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a b s t r a c t

In 2006, Naoki Saito proposed a Polyharmonic Local Fourier Transform (PHLFT) to
decompose a signal f ∈ L2(Ω) into the sum of a polyharmonic component u and a residual v,
whereΩ is a bounded and open domain in Rd. The solution presented in PHLFT in general
does not have an error with minimal energy. In resolving this issue, we propose the least
squares approximant to a given signal in L2([−1, 1]) using the combination of a set of
algebraic polynomials and a set of trigonometric polynomials. The maximum degree of the
algebraic polynomials is chosen to be small and fixed. We show in this paper that the least
squares approximant converges uniformly for a Hölder continuous function. Therefore
Gibbs phenomenon will not occur around the boundary for such a function. We also show
that the PHLFT converges uniformly and is a near least squares approximation in the sense
that it is arbitrarily close to the least squares approximant in L2 norm as the dimension
of the approximation space increases. Our experiments show that the proposed method
is robust in approximating a highly oscillating signal. Even when the signal is corrupted
by noise, the method is still robust. The experiments also reveal that an optimum degree
of the trigonometric polynomial is needed in order to attain the minimal l2 error of the
approximation when there is noise present in the data set. This optimum degree is shown
to be determined by the intrinsic frequency of the signal. We also discuss the energy
compaction of the solution vector and give an explanation to it.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In 2006, Naoki Saito proposed a Polyharmonic Local Sine Transform (PHLST) [1] in an attempt to develop a local Fourier
analysis and synthesismethodwithout encountering the infamous Gibbs phenomenon. PHLST is also used to resolve several
problems occurring in the Local Trigonometric Transforms (LTTs) of Coifman and Meyer [2] and Malvar [3,4], such as the
overlapping windows and the slopes of the bell functions (see [1] for the details on how PHLST resolves these problems).
Let us pause for a moment to define some notations. To index infinitely countable sets, we adopt the following standard

conventions: let N be the set of natural numbers, and the set Z+ := {0} ∪ N. To enumerate finite sets, we define
Zk := {0, 1, . . . , k− 1}, and Nk := {1, 2, . . . , k}.
PHLST first segments a given function (or input data) f (x), x ∈ Ω ⊂ Rd supported on an open and bounded domainΩ

into a set of disjoint blocks {Ωj : j ∈ ZM} for a positive integer M such that Ω =
⋃
j∈ZM

Ω j. Denote by fj the restriction of
the function f toΩ j, i.e., fj = χΩ j f , where χΩ j is the characteristic function on the setΩ j, j ∈ ZM . Then PHLST decomposes
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each fj into two components as fj = uj + vj. The components uj and vj are referred to as the polyharmonic component and
the residual, respectively. The polyharmonic component is obtained by solving the following polyharmonic equation:

∆muj = 0 inΩj, m ∈ N (1.1)

with a set of given boundary values and normal derivatives

∂q`uj
∂ νq`

=
∂q` f
∂ νq`

on ∂Ωj, ` ∈ Zm, (1.2)

where∆ =
∑d
i=1 ∂

2/∂x2i is the Laplace operator inRd. The natural numberm is called the degree of polyharmonicity, and q`
is the order of the normal derivative. These boundary conditions (1.2) enforce that the solution uj interpolates the function
values and the normal derivatives of orders q1, . . . , qm−1 of the original signal f along the boundary ∂Ωj. The parameter
q0 is normally set to 0, which means that uj = f on the boundary ∂Ωj, i.e., the Dirichlet boundary condition. If the blocks
Ωj, j ∈ ZM , are all rectangles (of possibly different sizes), PHLST sets q` = 2`, i.e., only normal derivatives of even orders are
interpolated. It is not necessary to match normal derivatives of odd orders when the blocks Ωj’s are rectangular domains.
This is because the Fourier sine series of the residual vj is equivalent to the complex Fourier series of the periodized vj after
odd reflection with respect to the boundary ∂Ωj, hence the continuity of the normal derivatives of odd orders (up to order
2m − 1) is automatically guaranteed. Thanks to these boundary conditions, the residual component can be expanded into
a Fourier sine series without facing the Gibbs phenomenon, and the Fourier sine expansion coefficients of the residual vj
decay rapidly, i.e., in the order O(‖k‖−2m−1), provided that there is no other intrinsic singularity in the domainΩj, where k
is the frequency index vector.
In our joint work [5], we implemented PHLST up to polyharmonicity of degree 5. The corresponding algorithm is called

PHLST5. In that work, we derived a fast algorithm to compute a 5th degree polyharmonic function that satisfies certain
boundary conditions. Although the Fourier sine coefficients of the residual of PHLST5 possess the same decaying rate as in
LLST (Laplace Local Sine Transform, the simplest version of PHLST with polyharmonicity of degree 1), by using additional
information of first order normal derivative from the boundary, the blocking artifacts are largely suppressed in PHLST5 and
the residual component becomes much smaller than that of LLST. Therefore PHLST5 provides a better approximation result.
Due to the difficulty of estimating higher order derivatives, we consider PHLST5 as the practical limitation of implementing
PHLST with higher degree polyharmonicity.
Soon after developing PHLST, N. Saito and K. Yamatani extended it to the Polyharmonic Local Cosine Transform (PHLCT) [6].

The PHLCT allows the Fourier cosine coefficients of the residual decay in the order O
(
‖k‖−2m−2

)
by setting q` = 2`+1, ` ∈

Zm in the boundary conditions (1.2) and by introducing an appropriate source term on the right-handed side of the
polyharmonic equation (1.1). In that work, an efficient algorithm was developed to improve the quality of images already
severely compressed by the popular JPEG standard, which is based on Discrete Cosine Transform (DCT).
Finally, N. Saito introduced the Polyharmonic Local Fourier Transform (PHLFT) [1] by setting q` = `, ` ∈ Zm in Eq.

(1.2) and by replacing the Fourier sine series with the complex Fourier series in expanding the vj components. With some
sacrifice of the decay rate of the expansion coefficients, i.e., of order O

(
‖k‖−m−1

)
instead of order O

(
‖k‖−2m−1

)
or of order

O
(
‖k‖−2m−2

)
, PHLFT allows one to compute local Fourier magnitudes and phases without facing the Gibbs phenomenon.

PHLFT also can capture the important information of orientation much better than PHLST and PHLCT. Moreover, it is fully
invertible and should be useful for various filtering, analysis, and approximation purposes.
Although the Fourier coefficients of the residual v decay rapidly, it is virtually useless for the purpose of approximation.

Therefore, in practice we shall not only seek fast decaying rate of the Fourier coefficients of the residual v, but also a residual v
of a small energy. However, the residual v in PHLST (or in PHLCT or PHLFT) in general does not necessarily have minimal
energy. In resolving this issue, we propose the least squares approximant to a given signal using the combination of a set of
algebraic polynomials and a set of trigonometric polynomials. The maximum degree of the algebraic polynomials is chosen
to be small and fixed.We show in this paper that the least squares approximant converges uniformly for a Hölder continuous
function. Therefore the Gibbs phenomenon will not occur on the boundary for such functions. We also show that the PHLST
(or PHLCT, PHLFT) converges uniformly and is a near least squares approximation in the sense that it is arbitrarily close to
the least squares approximant in the L2 norm as the dimension of the approximation space increases. Our experiments show
the proposed method is robust in approximating a highly oscillating signal. Even when the signal is corrupted by noise, the
method is still robust. The experiments also reveal that an optimum degree of trigonometric polynomial is needed in order
to attain minimal l2 error of the approximation when there is noise present in the data set. This optimum degree is shown
to be determined by the intrinsic frequency of the signal. We also discuss the energy compaction of the solution vector and
give an explanation to it.

