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ABSTRACT

The application of graph Laplacian eigenvectors has been quite popular in the graph signal processing field: one
can use them as ingredients to design smooth multiscale basis. Our long-term goal is to study and understand
the dual geometry of graph Laplacian eigenvectors. In order to do that, it is necessary to define a certain metric
to measure the behavioral differences between each pair of the eigenvectors. Saito (2018) considered the ramified
optimal transportation (ROT) cost between the square of the eigenvectors as such a metric. Clonginger and
Steinerberger (2018) proposed a way to measure the affinity (or ‘similarity’) between the eigenvectors based on
their Hadamard (HAD) product. In this article, we propose a simplified ROT metric that is more computational
efficient and introduce two more ways to define the distance between the eigenvectors, i.e., the time-stepping
diffusion (TSD) metric and the difference of absolute gradient (DAG) pseudometric. The TSD metric measures
the cost of “flattening” the initial graph signal via diffusion process up to certain time, hence it can be viewed
as a time-dependent version of the ROT metric. The DAG pseudometric is the l2-distance between the feature
vectors derived from the eigenvectors, in particular, the absolute gradients of the eigenvectors. We then compare
the performance of ROT, HAD and the two new “metrics” on different kinds of graphs. Finally, we investigate
their relationship as well as their pros and cons.

Keywords: Graph Laplacian eigenvectors, metrics between orthonormal vectors, dual geometry of graph Lapla-
cian eigenvectors, multiscale basis dictionaries on graphs, heat diffusion on graphs, Wasserstein distance, optimal
transport

1. INTRODUCTION

The graph Laplacian eigenvectors and the ordering of the eigenvectors have been used as the two key ingredients
to design graph wavelets by the Littlewood-Paley type theory for graphs. For example, the Spectral Graph
Wavelet Transform (SGWT)5 orders the eigenvectors by the size of corresponding eigenvalues. However, this
ordering may lead to unexpected problems if the underlying graph is more complicated than 1D paths or cycles
as pointed out by Saito and his group.7,12 The “metrics” in this article are designed to detect the “behavioral
differences” between the eigenvectors on the graph so that we can order the eigenvectors more naturally than
using the size of the corresponding eigenvalues. Furthermore, these metrics help us design smooth multiscale
basis dictionaries that are quite important for many applications, e.g., efficiently approximating graph signals8

and solving differential equations on graphs.11,18

In this article, we study five “metrics”: the Ramified Optimal Transport (ROT) metric;12,20 the simplified
ROT (sROT) metric on trees; the affinity measure proposed by Cloninger and Steinerberger;2 the Time-Stepping
Diffusion (TSD) metric; and the Difference of Absolute Gradient (DAG) pseudometric, to quantify the difference
between the graph Laplacian eigenvectors and assemble the corresponding distance matrix by computing the
mutual distance between the eigenvectors. The sROT and latter two “metrics” are newly proposed in this
article. In order to examine the quality of these distance matrices, we use the classical multidimensional scaling
(MDS) method1 to embed the eigenvectors into low dimensional Euclidean space, i.e., Rd (d = 2, 3). Thus, we
can visualize the arrangement of the eigenvectors organized by the corresponding “metrics”.
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The TSD metric is based on the time evolution of the mass propagation via a diffusion process on a graph,
provided with the difference between two eigenvectors as the initial condition. The ROT metric does not explicitly
sense the “scale” information of the underlying graph: it only reflects the final and global transportation cost
between two eigenvectors. However, we are also interested in the intermediate situation of the transportation
process, i.e., where the mass “congestion” occurs during the transportation and how quickly the mass reaches a
specific region, etc. Thus, we can think of TSD as a time-evolving optimal transport-like metric.

The DAG pseudometric is designed for characterizing oscillation patterns of the graph Laplacian eigenvectors.
Intuitively speaking, we take the view that the gradient of the eigenvectors contains more direct information of
the oscillations than the eigenvectors themselves. In addition, since we study undirected graphs G = (V,E), it
is natural to consider the absolute value of the gradient on each edge e ∈ E as features. We then compute the
`2-distance between the feature vectors as the behavioral distance between corresponding eigenvectors. Under
this pseudometric, we expect the eigenvectors with similar oscillation pattern are close and those with distinct
oscillation behaviors are far apart. For example, the eigenvectors oscillate in one direction and those oscillate in
another direction on a 2D lattice graph have orthogonal absolute gradient feature vectors, which would lead to
a larger DAG distance as expected.

The structure of this article is the following. First, we review the two existing “metrics”, i.e., the ROT
metric12,20 and the affinity measure of Cloninger and Steinerberger.2 We then introduce the sROT metric on
tree graphs and propose our two new “metrics”, i.e., TSD and DAG. We also analyze the relationship between
some of the above “metrics”. Finally, we conclude with the performance of all the “metrics” on different type of
graphs and provide further discussion on them.

2. NOTATION AND REVIEWS

In this section, we will introduce some basic notation about graphs that will be used through out this article. We
then review the two existing behavioral “metrics” of graph Laplacian eigenvectors and also introduce a method
to simplify the ROT on trees for less computational cost.

2.1 Basics of Graphs

First, we review some background knowledge about graphs as discussed in papers.7,10,12–14 A graph G =
(V,E,W ) consists of a set of vertices (or nodes) V = {v1, v2, · · · , vn}, a set of edges E = {e1, e2, · · · , em}
connecting some pairs of vertices in V and a weight matrix W ∈ Rn×n.

If the number of vertices is finite, i.e., |V | <∞, then we call G a finite graph. If any e ∈ E does not have a
direction, then the graph is undirected. If any two vertices vi, vj ∈ V are connected by a sequence of head-tail
edges, then the graph is connected. Furthermore, if there is no edge connecting a vertex to itself or there are no
multiple edges between any pair of vertices, then we call G a simple graph. In this article, we only deal with
finite undirected connected simple graphs.

