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ABSTRACT

The local Fourier dictionary contains a large number of localized complex exponential functions. Representations of a
function using the dictionary elements locally inherit many nice properties of the conventional Fourier representation,
such as translation invariance and orientation selectivity. In this paper, after giving an intuitive review of its
construction, we describe an algorithm to recover location-dependent shifts of local features in signals for matching
and registration, and propose a best local translation basis selected from the local Fourier basis. Then we will
report our preliminary results on the statistical analysis of natural scene images using the local Fourier dictionary,
whose purpose is to examine the importance of sparsity, statistical independence, and orientation selectivities in
representation and modeling of such images.

Keywords: Fourier transform, local Fourier transform, local cosine transform, best basis, translation invariance,
sparse representation, statistical independence, statistics of natural scenes

1. INTRODUCTION

To analyze data, signals, and images measured by various sensors, the Fourier transform is undoubtedly one of the
most popular tools. It decomposes the data into cosines and sines of different frequencies, and we can examine
whether the data contains certain periodicity or not, or how the data are composed as a linear combinations of
complex exponentials. Translation of a signal in the time domain is just a multiplication by the phase factor e~277¢
in its Fourier representation. One can compute the amplitude, phase, and envelope of a signal by considering the
analytic signal. For images, the Fourier transform has several additional advantages. The basis functions can capture
orientation information unlike the DCT or wavelets. It also commutes with the rotation operations of an image. In
spite of such convenient properties, the Fourier transform has a fundamental drawback: the basis functions are of
completely global nature in time. Expansion coefficients of a signal are computed from all of the time samples because
the basis functions oscillate globally over the entire support of the signal. For many signal and image analysis tasks,
it is of critical importance to capture the local frequency contents and local orientation information. Splitting an
image into pieces with the characteristic functions completely obscures the important frequency information due to
the sharp edges of the characteristic functions. Therefore, we should use a smooth window function before performing
local frequency analysis. The celebrated Balian-Low theorem!® states that we cannot construct an orthonormal basis
that optimizes localization of its basis functions jointly in the time and frequency domains if we restrict our basis
functions in the following form of the windowed complex exponential functions:

gr.e(t) £ g(t — kAL,

where g(-) is a window function such as the Gaussian, At and A are the basic sampling intervals along the time
and the frequency axes, respectively. This is the form of Gabor elementary functions.

To circumvent these problems, the Wilson bases? and the local cosine/sine bases®?* have been developed. Both of
these constructions, however, use sines and cosines rather than complex exponentials. For the applications requiring
local phase and orientation information, the use of the complex exponentials is essential. Wickerhauser®®¢ developed
the so-called smooth orthogonal periodization operator that smoothly restricts a function to an interval and periodizes
it, which in turn, allows us to decompose it into localized complex exponentials with minimal edge effect. Thus,
we can enjoy nice properties of the Fourier transform (e.g., translation invariance of the Fourier magnitudes and its
commutativity with rotations) locally once we construct the local Fourier bases using these operators.

Despite its attractive properties, it seems to the author that the local Fourier dictionary (a hierarchical collection
of localized complex exponential functions) has not gained popularity compared to the local cosine/sine dictionaries
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Figure 1. Splitting the constant function into three intervals, by the characteristic functions (a), and by the smooth
orthogonal projections (b).

or the wavelet packet dictionaries. One of the purposes of this paper is to popularize the local Fourier dictionary.
Therefore, in Section 2, we review the construction of the local Fourier bases and dictionary and describe the
ideas behind their construction. The other purpose of this paper is to demonstrate its usefulness, in particular, for
recovering location-dependent translations of features in signals (Section 3), and to examine the importance of the
orientation information, sparseness of the image representations, and statistical independence of the coordinates for
modeling or compressing natural scene images using this dictionary (Section 4).

2. CONSTRUCTION OF LOCAL FOURIER BASES

In this section, we review the construction of the local Fourier basis using the notation of Wickerhauser.® In order
to understand the construction clearly, we need to contrast it with the local cosine basis. Therefore, we start with
the smooth orthogonal projection, which is indispensable to construct the local cosine basis.

