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ABSTRACT

Statistical independence is one of the most desirable properties for a coordinate system for representing and modeling
images. In reality, however, truly independent coordinates may not exist for a given set of images, or it may be
computationally too difficult to obtain such coordinates. Therefore, it makes sense to obtain the least statistically
dependent coordinate system efficiently. This basis—we call it Least Statistically-Dependent Basis (LSDB)—can be
rapidly computed by minimizing the sum of the differential entropy of each coordinate in the basis library. This
criterion is quite different from the Joint Best Basis (JBB) proposed by Wickerhauser. We demonstrate the use of
the LSDB for image modeling and compare its performance with JBB and Karhunen-Loéve Basis (KLB).

Keywords: Statistical independence, principal component analysis, independent component analysis, best basis,
dimension reduction, image modeling

1. INTRODUCTION

Suppose we are given a set of similar images such as human faces (or a set of finger prints or a set of mammograms).
And suppose we want to learn the characteristics of those images, i.e., to represent them efficiently, analyze certain
features, and build a probabilistic model that can generate new images that are similar to those given images. What
should we do, then? The best possible scenario would be to find a statistically independent coordinate system (basis)
of that class of images. With this coordinate system we could achieve optimal compression of the images in that
class by transmitting each coordinate (feature) separately using quantization scheme depending on the marginal
distribution of each coordinate. Moreover, a complete probabilistic description of an image class would be made
possible by simply characterizing the probability distributions of each coordinate. We could sample as many new
images from this probability model to generate “typical” images in this class and to examine how they look like. This
would be a great tool for image diagnostics; one typically wants to know how the typical images that got the same
diagnostics look like. In reality, however, it may not be possible to obtain truly independent coordinates because 1)
the data may not be composed of truly independent features in the first place, and 2) even if the images consist of
independent features, it may be too difficult to construct a feasible algorithm to extract such features because of the
high dimensionality of the problem (imagine a database consisting of 512 by 512 pixel images).

Let us briefly trace a history in the signal and image processing field to see how people attacked these problems.
The importance of the independent coordinates has long been recognized by several researchers in this field. In the
seminal paper by Satosi Watanabe! about the Karhunen-Logve (KL) expansion—also known as Principal Compo-
nent Analysis (PCA)—and its application to pattern recognition, he argued the justification of the use of the KL
coordinates for “feature compression” as follows:

It would be desirable, from the viewpoint that information compression means elimination of redundancy,
to use variables which are statistically independent, but in the absence of such variables, statistically
uncorrelated variables may be the next best.

Then, he went on to characterize the KL basis (KLB) is the minimum entropy basis among all the orthonormal bases
in R™, where n is a number of pixels in images under consideration. This was a great achievement around 1965, and
in fact, KLB was probably the best available feature extraction tool around that time. However, KLB-PCA only
provides us with the decorrelated coordinates, and only takes care of the second order statistics. Of course, if the
underlying data obeys the multivariate Gaussian distribution, decorrelation implies independence. But in general,
the natural images such as faces are far from Gaussian (see e.g.,2). Moreover, KLB-PCA has other drawbacks such as
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high computational cost and inaccuracy of sample estimate of covariance matrices which will be described in detail
in Section 2.

More recently, the concept called Independent Component Analysis (ICA) has become popular, in particular, in
the field of signal processing® and computational neuroscience.* ICA considers higher order statistics than KLB-
PCA. The spirit of ICA is great; it tries to obtain the statistically independent coordinate system more directly than
KLB-PCA. It is very difficult, however, to compute it numerically, in particular for high dimensional data, since they
rely on the higher order cumulants.

Thirty years since Watanabe’s work has changed the landscape. We have now a library of local bases, which
consists of various dictionaries of bases such as wavelet packet bases and local Fourier bases, at our disposal as feature
extraction tools. These are adaptable and flexible set of bases that can be tailored to one’s needs very efficiently.
They have been increasingly popular in various feature extraction business such as denoising," classification and
regression.® 10  The author and his colleagues, in particular, R. R. Coifman and M. V. Wickerhauser, have been
advocating the use of the so-called “best basis paradigm” consisting of the following three steps: 1) Select a best
possible basis from a dictionary or library of bases by optimizing a certain functional that quickly evaluates the
efficacy of each basis in the dictionary /library for the problem at hand, 2) Discard the unimportant coordinates from
the selected basis, and 3) Use the survived coordinates for the problem. Depending on the problem at hand, we need
to use a different efficacy measure for the basis evaluation, and it is of critical importance to choose an appropriate
measure.