Next, we introduce the associated matrices on graphs.

Definition 2.1 (Graph Laplacian matrix). Let G = (V,E,W ), n = |V |. Denote its weighted adjacency
matrix W = W (G) = (wij) ∈ Rn×n, its degree matrix D = D(G) = diag(d1, d2, · · · , dn) ∈ Rn×n, and its
unnormalized Laplacian matrix L = L(G) ∈ Rn×n, whose entries are defined by the following,

wij :=

{
W (i, j) if e = (vi, vj) ∈ E(G);

0 otherwise.
di = d(vi) :=

n∑
j=1

wij L(G) := D(G)−W (G)

Also, for unweighted graphs G = (V,E), W is automatically defined by W (i, j) :=

{
1 if e = (vi, vj) ∈ E(G);

0 otherwise.

Observe that L is a real symmetric positive semi-definite matrix, so the eigenvalues of L are nonnegative. More-
over, thanks to the connectivity of graphs, λ0 = 0 is an eigenvalue of L with multiplicity 1 and its corresponding
eigenvector φ0 is a constant vector, which is usually called the DC component (vector). The eigenvector φ1 (with
the first nonzero eigenvalue) is called the Fielder vector, which plays an important role in graph partitioning.7,19



Also, the eigenvectors {φl}n−1
l=0 form an orthonormal basis (ONB) of L2(V ). If the multiplicity of the eigenvalue

is more than 1, the choice of corresponding eigenvectors is not unique. So for simplicity, we only deal with the
case when L has different eigenvalues, i.e., 0 = λ0 < λ1 < λ2 < · · · < λn−1. In the following contexts when we
talk eigenvectors, we mean the eigenvectors of the unnormalized graph Laplacian L, denoted as {φl}n−1

l=0 .

Definition 2.2 (Incidence matrix). The incidence matrix of a directed graph G = (V,E) is a n × m
matrix Q where n = |V | and m = |E|, such that

Q(i, j) :=


−1 ej ∈ E leaves vertex vi ∈ V ;

1 ej ∈ E enters vertex vi ∈ V ;

0 otherwise.

If G = (V,E) is undirected, we randomly assign a direction for each edge.

Definition 2.3 (Graph gradient). Given G = (V,E) and f ∈ L2(V ), the graph gradient denoted as
∇Gf(or df) ∈ L2(E) is defined in the following way. For any edge e = (vi, vj), vi, vj ∈ V , we have

∇Gf(e) = f(vj)− f(vi) = QTf |∇Gf |(e) = |f(vj)− f(vi)| |∇Gf | = abs .(QTf) ∈ R|E| (1)

where abs . is the operation of taking absolute value in a component-wise manner and Q is the incidence matrix of
G. The reason we are interested in |∇Gf | over ∇Gf is because the absolute value will get rid of the randomness
when we assign directions to each edge for undirected graphs.

2.2 Spectral Graph Theory

Let G = (V,E,W ) be a graph with |V | = n. The classical Fourier transform is the expansion of a function

f in terms of the eigenfunctions of the Laplace operator: f̂(ξ) = 〈f, e2πiξt〉. Analogously, the graph Fourier
transform16 of f ∈ L2(V ) is defined by the eigenvectors of the unnormalized graph Laplacian L:

f̂(l) = 〈f ,φl〉 for l = 0, 1, · · · , n− 1

where φl ∈ Rn is the l-th eigenvector of L.

If the underlying graph is a simple undirected path, then the eigenvectors of its Laplacian matrix are nothing
but the Discrete Cosine Transform (DCT) type II basis vectors,10 which has been widely used in classical Fourier
theory and signal analysis.17 This is one of the reasons why people often use the eigenvalues and eigenvectors of
the graph (unnormalized) Laplacian L as an analysis tool on graphs, such as the spectral graph wavelet transform
(SGWT)5 and other graph wavelets discussed in the survey.15

When the underlying graph is more complicated (not an undirected path or cycle), one may encounter serious
problems if the eigenvectors are ordered and organized based on the size of the corresponding eigenvalues. In
complicated graphs, there is no well-defined notion of “frequency” unlike in the case of simple path graphs since
some eigenvectors may not have a global oscillation structure. The relations between eigenvectors and eigenvalues
become more subtle.10,12,14 Thus, one solution of this problem is to come up with some “metrics” of the graph
Laplacian eigenvectors so that the eigenvectors can be organized based on their behaviors on graphs. We note
that the usual `2-distance between the graph Laplacian eigenvectors does not work since ‖φi − φj‖2 ≡

√
2δij

where δij is the Kronecker delta.

2.3 Ramified Optimal Transport (ROT) Metric

The ROT metric12 is presented as follows. First, we convert each eigenvector to a probability mass function
(pmf) on the input graph G = (V,E,W ) with |V | = n and |E| = m (e.g., squaring an eigenvector φi elementwise
turns it to a pmf φ2

i , which can be interpreted as the energy distribution of the eigenvector), and define the
metric between a pair of the eigenvectors by the minimal cost to move the probability mass from one pmf p to
the other pmf q.

˜̃Qw = q − p, w ∈ R2m
≥0 , (2)



where ˜̃Q ∈ Rn×2m is the incidence matrix of the bidirected graph ˜̃G generated from the undirected original graph

G, i.e., each edge in E(G) becomes two directed edges in E( ˜̃G), so that the probability “mass” can move in
either directions. Note that any w satisfying Eq. (2) represents a transportation path (or plan) from p to q, and
there may be multiple solutions. Hence, we first define the cost of a transport path P ∈ Path(p, q) as:

Mα(P ) :=
∑

e∈E(P )

w(e)α length(e), α ∈ [0, 1].

where length(e) is the “length” of the edge e ∈ E(P ), which may be the Euclidean distance between the two
nodes associated with e, or the inverse of the original edge weight of the input graph G if the original edge
weight represents the affinity between those two nodes. Now, we can define the minimum transportation cost

dROT(p, q;α) := min
P∈Path(p,q)

Mα(P ).