2.1. Smooth Orthogonal Projection

Suppose we are given a function z(t) € L?(R). We would like to split this function smoothly into pieces each of which
is supported on an interval I} (with some overlap), where (J, ., Ir = R, and I}’s are disjoint. We define a sequence of
subspaces (), associated with the intervals Iy, and we demand orthogonality among Q, i.e., L>(R) = @,z Q- (We
refer the reader to Matviyenko” for biorthogonal cases that allow better time-frequency localization with additional
procedures.) To achieve this goal, Coifman and Meyer* (see also Auscher, Weiss, and Wickerhauser®) introduced the
following smooth orthogonal projector from L?(R) into Qj = Pj, L*(R):

Prox(t) & Up 1, Ur, o(t). (1)

This operator consists of three operators, that is, Uy, (unitary folding operator), 1y, (restriction operator, i.e.,
1r,2(t) = x(t) if t € Iy, = 0 otherwise), and Uy, (unitary unfolding operator, the adjoint of Uy, ). Pr, is a smoother
version of sharp segmentation 1y, . Figure 1 shows these two different segmentations of the constant function z(t) = 1.
Let I, = (g, ag+1). Then the unitary folding operator Uy, for the interval I, is defined as

A

Unz(t) = Ul(ry, ok, €6)U(Tk+1, g1, €x41) (),
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Figure 2. A typical folding operator U;. In this case, I = (31.5,95.5), and € = 16 at both the left and right borders
of the interval. The unfolding operator U is simply a transposition of U; in this case.

where U (r, @, €) is a unitary folding operator associated with the action region t € (o — €, + €) and is defined as

r(t—a)x(t)+T(aT4)m(2a—t) ifa<t<a+e,

€

U(r,a,€)x(t) =Xt (=Y z(t) —r (52)22a—t) fa—e<t<a,

€
z(¢) otherwise.

The function r(t) above is called a rising cutoff function, which is a smooth version (e.g., r € C4(R) with d € N) of
the Heaviside step function satisfying the following condition:
0 ift<—1,

t2+ 2 =1 f 11¢teR, d t) =
[r(®)]* + |r(=t)] or a and  7(t) {1 if ¢ > 1.

A typical example of C1(R) is the following iterated sine function:

0, if ¢ < —1,
r(t) = ¢ sin[F(1 +sin 3¢)], if [¢| <1,
1 ife> 1.

For various possible choices of the rising cutoff functions and their detailed properties, we refer the reader to the
article of Matviyenko.” Figure 2 shows a typical folding operator for an interval in a matrix form. As one can see
from the plots in Figure 2, the folding operator U(r, a, €) makes a signal locally even for the region (o, + €) and
locally odd for the region (a — €, a).

The adjoint operator of U(r,a,€) is called the unitary unfolding operator:

(52)a(0) 1 () aa 1) Ha<t<ate

U*(r,o, e)z(t) 2 { r (=) z(t) +r (E2)2Q2a—t) fa—e<t<a,
x(t) otherwise.




Both U = U(r,a,¢€) and U* = U*(r,,€) are unitary isomorphisms of L?(R) since U*Uz(t) = UU*z(t) = =(t) for
t # a,and Uz(t) = U*z(t) = z(t) if |t — | > e. For the operator Uy, = U(rk, ok, €x)U (Tk+1, Qkt1, €x41), we demand
that the two action regions around oy, and a1 of I, do not interfere, i.e., we must have ay, + € < ag41 — €g+1. The
size of the action regions 2¢j around the boundary aj, and the rising cutoff function r4(¢) can be either dependent
or independent of Iy. A clever choice of €, and rg(t) dependent of I;; leads to better time-frequency localization
schemes such as the multiple folding of Fang and Séré® and the time-frequency local cosines of Villemoes.!°

Let Cpy, 1 (2) 2 V2/|Ti| cos(m(m+ 3)(t — ax) /|Tx|). Then {1, Cm k}me{ojun form an orthonormal basis of L?(I).

Coifman and Meyer? defined the local cosine functions ¢y, 1 (t) = Ui 115, Cr 1, and showed that the set {dm & }me{ojun
forms an orthonormal basis of Q; = Pr, L*(R), thus the set {¢m,i }mefojun,kez forms an orthonormal basis of L*(R).
The fact that {¢m,k}mefojun is an orthonormal basis of Q can be proved by noticing that: 1) Q; = Pr, L*(R) =
U}, 15,Ur, L*(R) is isomorphic to U} 15, L*(R) = U}, L*(I}) because Uy, is a unitary isomorphism on L*(R), and 2)
{15, Cm.k mefopun is an orthonormal basis of L?(1y).