Wickerhauser proposed the so-called “joint best basis” (JBB) which tried to alleviate some of the drawbacks
of the KLB-PCA.!'! Independently from Watanabe, he proposed to find a basis from a dictionary that minimizes
entropy of the energy distribution over its coordinates. Watanabe’s argument is that KLB is a best basis over all
possible orthonormal bases of R” with respect to the minimum entropy criterion whereas Wickerhauser’s algorithm
can quickly compute an approximate KLB that is a best basis over all possible bases in the dictionary or library
of orthonormal bases. Thus, JBB corresponds to KLB-PCA, but not to ICA. It does not address the statistical
independence of the coordinates explicitly.

In this paper, we propose yet another best basis aiming more directly to the statistical independence than KLB
or JBB. Since there is no guarantee that the images under consideration consist of truly independent coordinates, a
compromised but efficient strategy is to extract the least statistically dependent basis (LSDB) from a dictionary or
library of bases quickly.

This paper is organized as follows. In Section 2, we set up our notation and briefly review the KLB-PCA, ICA,
and JBB using our notation. In Section 3, we consider a measure of statistical dependence of a given basis and
propose the LSDB algorithm. In Section 4, we apply LSDB to signal and image modeling and compare this with
KLB and JBB. We end this paper with discussion of the relation of the LSDB to the other methods and describe
some of our ongoing and future work in Section 5.

2. FEATURE EXTRACTION AND BASIS SEARCH

Let X be a set of all input images of a particular class under consideration. We call X € R" an input image space,
where n is a number of pixels in each image. For most of the images we are interested in, the dimension n is rather
large. For example, in medical X-ray tomography, we typically have n = 5122. Suppose we are given N training
(sample) images. T = {x1,... ,xn} C X. Let us assume that these images are N realizations of some stochastic
process, and let X € X be a random sample from this process and let px (x) be its probability density function (pdf).
The ultimate characterization of a given class of images entails estimating px from the available training dataset.
Estimating empirical pdf from available samples, however, is very difficult because of the high dimensionality of the
input space X (curse of dimensionality); we need a huge number of training samples to get a reliable estimate of px,
which we normally cannot access. In a typical situation in learning a class of images, the dimension of the problem
is much larger than the available number of samples, i.e., n > N. Therefore, we need to reduce the dimensionality
of the problem without losing important information for characterization.

As Scott mentions in his book,'? this strategy is also supported by the empirical observation that multivariate
data in R™ are almost never n-dimensional and there often exist lower dimensional structures of data. In other words,
a class of images often has an intrinsic dimension m < n (often m < n). Therefore, it would be much more efficient
and effective to analyze the data in the smaller dimensional subspace F of X, if possible. We call F a feature space,



and a map f: X = F a feature extractor. Then, the key is how to construct this “good” feature space F consisting
of important features and to design the corresponding feature extractor f.

In this paper, we restrict our attention to the specific type of feature extractors. A feature extractor here consists
of a change of the coordinates (basis) in X followed by a selection of m coordinates. Let B is any basis spanning
X C R*. We also view B as a matrix whose columns are the basis vectors in X. Let £(B|T) be a certain functional
measuring the efficacy of the basis B for our problem at hand given a training dataset J. Then, we seek the best
coordinates B,

B, = B|7T), 1
argmax (B |T) (1)

where L is a set of all possible bases under consideration. Whether we constrain our search by restricting £ or not
makes a big difference as we will see soon. This basis selection process is followed by the selection of the basis vectors
spanning the feature space.

F= Span{wil y Wiy - -, Wy, }7 (2)

where wj, € B,, a subset of m basis vectors selected from B,.

Now we discuss the previously proposed feature extraction techniques under this unifying perspective of the basis
selection strategy.