Xia proved that this is a metric on the space of pmfs.20

2.4 Simplified ROT (sROT) Metric

If the underlying graph is a tree (connected graph without any loop), we can develop a computational efficient
simplified ROT (sROT) metric. Notice that there are only three types of vertices in a tree: terminal vertices
(degree 1); internal vertices (degree 2); and junction vertices (degree greater than 2). When we consider the
pmf’s of the eigenvectors (i.e., Φ.2 = [φ2

0,φ
2
1, · · · ,φ2

n−1] ∈ Rn×n) for the ordering and organization purposes,
we are mainly analyzing how the probability mass distributed on different branches (consisting of terminal and
internal vertices) and junctions.

Therefore, we decompose the tree into branches and junctions. In order to do that, we first find all the junction
vertices of the tree by checking the degree of each vertex. Then, we use the junction vertices to chop the tree into
several branches and junctions (i.e., subgraphs). In particular, the junction vertices corresponds to a bunch of one-
vertex subgraphs. After this process, we get J disconnected subgraphs Gl = (V l, El) (l = 1, 2, · · · , J) including
all the branches and junctions of the tree. We also get a graph of the subgraphs, denoted as Gs = (Vs, Es),
which describes how the subgraphs related with each other. Intuitively speaking, we compress the branches of
the tree graph G as one vertex in Gs.

Next, we define sROT metric between eigenvectors. Like the first step of ROT, we convert the eigenvectors into
its energy form Φ.2 (elementwise square). But then instead of computing the ROT distance directly between
φ2
i and φ2

j , we perform a preprocessing step. We compute the mass of φ2
i on each subgraph Gl = (V l, El)

(l = 1, 2, · · · , J). In other words, if Gl is a junction one-vertex (i.e., V = {v}) subgraph, we just preserve the
value of φ2

i at vertex v; if Gl corresponds to a branch subgraph, we sum probability mass of φ2
i over the subgraph

vertices. In the end, we get a J dimensional vector for each eigenvector φi (i = 0, 1, · · · , n − 1). These vectors
can be viewed as energy distribution feature vectors over J different subgraphs. Denote these feature vectors by
Θ := [θ0, θ1, · · · , θn−1] ∈ RM×n(J � n) where θi(l) :=

∑
v∈V l φ2

i (v) for l = 1, 2, · · · , J . Notice that each θi
is a low dimensional pmf representation of φi. We then compute the ROT distance between θi and θj on the
graph of subgraphs, i.e., dROT(θi, θj ;α) on Gs, which will reduce the computational cost a lot compared to the
original ROT, i.e., dROT(φ2

i ,φ
2
j ;α) on G. We call this distance as the sROT metric between eigenvectors φi and

φj , denoted as

dsROT(φ2
i ,φ

2
j ;α) := dROT(θi, θj ;α) (3)

2.5 Hadamard (HAD) Product Affinity Measure

The affinity measure between eigenvectors is introduced by Cloninger and Steinerberger,2 which deals with the
general setting, i.e., on a compact Riemannian manifold (M, g) as:

aHAD(φi, φj)
2 := ‖φiφj‖−2

2

∫
M

(

∫
M
p(t, x, y)(φi(y)− φi(x))(φj(y)− φj(x))dy)2dx, (4)



where (λi, φi)i is an eigenpair of the Laplace-Beltrami operator ∆ on M, p(t, x, y) is the classical heat kernel,4

and the value of t should satisfy e−tλi + e−tλj = 1. It can be interpreted as a global average of local correlation
between these two eigenfunctions. Further, it can be shown that for the same t above

aHAD(φi, φj) =
‖et∆(φiφj)‖L2

‖φiφj‖L2

(5)

This works well for Cartesian product graphs2 in terms of detecting the Cartesian product structure of such
graphs and the oscillation patterns of the eigenvectors.

3. OUR PROPOSED METRICS

3.1 Time-Stepping Diffusion (TSD) Metric

3.1.1 TSD metric on graphs

Given a graph G = (V,E,W ), consider the governing heat diffusion ODE system on the graph, which describes
the evolution of the graph signal f0 ∈ Rn:

d

dt
f(t) + L(G) · f(t) = 0 t ≥ 0, f(0) = f0 ∈ Rn. (6)

Since the graph Laplacian (i.e., L(G)) eigenvectors {φ0,φ1, · · · ,φn−1} form an ONB of Rn, we have:

f(t) =

n−1∑
k=0

〈f0,φk〉e−λktφk (7)

At a certain time T > 0, we define the following functional:

K(f0, T ) :=

∫ T

0

‖∇Gf(t)‖1dt, (8)

where ∇Gf ∈ Rm is the graph gradient of f defined in Definition 2.3. This functional can be viewed as the cost
(or effort) to “flatten” the initial graph signal f0 via heat diffusion process up to the time T , and also as the
time-accumulated “anisotropic total variation norm” 6 of f0. Also, we can show that limT→∞K(f0, T ) <∞ for
any f0 ∈ Rn. After setting the input signal f0 = φi−φj , we define the TSD metric between the eigenvectors at
time T by

dTSD(φi,φj ;T ) := K(f0, T )

Furthermore, we can show the following lemma.

Lemma 3.1. For any T > 0 (including T =∞), K(·, T ) is a norm on L2
0(V ) := {f ∈ L2(V )|

∑
x∈V f(x) = 0}.

Therefore, (L2
0(V ),K(·, T )) is a normed vector space. Furthermore, for any fixed T (including T =∞), we can

get a metric vector space (L2
0(V ), dTSD) by defining

dTSD(f , g) := K(f − g, T ) f , g ∈ L2
0(V )

See Appendix A for the proof.