2.2. Smooth Orthogonal Periodization

Wickerhauser® found a modification to the smooth orthogonal projection Py, and provided a way to smoothly
restrict a function to an interval and periodize it, which in turn permits us to expand it into a periodic basis with
minimal edge effect. This modification, the smooth orthogonal periodization, is defined as follows:

Tp,a(t) & Wi 15, Ura(?). (2)

In order to understand this operator, let us first define an I-periodic extension (or I-periodization) zr of a function
z € L*(I) as

zr(t) 2wt — k[I)).

kEZ

Then, the operator Ty, maps an L7, (R) function into an Ij-periodic extension of an L?(I}) function. Moreover, T,
preserves the smoothness of the smooth functions: if x € C4(R), then T, x has an I;-periodic extension that also
belongs to C%(R). The periodized unfolding operator Wy, in Equation (2) is defined as:

rk(%)w(t) - rk(a’;;t)x(ak + apt1 — t) if o <t < ag+ e,
W;km(t) = W*(rg, Iy, ex)x(t) = T‘k(ak'::_t)w(t) + T'k(t_(:;ﬂ'l )x(ak + Qg1 — t) if apy1 —ep <t < gy,

z(t) otherwise.

This is the adjoint operator of the periodized folding operator Wi, :

re(528)2(t) + re(22=)z (o + a1 — 1) if ap <t <o +er,
Wi, z(t) = W(rg, I, ex)x(t) = Tk(ak+1 Yo(t) - Tk(t(:%)x(ak +appr —t) ifapp —ep <t <appr
0 otherwise.

It is easy to show that both W and W} are isomorphisms of L?(R) as well as L?(I). We note that the periodized
folding and unfolding operators require the same action region size and the same rising cutoff function at the
boundaries of the the intervals. We also note that the action regions and rising cutoff functions used in W7, and Uy,
can be chosen differently. Figure 3 shows the periodized unfolding operator W} for the same interval as Figure 2.
Figure 4 contrasts Tr with Pr.

To see the difference between 77 and P; more clearly, we applied these operators to a constant function and a
linear function. The results are shown in Figure 5. What is the exact relationship between 7; and P;? The answer
is summarized in the following equations:

T:Tr = Pr, T/T} =1;. (3)

These are easily derived from the definitions (1) and (2). For an I-periodic extension of a function supported on
I, Ty simply restricts such extension to the interval I, i.e., does the role of 1, as shown in Figure 5. However, its
adjoint T7 = UF1,Wy : L*(I) — U;L*(I) ~ Q, plays a key role for an I-periodic extension of a function as follows.
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Figure 3. The periodized unfolding operator W;. The size of the action region is the same as Figure 2. The
periodized folding operator W is simply a transposition of W} in this case.
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Figure 4. (a) The smooth orthogonal periodization operator Ty, and (b) the smooth orthogonal projector P;.
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Figure 5. The operators in action. (a) Tt applied to the constant function 1. (b) Pr applied to the constant
function. (c) Tt applied to a linear function. (d) Pr applied to the linear function. Note that if the original function
is periodic, T does simple restriction.

Proposition 2.1. Let x1(t) be an I-periodic extension of x € L?(I). Then,

Tixr(t) = Prxs(t).

Proof. Lemma, 4.7 of Wickerhauser® states that if W; and U share the same action regions and the rising cut-off
function, then for any f € L%(R) we have

Wilrf =1:Ur(11f)1,

where (17f); is an I-periodic extension of the restriction 1;f. Therefore, if we start with the I-periodized function
zr instead of f above, we immediately have Wrzr = Urzr. Using this fact, it is easy to derive

TI*.'EI = U;IIWIiL'I = U;IIUI:EI = PI-Z'I-
O
Now for a general function z € L?(R), using Equation (3), the smooth orthogonal projection is realized in two steps:
P[.Q} = TI*TISL“ (4)

The first step Trz makes z(t) smoothly localized and I-periodized, which allows us to expand Ttz into a periodic
basis. Then, the second step T7(Trz) maps into Oy = PrL?(R). This is the significant difference from the local
cosine functions, which is realized just by one step.