2.1. Karhunen-Loéve Basis—Principal Component Analysis

As explained briefly in Introduction, KLB-PCA provides us with a decorrelated coordinate system. The KLB vectors
are the eigenvectors of the autocorrelation (or covariance) matrix of the process obeying px. KLB satisfies a number
of optimality criteria, and in particular, it is the minimum entropy basis among all the orthonormal bases O(n), i.e.,
all the rotations of the coordinates in R*.! Let B = (w1,...,w,) € O(n) is any orthonormal basis in R", and let
Z; = wl X, the ith coordinate of the image X relative to the basis B. Entropy of the energy distribution over the
coordinate axes can be considered as inefficiency of the coordinate systems for a class of images (i.e., the larger the
entropy, the less efficient for feature compression). Let us now define the entropy function as

h(+[B)) & = 3" 7i[B]log (B, (3)
=1

where v;[B] is a normalized energy (or variance) of the ith coordinate of B, i.., [B] = E[Z]]/Y|_, E[Z}], or
vi[B] = Var[Z;]/ >~;_, Var[Z;]. In practice, we need to use the sample estimates 7;[B] of ;[B] using the training set
T. Then, KLB is characterized by (1) with the following specific efficiency criterion.

Bkrp = arg Blél(%) Exrp(B|T) =arg phax —h(7[B]) = arg ngf(ln) h(7[B]). (4)

(n)

On the other hand, KLB has several drawbacks. First of all, the criterion (4) does not measure the statistical
independence of the coordinates. KLB only provides us with the decorrelated coordinates, i.e., “the next best”
coordinates, as Watanabe put it. Therefore, KLB is only optimal for the multivariate Gaussian data. The next
serious problem is an inaccuracy of the sample estimate of the autocorrelation or covariance matrices of the underlying
process px. In general, we do not know these matrices a priori, therefore, we need to estimate them using the
available training samples. This inaccuracy is particularly severe for large n (dimension of the problem) with small
N (the number of training samples). This entangles with the computational complexity as follows. Suppose the
singular value decomposition of the data matrix X = (z1,---,zn) € RV is X = USVT. (There is no need
to perform full SVD in practice. This is just for an explanation of the KLB computation.) Since the rank of X
is min(n,N), if n < N (this is a classical situation in statistics where the dimensionality is small and the large
number of samples are available), Bxrp = U € O(n) and its computational cost is O(n?) for solving the eigenvalue
problem, XXTU = UYXXT. Now if n > N (most of our problems of interest are under this category), the column
vectors of XV are the first N eigenvectors of the sample autocorrelation matrix X X7 because X XTXV = XV¥Ty.
We then need to solve the eigenvalue problem X7 XV = VXTX which is simply an N x N problem, i.e., requires
O(N?). In summary, the KLB computation costs O(min(n, N)?). Note that having a small N is advantageous only



for computational speed, not for the statistical accuracy as mentioned above. the resulting vectors are essentially
useless; they do not truly capture the statistical structure of the distribution px. On the other hand, if N increases,
then the computational cost increases cubically. This is a dilemma, of the KLB computation.

We note that the recent work of Donoho, Mallat, and von Sachs tries to address this estimation of covariance
matrices with a few number of samples.'?
2.2. Independent Component Analysis

To overcome the limitation of the PCA to the second order statistics, Comon?® and the others proposed the so-called
Independent Component Analysis (ICA). Bell and Sejnowski discussed the closely related concept of “information
maximization” and its neural network implementation.

Given a training dataset T, ICA tries to find a linear transformation (a full rank m x n matrix) that minimizes
the statistical dependence among its coordinates. In our notation, ICA integrates (1) with (2) and can be written as

Brca =arg max Erca(B|7T),
BERnxm

where €104 (B | T) measures the degree of statistical independence of the coordinate system B for the training dataset
T. Let us now define differential entropy H (px) of the process obeying px.

