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ABSTRACT

Many modern data analysis tasks often require one to ef-
ficiently handle and analyze large matrix-form datasets
such as term-document matrices and spatiotemporal mea-
surements made via sensor networks. Since such matri-
ces are often shuffled and scrambled, they do not have
spatial coherency and smoothness that usual images and
photographs possess, and consequently, the conventional
wavelets and their relatives cannot be used in practice. In-
stead we propose to use our multiscale basis dictionaries
for graphs, i.e., the Generalized Haar-Walsh Transform. In
particular, we build such dictionaries for columns and rows
separately, extract the column best basis and the row best
basis from the basis dictionaries, and construct the tensor
product of such best bases, which turns out to reveal hid-
den dependency and underlying geometric structure in the
given matrix data. Finally, we will demonstrate the effec-
tiveness of our approach using the Science News database.

Index Terms— Multiscale basis dictionaries on graphs,
Haar-Walsh wavelet packets, adaptive best basis algorithm,
spectral co-clustering, term-document matrices

1. INTRODUCTION

Many modern data analysis tasks often involve large matrix-
form datasets. For example, spatiotemporal data measured
by sensor networks may be represented as a matrix whose
columns represent sensors while the rows represent time
indices. Another important example is ratings or reviews
of commercial products by their users; this leads to a ma-
trix in which columns represent products, rows represent
users, and matrix entry a;; represent user i’s rating of prod-
uct j, say, on a 1-5 scale. Such matrices are quite different
from usual images and photographs. In fact, they are often
more like shuffled and permuted images, possessing no

*Current address: Bosch Research and Technology Center, 4009 Mi-
randa Avenue, Palo Alto, CA 94304. Partially supported by National De-
fense Science and Engineering Graduate Fellowship, 32 CFR 168a via
AFOSR FA9550-11-C-0028 and the National Science Foundation grant
DMS-1418779.

TPartially supported by the Office of Naval Research grants N00014-
12-1-0177,N00014-16-1-2255, and the National Science Foundation grant
DMS-1418779.

spatial smoothness or coherency in general. Yet, the rows
and columns of such a matrix are interrelated, and thus the
rows of the matrix can tell us about the underlying structure
of the columns, and vice versa. By considering the interplay
between the rows and columns, we can learn more about
the matrix than if we treat them separately. Moreover, by
utilizing multiscale basis dictionaries on graphs, we can
discover, learn, and exploit underlying (often hidden) de-
pendency and geometric structure in the matrix data for a
variety of tasks, e.g., compression, classification, etc.

2. SPECTRAL CO-CLUSTERING FOR ORGANIZING
ROWS AND COLUMNS

In order to discover the structure of a given matrix and
hierarchically organize its rows and columns, as required
by our tool, we use the spectral co-clustering method of
Dhillon [1]. Given a data matrix A € RN *Ne, this method
views the rows and columns as the two sets of nodes in an
undirected bipartite graph, where matrix entry a;; is the
edge weight between the node for row i and the node for
column j. Let us order the nodes of this bipartite graph
such that the first N, nodes correspond to the rows and the
last N, correspond to the columns. Then the associated
(Ny + N¢) x (N + N.) weight matrix becomes of the form

O A
W= A ol
Accordingly, the degree and Laplacian matrices are
_[Dr O e | Dr —A
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where D, :=diag(Aly,) and DC::diag(ATlN,); 1y, is the
vector of all ones of length V... A common means of bipar-
titioning the graph is by using the Fiedler vector, i.e., the
eigenvector corresponding to the smallest positive eigen-
value of the random-walk Laplacian Ly := D7LL; see, eg.,
[2] for the details on why the eigenvectors of Ly, are pre-
ferred to those of L. For the sake of computational ef-
ficiency, Dhillon’s method computes the second left and
right singular vectors u and v of D;'2AD;'/? and then
forms the Fiedler vector as
-1/2

¢, = [ggl/zz
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This is because Ly ¢ = A¢ is equivalent to L¢p = A D¢, and
using Eq. (1), this further leads to

Ap.=(1-NDr¢,; A'¢p,=(1-A)Dco,,

where ¢, € RN and $.€ RNe are the first N, entries and the
next N, entries of ¢ € RV-*Ne. Then, setting u:=D2¢,,
vi=Dl%p,, we get

D;Y2AD 2= -Mw; D;Y2A™D;V?u=Q1-Mv,

which precisely defines the SVD of D;1/2AD_1/2 € RN-*Ne;
we do not need to compute the eigenvector of the larger
matrix Ly € RV +Ne)x(Nr+Ne) {Jsing this Fiedler vector, the
rows and the columns of A can be partitioned simultane-
ously.