2.3. The local Fourier basis

Wickerhauser®8 constructed a smooth localized orthonormal basis using the smooth orthogonal periodization in the
previous subsection. Let R = |J, 5 Ix where all the I};’s have disjoint action regions. Let {e x(t) : m € Z} be a



periodic orthonormal basis of L2(I},) = 15, L?(R) with period |Iz| = agi1 — ag. A typical example is the complex
exponentials, eq x(t) = (1/1/|I1])e*>™m(E-ax)/lIxl| Then, as we already indicated in Equation (4) and the remarks
after that, we have the following theorem.

Theorem 2.2 (Wickerhauser®®). The set {T} em }mez is an orthonormal basis of Q, = Pr, L*(R), and the set
{TF emk}(m,k)cz> is an orthonormal basis of L*(R).

From this theorem, it is easy to do both analysis and synthesis. We have the following expansion of z(t):

x(t) D <, T emp > TFemp(t)

k. m
Z Z <Tpz,emp > TI*k em,k(t). (5)
k. m

Hence, the expansion coeflicients can be computed by < 17, z, e, >, which are simply the expansion coeflicients
of the smoothly periodized function Ty, z(t) with respect to the periodic orthonormal basis {e, x}. For the discrete
version using the complex exponentials as e, x, we can readily use the FFT algorithm. For synthesis, applying T7,
on both sides of Equation (5) with Equation (3) leads to

TIk'Z-(t) = Z < Tkayem,k > 1Ikem,k(t)'

m

This is just the Fourier synthesis using the coefficients < Tp, 2, em,r > and the basis 17, em,,1 (). For the discrete
case, we can simply apply the inverse FFT to these coefficients. Once we get Ty, x(t), then applying T} gives us
Tt T, x(t) = Pr,z(t) by Equation (3). Because L*(R) = @4 Pr, L*(R), we can simply sum them to get

z(t) = Z Pr, x(t).

kEZ

As long as the action regions of the intervals {I} do not interfere with each other, each split {I; }rez of the time
axis R leads to an orthonormal basis. This naturally leads to the concept of a dictionary of orthonormal bases or a
time-frequency dictionary.

2.4. The local Fourier dictionary

Recursively partitioning the time axis into a binary tree structured set of intervals, Coifman, Meyer, and Wicker-
hauser®116 created a notion of the dictionary of orthonormal bases or time-frequency dictionary. Using the same
idea, we can easily construct the local Fourier dictionary. Below, we briefly describe its construction.

Let us define Iy = [k,k + 1). Then, of course, we have R = |J, o, fo,x- We then recursively split the intervals

at their midpoints. After jth recursion, each interval is of the form I; = [k/27,(k +1)/2%), k € Z. Clearly, for
each j € Z, we have R = J,c; Ijx and Ijx = Iji1 2k U Ij11 2141 For all practical purposes, we only consider
signals with finite support in time below. Suppose all the signals are contained in the support [a,b). Then, we can
also assume that all the signals are periodic with period b — a. This can be done by taking [a,b) wide enough so
that all the signals are zero around the borders ¢t = @ and ¢t = b, or applying the smooth orthogonal periodization
Tiq,p) to the evenly reflected signals at the borders. Finally, we can map [a,b) to Ipo = [0,1) by a simple change
of variable (t — a)/(b — a). We can now assume that all the signals are in L?(Iy) and periodic with period 1. We
also want to stop the recursion at certain level J € N in practice. Then, the dyadic intervals {I; +}, 7 =0,1,...,J,
k =0,1,...,2) — 1 can be readily arranged as a binary tree with the root node Ipo. For each interval I, we
can associate a subspace ;; = PIJ.’,“L2(IO,0) with Qoo = L?(Io0). This set of tree-structured subspaces (with the
localized complex exponentials as orthonormal basis functions at each subspace) is called the local Fourier dictionary.
This dictionary contains a huge number (more than 22J_1) of orthonormal bases since each cover of Iy ¢ by a subset
of {I;} corresponds to one orthonormal basis, as we mentioned in the previous subsection. For discrete and finite
dimensional versions of this dictionary, we start with a set of discrete signals sampled on the regular grid in the
interval Iy o with n time samples. Then, this version of the dictionary consists of a redundant number (e.g., nlogn)
of the basis vectors with the specific characters in scale, position, and frequency. These basis vectors are organized as