Hipx) 2 - / px (@) log px ()d. (5)

A convenient measure to quantify the statistical dependency of the coordinates of X is the so-called mutual infor-
mation:

px (1, ,Tn)
T1,...,Ty)log —=f—F—=dzy ---dzx, 6
/px( ! )log Hizlpx,-(fvi) ! ©)

_H(pX)+ZH(pXi)a (7)

i=1

I(px)

which is simply relative entropy between px and the product of the marginals {px,}. We note that I(px) = 0 if and
only if the components of X are mutually independent. Now, we can write the efficiency of the coordinate system
B as

€1cA(B|T) = —1(pz) = H(Dz) — Y H(Pz.), (8)

where Z € R™ is the process represented in the new coordinates B, and pz and pz, are the empirical pdf’s (epdf’s),
i.e., sample estimates of the corresponding pdf’s using the data T. As mentioned earlier, it is extremely difficult to
have a good estimate px (or pz) for large n, and even the case with n > 3 is difficult in practice. Therefore, Comon
proposed to approximate (8) using the Edgeworth expansion of pz around the multivariate normal distribution with
the same mean and variance as the original process, and this amounts to using the higher order cumulants of Z. This
computational procedure is even more complicated and expensive than KLB; it costs O(n?®N). In other words, the
ICA of Comon is not feasible for the problems with very high dimensions, n > N.

2.3. Joint Best Basis

In the meantime, Wickerhauser proposed the JBB that is the minimum entropy basis among all the bases in the
specified dictionary of orthonormal bases.!! The JBB criterion is simply written as:

Bypp = argrélg%SKLB(B |T) = arg min h(¥[B)). (9)

A key difference from (4) is that B is searched within a specified dictionary of orthonormal bases D instead of all
possible rotations O(n). Therefore, its computational complexity is reduced to O(n[logn]?), where p = 1 for wavelet
packet dictionaries, and or p = 2 for local Fourier dictionaries. Recall that a dictionary D contains more than 2"
different orthonormal bases.'* Moreover, since each feature is localized both in the space and spatial frequency
domains, analysis and interpretation of the images become easier and more intuitive.



3. LEAST STATISTICALLY-DEPENDENT BASIS

Faced with the difficulty of ICA, it makes sense to find a basis from a dictionary or library of orthonormal bases that
minimizes the statistical dependency among the coordinates. To do this, let us consider a change of the basis of X
in the definition of the differential entropy (5). We can easily get

H(pz) = H(pprx) = H(px) + log | det(B)|. (10)

Therefore, if B is a volume-preserving linear transformation, or more specifically, an orthonormal basis, then the
differential entropy H (px) is invariant under such transformations.

H(pz) = H(pprx) = H(px). (11)

This invariance property is the key for our LSDB algorithm. As long as we deal with orthonormal bases, we do
not need to compute or estimate H(pz) in (8). The efficacy—degree of the statistical independence among the
coordinates—of an orthonormal basis can be quantified by only considering the second term in (8) i.e., the sum
of the differential negentropy of the individual coordinates. Now, we can state the selection criterion of our Least
Statistically-Dependent Basis (LSDB):

n n
Brspp = argmax €1spp(B|7T) = argmax (— ; H(pz, )) = arg min Zl H(pz,). (12)

LSDB is thus obtained by minimizing the sum of the coordinate-wise differential entropy among all possible orthonor-
mal bases in a specified dictionary of orthonormal bases D. We note that the basis search in (12) is fast since the
sum of the coordinate-wise differential entropy is an additive measure.'* So, as long as we use relatively inexpensive
pdf estimators such as ASH,'? the computational complexity of the entire algorithm is dominated by the cost of
expanding input images in a dictionary of bases, which costs O(n[logn]P).

Remark 3.1. We can contrast our LSDB with KLB and JBB now. If we use the population version of (12), then
we have

gH(pzi) = éE [mgpi&] :

On the other hand, for KLB and JBB assuming that >-7_, E[Z?] = 1, we have

n

PUCAIED AR [log z%] ,

i=1

where we used Jensen’s inequality. We can easily see that the criterion used in KLLB and JBB is not suitable for
measuring dependency among the coordinates in a basis.

4. IMAGE MODELING BY LSDB

Image and texture modeling is an important application area where LSDB may contribute. Below, we propose two
probabilistic models of an image class using the LSDB coordinates.

4.1. Image Models with LSDB as independent coordinates

We start with the simplest model. This model assumes that the LSDB coordinates are really statistically independent,
i.e., a probabilistic description of a class of images is a product of empirical marginal pdf’s of the LSDB coordinates.
Then this model can be written as

Z = BisppX ~pz(2) ~ Hﬁzi (2i)- (13)
i=1

In words,



Image Model = Description of the LSDB + Statistics of each LSDB coordinate.