2. Problem formulation and characterization of the solution

Let f be a noise corrupted and finite-energy signal on the interval J := [−1, 1], that is f ∈ L2(J). The L2 norm of a function
f ∈ L2(J) is denoted by ‖f ‖, that is ‖f ‖2 :=

∫
J |f (x)|

2 dx. Other norms used in this paper will be indicated by the appropriate
subscripts.
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Let q and p be nonnegative integers. Denote by Tq := span
{
1
√
2
e(ijπ ·), |j| ≤ q

}
the space of trigonometric polynomials

of degree no greater than q, and by Pp the set of algebraic polynomials with degree no greater than p. Let us consider the
minimization problem: finding up ∈ Pp and vq ∈ Tq such that

‖f − up − vq‖ = inf
u∈Pp,
v∈Tq

‖f − u− v‖. (2.3)

Our intention is to keep p small and fixed, such as p = 1, 2, 3, and q can be large as needed. Equivalently, by definingn := p+q+1
and

Vn := Pp ∪ Tq,

we can recast the minimization problem (2.3) as: finding fn := up + vq ∈ Vn, such that

‖f − fn‖ = inf
h∈Vn
‖f − h‖. (2.4)

We refer to the approximant fn obtained via (2.3) or (2.4) as one-step least squares approximation. To assert the existence and
uniqueness of the solution to the minimization problems (2.3) or (2.4), we recall the following proposition.

Proposition 2.1 ([7, p. 114]). Assume V is a convex and closed finite-dimensional subset of an inner product space H. There is a
unique element f̂ ∈ V such that

‖f − f̂ ‖ = inf
h∈V
‖f − h‖, f ∈ H.

The set Vn defined earlier is in fact a finite-dimensional subspace of L2(J), hence convex and closed. Therefore by
Proposition 2.1, the following theorem holds.

Theorem 2.2. There exists a unique best approximant fn ∈ Vn to the minimization problem (2.3) or (2.4).

The set {Vn, n ∈ N} forms a nested sequence of subspaces of L2(J), i.e.,

V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ Vn+1 ⊂ · · · ⊂ L2(J).

In fact, since it is known that the set
{
1
√
2
e(ijπ ·) : j ∈ Z

}
is an orthonormal basis for L2(J), we must have⋃

n∈N

Vn = L2(J).

Therefore, in the L2 norm, the least squares approximant fn converges to f , i.e.,

‖f − fn‖ → 0 as n→∞. (2.5)

Next lemma is crucial in characterizing the one-step least squares approximation.We shall useFq(f ) to denote the partial
Fourier series of terms of degree≤q of a function f ∈ L2(J).

Lemma 2.3. Suppose fn = up + vq is the one-step least squares approximation of f ∈ L2(J), where up ∈ Pp and vq ∈ Tq. Then
vq must be the partial Fourier series of f − up for each q ∈ Z+, i.e.,

vq = Fq(f − up) =
∑
|j|≤q

1
√
2
cje(ijπ ·)

and

f − up = lim
q→∞

vq =
∑
j∈Z

1
√
2
cje(ijπ ·),

where the sequence (cj : j ∈ Z) ∈ l2(Z) and cj = 〈f −up, 1√2e
ijπ ·
〉 for j ∈ Z. Here 〈·, ·〉 denotes the inner product of two functions

on the interval [−1, 1].

Proof. Since up + vq is the least squares approximation of f , we must have

‖f − (up + vq)‖ ≤ ‖f − (u+ v)‖, for any u ∈ Pp, v ∈ Tq.

In particular, fix u = up,

‖f − (up + vq)‖ ≤ ‖f − (up + v)‖, for any v ∈ Tq.
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This is equivalent to

‖(f − up)− vq‖ ≤ ‖(f − up)− v‖, for any v ∈ Tq,

which implies that vq is the best L2 approximation in Tq of f −up. But this is equivalent to saying that vq is the partial Fourier
series of f − up of degree q. �

In fact as n→∞ (hence q→∞), there are two sequences of functions created: (u(n)p : n ∈ N) and (v(n)q : n ∈ N), and
the corresponding coefficient sequence (cj) : j ∈ Z also depends on n. To ease the burden of notations, we will suppress the
superscripts. But keep in mind for the least squares approximant fn = up + vq, both up and vq vary as q increases while p is
kept fixed.
We shall in the sequel also consider the least squares approximant on the interval I := [0, 1] of a function g ∈ L2(I) using

the combination of algebraic polynomials with sine polynomials only or cosine polynomials only in place of trigonometric
polynomials. For simplicity, we still usePp to denote the set of algebraic polynomials of degree no greater than p on I . Denote
the set of sine polynomials of degree no greater than q by

Sq :=
{√
2 sin(jπ ·) : j ∈ Nq

}
,

and the set of cosine polynomials of degree no greater than q by

Cq :=
{√
2 cos(jπ ·) : j ∈ Nq

}
.

Recall the Fourier sine series of g on I coincides with the (full) Fourier series of the periodized odd reflection of g , which we
denote by godd. Likewise, the Fourier cosine series of g on I is the (full) Fourier series of the periodized even reflection of g ,
which we denote by geven. Sometimes we will suppress the subscripts for even or odd extension if the meaning is clear from
the context. We shall still use Fq(g) to denote the truncated sine series or cosine series of a function g on I . The following
corollaries are immediate results of Lemma 2.3.

Corollary 2.4. Suppose fn = up+ vq is the one-step least squares approximation of f ∈ L2(I), where up ∈ Pp and vq ∈ Sq. Then
vq must be the partial sine series of f − up for each q ∈ N, i.e.,

vq = Fq(f − up) =
∑
j∈Nq

√
2cj sin(jπ ·)

and

f − up = lim
q→∞

vq =
∑
j∈N

√
2cj sin(jπ ·),

where the sequence (cj : j ∈ N) ∈ l2(Z).

Corollary 2.5. Suppose fn = up+ vq is the one-step least squares approximation of f ∈ L2(I), where up ∈ Pp and vq ∈ Cq. Then
vq must be the partial cosine series of f − up for each q ∈ N, i.e.,

vq = Fq(f − up) =
∑
j∈Zq+1

√
2cj cos(jπ ·)

and

f − up = lim
q→∞

vq =
∑
j∈Z+

√
2cj cos(jπ ·),

where the sequence (cj : j ∈ Z+) ∈ l2(Z).

Lemma 2.3 and Corollaries 2.4 and 2.5 allow us to apply the classical Fourier analysis to the least squares approximant
up + vq.

Theorem 2.6. Let f ∈ L2(J). Suppose that ũp ∈ Pp is an arbitrary polynomial of degree no greater than p, and ṽq := Fq(f − ũp)
is the partial Fourier series of f − ũp of degree q. Define the function

f̃n = ũp + ṽq.

Then there exist N ∈ N, such that whenever n ≥ N, f̃n is arbitrarily close to the one-step least squares approximant fn in the L2
norm. That is, for any given ε > 0, there exits N, such that

‖fn − f̃n‖ < ε, for n ≥ N,

where the norm ‖ · ‖ is the L2 norm.
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Proof. By Lemma 2.3, we know for the one-step least squares approximant up + vq,

f − up = lim
q→∞

vq.

By the assumption of the theorem, we also obtain

f − ũp = lim
q→∞

ṽq.

The above two equalities are in the L2 sense and they yield

up + lim
q→∞

vq = ũp + lim
q→∞

ṽq.

But this implies that

lim
q→∞

(up + vq) = lim
q→∞

(ũp + ṽq)

in the L2 norm and the theorem follows. �

Although up varies for each q as q increases in finding the one-step least squares approximant fn = up + vq, according
to Theorem 2.6, one can find an approximant f̃n arbitrarily close to the one-step least squares approximant fn by fixing the
polynomial component ũ = ϕ, and then computing the partial Fourier series ṽq of f −ϕ. We summarize this in the following
corollary.