3. THE GENERALIZED HAAR-WALSH TRANSFORM

The Generalized Haar-Walsh Transform (GHWT) [3, 4, 5]
is a true generalization of the classical Haar-Walsh wavelet
packet transform [6] to the graph setting, and it generates
a dictionary (i.e., a redundant set) of basis vectors that are
multiscale, oscillatory, and piecewise-constant on their
support. In this section, we briefly review the GHWT dic-
tionary construction.

Let G = G(V, E) be an undirected and connected graph
with |V| = N nodes and |E| = M edges. To construct the
GHWT, we first need a hierarchical bipartition tree of G,
i.e., a set of tree-structured subgraphs of G constructed by
recursively bipartitioning G. This bipartitioning operation
ideally splits each subgraph into two smaller subgraphs that
are roughly equal in size while keeping tightly-connected
nodes grouped together. Any reasonable graph partitioning
method can be used for this operation, but in this paper,
we use the Fiedler vector of the random-walk Laplacian
matrix of each subgraph for the next level of bipartitioning.
Let j be a level index of the hierarchical bipartition tree,
with j = 0 denoting the coarsest level and j = jmax denoting
the finest level. We use K/ to denote the number of sets of
nodes on level j of the tree, and we use k € [0, K 1) to index

these sets. We use ij to denote the kth set of nodes on level
j,and set N]i = |V,£ |. Let Gi be the subgraph of G formed by

restricting to the nodes in V]i and the edges between them.
We often use the term “region” to refer to a subgraph.

We impose the following requirements for a hierarchical
bipartition tree of G:

i. The coarsest level is the entire graph: G) =G, V) =V,
Ny=N,K’=1.
ii. At the finest level j = jmax, each region is a single
node: N;™™ =1for 0 < k < K/max = N,
iii. All regions on a given level are disjoint: Vlg N V]{ =gif
k#k.

iv. Each region onlevel j < jyax containing two or more
nodes is partitioned into exactly two regions on level
j+1.

Given a hierarchical bipartition tree of G, the GHWT
generates an overcomplete dictionary whose basis vectors
have their supports ranging from a single node to the en-
tire graph. See [3, 4] and [5, Chap. 5] for the details of the
algorithm to generate the GHWT dictionary for a given

graph. We use wi L€ RY to denote the GHWT basis vectors

supported on Vlf, and dil::<f, 1[1{; l) to denote the cor-
responding expansion coefficient of an input graph signal
fe RY. The index [ € [O,Nli) represents the tag of a basis

vector/coefficient, and it assumes N li distinct values within
the range [0, 2/m~7), We refer to coefficients with tag I = 0
as scaling coefficients, those with tag I = 1 as Haar coeffi-
cients, and those with tag [ = 2 as Walsh coefficients. The
total number of the expansion coefficients in this GHWT
dictionary is N x (jmax + 1), and given a hierarchical biparti-
tion tree of G with O(log, N) levels, the computational cost
of generating all these coefficients is O(Nlog, N).

One of the key features of the GHWT is that we can
arrange the coefficients in two ways. On each level j, we
can group them by their k index, yielding the coarse-to-fine
dictionary. Alternatively, we can group them by their tag /
to obtain the fine-to-coarse dictionary, the significance of
which is that it affords us more bases from which to choose.
Generally speaking, for a graph with N nodes, both of the
GHWT dictionaries contain > 22/ choosable bases. We
note, however, that exceptions can occur when the recur-
sive bipartitioning is highly imbalanced [5, Chap. 5].

For the task of selecting one basis from the immense
number of choosable bases, we have generalized the best
basis algorithm of Coifman and Wickerhauser [6] for the
GHWT transforms. The algorithm requires a user-specified
cost functional, and the search starts at the bottom level of
the dictionary and proceeds upwards, comparing the cost
of the children coefficients to the cost of the parent coeffi-
cients; see [5, Chap. 6] for the details.