Here, the description of the LSDB consists of the specification of the dictionary used and the specification of the
LSDB basis vectors obtained via (12) in that dictionary. The statistics of each LSDB coordinate means either its
epdf or empirical cumulative distribution function (ecdf). Sampling typical images from this model is easy. We use
the inverse cdf of each coordinate to sample a typical coefficient of that coordinate (the inverse of the cdf can be
approximated by a simple interpolation of the ecdf or by integration of the epdf). Let Fy ;(z) be an ecdf of the ith
LSDB coordinate and Fj(z) be an interpolated version of Fy ; so that the inverse exists. If U ~ unif(0,1), then
F7Y(U) obeys F;, i.e., Z; ~ F;1(U) since Pr{F; }(U) < z} = Pr{U < F;(2)} = Fi(z). Once we sample all the
coefficients of the LSDB coordinates to get Z ey, then we can synthesize an typical image by the inverse transform

X new = BrLspBZ pew- This procedure is summarized as follows.

Step 0 (Optional) Subtract the mean image from each image

Step 1 Search the LSDB coordinates from a specified dictionary of orthonormal bases via (12)
Step 2 Compute the ecdf of each coordinate

Step 3 Sample typical coefficients by the inverse cdf method

Step 4 Apply the inverse transform

Step 5 (Optional) Add the mean image back to the result

If the images of the class contain noise and the noise model is known a priori, e.g., additive white Gaussian noise
(WGN), then we can set up a better model including denoising as follows:

Image Model = Description of the LSDB + Statistics of the top m coordinates + (Statistics of (n —m) coordinates)

Here, the m coordinates to be kept as a part of the signal (meaningful) component can be selected via a certain
criterion such as the MDL criterion developed in.® The last (n — m) terms correspond to noise. So if we do not
want to include noise in the model, we can throw away this part. Note that if the noise is WGN, it suffices to record
means and variances of each of these (n —m) components instead of keeping their epdf’s.

We first demonstrate the LSDB method and compare this with the KLB and JBB using the geophysical acoustic
waveforms. For the detailed background of this dataset, see.!® Here, we want to model the acoustic waveforms
(recorded in a borehole with 256 time samples per waveform) propagated through sandstone layers in the subsurface.
We have 201 such “sand waveforms” in the training dataset. We used the local cosine dictionary which is easier
to deal with the time information than the wavelet packet dictionaries. Figure 1 shows 10 actual waveforms from
the dataset, the top 10 vectors of KLB, JBB, and LSDB. Figure 2 shows 10 synthesized waveforms by assuming
that the KLB, JBB, LSDB coordinates are all statistically independent, sampling each coefficient separately, and
reconstructing them. For each case, we used all 256 coordinates. As we can see from Figure 2, the synthesized
waveforms using LSDB visually look more similar to the original waveforms than those using KLB and JBB. In
particular, the synthesis by JBB created spurious small oscillations on the interval of time from 0 msec to 0.7 msec.
This is due to the inappropriate basis vectors over that interval in the JBB. On the other hand, the LSDB is free
from those spurious oscillations.

Now, we tackle a more challenging problem involving images. We use a set of face images, so-called “Rogues’
Gallery Problem” to demonstrate our ideas. This dataset consists of digitized pictures of faces of 143 people. These
143 people are a specific group of people; Caucasian students (and some faculty) at Brown University, without
glasses, mustache, beard. The dataset was provided to us by Prof. L. Sirovich at Brown University via Prof.
M. V. Wickerhauser of Washington University. For more detailed description of these images, see.!®> Figure 3
displays some samples of this dataset. We note that horizontal dilation has been applied so that the pupils are
placed on two fixed points if necessary. Now the question is how to build a probabilistic model of this class of images
and how to sample a typical or representative face of this group.