3.1.2 TSD metric on a compact Riemannian manifold M
Since the heat diffusion system, Eq. (6), can be defined on a compact Riemannian manifold M by the Laplace-
Beltrami operator, we can generalize TSD metric to a continuous setting.

We consider the heat diffusion on M with Neumann boundary conditions and the corresponding eigenfunc-
tions −∆φ = λφ with ‖φ‖2 = 1. So given a initial signal f0 ∈ L2

0(M) := {f ∈ L2(M) :
∫
M f(x)dµ(x) = 0},

where dµ is the measure on M, the TSD functional can be defined by:

K(f0, T ) :=

∫ T

0

∫
M
|∇xu(x, t)|dµ(x)dt



There is a natural upper bound of this functional as shown in the following theorem.

Theorem 3.2. For any T > 0 and f0 ∈ L2
0(M),

K(f0, T ) ≤
∞∑
k=1

1√
λk
|f̂0(k)| ·

√
Vol(M), (9)

where λk’s are the positive eigenvalues of Laplace-Beltrami operator and f̂0(k) = 〈φk, f0〉 are the Fourier coeffi-
cients of f0.

See Appendix B.1 for the proof. Therefore, the TSD metric with parameter T (including T = ∞) on M
between eigenfunctions (except the DC component) φi and φj is well defined by

dTSD(φi, φj ;T ) := K(φi − φj , T ) ≤ (
1√
λi

+
1√
λj

)
√

Vol(M) <∞

3.2 Difference of Absolute Gradient (DAG) Pseudometric

We use the absolute gradient vector of an eigenvector as its feature vector describing its behavior. More precisely,
see Eq. (1) in Definition 2.3. We then define:

dDAG(φi,φj) := ‖|∇G|φi − |∇G|φj‖2 = ‖ abs .(QTφi)− abs .(QTφj)‖2

This quantity is a pseudometric since the identity of discernible in the axioms of metric is not satisfied (e.g.,
adding constants to φi and φj clearly does not change the absolute gradient values) but the other axioms, i.e.,
the non-negativity, symmetry and triangle inequality, are satisfied. One of the biggest advantages of the DAG
metric is its lower computational cost than the others, because it only involves multiplications of the eigenvectors
by the sparse matrix QT.

4. RELATIONS BETWEEN METRICS

4.1 The ROT and the TSD Metrics

The purpose of the TSD metric is to construct time-evolving optimal transport-like metric. As T →∞, we expect
dROT(φ2

i ,φ
2
j ;α = 1) ≤ dTSD(φ2

i ,φ
2
j ;T =∞) ≤ C(G) · dROT(φ2

i ,φ
2
j ;α = 1), where C(G) is a constant depending

on the graph G. Moreover, we observe that if f, g are pmfs on graphs, then dROT(f, g;α = 1) = W1(f, g),
the 1st Wasserstein distance on graphs. Thus, we can also generalize the dROT metric on graphs to a compact
Riemannian manifold M by the generalized W1 on manifolds.

Conjecture 4.1. Given any two probability mass functions (pmfs) p, q on a connected graph G = (V,E,W )
with graph geodesic distance metric d : V × V → R≥0, i.e., the minimum sum of edge weights over all the paths
connecting two input vertices,

W1(p, q) ≤ K(p− q,∞) ≤ C ′ ·W1(p, q)

where W1(p, q) := infγ∈Γ(p,q)

∫
V×V d(x, y)dγ(x, y), where Γ(p, q) denotes the collection of all measures on V ×V

with marginals p and q in the first and second factors respectively and C ′ is a constant depends on G and K(·, ·)
is defined in Eq. (8).

There is also the manifold version of this conjecture. If the underlying manifold is M = [0, 1] or M = T,
where the explicit expression of W1 is known,9 then we can show the first inequality of the conjecture as follows.

Theorem 4.2. Given two probability density functions f, g on [0, 2π],

W1(f, g) ≤ K(f − g,∞)

in which W1 is the 1st Wasserstein distance, a.k.a., the earth mover distance.

See Appendix B.2 for the proof. Since there is no explicit formula of W1 on other complicated manifolds or
discrete graphs, the proof even for the first inequality of the conjecture is hard to proceed.



Figure 1: The 1D representations of the ratio matrix R ∈ Rn×n between square of graph Laplacian eigenvectors,
i.e., R(i, j) = ρ(φ2

i−1,φ
2
j−1), on different 1D path graphs. Every entry of R is lower bounded by 1 and the best

upper bound constant C(G) ≈ 1.47 for all the four cases.

On the other hand, empirically, we can always perform some numerical experiments on different graphs to test
the conjecture. To make things easier to deal with, we introduce the ratio between K(p− q,∞) and W1(p, q),

ρ(p, q) :=

{
K(p−q,∞)
W1(p,q) , if p 6= q;

1, if p = q.

Now, the inequalities of Conjecture 4.1 are reformed to the following.

1 ≤ ρ(p, q) ≤ C ′

Numerical Experiments of Conjecture 4.1 with Eigenvectors: Given a graph G = (V,E), we can view
the square of the eigenvector φ2

i as a pmf on the graph. We compute the ratio matrix R ∈ Rn×n whose entry
is defined by R(i, j) := ρ(φ2

i−1,φ
2
j−1). We hope every entry in R is lower bounded by 1, i.e., mini,j R(i, j) ≥ 1,

and there is some constant C(G) > 1 such that maxi,j R(i, j) ≤ C(G). In other words, we want to verify the
following inequalities in different graphs.

1 ≤ R(i, j) ≤ C(G) ∀i, j = 1, 2, · · · , n (10)

In order to visualize the results and find proper C(G), we reshape the matrix R into a 1D vector and make
the 1D plots for each G. The results of 1D path, 2D lattice and the simplified RGC#100 tree, are as shown
in Figures 1, 2, & 3, respectively. As we can see from these figures, Eq. (10) is satisfied for different graphs
with different C(G). Thus, the conjecture is empirically verified in these graphs when the input pmfs are φ2

i

(i = 0, 1, · · · , n− 1).