Corollary 2.7. Given f ∈ L2(J), its one-step least squares approximant fn = up+vq from the spacePp∪Tq can be approximated
by choosing a fixed polynomial ϕ ∈ Pp. That is,

fn ≈ ϕ + ṽq, (2.6)

where ṽq is the partial Fourier series of degree q of f − ϕ. This approximation can have arbitrary accuracy in the sense that

lim
n→∞

fn = ϕ + lim
q→∞

ṽq,

in the L2 norm.
The results of Theorem 2.6 and Corollary 2.7 can be easily adapted to the cases of using sine polynomials or cosine
polynomials. We leave it to the readers. Since in Eq. (2.6), the choice of ϕ is arbitrary, we define a near least squares
approximation for the class of continuous functions.

Definition 2.8. Let f be a continuous function on the interval [−1, 1]. Let ϕ be a polynomial of degree p passing through the
two points (−1, f (−1)) and (1, f (1)), and let the truncated Fourier series of f − ϕ be v̄q of degree q. The near least squares
approximation of f from the approximating space Pp ∪ Tq is

f̄n := ϕ + v̄q.

Remark. For the near least squares approximation on the interval [0, 1] formed by sine polynomials, we define the
polynomial ϕ to be the one passing through (0, f (0)) and (1, f (1)). For the near least squares approximation on the interval
[0, 1] formed by cosine polynomials, ϕ can be an arbitrary polynomial.

We are more concerned if the one-step least squares approximation converges uniformly on the interval [−1, 1] (or
[0, 1]), hence also strongly in the L2 norm and pointwise. To that end, we recall the well-known Jackson’s Theorem [8] on
the uniform error bound for algebraic polynomial approximation or trigonometric polynomial approximation, and the fact
that the uniform norm of Fq(f ) is of order O(log q) [9, p. 67], we present the following proposition.

Proposition 2.9 ([7, p. 128]). Let the 2-periodic function f possess continuous derivatives up to order k ≥ 0. Further assume that
its k-th derivative is Hölder continuous of order α ∈ (0, 1], then the uniform norm of the error of the approximation Fq(f )

‖f − Fq(f )‖∞ ≤ τk
log q
qk+α

, for q ≥ 2,

where τk is a constant linearly dependent on the Hölder constant of the k-th derivative of f and otherwise independent of f . In
particular, if f is continuous (k = 0) for some Hölder constant α > 0, then Fq(f ) converges to f uniformly.

Next lemma shows that the near least squares approximant for a continuous function converges uniformly.

Lemma 2.10. Assume f is Hölder continuous of order α ∈ (0, 1] on the interval [−1, 1]. Suppose its first derivatives is of bounded
variation. The near least squares approximation f̄n converges uniformly on the interval [−1, 1] as n→∞, at least in the order of
O
(
log q
qα

)
, where q is the degree of the trigonometric polynomial. Moreover, the Fourier coefficient with frequency index j decays

at least in the order of O
(
1
j2

)
.

Please cite this article in press as: N. Saito, Y. Wang, The polynomial Fourier transform with minimum mean square error for noisy data, Journal of
Computational and Applied Mathematics (2010), doi:10.1016/j.cam.2010.02.039



ARTICLE  IN  PRESS
6 N. Saito, Y. Wang / Journal of Computational and Applied Mathematics ( ) –

Proof. Note in constructing the near least squares approximation, ϕ is chosen such that (f − ϕ)(−1) = (f − ϕ)(1) = 0.
Thus (f − ϕ) can be continuously extended to a 2-periodic function (f − ϕ)per of Hölder constant α. By Proposition 2.9, v̄q,
the truncated Fourier series Fq(f − ϕ) of the periodized (f − ϕ)per, converges to f − ϕ uniformly in the order indicated in
the theorem. The decay rate of the Fourier coefficients follows from the classical Fourier analysis [9, p. 46]. �

Remark. For the near least squares approximant using cosine polynomials or sine polynomials, the result of Lemma 2.10
remains the same. In the case f has continuous derivatives of higher order k > 0, such as at least k ≥

(
b
p+1
2 c − 1

)
, one can

find ϕ as the Hermite interpolating polynomial of f such that f (i)(−1) = ϕ(i)(−1) and f (i)(1) = ϕ(i)(1), i ∈ Z
b
p+1
2 c
, where

bxc is the largest integer ≤ x. If we also assume that the
(
b
p+1
2 c − 1

)
th order derivative of f is of α-Hölder continuous,

consequently, the periodized extension of f − ϕ is in Cb
p+1
2 c−1,α(R), where α ∈ (0, 1]. In this case, the near least squares

approximant f̄n converges to f in the possibly highest order O
(

log q

qb
p+1
2 c−1+α

)
, and correspondingly the Fourier coefficients

decay in the order of O
(

1

jb
p+1
2 c+1

)
. This makes us quickly link the near least squares approximant in this case to a truncation

of the PHLFT of a function f . We state it in the next theorem.

Theorem 2.11. Let f be 2m (m > 0) times continuously differentiable on the interval [−1, 1]. Assume its (m− 1) st derivative
f (m−1) is Hölder continuous of order α ∈ (0, 1]. Then its PHLFT representation with the degree of polyharmonicity m is

f = φ +
1
√
2

∑
j∈Z

cje(ijπ ·),

where, φ is a Hermite interpolating polynomial of degree at most 2m − 1 satisfies the polyharmonic equation φ(2m) = 0 and
f (`)(−1) = φ(`)(−1), f (`)(1) = φ(`)(1), ` ∈ Zm. Hence the coefficients cj, j ∈ N, decay in the order of O(j−m−1). Moreover,

f̃n = φ +
1
√
2

∑
|j|≤q

cje(ijπ ·)

is a near least squares approximant of f on [−1, 1] from the space P2m−1 ∪ Tq, and f̃n converges to f uniformly in the order of

O
(

log q
qm−1+α

)
.

We note the periodized odd reflection of a function on [0, 1] automatically induces the continuity of the derivatives of
odd order at the boundary, therefore to maximize the regularity of the periodized odd reflection of f − ϕ, one only needs to
match the values of even order derivatives of ϕ with those of f on the boundary. This makes us link PHLST to the near least
approximant. We state it in the next corollary.

Corollary 2.12. Let f be 2m (m > 0) times continuously differentiable on the interval [0, 1]. Assume its (2m− 1) st derivative
f (2m−1) is Hölder continuous of order α ∈ (0, 1]. Then its PHLST representation with the degree of polyharmonicity m is

f = φ +
√
2
∑
j∈N

cj sin(jπ ·),

where, φ is a Hermite interpolating polynomial of degree at most 2m − 1 satisfies the polyharmonic equation φ(2m) = 0 and
f (2`)(0) = φ(2`)(0), f (2`)(1) = φ(2`)(1), ` ∈ Zm. Hence the coefficients cj, j ∈ N, decay in the order of O(j−2m−1). Moreover,

f̃n = φ +
√
2
∑
j∈Nq

cj sin(jπ ·)

is a near least squares approximant of f on [0, 1] from the space P2m−1 ∪ Tq, and f̃n converges to f uniformly in the order of

O
(

log q
q2m−1+α

)
.

Likewise, the periodized even reflection of a function on [0, 1] automatically induces the continuity of the even order
derivatives on the boundary, therefore to maximize the regularity of the periodized even reflection of f −ϕ, one only needs
to match the values of odd order derivatives of ϕ with those of f on the boundary. This makes us link PHLCT to the near least
approximant. We state it in the next corollary.