a binary tree in a hierarchical manner ranging from very localized spikes to global oscillations on Iy with different
frequencies. Therefore, pattern analysis and interpretation tasks using this dictionary become more intuitive than
using the standard basis or the discrete Fourier basis on the interval Iyo. Decomposing or reconstructing a signal
using this dictionary is fast, e.g., O(n[logn]?), thanks to the celebrated FFT algorithm.

How can we select a good basis out of such many possible bases? First of all, we need to know what purpose
such a basis is used for. In other words, we need to define a numerical criterion to evaluate the effectiveness of a
basis for one’s purpose. Then, we can use the bottom-up procedure to efficiently search a good basis tailored to the
specific application from a huge number of possible bases by optimizing that criterion. This divide-and-conquer (or
split-and-merge) algorithm is called the best-basis algorithm. Therefore, this dictionary provides us with a flexible,
hierarchical, and computationally efficient set of feature extractors at our disposal.

We note that the most straightforward extension of the above constructs to higher dimensions can be achieved
easily by the appropriate tensor products, which will be used in Section 4. The local Fourier dictionary for images is
particularly attractive because it contains the basis vectors with oblique oscillations, which the usual wavelet packets
and local cosine/sine dictionaries cannot have.

We also note that F. Meyer and R. R. Coifman'? recently developed brushlets—basis functions efficient for cap-
turing oriented textured patterns. They also use Wickerhauser’s smooth orthogonal periodization and its extension
to the biorthogonal case using the bell functions of Matviyenko” to partition the two-dimensional frequency domain
instead of the space domain. Therefore, the brushlet dictionary is a dual of the local Fourier dictionary.

In the following sections, we will describe (only a few) potential applications of the local Fourier dictionary.

3. THE BEST LOCAL TRANSLATION BASIS

Suppose we are given two signals. Suppose we want to make a correspondence (or find a match) between these two
signals. If all the features in the first signal are shifted by the same amount and there is no other distortion, i.e., if
the difference between these two signals is simply a global shift, then the usual Fourier transform solves our problem:
simply dividing the Fourier transform of the first signal by that of the second gives us a phase factor e=27%¢ where
b is the amount of the global shift. This strategy does not work if individual features move differently. We need to
consider the local shifts (or time-dependent shifts) to deal with this situation, which is not at all uncommon in practical
situations. For example, geophysical acoustic waveforms clearly have such local shifts since the compressional wave
(P wave) and the shear wave (S wave) propagate the media with different speeds depending on the elastic properties
of the media. Vertical seismic profile (VSP)!? is another example.

In order to explain how we can recover the local shifts and what is the good basis to do this job, let us first
consider a simple case of the global shift. Let z(t) and y(t) = z(t — b) + £(¢) be the two signals to be matched, where
(t) is i.i.d. Gaussian noise. Let Z(£) and (&) be their Fourier representations. As we already mentioned, the global
shift 7 in the time domain is simply the multiplication of e 2™7¢ in the Fourier domain, we can invoke the following
optimization to get the estimate of b, the true global shift.

b* = argmin [[e "¢ Z(€) — H(€) |- (6)
TER
Now, let us consider the discrete version of the above equation. Let = (¢, Z1,... ,Z,_1)7 be a vector representing

time samples of the signal z(¢) on the uniform sampling grid with enough number of samples so that no aliasing
happens. Similarly, let y € R™ be a vector of time samples of y(t). Let Z and 4 be their discrete Fourier transforms
(DFT). The global time-shift operator is now represented by the following matrix:

S, = diag(w, ", w7, w, T
= diag(w;*T,w b7, w2l
where w,, = e>™/", Hence Equation (6) can be rewritten as
b* =arg min  [|S,Z — F||a- (7)