(a) Best upper bound C(G) ≈ 1.92 (b) Best upper bound C(G) ≈ 2.04

Figure 2: The 1D representations of the ratio matrix R ∈ Rn×n as in Eq. (10) on different 2D lattice graphs.

(a) The simplified RGC#100 graph (b) Best upper bound C(G) ≈ 2.07

Figure 3: The 1D representation of the ratio matrix R ∈ Rn×n as in Eq. (10) on the simplified RGC#100 graph.

4.2 The DAG and the HAD Affinity Measure

The DAG is closely related to the HAD affinity measure between eigenvectors introduced by Cloninger and
Stenerberger.2 Based on the definition of the DAG pseudometric, we derive the following equations:

dDAG(φi,φj)
2 = 〈|∇G|φi − |∇G|φj , |∇G|φi − |∇G|φj〉E in which 〈·, ·〉E : inner product over edges

= 〈|∇G|φi, |∇G|φi〉E + 〈|∇G|φj , |∇G|φj〉E − 2〈|∇G|φi, |∇G|φj〉E
= 〈∇Gφi,∇Gφi〉E + 〈∇Gφj ,∇Gφj〉E − 2〈|∇G|φi, |∇G|φj〉E
= λi + λj −

∑
x∈V

∑
y∼x
|φi(x)− φi(y)| · |φj(x)− φj(y)|

The last equality follows from the discrete version of Green’s first identity on graphs3 and exchanging the
sum over vertices with the sum over edges. From the above derivations, we can see that the last term of the
formula can be viewed as a global average of absolute local correlation between these two eigenvectors, which is
close to the interpretation of Eq. (4).

5. NUMERICAL EXPERIMENTS

In this section, to evaluate the performance of those five “metrics” discussed in Sections 2 & 3 for a given graph,
we assemble the distance matrix by the mutual behavioral difference between the eigenvectors (or corresponding
pmfs, e.g., φ2

i for dROT and dsROT) using each “metric”. We then use the classical MDS method1 on the distance
matrix and embed the eigenvectors into the low dimensional Euclidean space, i.e., R2 or R3. By doing so, we
can get the visual arrangement of eigenvectors organized by the corresponding “metric”.



We first compare embeddings using the ROT and the sROT on a simple tree. We then present the eigenvector
arrangements by different “metrics” in the embedded MDS space (i.e., R2 or R3) on two different graphs, i.e., a
2D lattice graph and a dendritic tree.

5.1 The ROT and the sROT on a Simple Tree

We generated a simple tree G = (V,E) for demonstration purposes (See Fig. 4). In this graph, |V | = 100 and
|E| = 99. Moreover, there are four junction vertices and four branches that we are interested, i.e., top left branch
V 1, bottom left branch V 2, bottom right branch V 3 and top right branch V 4 (see Section 2.4 for more details).
By computing the energy level of the eigenvectors on different branches, i.e.,

elk(i) :=

∑
v∈V k φ2

i (v)∑
v∈V φ

2
i (v)

=
∑
v∈V k

φ2
i (v) k = 1, 2, 3, 4,

and by thresholding elk(i) ≥ 0.5, we select and group the eigenvectors that concentrate on the k-th branch.

Figure 4: A simple tree with four branches

We use four colors, i.e., pink, orange, green and yellow, to represent the different group of eigenvectors
that concentrated on different branches, i.e., V 1, V 2, V 3 and V 4, respectively. Similarly, we select and group
the eigenvectors that focus on the junction vertices and we use red color for them. In Fig. 6, we show the
five representatives of the eigenvectors in different groups. We consider eigenvectors within each group (i.e.,
eigenvectors with same color) have similar behavior on the tree.

The 3D-MDS results of dROT(φ2
i ,φ

2
j ;α = 1) and dsROT(φ2

i ,φ
2
j ;α = 1) are as shown in Fig. 5. In Fig. 5,

the magenta circle represents the DC vector φ0; the cyan circle represents the Fiedler vector φ1; the red circles
represent eigenvectors concentrated on junctions; the pink circles represent eigenvectors concentrated on V 1; the
orange circles represent eigenvectors concentrated on V 2; the green circles represent eigenvectors concentrated
on V 3; the yellow circles represent eigenvectors concentrated on V 4. We can see from the figure that the similar
behavior eigenvectors are clustered in the embedded space. On the contrary, if we use the eigenvalue to organize
the eigenvectors, we will put φ95 and φ96 inevitably close even though their behaviors on the tree is very different,
i.e., φ95 has semi-global oscillation structure while φ96 is extremely localized on the junctions.

Furthermore, φ96 concentrates on the left most junction which is more closely related with semi-global
oscillation eigenvectors like φ94 (pink) and φ92 (orange) compared to φ95 (green) and φ91 (yellow). In Fig. 5, if
we discriminated the localized red eigenvectors at different junctions by different colors, we can get such structure
for both the ROT and the sROT metrics.

The clustering patterns of embedded eigenvectors by these two metrics are similar, but the dsROT is more
computational efficient than dROT. In this graph, the energy feature vector of each eigenvector via dsROT is
J = 13 (4 branches, 4 junctions and 5 broken segments) comparing to n = 100 via dROT.



(a) dROT(φ2
i ,φ

2
j ;α = 1) (b) dsROT(φ2

i ,φ
2
j ;α = 1)

Figure 5: 3D-MDS results of the ROT and the sROT on the simple tree (Fig. 4).

Figure 6: Representatives of five eigenvector groups: from left to right, pink-group φ94; orange-group φ92;
green-group φ95; yellow-group φ91; red-group φ96 (concentrated on the junctions).