4. MATRIX DATA ANALYSIS USING THE GHWT

Our basic strategy for matrix data analysis is the following:

1. Use the matrix data and the spectral co-clustering to
recursively bipartition the rows and the columns

2. Analyze row vectors of the input matrix using the
GHWT dictionaries based on the column partitions
and extract the best basis for organizing columns,
which we call the column best basis

3. Analyze column vectors of the input matrix using the
GHWT dictionaries based on the row partitions and



extract the best basis for organizing rows, which we
call the row best basis

4. Expand the input matrix w.r.t. the tensor product of
the column and row best bases

5. Analyze the expansion coefficients for a variety of
tasks, e.g., compression, classification, etc.

More detailed descriptions are in order. In Step 1, the
spectral co-clustering discussed in Section 2 is recursively
applied to the given matrix in order to yield hierarchi-
cal bipartition trees for the rows and columns. In addi-
tion to its ability to simultaneously partition the rows and
columns, another advantage of this method is that we do
not need to construct edge weight matrices explicitly, which
would require defining a weight function and specifying a
means of constructing a graph (e.g., k-nearest neighbor,
e-neighborhood, or complete) of rows and columns: the
given matrix data automatically define the bipartite graph
with its edge weights as long as a; ;s are all non-negative.

In Step 2, using the hierarchical bipartition tree of the
columns, we apply the GHWT to each row vector of the ma-
trix, which generates an array of the expansion coefficients
of size N, x N x (j%L +1), where j<%. is the maximum level
in the recursive bipartitioning of the columns. Therefore,
our next step is to “flatten” this 3-dimensional array to a 2-
dimensional matrix of size N, x (j&° + 1), from which we
can select a column best basis. There are various ways in
which we can do this, but typically we take the ¢'-norm
along the dimension corresponding to the rows. Thus, the
entries in the resulting matrix reflect the average ¢!-norm
over the rows relative to the column GHWT dictionary co-
efficients. We then apply the GHWT best basis algorithm to
this flattened N, x (j$%, + 1) matrix using a cost functional
of our choice (e.g., the £”-(quasi)norm, 0 < p < 1) to obtain
the column best basis. We note that what we obtain here is
the specification of the column best basis without generat-
ing its basis vectors.

Similarly in Step 3, we apply the GHWT to each column
vector of the original matrix, which yields an array of size
Ny x Ng x (jrow +1). As we did for the columns in Step 2, we
“flatten” this to a matrix of size N, x (jio + 1) and then use
the best basis algorithm to find the row best basis.

At the beginning of Step 4, we have the specifications
of the column and row best bases. Now, for each column,
we select the coefficients corresponding to the row best ba-
sis from the N, x N x (jiow + 1) array, and the result is a
row-transformed N, x N, matrix, which is a collection of
the expansion coefficients of each column vector w.r.t. the
row best basis. We now use the existing hierarchical bipar-
tition tree of the columns to apply the GHWT to each row
vector of this transformed matrix, once again yielding an
array of size N, x N; x ( ]fr?alx +1). We then extract the coeffi-
cients corresponding to the column best basis, yielding the

final result of our analysis: a row- and column-transformed
N; x N, matrix of GHWT expansion coefficients of A. The
computational cost of transforming such a matrix relative
to these best bases is O(IN; N¢log, (N, N¢)).

Although in our description we transform the rows and
extract the best basis, then transform the columns and ex-
tract the best basis, it does not matter whether we analyze
the rows or the columns first. To see why, let W gy € RNNr
and ¥, € RNVe*Ne denote the orthogonal matrices whose
columns are the row and column best basis vectors. Al-
though we do not form these matrices for the sake of com-
putational efficiency, our matrix transform is equivalent
to computing W/ A¥ o1, and thus it is not impacted by
which dimension is transformed first.

We note here that Bremer [7, Chap’s. 3, 4] also developed
a matrix tiling algorithm using the idea of the Coifman-
Wickerhauser best basis algorithm; however, he did not
construct bases or dictionaries to analyze a given matrix,
and his main concern was to reorganize rows and columns
to reveal low rank structure (if any) of an input matrix.

5. ANALYSIS OF A SPECIFIC TERM-DOCUMENT
MATRIX: THE SCIENCE NEWS DATASET

As an example, we use the Science News database, in partic-
ular, the term-document matrix consisting of 1042 columns
representing documents obtained from the Science News
website and 1153 rows representing preselected most rel-
evant words out of 10906 meaningful words. This list of
words was initially generated by J. Solka [8] followed by the
effort of M. Maggioni and M. Gavish [9], and was finalized
by N. Saito by removing five identical documents. These
documents are already classified/labeled into eight differ-
ent categories: Anthropology; Astronomy; Behavioral Sci-
ences; Earth Sciences; Life Sciences; Math/CS; Medicine;
Physics. The ijth entry of this matrix, a;;, represents the
relative frequency with which word i appears in document
Jj, and consequently, the each column sum is 1.