—n/2<7<n/2
Because

18-2 =gl = ($:2 — )" (S, — §) = |23 + |15 - 2Re < S;2,7 >,



[|1Z]|2 = ||z||2, and ||g||2 = [|yl|2 by the Plancherel Theorem, the optimization in (7) is equivalent to

b* =ar max Re< S;Z,y>.

g—n/2gr<n/2 L, Y
We can use this optimization procedure locally at each subspace €2, of the local Fourier dictionary to recover the
local shifts that best matches the two signals. Let us define a functional to be maximized at €2} :

A .
Cik(T;2,y) =Re < SIZj 1, Y1 >, (8)

where S7 is a shift operator at level j subspaces (it does not depend on k if we use the homogeneous dyadic intervals
{Ijk}), ;1 and Y, , are the local Fourier coefficients of  and y at §2; 5, respectively.

We now propose the following algorithm for recovering the local shifts.

Step 0: Decompose given two signals « and y into the local Fourier dictionary of depth J < log, n (i.e., with levels
0,1,...,J).

Step 1: At each subspace of the tree, 2 , compute Gj*:k =max C; (T r; 2, Y).

Step 2: Invoke the best basis algorithm to select the best subspaces Q]*k This can be done by setting Q}"k =Quk
at the bottom level, and then pruning the tree of the subspaces recursively from j = J —1 to j = 0 via

e ok * *
* _ Qi,(k N if €7 > €y op + €t okt
j.k :

Qj+1,2k @ QHL%Jrl otherwise.

We call the basis thus selected (i.e., the basis corresponding to the space ngo) the best local translation basis (BLTB).

We also record the best local shifts corresponding to the best subspaces in the BLTB Q{)‘ZO, which can be used to
undo the local shifts for matching these two signals.

Figure 6 demonstrates the use of BLTB using a synthetic example. Here, we first generated a signal of length 1024
consisting of a Gaussian-windowed cosine function in the first half of the time axis and a Gaussian-windowed sine
function in the second half. Then we generated a second signal by shifting the feature in the first half by 100 units
to the right and the one in the second half by 50 units to the left. Finally, the white Gaussian noise with N(0,1)
was added to both of them. The first signal is considered as a template signal and we want to locally shift this
signal to match the second signal. For maximization of €; ;, we used Brent’s method.'* The local shifts recovered
by the BLTB method were 98.1386 and —50.3255. The matched signals after undoing local shifts are displayed in
Figure 6(b).

Figure 7 shows the results applied to the real geophysical acoustic waveforms propagated through the sandstone
layers located at different depths. One can observe that most of the local phases are matched after undoing the
estimated local shifts to the template signal.

4. STATISTICS OF NATURAL SCENES VIA LOCAL FOURIER DICTIONARY

In this section, we report the preliminary results of our experiments on the analysis of statistics of natural scene
images, which is a joint work with Brons Larson at UCD. The more complete report!® is in preparation.

Statistical analysis of natural scene images has recently drawn considerable attention particularly in the field of
neuroscience such as Field,'® Olshausen & Field,'”'® Bell & Sejnowski,'® van Hateren and van der Schaaf,?® to
name a few. Their main motivation is to understand the receptive field properties of simple cells in the mammalian
primary visual cortex by analyzing the statistics of natural scenes. Field'® suggested that neurons with line and
edge selectivities in primary visual cortex may provide sparse representation of natural scenes. This may imply that
mammals exploit the sparsity for image representations in their brain. Many neuroscientists have tried to answer
the following reverse proposition, which is also very interesting: Immersed in the natural environment, whether the
receptive fields of simple cells of mammals autonomously form edge or line detectors. If one can demonstrate this, it
may be a convincing argument about why mammals have edge detectors and why mammals are exploiting sparse and
efficient representations of natural scenes. This proposal has generated many interesting algorithms and numerical
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Figure 6. Before and after the match obtained by the BLTB for the synthetic signals.
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Figure 7. Before and after the match obtained by the BLTB. These are geophysical acoustic waveforms propagated
through two different sandstone layers.
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experiments.' 720 All of these approaches essentially try to find the basis functions from some overcomplete set of

bases by optimizing either sparsity or statistical independence (among the expansion coefficients) using the neural
networks or learning algorithms. In fact, they found that the estimated basis functions all resemble Gabor functions or
oriented DOG filters. On one hand, their algorithms are truly self-organizing since they can build such basis functions
completely from scratch. On the other hand, their computational cost prevents us from conducting experiments on
large image patches. Because of the high computational cost, most of their experiments used small image patches
(e.g., 12 x 12 or 16 x 16 pixels) extracted from a set of natural scene images.