We first removed the “average face” from each face to make “caricatures,” as Kirby and Sirovich put it.'> We
then computed the LSDB with the 2D local cosine dictionary. Figure 4 shows how the LSDB splits these face images
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Figure 2. 10 example sand waveforms, 10 synthesized waveforms using KLB, JBB, LSDB, respectively.
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Figure 3. Nine random samples from the Rogue’s gallery dataset.
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Figure 5. Top 9 most energetic LSDB basis vectors. The underlying basis dictionary is the 2D local cosine dictionary
with multiple folding.

spatially and compares it with that of the JBB. Note that the LSDB nicely split the faces into the regions more or
less corresponding to hairs, foreheads, eyes and cheeks, chins, and backgrounds. It is interesting to note that Kirby
and Sirovich carefully segmented out the oval-shaped portion of the faces containing the eyes, noses, and mouths and
removed all the background portion and most of the hair portion for their compression analysis since “it significantly
reduced the accuracy of the expression”.!®> We note that this natural splitting was done automatically in our case.

On the other hand, JBB simply splits images into four quadrants. We computed the energy distribution of the
training images over the LSDB, and Figure 5 shows the top 9 most energetic basis vectors. We sampled all the LSDB
coeflicients from the ecdf’s of each LSDB coordinate separately, applied the inverse transform, and added the average
face back to get the following “new face” in Figure 6. The synthesized face is far from a representative face of this
class of images. This experiment clearly shows that the LSDB coordinates are not really mutually independent for
this dataset. Synthesis using the JBB coordinates (not shown) does not work well either. This failure took us to the
next level of the modeling.

Remark 4.1. We note that we used the multiple folding local cosine dictionary for both LSDB and JBB. The
multiple folding was developed by Fang and Séré'® and enjoys the good frequency localization of the “bell” functions.
Essentially, the size of the action region (the region where two adjacent windows interact) depend on the size of the
window itself in the multiple folding. Thus, the larger the image segment, the larger its action region. Because of
this, even smaller image segment might have quite distant pixels folded in during early stages of the split. On the
other hand, the fixed folding local cosine dictionary employs the constant size of the action region regardless of the
size of the windows. Therefore, in order to maintain the good frequency localization we cannot split the images
into very small segments. This issue of the frequency localization turns out to be very important for the LSDB
algorithm. If we used the fixed folding local cosines by recursively splitting the images into rather small segments
(4 x 4 pixels), then the LSDB was the global frequency basis, i.e., it did not split the image into segments at all. If
we split the images three times recursively (the smallest segment has 16 x 16 pixels), then the LSDB partitioning
pattern is exactly the same as the one computed by the multiple folding local cosines. We also note that the multiple
folding took care of the symmetry of face pictures around the center line automatically. This symmetry was explicitly
utilized in the KLB computation by Kirby and Sirovich.1®
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4.2. Image Models with LSDB with KLB
Accepting that the LSDB does not provide us with truly independent

we have the following image model:

Image Model = Description of the LSDB + Description of the KL.B of

these m KLB coordinates +(Statistics of the (n —

This can be quite powerful since these m coordinates are already statistically less dependent than the original
coordinates and we can compute the m-dimensional KLB rather quickly if m < n. This procedure can be written

as:

Step 0 (Optional) Subtract the mean image from each image

Step 1 Search the LSDB via (12)

Step 2 Select the most energetic m components out of n (m < n) to form the feature space F

Step 3 Compute the KLB of F to obtain the decorrelated coordinates
Step 4 Compute the ecdf’s of these m coordinates

Step 5 Sample typical coefficients by the inverse cdf method

Step 6 Rotate back these coefficients to the LSDB coordinates

Step 7 Apply the inverse transform

Step 8 (Optional) Add the mean image back to the result

10

coordinates, we form m-dimensional feature
space F by selecting the top m LSDB coordinates (via e.g., MDL criterion), then rotate this feature space coordinates
further to have decorrelated coordinates. In other words, we apply KLB-PCA on the top m LSDB coordinates. Now

the top m LSDB coordinates + Statistics of

m) LSDB coordinates)
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Figure 7. Top 9 KLB vectors computed on the top 800 LSDB coordinates. Compare with Figure 5.

Figure 7 shows the top 9 KLB vectors computed on the top 800 LSDB coordinates. Setting m = 800 amounts to
using only about 5% of the original information. Each KLB vector—which really looks like a caricature of a face—is
a linear combination of the 800 LSDB vectors that are abstract blobs or local oscillations as some of them are shown
in Figure 5).