In this experiment, we use the #!-norm as a cost func-
tional in the best basis algorithm. The total number of
orthonormal bases searched via the best basis algorithm
exceeds 1037°. Fig. 2 compares the approximation perfor-
mance of our GHWT best basis with that of the Haar and
Walsh bases that can also be extracted from the GHWT
dictionaries. From this figure, we see that 62.3% of the
Haar coefficients and 100% of the Walsh coefficients must
be kept to achieve perfect reconstruction, compared to
10.15% using the GHWT best basis, which turns out to be
almost the canonical basis in this case. Note that the spar-
sity of the original matrix is 10.13%. In fact, if we use the
£ -quasinorm with 0 < p < 0.00979, the resulting best basis
exactly becomes the canonical basis.

Since the ¢! cost functional promotes sparsity, the re-
sulting best basis does in fact sparsify the input matrix



(a) Original order

Fig. 1. The sparsity patterns of the Science News dataset be-
fore and after the reordering based on the hierarchical spec-
tral co-clustering.
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Fig. 2. Decay of the expansion coefficients w.r.t. Haar basis,
Walsh basis, and GHWT best basis. The vertical line denotes
the percentage of nonzero entries in the matrix (10.1%).

nicely, which is reassuring on the one hand because the
best basis does the expected job. But on the other hand,
the fine scale information is too much emphasized in our
algorithm with the ¢P-(quasi)norm cost functional with
0 < p < 1, which may be sensitive to ‘noise’. We are inter-
ested in the medium scale information in this database,
e.g., clustering structures both in words (rows) and docu-
ments (columns). To do so, one possibility is to weight the
coefficients in the GHWT dictionaries as follows:

di ;= di - (VINVIDP =l - (NINF, @)

where 8 = 0 is chosen empirically to make the magnitude of
the finer coefficients bigger, which discourages the best ba-
sis algorithm from selecting fine scale subgraphs. See also
[10, 11] for similar weighting scheme and its relation to the
Earth Mover’s Distance. Here, we set % = 1.0, ,6“’1 =0.15
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Fig. 3. Decay of the expansion coefficients w.r.t. Haar ba-
sis, Walsh basis, and GHWT best basis using the weighted
coefficients via Eq. (2).

empirically after repeated experiments. As Fig. 3 shows, this
best basis sparsifies A less than before, and is somewhat be-
tween the Haar and the Walsh bases, yet well captures infor-
mation on intermediate scales as we discuss below. Fig. 4a

Row Best Basis (Fine-to-Coarse) Partition Pattern |

Wiy
Wiy

100 200 300 400 500 600 700 800 900 1000 1100
Reordered Row Index

100 200 300 400 500 600 700 800 900 1000 1100
Reordered Row Index

(a) The best basis partition (b) The basis vectors on j =4

Fig. 4. The row (word) best basis (fine-to-coarse)

shows the row best basis: the horizontal axis indicates the
row indices reordered by the hierarchical bipartition tree
followed by the best basis algorithm whereas the vertical
axis indicates the scale (or level) information j from the top
(j = jray = 16: the finest) to the bottom (j = 0: the coars-
est); the colored blocks in Fig. 4a represent the scale infor-
mation of the row best basis coefficients at the reordered
row indices. One can see that many of the coefficients are
at rather coarse scales, i.e., 0 < j < 4 due to the weighting
scheme Eq. (2). Fig. 4b shows the nine row best basis vec-
tors corresponding to the coefficients indicated by the el-
lipse in Fig. 4a, all of which are on level j = 4. We clearly
see that these vectors try to analyze the documents using
specific groups of words (reordered rows). For example, the
positive components of the sixth basis vector in Fig. 4b cor-



respond to the following words: earthquake, down, califor-
nia, dioxide, deep, warm, el, southern, crust, valley, once,
geologist, bottom, tsunami, oxide, fault, antarctica, warn-
ing, tsunamis, prediction, greenhouse. On the other hand,
the negative components of that vector correspond to: tem-
perature, ice, sea, layer, flow, around, survey, coast, warm-
ing, quake, past, nino, global, seismologist, cycle, cold, slow;,
recent, plate, thickness, meter, japan, forecast. Clearly, this
basis vector is checking if a given document is in Category 4
(Earth Sciences). Fig. 5 demonstrates the potential useful-
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Fig. 5. The document category distributions based on the
absolute value of the expansion coefficients of those nine
basis vectors in Fig. 4b; the horizontal axis indicates the cat-
egory number (1-8) while the vertical axis represents the
number of the documents belonging to those categories.

ness of these basis vectors. For each of these basis vectors

4, ) )
"W e RN, we compute the corresponding expansion co-

Vil
efficients for the whole set of documents, i.e., (1[/,1C A

and we select the documents whose expansion coefficients
are greater than 0.01. Then, we create the histogram of the
document categories of those selected documents. For ex-
ample, Fig. 5 demonstrates that the sixth basis vector clearly
contributes to single out Category 4 (Earth Sciences) docu-
ments most with small spillover to Categories 5 (Life Sci-
ences) and 6 (Math/CS) while the ninth basis vector does
not (the words corresponding to its nonzero components
are: device, industry, electrical, electric, fluid).