Mathematically, these approaches can be formulated as follows. Let X be a random vector representing an image
patch extracted from a collection of natural scene images. Let ® be a matrix whose columns are basis vectors to be
determined. Then, their approaches can be written as

min Ex {|1X - 8Y[3 + S0}, )

where Ex is the expectation operator with respect to X, Y = Y (X) is a vector of the expansion coefficients of an
input X relative to the basis ®, and A > 0 is a weight controlling the relative importance of the fidelity term and the
term S(Y") that is the focal point of various discussions, i.e., a measure of the effectiveness of the basis ®. Olshausen
and Field'"'® used the sparsity constraint

S(Y) =) log(1+Y?),

(3

whereas Bell and Sejnowski!? used the ‘infomax’ constraint

where H is the Shannon entropy, and g(-) is a nonlinear sigmoidal function. (We use the minimization scheme here
s0, we put the minus sign in front of H, i.e., minimization of negentropy.)

Donoho?! recently suggested that the concept of the Sparse Component Analysis (SCA) and conducted a detailed
mathematical analysis, where he argued that sparsity and overcompleteness may be more plausible on biological
grounds and are more important for practical data compression purposes than statistical independence.

In the mean time, from a completely different motivation (stochastic modeling of a class of similar images),
the author developed an algorithm of computing the least statistically-dependent basis (LSDB) selected from time-
frequency dictionaries.?>2®  This can be viewed as a dictionary version of the independent component analysis
(ICA).2425

This series of works has motivated us to study the following questions:

1. To form edge or line detectors, sparsity is more important than statistical independence?
2. What is the effect of the sizes of the image patches used?

3. What is the effect of orthonormality?

4. What is the effect of overcompleteness?

5. What is the effect of orientation selectivities of basis functions?

Our plan is to examine these questions using the same natural scene images used by Olshausen and Field'"'8 and
using various basis dictionaries such as local Fourier, brushlets,'? edgetlets,?® local cosine, wavelet packets, which
we will report in the near future.!® In this paper, we will show preliminary results using the local Fourier dictionary.
This dictionary is particularly interesting since it provides oriented feature extractors, which the wavelet packets
and local cosine/sine dictionaries cannot provide, and such oriented pattern detectors are prevalent in human vision
systems.27

Now we describe our experiments in this paper more precisely. Our setting is the following.

1. Set D = 2D Local Fourier Dictionary.
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2. Each ® examined in the optimization is a complete orthonormal basis selected from D by the joint best basis
(JBB) algorithm!!:?® (with different optimization criteria from the original proposals). This selection makes
the first term of the optimization (9) always 0.

3. Set S(Y) = ||Y||l1 (¢* norm) for the sparsity constraint, and S(Y') = Y, H(Y;) (sum of the differential entropy
of the individual coordinates) for the independence constraint.

4. Image patch size ranges from 16 x 16 to 128 x 128.

The reason why S(Y) = ||Y||; measures sparsity of the sequence of the coefficients Y is the following.?! Let
IV, = (3, |¥:P)'/? be the €7 norm. Then, for p, 0 < p < 1, this is a robust version of the true sparsity measure
[Ylo = #{i : Y; # 0} since limy o [|Y[|5 = [[Y[|o- In this report, we only examine p = 1.

The reason why S(Y) = ), H(Y;) measures the statistical dependence among the coordinates Y; is the follow-
ing.222%  The mutual information of Y is defined as

I0) = 10 ¥) = [ el top D0 gy, = vy + 3 (Y,
[Lis: fvi(wa) P

where fy is a joint probability density function (pdf) of Y, and fy, is a marginal pdf by integrating the joint pdf
with respect to all but Y;. The mutual information I(Y) measures statistical dependence among the coordinates Y;:
the more dependent Y;’s are, the larger I(Y) gets, I(Y) is always nonnegative, and I(Y) = 0 if and only if Y;’s are
statistically independent. Now, by simple computation, as long as the matrix ® is selected from SL(n,C), which
includes both orthonormal and appropriately normalized biorthogonal bases, the change of the coordinates by ®
preserves the joint entropy H(Y'), that is, H(Y) = H(X) for any such ®. Therefore, minimizing I(Y) is equivalent
to minimizing Y 1 H(Y;) as long as ® € SL(n,C). In practice, we need to use a certain density estimation method
such as average shifted histograms for two-dimensional data since the local Fourier dictionary generates a table
of complex-valued coefficients. The computational cost of our approach regardless of using the sparsity constraint
or the independence constraint is less expensive than the neural network based optimization; indeed, it only costs
O(n[logn]?).