Corollary 2.13. Let f be 2m (m > 0) times continuously differentiable on the interval [0, 1]. Assume its 2m-th derivative f (2m)
is Hölder continuous of order α ∈ (0, 1]. Then its PHLCT representation with the degree of polyharmonicity m is

f = φ +
√
2
∑
j∈N

cj cos(jπ ·),

Please cite this article in press as: N. Saito, Y. Wang, The polynomial Fourier transform with minimum mean square error for noisy data, Journal of
Computational and Applied Mathematics (2010), doi:10.1016/j.cam.2010.02.039



ARTICLE  IN  PRESS
N. Saito, Y. Wang / Journal of Computational and Applied Mathematics ( ) – 7

where, φ is a Hermite interpolating polynomial of degree at most 2m − 1 satisfies the polyharmonic equation φ(2m) = 0 and
f (2`+1)(0) = φ(2`+1)(0), f (2`+1)(1) = φ(2`+1)(1), ` ∈ Zm. Hence the coefficients cj, j ∈ N, decay in the order of O(j−2m−2).
Moreover,

f̃n = φ +
√
2
∑
j∈Zq+1

cj cos(jπ ·)

is a near least squares approximant of f on [0, 1] from the space P2m−1 ∪ Tq, and f̃n converges to f uniformly in the order of

O
(
log q
q2m+α

)
.

From the above discussion, we know a near least squares approximant is an approximation to the one-step least squares
approximant that also converges uniformly. Now we are ready to show that the least squares approximant must converge
uniformly for a continuous functions.

Theorem 2.14. Assume f is Hölder continuous of order α ∈ (0, 1] on the interval [−1, 1]. The one-step least squares
approximant fn = up + vq converges uniformly on the interval [−1, 1], as n→∞, at least in the order of O

(
log q
qα

)
. Moreover,

the Fourier coefficients decay at least in the order of O
(
1
j2

)
, and up must converge to a polynomial whose values at the boundary

agree with those of f , as q approaches∞.

Proof. We recall from Lemma 2.3 that vq is the partial Fourier series of f − up. Let us denote the Fourier series of
f − up by f − up =

∑
j∈Z

1
√
2
cje(ijπ ·). Similarly, denote the Fourier series of f − ϕ by f − ϕ =

∑
j∈Z

1
√
2
dje(ijπ ·). Since

‖f − up − vq‖ ≤ ‖f − ϕ − v̄q‖, we have by using Parseval’s identity,∑
|j|>q

|cj|2 ≤
∑
|j|>q

|dj|2.

By Lemma 2.10 we know∑
|j|>q

|dj|2 ≤ C
∑
|j|>q

(
1
j2

)2
,

for some constant C . Therefore∑
|j|>q

|cj|2 ≤ C
∑
|j|>q

(
1
j2

)2
.

This implies cj decays at least in the order of O
(
1
j2

)
. Hence

∑
j∈N |cj| < ∞. Consequently vq must converge uniformly to

f −up, which in turn implies fn = up+vq converges to f uniformly. The decaying order of cj also implies that the periodized
extension of f − up is in C0,α(R) as q→∞. The rest of the theorem immediately follows from this fact. �

The above theorem indicates that for an α-Hölder continuous function f on [−1, 1] with nonzero values at the two end
points, our proposed one-step least squares approximant and the near least squares approximant can eliminate the Gibbs
phenomenon that would occur if only trigonometric polynomials are used.
When f has continuous derivatives of higher order k > 0, such as at least k ≥

(
b
p+1
2 c − 1

)
, we expect that the one-step

least squares approximant should converge uniformly faster. By the remark after Lemma 2.10 and the previous theoremwe
deduce the following result.

Theorem 2.15. Assume that f has continuous derivatives of order k ≥
(
b
p+1
2 c − 1

)
on the interval [−1, 1], and that the(

b
p+1
2 c − 1

)
st order derivative of f is of α ∈ (0, 1] Hölder continuous. The one-step least squares approximant fn = up + vq

converges uniformly on the interval [−1, 1], as n→∞, at least in the order of O
(

log q

qb
p+1
2 c−1+α

)
. Moreover, the Fourier coefficients

decay at least in the order of O
(

1

jb
p+1
2 c+1

)
, and upmust converge to a polynomialwhose values at the boundary agreewith those of

f , and moreover whose values of normal derivatives at the boundary up to order b p+12 c−1 agree with those of f , as q approaches
∞.

We readily present the results for the one-step least squares approximant by using only sine polynomials or only cosine
polynomials in the next two corollaries.

Corollary 2.16. Let f be 2m (m > 0) times continuously differentiable on the interval [0, 1]. Assume its (2m− 1) st derivative
f (2m−1) is Hölder continuous of order α ∈ (0, 1]. The least squares approximant fn = up + vq by using sine polynomials vq
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converges uniformly on the interval [0, 1], as n→∞, at least in the order of O
(

log q
q2m−1+α

)
. Moreover, the Fourier sine coefficients

decay at least in the order of O
(

1
j2m+1

)
, and up must converge to a polynomial whose values at the boundary agree with those of

f , and whose values of normal derivatives at the boundary up to order 2m− 1 agree with those of f , as q approaches∞.

Corollary 2.17. Let f be 2m (m > 0) times continuously differentiable on the interval [0, 1]. Assume its 2m st derivative f (2m)
is Hölder continuous of order α ∈ (0, 1]. The one-step least squares approximant fn = up + vq by using cosine polynomials vq
converges uniformly on the interval [0, 1], as n→∞, at least in the order of O

(
log q
q2m+α

)
. Moreover, the Fourier sine coefficients

decay at least in the order of O
(

1
j2m+2

)
, and up must converge to a polynomial whose values at the boundary agree with those of

f , and whose values of normal derivatives at the boundary up to order 2m agree with those of f , as q approaches∞.

According to Corollary 2.7, one may try to approximate the one-step least squares approximant by the following
approach:
Step 1: find ûp ∈ Pp, such that

‖f − ûp‖ = inf
u∈Pp,
‖f − u‖.

Step 2: Find v̂q ∈ Tq, such that

‖(f − ûp)− v̂q‖ = inf
v∈Tq,
‖(f − ûp)− v‖.

Let us denote f̂n := ûp + v̂q. We name f̂ as the two-step least squares approximant. Although the two-step least squares
approximant still provides an approximation to the one-step least squares approximant in L2 norm, in general, the sequence
(f̂n) does not converges to f uniformly if trigonometric polynomials are used. To explain this, let us assume f is continuous
on [−1, 1]. Then in general (f − ûp)(−1) 6= (f − ûp)(1), hence the periodized extension of (f − ûp) has discontinuity at
−1 and 1. In this case, the Gibbs phenomenon occurs near−1 and 1. If the function f is continuous on [0, 1], and using the
sine polynomials to construct the two-step least squares approximant, in general (f − ûp)(0) 6= 0 6= (f − ûp)(1), hence the
periodized odd extension has discontinuities at 0 and 1 that leads to Gibbs phenomenon. In both cases the Fourier (sine)
coefficient with frequency index j decays in the order of O

(
1
j

)
. However, for a continuous function f on [0, 1], and using

the cosine polynomials to construct the two-step least squares approximant, no Gibbs phenomenon will occur because
the even reflection does not introduce an discontinuities into the periodized extension, and the Fourier cosine coefficient
with frequency index j decays in the order of O

(
1
j2

)
. We point out a further fact in the following corollary when using sine

polynomials to build the two-step least squares approximant.

Corollary 2.18. Let f be continuous on [0, 1]. If we use sine polynomials to construct the two-step least squares approximant, the
L∞ error of the two-step least squares approximation remains constant when q is greater than certain number while p remains
constant.