As for the column best basis, Fig. 6a shows its partition
pattern, which is selected from the coarse-to-fine GHWT
dictionary: the vertical axis indicates the scale (or level) in-
formation j from the top (j = 0: the coarsest) to the bottom
(joL =15: the finest) whereas the horizontal axis indicates
the reordered column indices. One can see that many of the
coefficients are at rather fine scales, i.e., 7 < j < 13, which

is quite a contrast to the row best basis pattern shown in
Fig. 4a. It is interesting to see that the column best ba-
sis tends to group the documents rather finely despite the
fact that the weight is less severe (ﬁc"l 0.15; see Fig. 6a),
whereas the row best basis groups the words more coarsely
(B = 1.0; see Fig. 4a). In this figure, two coarse scale
blocks stand out; they correspond to the node set V54 and
V;%. Fig. 6b shows the column best basis vectors corre-
sponding to the coefficients marked by the circle in Fig. 6a,
whose support is V54 with |V54| =51 documents. Out of these
51 documents, 48 belong to Category 2 (Astronomy). The
remaining three turn out to be the following:

* “Old Glory, New Glory: The Star-Spangled Banner
gets some tender loving care” (Category 1: Anthro-
pology; on the preservation of the Star-Spangled Ban-
ner (flag) using the space-age technology)

* “Snouts: A star is born in a very odd way” (Category
5: Life Sciences; on star-nosed moles)

* “Gravity tugs at the center of a priority battle” (Cate-
gory 6: Math/CS; on the priority war on the discovery
of gravity between Newton, Halley, and Hooke)

It is not surprising why these three documents are picked
up by the basis vectors supported on V54: they contain at
least a few astronomical terms. In order to check how these
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Fig. 6. The column (document) best basis (coarse-to-fine)

column best basis vectors relate to the words, we compute

At[/é 801, i.e., the expansion coefficients of all the row vec-

tors of A w.r.t. 1[/‘51'801, which is the indicator vector of these

51 documents. Flg 7 displays these expansion coefficients,
which indicate how these 51 documents are related to those
coefficients. The expansion coefficients exceeding 0.05 in
this figure correspond to the following words: year, univer-
sity, time, team, system, light, earth, star, planet, finding,
astronomer, universe, galaxy, object, ray, telescope, orbit,
mass, hole, dust, black, distance, disk, infrared. Clearly, the
majority of them are highly relevant terms in astronomy' A
similar expenment on another standout block V, in Fig. 6a,
where | 14| = 62, results in the following observation. 56
documents among these 62 indicate Category 7 (Medicine).
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Fig. 7. The expansion coefficients of row vectors w.r.t. the
column best basis vector 1[/;'801 = the indicator vector of 51
documents.

Out of these six anomalies, three are in Category 5 (Life Sci-
ences), which is not quite surprising. The remaining three
documents are:

* “In Silico Medicine: Computer simulations aid drug
development and medical care” (Category 6);

* “Beyond Virtual Vaccinations: Developing a digital
immune system in bits and bytes” (Category 6);

» “Paleopathological Puzzles: Researchers unearth an-
cient medical secrets” (Category 1).

In our opinion, these could have been categorized as Cate-
gory 7. The significant expansion coefficients of all the row
vectors w.r.t. the indicator vector w‘fgfgl correspond to the
following words: year, university, study, scientist, people,
cell, group, disease, system, drug, protein, brain, human,
blood, patient, test, immune, virus, strain, infection, vac-
cine, antibody, hiv, infected, aids, amyloid. Again, the ma-
jority of them are clearly related to medical sciences.

6. CONCLUSION

In this paper, we proposed a method to learn the spar-
sity of a given matrix and the interrelationship between
its rows and columns using our GHWT dictionaries, and
demonstrated their potential usefulness for matrix data
analysis using the Science News term-document matrix.
We are currently investigating cost functionals other than
¢P-(quasi)norms; a more extensive best basis algorithm;
and basis vector selection algorithms that are fundamen-
tally different from the best basis algorithm, and we hope
to report our results at a later date.
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