5.2 2D Lattice P11 × P5

The 2D-MDS result of dROT(φ2
i ,φ

2
j ;α = 1) (Fig. 7a) reveals the two-dimensional ordering of the eigenvectors,

but the eigenvectors with even or odd oscillations in either x (horizontal axis) or y (vertical axis) direction are
embedded into a symmetric pattern around the DC vector φ0. The reason is demonstrated in the paper.12

It is mainly because we lose “half” of the information when we measure the difference between the squared
eigenvectors.

The 2D-MDS result of aHAD (Fig. 7b) recovers the two dimensional oscillation structure of the eigenvectors.
It perfectly reflects the oscillation in x direction, but has a little misordering in y direction.

The 2D-MDS result of dTSD(φi,φj ;T ) with different stopping times T are presented in Fig. 8. When T = 0.1
or T = 1, the structure of the oscillation is recovered as five curves with the same y direction oscillation
pattern in each curve. As time increases, the Fiedler vector and DC vector becomes further away and other
eigenvectors become more congested and the oscillation structures are not so obvious. Therefore, in this case,
the result of dTSD(φi,φj ;T = ∞) is worse than the result of dROT(φ2

i ,φ
2
j ;α = 1) and they also look quite

different. However, this does not conflict with the Conjecture 4.1, because we compared dTSD(φ2
i ,φ

2
j ;T = ∞)

with dROT(φ2
i ,φ

2
j ;α = 1) in the conjecture instead of dTSD(φi,φj ;T =∞) with dROT(φ2

i ,φ
2
j ;α = 1).

The 2D-MDS result of dDAG is demonstrated in Fig. 9. We observe that dDAG nicely detect two directions of
the oscillations. The eigenvectors are organized in 2D array. For each column of the array, the eigenvectors have
the same oscillation pattern in y direction and oscillation in x direction increases linearly. On the other hand,



for each row of the array, the eigenvectors have the same oscillation pattern in x direction and oscillation in y
direction changes linearly.

(a) dROT(φ2
i ,φ

2
j ;α = 1) (b) aHAD(φi,φj)

Figure 7: 2D-MDS embedding of the eigenvectors of 11× 5 unweighted lattice graph based on the ROT and the
HAD metrics: each small heatmap plot describes how the eigenvector looks like on the lattice graph.

(a) T = 0.1 (b) T = 1

(c) T = 10 (d) T =∞
Figure 8: 2D-MDS embedding of the eigenvectors of 11 × 5 unweighted lattice graph based on dTSD(φi,φj ;T )
with different T : each small heatmap plot describes how the eigenvector looks like on the lattice graph.

5.3 Dendritic Tree of an RGC of a Mouse

Fig. 10a presents the conversion of the 3D dentritic tree to RGC #100 graph in R3 (see the reference13 for the
details of this RGC tree).

The 3D points cloud in Fig. 11 shows the 3D-MDS embedding of the Laplacian eigenvectors of unweighted
RGC #100 graph based on dROT(φ2

i ,φ
2
j ;α = 0.5). The large blue circle represents the DC vector φ0, while

the big orange circle shows the Fiedler vector φ1. The small red circles indicates the localized eigenvectors as
shown in Fig. 10c. The medium size viridis circles stand for the eigenvectors that concentrated on one of the



Figure 9: 2D-MDS embedding of the eigenvectors of 11 × 5 unweighted lattice graph based on dDAG(φi,φj):
each small heatmap plot describes how the eigenvector looks like on the lattice graph.

upper left branches as shown in Fig. 10b. Grey scales represent the size of corresponding eigenvalues. As we
can see from the figure, the behavioral difference between two types of eigenvectors discussed in Fig. 10 are
detected by this metric. If we order the eigenvectors by the size of their corresponding eigenvalues, we cannot
distinguish such difference since the eigenvalues of two types eigenvectors can be very close around λ = 4.0.14

Another observation is the DC vector and the Fiedler vector are far apart in the embedded space. In some cases,
one might be interested in the behavior of the Fiedler vector but not the DC vector, dROT can emphasize the
behavioral distance between them.

The 3D-MDS result of aHAD(φi,φj) (see Fig. 12) looks good because it successfully separates the localized
ones (red) and semi-global oscillation ones (viridis), but everything else is too closely located and the red ones
do not always stay close with each other, i.e., there are three others outside the range in the picture. The big
disadvantage of aHAD is that it cannot handle the behavior of remotely-located localized eigenvectors very well.
The reason is that the Hadamard product in Eq. (5) will almost vanish on graphs, i.e., φi ◦ φj ≈ 0 ∈ Rn, if the
active support of the concentrated part of φi and φj do not overlap. This is also the reason why everything
looks too congested in Fig. 12. There are many remotely-located localized eigenvectors in the RGC #100 graph
which lead to extreme small HAD affinity measures.

The 3D-MDS result of dTSD(φi,φj ;T = 0.1) and dDAG(φi,φj) have similar structures (see Fig. 13 and
Fig. 14). First, one of the reasons to choose T = 0.1 for dTSD is that the coefficients of eigenvectors with large
eigenvalues are diffused very fast in Eq. (7), i.e., exp (−λit) decay fast for large λi. As we already demonstrated
the long-term behavior of dTSD in the Conjecture 4.1, we are also interested in the short-term behavior of dTSD,
i.e., every coefficient of the eigenvector has not diffused too much in Eq. (7). Since the maximum eigenvalue of
the graph is λ1153 ≈ 4.58, so the value of exp (−λ1153T ) will be not too small for T = 0.1. Another reason of
using such small T is the large computational cost of dTSD for large T . In these figures, they also successfully
split the two types of eigenvectors, i.e., localized ones and those with semi-global oscillations on the upper left
branch. Moreover, everything does not look too crowded. The relation between the DC vector and the Fiedler
vector, however, is one of the big differences between these results and the dROT result. In these two figures, the
DC vector and the Fiedler vector are too close to distinguish from each other. In other words, dTSD with small
T and dDAG do not perform so well in terms of detecting behavioral difference between φ0 and φ1.