Proof. Note that the two-step least squares approximation only creates discontinuities at the boundary. Therefore by
Dirichlet’s Theorem [9, p. 57], the two-step least squares approximant converges to f pointwise except the two boundary
points. Observe that the two-step least squares approximant completely decouples the subspace of algebraic polynomials
and the subspace of sine polynomials. Since any function in the set Sq vanishes at the boundary point 0 and 1, the error
of the two-step approximant on the boundary is completely determined by the chosen degree p of algebraic polynomials,
regardless of the degree q of trigonometric sine polynomials used in the approximation. Thus as q increases with p fixed,
the error in the interior of the interval [0, 1] deceases, while the error at the boundary points 0 and 1 remains constant
and gradually becomes dominant. Hence even if q becomes greater than some number, the L∞ error of the two-step least
squares approximation does not change. �

3. Implementation consideration

We plan to compute and compare the one-step least squares approximant fn, the near least squares approximant f̄n, the
PHLST (or PHLFT, PHLCT) approximation f̃n, and the two-step least squares approximant f̂n of a given signal f . For fn, a system
of linear equations is needed to be solved. For other three types of approximant, solving a linear system is not needed, only
Fourier series expansion is involved, therefore, DFT, DST, or DCT, all of which are implemented by the FFT algorithm, can be
employed.
We next briefly discuss implementations of finding the one-step least squares approximant fn. Let

Vn = span
{
φi ∈ L2(J), i ∈ Zn

}
, n ∈ Z+.
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Let the least squares approximant fn =
∑
j∈Zn cjφj. Then the unknown coefficient vector c := {cj, j ∈ Zn} is found by solving

the normal matrix equation:

Gc = d, (3.7)

where G is a symmetric and positive semi-definite Gram matrix:

G :=
[
gi,j
]
i,j∈Zn

, with gi,j = (φi, φj) =
∫
J
φi(x)φj(x) dx

and

d = [di]i∈Zn , with di = (f , φi) =
∫
J
f (x)φi(x) dx.

TheGrammatrixG only depends on the chosen spanning set {φi ∈ L2(I), i ∈ Zn} of the approximating space.G is nonsingular
if and only if the set {φi ∈ L2(I) : i ∈ Zn} is linearly independent. Hence if the set {φi ∈ L2(I) : i ∈ Zn} is linearly
independent, it immediately follows the existence and uniqueness of the minimization problems (2.3) or (2.4), and also
the positive definiteness of G . When G is positive definite, the Cholesky factorization of it is available. Assume the Cholesky
factorization of the Gram matrix G is

G = RTR,

where R is an upper triangular matrix. Then we have

c = R−1(RT )−1d. (3.8)

However in the case when G becomes nearly singular, the solution by Eq. (3.8) is unreliable. We therefore shall instead
consider the regularized SVD of the matrix G by setting to zeros those singular values smaller than a threshold, say, ε > 0.
Let the regularized SVD of G be

Gε := UrDrV Tr ,

where r is the number of singular values greater than the threshold ε,Ur is a matrix of size n× r with orthonormal columns,
Dr is a r × r diagonal matrix with the singular values of G greater than the threshold ε, and Vr is a n × r matrix with
orthonormal columns. Define the pseudo-inverse of G by

G+ := VrD−1r U Tr .

Then the solution obtained by regularized SVD is denoted by

cε := G+d = VrD−1r U Tr d. (3.9)

We next specifically look at the Gram matrix G by using the example of normalized Legendre polynomials and sine
polynomials on the interval [0, 1]. Let Pk be the normalized Legendre polynomial of degree k on [0, 1], k ∈ Z+, and
ψj(x) :=

√
2 sin jπx, j ∈ N. It is easy to see that the set {Pk, k ∈ Zp+1} ∪ {ψj, j ∈ Nq} is linearly independent for any finite

p ∈ Z+ and q ∈ N. Therefore the Gram matrix G is nonsingular. The choice of the basis functions allows us to specifically
compute the Gram matrix G as follows.

gi,j = (Pi, Pj) = δij, i, j ∈ Zp+1
gi+p,j+p = (ψi, ψj) = δij, i, j ∈ Nq

gi,j+p = (Pi, ψj) =
√
2
∫ 1

0
Pi(x) sin jπx dx, i ∈ Zp+1, j ∈ Nq.

The structure of the Gram matrix G is more easily seen by a block matrix, that is

G =
[
Ip+1 Bp+1,q
BTp+1,q Iq

]
= In +

[
0 Bp+1,q
BTp+1,q 0

]
(3.10)

where, In is the n× n identity matrix, and Bp+1,q is a matrix of size (p+ 1)× qwith

Bp+1,q = [bij]i∈Zp+1,j∈Nq with bij = gi,j+p = (Pi, ψj).

Moreover we observe that the matrix B has a special ‘‘checkerboard’’ structure, namely it has alternating zeros in its rows.
The following is an illustration of B, where ∗ indicates a nonzero entry.

B =


∗ 0 ∗ 0 · · ·
0 ∗ 0 ∗ · · ·
∗ 0 ∗ 0 · · ·
...

...

 .
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That is,

b2i,2j = b2i+1,2j−1 = 0, i ∈ Zp+1, j ∈ Nq,

or in terms of elements of G ,

g2i,2j+p = g2i+1,2j−1+p = 0, i ∈ Zp+1, j ∈ Nq.

The structure of B is confirmed by the following lemma.

Lemma 3.1. Let Pk be the normalized Legendre polynomial of degree k on [0, 1], then we have∫ 1

0
P2k(x) sin 2jπx dx =

∫ 1

0
P2k+1(x) sin(2j− 1)πx dx = 0, k ∈ Z+, j ∈ N. (3.11)

In particular,∫ 1

0

√
2 sin jπxP0(x) dx =

√
2
jπ
(1− (−1)j) (3.12)∫ 1

0

√
2 sin jπxP1(x) dx = −

√
6
jπ
(1+ (−1)j) (3.13)∫ 1

0

√
2 sin jπxP2(x) dx =

√
10(j2π2 − 12)
j3π3

(1− (−1)j) (3.14)∫ 1

0

√
2 sin jπxP3(x) dx = −

√
14(j2π2 − 60)
j3π3

(1+ (−1)j). (3.15)

Proof. It is well known that Legendre polynomials are symmetric or antisymmetric about the midpoint of the defining
interval, i.e.,

Pk(x) = (−1)kPk(1− x), k ∈ Z+.

On the other hand, it is easy to check that

sin(jπx) = (−1)j+1 sin(jπ(1− x)), j ∈ N,

i.e., sin(jπx) is also symmetric or antisymmetric on the interval [0, 1]. Therefore, we see, when k and j are both even or both
odd, Pk and sin(jπ ·) have opposite symmetry, hence Eq. (3.11) holds.
While when k and j have opposite parity, Pk and sin(jπ ·) are either both symmetric or both antisymmetric about x = 1

2 ,
hence the integral

∫ 1
0 Pk(x) sin jπx dx is nonzero.

Eqs. (3.12)–(3.15) are results of direct computation. �

The ‘checkerboard’ pattern of alternating zeros of B allows us to say something about the inverse of G .

Theorem 3.2. The inverse of the Gram matrix G as in (3.10) has the same pattern of alternating zeros as G . That is, G and G−1
have the same ‘checkerboard’ pattern.

Proof. Let P be a permutationmatrix. Hence P−1 = PT and the transformation A→ PAPT permutes the rows and columns
of A in the same way. Because the pattern of alternating zeros of G , there exists a permutation matrix P of the same order
of G such that

PGPT =
[
G1 0
0 G2

]
,

where if p is odd, then G1 consists of the entries in odd rows and odd columns of G , and G2 consists of the entries in
even rows and even columns of G; If p is even, then G1 consists of the entries in rows and columns of G with indices
{1, 3, . . . , p + 1, p + 2, p + 4, . . . , p + q + 1

2 (1 − (−1)
q)}, and G2 consists of the entries in rows and columns of G with

indices {2, 4, . . . , p, p+3, p+5, . . . , p+q+ 12 (1+(−1)
q)}. Taking the inverse of both sides in the above equation produces

PG−1PT =
[
G−11 0
0 G−12

]
.

Therefore,

G−1 = PT
[
G−11 0
0 G−12

]
P .
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Fig. 3.1. Condition numbers of the Gram matrices of the one-step least squares approximation with p = 3.

NotingP andPT are inverses of eachother, the above equationprecisely implies that thematrixG−1 is obtainedbypermuting
reversely the rows and columns of the matrix[

G−11 0
0 G−12

]
.