Some of the results of our experiments are shown in Figures 8 and 9. These are the most energetic 128 basis
vectors (each basis vector is complex-valued) for each case.

We observe the following from these figures.

1. The sparsity constraint tends to split the image patches into a finer segments (i.e., local Fourier basis functions
of size 8 x 8 pixels) than the independence constraint.

2. The independence constraint prefers the basis functions with larger support (32 x 32 pixels). The patches with
128 x 128 (not shown) and 64 x 64 lead to the basis functions whose supports are 32 x 32 pixels while the
patches with 32 x 32 (not shown) and 16 x 16 were not split at all.

3. The basis functions with rather high frequency nature are included in the list since we impose to select the
complete basis.

From this set of experiments, in order to form small scale edge or line detectors, the sparsity seems more important
than the statistical independence as Donoho suggested, mainly because experiments on the larger image patches
(e.g., 64 x 64, 128 x 128) consistently selected small scale basis vectors (8 x 8). On the other hand, we need more
experiments to answer the above questions more definitely by examining various different dictionaries, and using
robust entropy estimators for the statistical independence.

5. DISCUSSION
5.1. Locally analytic signals

Once we select a basis from the local Fourier dictionary by a certain criterion, it is straightforward to construct the
analytic signals locally at each segment by computing the Hilbert transform. This may also be combined with the
latest method to factor a signal into the well-behaved phase and amplitude components via the Blaschke products
being developed by Coifman and Nahon.?? Such methods are also important for robust estimation of local shifts
in signals discussed in Section 3 since the local shifts of highly oscillatory features create many local maxima in
Equation (8), which make optimization task much tougher.
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a) JBB—¢! norm minimization b) LSDB
(a)

Figure 8. The top 128 basis vectors for 16 x 16 patches. The upper and lower halves of each matrix show the real
and imaginary components of the basis vectors, respectively.

(a) JBB-¢! norm minimization (b) LSDB

Figure 9. The top 128 basis vectors for 64 x 64 patches.
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5.2. Local deformation, signal matching, and data compression

The local shifts discussed in Section 3 is the simplest kind of general local deformation mechanisms including localized
rotation and nonlinear warping. Recovering localized versions of shifts, rotations, and other deformations has at least
two important implications. First, this recovery leads to image registration giving a clue to the change between the
two images, which may in turn deepen our understanding of the objects under investigation. Second, this may lead
to compact data representation. The idea here is to represent a sequence of signals or images by a template with
the deformation parameters. The template itself can also be compressible by the time-frequency dictionary. Then,
the whole dataset such as the geophysical acoustic waveforms used by the author3® can be represented by a single
template signal (the mean signal is one of the candidates for such a template) and all the deformation parameters
that make the template signal look like the other signals. If the dataset consists of completely different signals,
then this strategy will not work: too many bits are required to describe the deformation parameters, which will not
help compression. But if the dataset consists of similar but slightly different signals and if these differences can be
captured by the deformation parameters compactly, then the gain might be huge. This idea may be viewed as a
nonlinear generalization of the Karhunen-Loeéve transform.

5.3. Further extension

Matviyenko” developed biorthogonal window functions for the local cosine/sine bases that have better time-frequency
localization property while maintaining stability and efficiency in computations compared to the Gabor bases. Ben-
nett®! recently extended the 2D local cosine/sine and wavelet packet dictionaries by splitting an image into a forest of
dyadic segments which includes a quadtree and allows rectangular partitioning of the input image. He also developed
a fast best-basis search algorithm from such a forest of subspaces. These generalizations and extensions are yet to
be investigated under the local Fourier context.
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