6. DISCUSSION

In general, we are interested in two types of eigenvector behavior patterns on graphs: global and directional
oscillation pattern and energy concentration pattern. Global and directional oscillation pattern represents how
the eigenvector globally oscillate on the graphs, e.g., the DCT type II eigenvectors on 1D path graphs where the
oscillation pattern is completely characterized by the eigenvalues; the eigenvectors of 2D lattice graphs or more
general Cartesian product graphs where the oscillation patterns can be characterized by different directions. On
the other hand, the energy concentration pattern of the eigenvector describes which part of the graphs that the
eigenvector is more active, e.g., the tree graphs where eigenvectors may concentrated on the junctions or may



(a) (b) (c)

Figure 10: (a): The 3D dendritic tree of RGC#100 graph. (b): The representative of eigenvectors with semi-
global oscillations on the upper-left branch (projected in R2). (c): The representative of eigenvectors with much
more localized active support around junctions/bifurcation vertices12 (projected in R2).

Figure 11: 3D-MDS embedding of the Laplacian eigenvectors of unweighted RGC #100 graph based on
dROT(φ2

i ,φ
2
j ;α = 0.5): The large blue circle = the DC component and the big orange circle = the Fiedler

vector; the small red circles = localized eigenvectors in Fig. 10c; the medium viridis circles = the semi-global
oscillation eigenvectors in Fig. 10b. Grey scales represent the magnitude of the corresponding eigenvalues.

have semi-global oscillation structure on certain branches. Some “metrics” we described in this article work well
to discriminate global oscillation characteristics while the others work better discriminating energy concentration
pattern of eigenvectors. It is a hard but important question to ask which “metrics” is preferable for eigenvectors
organization on a given graph. In the following, we discuss some empirical observations on different type of
graphs.

For Cartesian graphs, the ROT metric does not perform well for detecting the oscillation patterns of the graph
Laplacian eigenvectors in general. On the contrary, the DAG pseudometric and the HAD affinity measure reveal
the directional oscillation patterns of the eigenvectors quite well. However, for tree graphs, the sROT and ROT
metrics are better than the other two above in detecting the energy localization of the eigenvectors. For the TSD
metric with small T , perceptually, it should be good for oscillation detection because it approximately computes
the total variation of the difference between the eigenvectors (see Section 3.1.1), which behaves similarly as the
DAG pseudometric. On the other hand, for the TSD with large T , it should be good for energy concentration
detection because it behaves more like the ROT metric does. However, the huge computational cost of TSD
with large T limit its performance on complicated graphs. In the future, we will work on designing better
auto-adaptive and cost efficient “metrics” which expected to be good for both types of eigenvector behaviors on
different graphs.

We also observe that even though with the assumption of different eigenvalues, the choice of eigenvectors can
still vary by signs, e.g., φi can be substituted by −φi. Hence, it is important for the behavioral “metrics”, i.e.,
d, of the eigenvectors to satisfy d(φi,−φi) = 0 for i = 0, 1, · · · , n− 1. Most of the metrics we mentioned above
do not have this property, e.g., dTSD and dDAG. We will consider this property to design our future “metrics”
between eigenvectors.



Figure 12: 3D-MDS embedding of the Laplacian eigenvectors of unweighted RGC #100 graph based on
aHAD(φi,φj): The large blue circle = the DC component and the big orange circle = the Fiedler vector;
the small red circles = localized eigenvectors in Fig. 10c; the medium viridis circles = the semi-global oscillation
eigenvectors in Fig. 10b. Grey scales represent the magnitude of the corresponding eigenvalues.

Figure 13: 3D-MDS embedding of the Laplacian eigenvectors of unweighted RGC #100 graph based on
dTSD(φi,φj ;T = 0.1): The large blue circle = the DC component and the big orange circle = the Fiedler
vector; the small red circles = localized eigenvectors in Fig. 10c; the medium viridis circles = the semi-global
oscillation eigenvectors in Fig. 10b. Grey scales represent the magnitude of the corresponding eigenvalues.

7. SUMMARY

In this article, we have proposed the simplified ROT metric i.e., dsROT, and two new behavioral “metrics” of
graph Laplacian eigenvectors, i.e., dTSD and dDAG. By comparing them to the two existing “metrics”, i.e., dROT

and aHAD, we have demonstrated that the dsROT is more computational efficient with good results on trees
while the dTSD behaves like a time-dependent dROT( · , · ;α = 1) metric. The dDAG essentially considers global
averages of absolute local correlation between eigenvectors, which is closely related to the interpretation of aHAD

as discussed in Section 4.2. We have compared the performance of all the four “metrics” on 2D lattice graph
and the RGC #100 mouse neuronal dendritic tree. In the lattice graph, we have observed that dDAG and aHAD

perform better than the others, i.e., they detect global and directional oscillation patterns of the eigenvectors
more clearly. In the RGC #100 tree, we have demonstrated the result of aHAD is not good because of the
nature of the Hadamard product. On the other hand, the dROT metric has an interesting physical interpretation.
Viewing two eigenvectors as two neuronal signals, the dROT can quantify the cost of transporting one of the
signals along the branches of a dendritic tree and morphing it to the other signal.

APPENDIX A. PROOF OF LEMMA

Proof. [Lemma 3.1]

• (identity of discernible) If f = 0 ∈ L2
0(V ), then K(0, T ) = 0.

On the other hand, if K(f , T ) = 0 (T > 0), we denote Q as the incidence matrix as in Definition 2.2,

K(f , T ) =

∫ T

0

‖QT

n−1∑
k=0

〈f ,φk〉e−λktφk‖1dt = 0



Figure 14: 3D-MDS embedding of the Laplacian eigenvectors of unweighted RGC #100 graph based on
dDAG(φi,φj): The large blue circle = the DC component and the big orange circle = the Fiedler vector; the
small red circles = localized eigenvectors in Fig. 10c; the medium viridis circles = the semi-global oscillation
eigenvectors in Fig. 10b. Grey scales represent the magnitude of the corresponding eigenvalues.