In Figure 8, we compare one of the original image and one realization using the above procedure. Note the clear
improvement over Figure 6.

In Figure 9, we compare realizations (samples) from three different models. The images in the first row are
realizations of the model (13) with the KLB as the underlying basis. These KLB vectors were computed on the
standard coordinates as described in Section 2. So, we abbreviate this model as KLB-STD. The images in the second
row are realizations of the model in this subsection but the KLB was computed on the top 800 JBB coordinates
instead of the LSDB coordinates. The images in the third row are generated from our proposed model, i.e., the KLB
computed on the top 800 LSDB coordinates. These are really “new faces”; they do not exist in the training dataset
(of course, in this world, there may exist real people who resemble these faces). The realizations using the KLB-JBB
model tend to be more blurry than the other two models. The realizations using the KLB-STD are sharper because
they are linear combinations of the original training images, but they look unnatural. The realizations using the
KLB-LSDB model, on the other hand, are slightly blurry, but look more natural than the other two models.

5. DISCUSSION

In this section, we discuss the relations of our proposed methods to the others and describe some of our ongoing
projects.

5.1. Relation with Local Karhunen-Loéve Basis

R. R. Coifman and the author proposed a notion called the local Karhunen-Logve basis (LKLB) in.!” The idea is
to split the signals/images into tree-structured segments by the smooth orthogonal projections,'® compute the KLB
locally within each segment, then prune the tree and merge the segments using a certain criterion to have a basis
consisting of a set of localized versions of the KL.Bs. Computing KLBs locally make sense both computationally and
statistically. However, we had difficulty in deciding the basis selection (i.e., tree-pruning) criterion. We examined a
few alternative criteria, but all of them were based on the eigenvalues of the autocorrelation matrices computed at
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Figure 8. An original image vs. a sampled image from the KLB coordinates computed over the top 800 LSDB
coordinates.
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Figure 9. Comparison of the “new faces.” Images in the first row are the realizations from KLB-STD, the ones in
the second row were from KLB-JBB, and the ones in the third row were from KLB-LSDB.
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Figure 10. Top 9 “eigen-eyes” computed from the upper left segment of the faces (i.e., the region around right eyes
of the faces).

those segments, and in some sense, they were ad hoc. But now, the LSDB offers an optimal (from the basis dictionary
point of view) and justifiable (we are selecting a statistically least dependent basis) split of signals and images into
segments, we can compute all sorts of bases in each segment. In particular, we can compute KLB in each segment.
Figure 10 shows one interesting example. This shows the top 9 KLB vectors computed on the upper left segment
shown in Figure 4 corresponding to the right eyes of the faces. The first “eigen-eye” checks the symmetry between
the right eyes and left eyes. Remember that we are using the 2D local cosine basis dictionary with multiple folding.
That is why the eigen-eyes have activities outside of this upper left segment. Then the subsequent eigen-eyes reveal
more detailed structures of eyes as well as the boundary between the face and the background. We are also working
on hierarchical image model consisting of the localized KLBs by examining how each segment interact or correlate
with the others.

5.2. Image Models with the LSDB with pairwise conditioning

As our experiments showed, the LSDB does not guarantee a truly independent coordinate system in general. So,
we considered the KLB of the top m LSDB coordinates as an attempt to make them more independent (in this
case only decorrelation is achieved of course). Alternatively, we can examine the dependency among the selected
LSDB coordinates more explicitly to some extent. Currently, we are working on algorithms to check the pairwise
dependency among the LSDB coordinates and to sample the LSDB coefficients conditionally using some 2D pdf
estimation techniques such as ASH2D.!2

5.3. What if only one training image is available?

If only a single image is available as a training dataset, we need some assumption to compute LSDB. (Note that we
can always compute JBB even with a single image since it does not rely on pdf’s.) In the case of a homogeneous
texture image, it is very natural to consider spatially translated versions of an original image as training images.
If we consider all possible translations, then all the epdf’s belonging to the same subspace/node are the same. In
particular, the epdf’s of the root node in the wavelet packet dictionary (corresponding to the pixel coordinates) is
the conventional histogram used for common image processing tasks such as histogram normalization to enhance
images. This “translation invariant” assumption was also used in the other texture synthesis projects.'%2°
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