other hand, the LDA constructed 
from the top 100 coordinates works well with 5% mis- 
classification rate on the test dataset. These strongly 
suggest that the structure of class distributions in the 
feature space spanned by the top 100 LDB vectors are 
at least linearly oriented with respect to the LDB axes 
(or maybe more complicated). 

Figure 9 shows the most important six basis func- 
tions for this experiment. We note that they are not the 
top six of the LDB functions ordered by the coordinate- 

wise symmetric relative entropy, but the basis functions 
which corresponds to the top six most energetic com- 
ponents in the first LDA vector of length 100. We 
are currently investigating a better strategy for order- 
ing the individual LDB functions other than (12) (e.g., 
(13), (14), and other measures listed in [40], [43], etc.) 
after the LDB selection since the dimensionality reduc- 
tion is particularly important for the image processing 
applications because of their large dimensionality. 

We note that the direct application of the CT and 
LDA on the standard Euclidean coordinate system do 
not work since 1) the dimensionality of the problem is 
too high (128 x 128 = 16,384), and 2) the local spatial 
variability on the individual pixel level is too high to 
yield meaningful results. 

7 Signal/Background Separation by LDB 

LDB vectors can also be used as a tool for extract- 
ing signal component from the data obscured by some 
unwanted noise or "background" (which may not be 
random). Let class 1 consist of a signal plus noise 
or a signal plus "background" and let class 2 consist 
of a pure noise or "background". Then, by selecting 
the LDB maximizing © between class 1 and class 2, 
we can construct the best basis for denoising arbitrary 
noise or pulling a signal out of a textured background. 
In this application, the asymmetric relative entropy (6) 
makes more sense than the symmetric version (7). 

We show one example here. As "background" (e-lass 
2), we generated 100 synthetic sinusoid with ran- 
dom phase as b(k) = sin(rr(k/32 + u)), where k ----- 
1 . . . . .  128, and u is a uniform random variable on 
(0, 1). As class 1 samples, we again generated 100 
"backgrounds," and added a small spike (as a "sig- 
nal" component) for each sample vector randomly be- 
tween 20 < k < 60, i.e., x(k) = sin(rr(k/32 + u)) + 
0.018k,~, where 8k,r is the Kronecker delta and r is 
an integer-valued uniform random variable on the in- 
terval [20, 60]. Figure 10 shows how these "back- 
grounds" were removed, figure 10(a) shows 10 sam- 
ple vectors of class 1. We can hardly see the spikes. 
Then we transformed both class 1 and 2 samples by 
the discrete sine transform (DST) into "frequency" do- 
main. Figure 10(b) shows the transformed version of 
Fig. 10(a). Then these DST coefficients of both classes 
were supplied to the LDB algorithm of Section 4 us- 
ing the local sine basis dictionary (which essentially 
does segmentation in frequency domain). After the 
LDB was found, the basis vectors were sorted by (12). 
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 9. The most significant 6 LDB functions for the texture classification experiment. Each basis function has 128 by 128 pixels. Observe 
that a rather high characteristic frequency exists in all basis functions and this roughly corresponds to the grain sizes of the "beach sand." 
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Fig. 10. The signal/"background" separation algorithm in action. (a) Ten samples of Class 1 vectors, i.e., sinusoids plus spikes. (b) DST 
coefficients of vectors in (a). (c) Top 20 LDB vectors using the local sine dictionary on the frequency domain. (d) Reconstructed spikes after 
removing the "background". 

The top 20 LDB vectors are displayed in Fig. 10(c). 
We can clearly see that the top eight basis vectors are 
concentrated around low frequency region and other 
vectors are located in higher frequency region. We re- 
gard the subspace spanned by these eight LDB vec- 
tors as "background" using the a pr ior i  knowledge 
that the "background" component consists of only low 
frequency component. The reason why these vectors 
have large values in (12) is that the "background" parts 
of class 1 samples are different from class 2 samples 
in phase, and the DST is not a shift-invariant trans- 
form. After removing the component belonging to this 
"background" subspace, we reconstructed the "signal" 
component of class 1 samples by inverse DST which 
are shown in Fig. 10(d). We can clearly see the spikes 
now. The LDB thus can improve the algorithm of ex- 
tracting "coherent" component from the data by Coil- 
man, Majid, and Wickerhauser [38], [50] if we know 
the statistics of the background a priori  or have actual 
pure background signals. 