This immediately implies G−1 has the same pattern of alternating zeros as G . �

From the above proof, we see that G after permuting the rows and columns, becomes a block diagonal matrix. Thus the
linear system Gc = d can be replaced by two smaller sub-systems of about half of the size of the original system, and the
computing speed is improved.

Since G is symmetric, positive definite and the twomatrices G and
[
G1 0
0 G2

]
have the same set of eigenvalues, we readily

conclude the following two corollaries.

Corollary 3.3. The matrices G1 and G2 are both symmetric and positive definite.

Corollary 3.4. The condition number of G equals to the condition number of[
G1 0
0 G2

]
.

In Fig. 3.1, the condition numbers for the Gram matrices by one-step least square approximation is drawn as a function
of the orders of the Gram matrices. Recall the order of the Gram matrix is n := p+ 1+ q. The value of p is chosen as 3, i.e.,
the highest degree of the Legendre polynomial is chosen to be 3.
From Fig. 3.1, we see that the condition number of the Grammatrix increases approximately exponentially. This indicates

that the Gram matrix for the one-step least squares approximation is ill-conditioned.

4. Experiments

In this section, through experiments we compare the one-step least squares approximation, the two-step least squares
approximation, the near least squares approximation and the PHLST approximation. For simplicity, we will only show
computation results by using a combination of algebraic polynomials and sine polynomials on the interval [0, 1]. The results
of using complex trigonometric polynomials and using cosine polynomials are similar. To check the validity of our proposed
methods, we will first look at discrete signal without noise, then we will look at various discrete data corrupted by white
Gaussian noise.
When the one-step least squares approximation is used, the linear system (3.7) is solved by the regularized SVD as in

(3.9) with the truncation threshold ε = 10−4. For other approximation methods, the linear system in each step is just an
identity matrix of appropriate order. Therefore the solution of the linear system in each step just equals to the vector on the
right-hand side in the system at each step.
Let the uncorrupted discrete data be denoted by f0[k], k ∈ ZN+1. We then corrupt the data f0[k] by additive white

Gaussian noisew[k]with a specific SNR, where the SNR is the power ratio of signal to noise per sample in decibel. Recall for
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white Gaussian noise, its power equals to its variance due to its zero mean. Therefore for an un-noisy discrete signal (si)i∈ZK
of length K , and if the variance of the Gaussian noise is σ 2w , then the SNR is defined as

SNR := 10 log10

1
K

∑
i∈ZK
s2i

σ 2w
.

The raw noisy data is

f [k] = f0[k] +w[k].

The error is calculated by comparing the approximant f̂ [k] to the uncorrupted data f0[k]. Specifically, we define the error
vector by

e[k] := f0[k] − f̂ [k].

The l2 error and l∞ error of the approximation is calculated by ‖e‖l2 and ‖e‖l∞ respectively. The relative error is then defined
as ‖e‖
‖f0‖
for each norm.

For the near least squares approximation, we simply chose the following cubic polynomial

ϕ(x) = (f [N] − f [0])x+ f [0] + x(1− x)2.

Namely ϕ is obtained by the line connecting the two endpoints (0, f [0]) and (1, f [N]) plus a cubic polynomial with a simple
zero at x = 0 and a double zero at x = 1. We remark that any polynomial of degree 3 that interpolates the signal at the end
points serves the purpose here.
For the PHLST approximation, theoretically, in addition to interpolating the function values at the boundary, only values

of second derivative are needed to be matched at the boundary. However, for simplicity, as well as the fact as pointed out
in [5] that, the values of boundary derivatives of higher order tend to be chaotically huge if they are estimated by higher
order polynomial fit, we instead find the Hermite interpolating polynomial interpolating the function values and the first
derivative on the boundary. The values of the first derivative at 0 and 1 are approximated by the first order difference quotient
using the first two data points and the last two data points respectively.
We shall choose the shifted and normalized Legendre polynomials of degrees at most 3 on the interval [0, 1] as the basis

for the subspace of the polynomials, namely, p = 3. Specifically

P0(x) = 1;

P1(x) =
√
3(2x− 1);

P2(x) =
√
5(6x2 − 6x+ 1);

P3(x) =
√
7(20x3 − 30x2 + 12x− 1).

The nonzero entries of the submatrix B of the Gram matrix G can be obtained directly by Eqs. (3.12)–(3.15). All the inner
products to calculate the vector d in (3.7) are carried out through the standard quadrature rule: if the number of data points
is odd, using Simpson’s rule; while the number of data points is even, using the trapezoidal rule. Although the trapezoidal
rule is generally only of second order, it is highly accurate for periodic functions [10,11]. Moreover, using the trapezoidal
rule to estimate the Fourier series coefficients leads to DFT, DST, and DCT [12,11]. Therefore when the signal is given in the
form of equally spaced discrete data, the solution vector for the sine polynomials obtained for the two-step least squares
approximant, the near least squares approximant or the PHLST approximant is equivalent to the DST of the given data set.

Example 4.1 (Uncorrupted Data). In this experiment, to check the validity of our proposed methods, we consider the
uncorrupted data f0[k] generated by the signal

f (x) =
√

x5 + sin(100x2) (4.16)

on the interval [0, 1]with length 1025.
In Fig. 4.2, the left curves depict the relative l2 error in log scale vs. the order of the Gram matrix for the various
approximations. The order of the Gram matrix is incremented by 1, and ranges from 4 to 320 (The same choice of orders of
the Grammatrix is used in the subsequent computations). We can see that in terms of the l2 error, as expected, the two-step
least squares approximation is much worse than the other three methods due to the much slower decay rate of the Fourier
coefficients. The one-step least squares approximation offers the least l2 errorwithin the accuracy of computation. However,
both the near least squares approximation and the PHLST are almost as good as the one-step least squares approximation
in terms of l2 error. In fact, in this experiment, the PHLST approximation offers smaller l2 error when n ≥ 235 than that of
one-step least squares approximation; while the near least squares approximation offers smaller l2 error than that of the
one-step least squares approximation when n ≥ 253. We think this is because the one-step least squares approximation
has an ill-conditioned Gram matrix, hence the computation is not reliable when the order of the Gram matrix is relatively
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Fig. 4.2. log10
‖e‖l2
‖f0‖l2

and log10
‖e‖l∞
‖f0‖l∞

vs. the order of the Gram matrix for the uncorrupted data.

Fig. 4.3. Solution vector c when n = 320 for the uncorrupted data.

large. Moreover, the PHLST, although nearly performs the same as the near least squares approximation, consistently offers
slightly smaller l2 error than that of the latter. This is because its Fourier coefficients decay faster.
In Fig. 4.2, the plots on the right depict the relative l∞ error in log scale vs. the order of the Gram matrix. We see the

l∞ error does not behave quite consistently with the l2 error. Again the two-step least squares approximant performs the
worst owing to its non-uniform convergence. Note the l∞ error using the two-step least squares approximation keeps the
same level for n & 70, confirming Corollary 2.18, while the l∞ error of using the other three approximationmethods steadily
decreases as n increases owing to their uniform convergence. Again, like the l2 error, the near least squares approximation
behaves almost as good as the PHLST, although the latter offers slightly smaller l∞ error.
We next plot the solution vector c with n = 320 for the same uncorrupted data set by using each of the four

approximation methods.
From Fig. 4.3, we see the absolute values of ci, i > 80 are much smaller compared to the values of ci, 1 ≤ i ≤ 80. For

example, the ratio of the mean of the absolute values of ci, 1 ≤ i ≤ 80 to that of ci, 81 ≤ i ≤ 320 is about 41 for the
two-step least squares approximation. This ratio is about 127, 211, 1187 for the one-step least squares approximation, the
near least squares approximation, and the PHLST approximation respectively. The values of the ratios confirm our theorems
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Fig. 4.4. Approximation results, n = 40 (q = 36) for uncorrupted data.

about the decay rate of the Fourier coefficients. However, the ratio for the one-step least squares approximant should be
smaller than or compatible with that of the PHLST. We think this is due to the ill-conditioned linear systemwhich produces
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Fig. 4.5. The approximation results, n = 80 (q = 76) for uncorrupted data.

the solution vector with relatively larger numerical error. The ratio is much larger for the PHLST approximation because the
first four coefficients for the corresponding Legendre polynomial basis functions are relatively large due to estimating the
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Fig. 4.6. The noisy data with various SNRs.