=⇒ ‖QT

n−1∑
k=0

〈f ,φk〉e−λktφk‖1 = 0 for any t ∈ [0, T ]

=⇒ QT

n−1∑
k=0

〈f ,φk〉e−λktφk = 0 for any t ∈ [0, T ]

=⇒ QT

n−1∑
k=1

〈f ,φk〉e−λktφk = 0 (QTφ0 = 0 ∈ L2(E))

=⇒ QT
[
φ1 φ2 · · · φn−1

]
·


〈f ,φ1〉e−λ1t

〈f ,φ2〉e−λ2t

...
〈f ,φn−1〉e−λn−1t

 = 0

Since the graph G is connected (implies m ≥ n − 1), it is easy to show that rank(Q) = n − 1. Denote
A := QT[φ1,φ2, · · · ,φn−1] ∈ Rm×(n−1), then rank(A) = n − 1. In other words, A is full column rank.
Therefore, it implies

〈f ,φk〉e−λkt = 0 =⇒ 〈f ,φk〉 = 0 for k = 1, 2, · · · , n− 1.

f ∈ L2
0(V ) =⇒ 〈f ,φ0〉 = 0

Hence, f =
∑n−1
k=0〈f ,φk〉φk = 0 ∈ L2

0(V ).

• (absolutely homogeneous) For α ∈ R and f ∈ L2
0(V ), K(αf , T ) = |α|K(f , T ).

• (Triangle inequality) For any f , g ∈ L2
0(V ) and T > 0,

K(f + g, T ) =

∫ T

0

‖QT

n−1∑
k=0

〈f + g,φk〉e−λktφk‖1dt

≤
∫ T

0

‖QT

n−1∑
k=0

〈f ,φk〉e−λktφk‖1 + ‖QT

n−1∑
k=0

〈g,φk〉e−λktφk‖1dt

= K(f , T ) +K(g, T )

Therefore, K(·, T ) is a norm on L2
0(V ) and (L2

0(V ),K(·, T )) is a normed vector space.



APPENDIX B. PROOF OF THEOREMS

B.1 Proof of Theorem 3.2

Proof.

K(f0, T ) =

∫ T

0

∫
M
|∇xu(x, t)|dxdt

=

∫ T

0

∫
M

∣∣∣∣∣∇x
∞∑
k=0

〈φk, f0〉e−λktφk(x)

∣∣∣∣∣ dxdt

=

∫ T

0

∫
M

∣∣∣∣∣∇x
∞∑
k=1

〈φk, f0〉e−λktφk(x)

∣∣∣∣∣ dxdt

≤
∫ T

0

∫
M

∞∑
k=1

∣∣〈φk, f0〉e−λkt∇φk(x)
∣∣ dxdt (triangle ineq.)

=

∞∑
k=1

∫ T

0

e−λktdt ·
∫
M
|〈φk, f0〉∇φk(x)|dx

≤
∞∑
k=1

1

λk
|f̂0(k)| ·

∫
M
|∇φk(x)|dx (T →∞)

≤
∞∑
k=1

1

λk
|f̂0(k)| · ‖∇φk‖2 ·

√
Vol(M) (Cauchy Schwarz ineq.)

=

∞∑
k=1

1√
λk
|f̂0(k)| ·

√
Vol(M) (‖∇φk‖2 =

√
λk by Green’s formula)

B.2 Proof of Theorem 4.2

The heat diffusion PDE on T: 
∂
∂tu(x, t)− ∂2

∂x2u(x, t) = 0 x ∈ [0, 2π]

u(x, 0) = f0 ∈ L2
0([0, 2π]) I.C.

∂
∂xu(0, t) = ∂

∂xu(2π, t) = 0 B.C.

and its general solution using Laplacian eigenfunctions φn:

u(x, t) =

∞∑
n=0

〈φn, f0〉e−λntφn(x) in which φn(x) =
1√
π

cos
(n

2
x
)

and λn =
1

4
n2.

Now, Eq. (8) becomes

K(f0, T ) =

∫ T

0

∫ 2π

0

∣∣∣∣ ∂∂xu(x, t)

∣∣∣∣dxdt



Proof.

K(f − g,∞) =

∫ ∞
0

∫ 2π

0

∣∣∣∣∣
∞∑
n=0

〈φn, f − g〉e−λntφ′n(x)

∣∣∣∣∣dxdt

=

∫ ∞
0

∫ 2π

0

∣∣∣∣∣
∞∑
n=1

〈φn, f − g〉e−λntφ′n(x)

∣∣∣∣∣ dxdt

=

∫ 2π

0

∫ ∞
0

∣∣∣∣∣
∞∑
n=1

〈φn, f − g〉e−λntφ′n(x)

∣∣∣∣∣ dtdx (Fubini theorem)

≥
∫ 2π

0

∣∣∣∣∣
∫ ∞

0

∞∑
n=1

〈φn, f − g〉e−λntφ′n(x)dt

∣∣∣∣∣dx (triangle ineq.)

=

∫ 2π

0

∣∣∣∣∣
∞∑
n=1

〈φn, f − g〉
1

λn
φ′n(x)

∣∣∣∣∣dx
=

∫ 2π

0

∣∣∣∣∣
∞∑
n=1

〈φn, f − g〉
∫ x

0

φn(s)ds

∣∣∣∣∣dx (−φ′′n = λnφn)

=

∫ 2π

0

∣∣∣∣∫ x

0

f(s)− g(s)ds

∣∣∣∣dx = W1(f, g)

For the last equation, we used the explicit formula of W1 in R.9
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