A similar idea for multidimensional signals has been 
proposed by Harlan et al. [51] in the geophysical 
prospecting field; they considered the problem of re- 
moving linear and hyperbolic structures from seismic 
images using the Radon and the generalized Radon 
transforms. The key observation is that the structural 

components (e.g., lines and hyperbolas) in the images 
can be well-compressed or "focused" in the certain 
transformed domains (e.g., the Radon, the generalized 
Radon transformed domains). On the other hand, the 
unstructured components or backgrounds are "defo- 
cused" in these domains. Based on this observation, the 
thresholding operation in the transformed domain is ap- 
plied and only the "focused" objects in the transformed 
domain remain. Then the inverse transform only re- 
constructs the structural components and eliminates 
backgrounds. In this sense, the "structure" strongly 
depends on the transform under consideration. Our 
philosophy is to use the library of bases in Section 3; 
we have a large collection of transforms each of which 
can represent and adapt to many different "structures" 
in signals. For images or multidimensional signals, it 
is not simple to determine which basis should be in- 
cluded in the library of bases because: 1) there are 
many possible two-dimensional bases both separable 
and nonseparable (see e.g., [23, Chapter 10], [31, 32] 
for the details), and 2) the computational cost is much 
higher (~O(n 2 log 4 n 2) for an image of n rows and n 
columns) compared with the one-dimensional bases. 
Here is the place to use a pr ior i  information carefully 
to restrict the number of bases or dictionaries in the li- 
brary to achieve both the computational efficiency and 
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the representation power of the bases. Signal/noise 
separation for images including texture segmentation 
is our important future project. 

6. We do not show the error rates of LDA on all the LDB coordinates 
in this table since this is the same as the ones of LDA on STD 
theoretically (and this fact was also confirmed numerically). 

8 Conclusion 

We have described an algorithm to construct an adap- 
tive local orthonormal basis [local discriminant basis 
(LDB)] for classification problems by selecting a ba- 
sis from a library of orthonormal bases using a dis- 
criminant measure (e.g., relative entropy). The basis 
functions generated by this algorithm can capture rele- 
vant local features (in both time and frequency) in data. 
LDB provides us with better insight and understand- 
ing of relationships between the essential features of 
the input signals and the corresponding outputs (class 
names), and enhances the performance of classifiers. 
We have demonstrated that LDB can also be used for 
pulling out signal component from the data consisting 
of signals plus "backgrounds." 
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Notes 

1. From now on, unless mentioned otherwise, time and frequency 
also means space and spatial frequency respectively. 

2. The sample mean operation (1/Nc)E21 in this subsection can 
be replaced by expectation E c for general cases; however, in this 
paper, we focus our attention on the cases of a finite number of 
samples, so we stay with the sample mean operations. 

3. In the tree-based classification module included in the S- 
PLUS TM package [14] (the extended version of the statistical 
language S TM [15], [16]) which we intensively use to test our al- 
gorithm, the split stops by default if either the number of samples 
belonging to that node becomes less than 10 or the deviance of 
that node becomes less than 1% of the deviance of the root node. 

4. The original binary tree generated by successive applications of 
H and G is called "Paley ordered" and the frequency band of 
~2j,k is not monotonically increasing as a function of k. This 
behavior is corrected by the so-called "Gray code" permutation; 
see [25] for the details. 

5. The purpose of [38] is not the compression but the noise removal. 
Another way of choosing a basis for the noise removal using 
minimum description length (MDL) criterion can be found in 
[39], [3, Chapter 3]. 
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