Fig. 4.7. log10
‖e‖l2
‖f0‖l2

and log10
‖e‖l∞
‖f0‖l∞

vs. the order of the Gram matrix for the noisy data with SNR = 20 dB.

values of the first derivative of the function f from the given data set. But even the ratio of themean of the absolute values of
ci, 5 ≤ i ≤ 80 to that of ci, 81 ≤ i ≤ 320 is about 626. This suggests when we form the approximation, choosing the value
of q around 75 (so n is about 80) should be sufficient. This phenomenon is named as energy compaction in [13, pp. 596–598]
when they discussed DCT-2 (type 2). However, they did not explain why this phenomenon happens.We give an explanation
through Proposition 5.1, Corollaries 5.2–5.3 in the next section.
Next we specifically look at the approximating results with two different values of q. The values of q are chosen as q = 36

and q = 76, hence the orders of the matrices are n = 4+ 36 = 40 and n = 4+ 76 = 80 respectively.
From Fig. 4.5, it is clear that the two-step least squares approximant is muchworse than the other approximants in terms

of both the l∞ norm and in the l2 norm. The one-step least squares approximation offers the least l2 error, while both the
near least squares approximation and the PHLST approximation offer the smaller l∞ error. The PHLST approximation offers
slightly smaller l2 error and l∞ error than those of the near least squares approximation.
From Figs. 4.4 and 4.5, we can see clearly that as q increases, namely, as more and more sine polynomials are used, the

approximation can progressively capture more and more oscillations in the data.

Please cite this article in press as: N. Saito, Y. Wang, The polynomial Fourier transform with minimum mean square error for noisy data, Journal of
Computational and Applied Mathematics (2010), doi:10.1016/j.cam.2010.02.039



ARTICLE  IN  PRESS
N. Saito, Y. Wang / Journal of Computational and Applied Mathematics ( ) – 17

Fig. 4.8. Solution vector c when n = 320 for the noisy data with SNR = 20 dB.

From Figs. 4.4 and 4.5, we also can see the two-step least squares approximation has Gibbs phenomenon occurring at
the two end points, while the other three approximations offer no error at the left boundary, and slightly larger error near
the right boundary (The near least squares approximation and the PHLST approximation actually offer no error at the right
boundary). This is because our chosen signal has larger instantaneous frequency (in the sense of Cohen [14, p. 15]) near
the right boundary, hence needing more pure harmonics of higher frequencies to approximate the signal near the right
boundary.

Example 4.2 (Corrupted Data). In this experiment, we shall consider discrete data corrupted by additive Gaussian noise. For
convenience, we still use Eq. (4.16) to generate 1025 data points on the interval [0, 1]. We then corrupted the data by white
Gaussian noise with SNR = 20 dB. The noisy signals with various SNRs are shown in Fig. 4.6.
In Fig. 4.7, the left curves depict the relative l2 error vs. the order of the Grammatrix for all approximation methods, and

the right curves depict the relative l∞ error vs. the order of the Gram matrix for all approximation methods. Again similar
behaviors of l2 error and l∞ error are observed for the four methods as for uncorrupted data.
Compare Figs. 4.2 and 4.7: the l2 error of allmethods for uncorrupted data does decrease as the degree of sine polynomials

increases, as can be seen in Fig. 4.2, but the l2 error of all methods for corrupted data attains a minimum about at n = 80.
As we recall that, except the one-step least squares approximation, all other three approximations are well-conditioned.
This implies the fact that an optimum number of sine polynomials is needed for noisy data has nothing to do with the condition
number of the approximation method.
Next, we plot the solution vector c when n = 320 for the same noisy data corrupted bywhite Gaussianwith SNR = 20 dB

in Fig. 4.8. From this figure,we see the absolute values of ci, i > 80 aremuch smaller compared to the values of ci, 1 ≤ i ≤ 80.
As before, we computed the ratio of the mean of the absolute values of ci, 1 ≤ i ≤ 80 to that of ci, 81 ≤ i ≤ 320. This ratio
for the current corrupted data with SNR = 20 dB is about 26, 34, 36, 934 for the two-step least squares approximation, the
one-step least squares approximation, the near least squares approximation, and the PHLST approximation respectively.
Note the behavior of the solution vector for noisy data essentially remains the same as that for uncorrupted data. Namely

in either case, about the first n = 80 entries in the solution vector c are significantly greater than the remaining entries.
Moreover, this is the same optimum n for which the l2 error attains minimum when noise is present in the data. This make
us conjecture that the optimum number of sine polynomials is determined by the intrinsic frequency of the data rather than the
regularity of the data. This conjecture is further corroborated by Examples 4.3 and 5.4.
We next specifically look at the approximating results with two different values of q. The values of q are chosen as q = 36

and q = 76, hence the orders of the matrix are n = 4+ 36 = 40 and n = 4+ 76 = 80 respectively.
From Figs. 4.9 and 4.10, we can see clearly that as q increases, namely, as the degree of the sine polynomial gets higher,

the approximation can capture more and more oscillations in the data.
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Fig. 4.9. Approximation results, n = 40 (q = 36) for the noisy data with SNR = 20 dB.

FromFig. 4.10, it is clear that the two-step least squares approximant isworse than the other three approximants in terms
of both the l∞ norm and the l2 norm. Again, the near least squares approximant and the PHLST approximant are nearly as
good as the one-step least squares approximant.
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Fig. 4.10. Approximation results, n = 80 (q = 76) for the noisy data with SNR = 20 dB.

Example 4.3 (A Different Data Set). In this experiment, we perform our algorithms on a different data set. We use a different
function

f (x) =
√

x5 + sin(200x2) (4.17)
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Fig. 4.11. log10
‖e‖l2
‖f0‖l2

and log10
‖e‖l∞
‖f0‖l∞

vs. the order of the Gram matrix for the 2nd noisy data set.

Fig. 4.12. Solution vector c when n = 320 and SNR = 20 for the 2nd noisy data set.

to generate 1025 data points on the interval [0, 1]. We then corrupted the data by white Gaussian noise with SNR = 20 dB.
We record the results in Figs. 4.11 and 4.12. Compared to the results in Figs. 4.7 and 4.8, one can immediately see that

for the new data set in this experiment, it is seen that the optimum degree of the sine polynomial is about 150, as opposed to
the first data set in the previous experiments, the optimum degree of the sine polynomial is about 75. We notice for the 2nd data
set, its instantaneous frequency (in the sense of Cohen [14, p. 15]) is doubled.

5. Effects of noise on the approximation

From previous section, we observed that an optimum degree of sine polynomials needs to be estimated for noisy data
in order to obtain the best approximation result in terms of the l2 error. This optimum degree has nothing to do with the
condition number of the approximation method, nor to do with the regularity of the signal. After some reflection, we now
answer this question. As we conjectured, this is due to the intrinsic (instantaneous) frequency contents of the signal. We
give an affirmative answer in the following.
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Fig. 5.13. DFT of the two uncorrupted data sets. Left: 1st data set; Right: 2nd data set.

Fig. 5.14. log10
‖e‖l2
‖f0‖l2

and log10
‖e‖l∞
‖f0‖l∞

vs. the order of the Gram matrix for the noisy data with SNR = 10 dB.

Proposition 5.1. Given a signal f in L2([−1, 1]) and assuming that its periodized extension has only finite frequency components,
i.e., f =

∑
−N≤j≤N cje

(ijπ ·). Let f̃ be the corrupted signal with white Gaussian noise w, i.e., f̃ = f + w. Assume that
f̃ =

∑
j∈Z c̃je

(ijπ ·), then the L2 error ‖f̃ − f ‖ is minimized when f̃ is truncated as a trigonometric polynomial of degree N.

Proof. The proof is done by using the Parseval’s identity. Recall the Parseval’s identity for the Fourier series of a signal
s ∈ L2([−1, 1]) reads as:

1
2
‖s‖2 =

1
2

∫ 1

−1
|s(t)|2 dt =

∑
j∈Z

|dj|2,

where the sequence (dj)j∈Z is the coefficient sequence of the Fourier series of s. Noting also the linearity of Fourier series,
we have

1
2
‖f̃ − f ‖2 =

∑
|j|≤N

|c̃j − cj|2 +
∑
|j|>N

|c̃j|2.

Clearly, if the second sum on the right-handed side of the above equation vanishes, ‖f̃ − f ‖ attains its minimum. That is
‖f̃ − f ‖ attains its minimumwhen f̃ is truncated as a trigonometric polynomial with the same degree N of the signal f . �

Above proposition indicates that when a time-limited signal is ‘bandlimited’ in the sense its Fourier series contains
only finite frequency components, with the presence of noise, the optimum degree of the approximating trigonometric
polynomial equals to the highest degree of the frequency component in the signal. Additional harmonic waves with higher
frequency only adds information of the noise.
Since the sine series of a function on [0, 1] is the Fourier series of its odd extension to [−1, 1], and the cosine series of a

function on [0, 1] is the Fourier series of its even extension to [−1, 1], we immediately obtain the following two corollaries.
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Fig. 5.15. Solution vector c when n = 320 for the noisy data with SNR = 10 dB.

Fig. 5.16. log10
‖e‖l2
‖f0‖l2

and log10
‖e‖l∞
‖f0‖l∞

vs. the order of the Gram matrix for the noisy data with SNR = 5 dB.

Corollary 5.2. Given a signal f in L2([0, 1]) and assuming that its periodized odd extension has only finite frequency components,
i.e., f =

∑
j∈NN

cj sin(jπ ·). Let f̃ be the corrupted signal with white Gaussian noise w, i.e., f̃ = f + w. Assume that
f̃ =

∑
j∈N c̃j sin(jπ ·), then the L

2 error ‖f̃ − f ‖ is minimized when f̃ is truncated as a sine polynomial of degree N.

Corollary 5.3. Given a signal f in L2([0, 1]) and assuming that its periodized even extension has only finite frequency components,
i.e., f =

∑
j∈NN

cj cos(jπ ·). Let f̃ be the corrupted signal with white Gaussian noise w, i.e., f̃ = f + w. Assume that
f̃ =

∑
j∈N c̃j cos(jπ ·), then the L

2 error ‖f̃ − f ‖ is minimized when f̃ is truncated as a cosine polynomial of degree N.

Now we are ready to explain an optimum degree of sine polynomials exists in our previous experiments. Perform DFT
on the two data sets generated by Eqs. (4.16) and (4.17) respectively. Note one should choose at least 2N + 1 points to
conduct DFT for a trigonometric polynomial of degree N to minimize the error of DFT [12]. The magnitude of DFT are shown
in Fig. 5.13. It clearly shows that in the first data set generated by Eq. (4.16), the frequency component with index greater
than 75 is almost negligible. This is the value of q of the optimal degree of sine polynomials used in the approximation (hence
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Fig. 5.17. Solution vector c when n = 320 for the noisy data with SNR = 5 dB.

Fig. 5.18. log10
‖e‖l2
‖f0‖l2

and log10
‖e‖l∞
‖f0‖l∞

vs. the order of the Gram matrix for the noisy data with SNR = 1 dB.

n = 4 + 75 = 79). Likewise, Fig. 5.13 shows the second data set generated by Eq. (4.17) contains frequency components
with frequency index approximately up to 150. This is the value of q of the optimal degree of sine polynomials used in the
approximation (hence n = 4 + 150 = 154). Those values of q for either data set agree with our earlier observations in
Examples 4.2 and 4.3.
We next see if the level of SNR of noise present in the data affects the optimal degree of sine polynomials in the

approximation. The answer is clearly no.

Example 5.4 (Corrupted Data with various SNR). In this experiment, we perform the four approximation methods on the
same data set generated by Eq. (4.16) with white Gaussian noises with various SNR (see Fig. 4.6). One can see, that similar
results are obtained. Figs. 5.14–5.19 show our results for SNR = 10 dB, 5 dB, and 1 dB.
Note in all cases, no matter what the level of SNR of the noise is, the optimum degree n of sine polynomials remains to be the

same n = 80,which is the same for uncorrupted data. Of course, we know from Corollary 5.2 that the optimum degree of sine
polynomials is determined by the signal itself, not the noise.
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Fig. 5.19. Solution vector c when n = 320 for the noisy data with SNR = 1 dB.

Fig. 5.20. log10
‖e‖l2
‖f0‖l2

and log10
‖e‖l∞
‖f0‖l∞

vs. various SNRs in dB.

Example 5.5 (Approximations with Sine Polynomials of Fixed Degree for Noisy Datawith Various SNR).We nowdo experiments
for a noisy data set with various SNR values. The degree of the sine polynomial is fixed to be q = 76, so the order of the
Gram matrix is n = 4+ 76 = 80. We still use Eq. (4.16) to generate the uncorrupted data. We compute the corresponding
relative l2 error and relative l∞ error for the data set corrupted with noise with SNR ranging from 0 to 50, incremented by
1. Note when SNR = 0 dB, it corresponds to the ratio of the power of signal to noise is 1 per sample.
From Fig. 5.20, as the SNR level becomes higher, the approximating errors in terms of both l2 and in l∞ become smaller,

as expected.
On the other hand, by comparing the results of the four approximation methods, we see when the value of SNR of noise

is relatively low (corresponding to higher level of noise), such as when SNR ≤ 10 dB, the results (especially in terms of
the l2 error) of the two-step least squares approximation is nearly as good as other three approximation methods (see
Figs. 5.14, 5.16, 5.18 and 5.20). When the value of SNR is very low, such as when SNR ≤ 5 dB, both the two-step least
squares approximation and the one-step least squares approximation also offer smaller l∞ error than the other twomethods,
which normally give smaller l∞ error for uncorrupted data or data with low level of noise. Recall the near least squares
approximation and the PHLST approximation all depends on a polynomial passing through the two boundary data points.
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This suggests thatwhen the noise level present in the data is relatively high, themethods that depend on the point evaluation
of the data would be vulnerable. On the other hand, one should rely on the methods that depend on energy (average) of the
data for such low SNR cases.

6. Conclusions

From our analysis and experiments, we can conclude that

1. Among the four approximation methods: the one-step least squares approximation, two-step least squares
approximation, the near least squares approximation, and the PHLST approximation, the one-step least squares
approximation offers the least l2 error. The near least squares approximation and the PHLST approximation are nearly
as good as the one-step least squares approximation. They give the smaller l∞ error for uncorrupted data and data with
low level of noise.

2. An optimum degree of sine (cosine, or trigonometric) polynomials is needed for noisy data in order to obtain the best
approximation result in terms of l2 error. This optimum degree has nothing to do with the condition number of the
approximation method, nor to do with the regularity of the signal. It is determined by the intrinsic (instantaneous)
frequency of the signal. In practice, we need to estimate the optimum degree of the sine (cosine or trigonometric)
polynomial from a given noisy data set. Potentially, we could use some information theoretic criterion such as the
Minimum Description Length criterion (MDL) [15,16]. For a preliminary study of such estimation procedure, see [17].

3. When the noise level is relatively high in the data set, all the four approximationmethods behave about the same in terms
of l2 error. When the noise level is very high, the two-step least squares approximant and the one-step least squares
approximant not only offer small l2 error, they also offer smaller l∞ error than the near least squares approximation and
the PHLST approximation.
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