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ABSTRACT
We propose a simple and efficient way for pattern recognition
and signal classification within the Diffusion Framework. Our
proposed Node Connectivity Matching (NCM) method is de-
rived from the diffusion distance. However, instead of com-
puting the eigenvalues/eigenvectors of the normalized diffu-
sion matrix on the graph constructed from the data, as re-
quired when approximating the diffusion distance, we treat
each row of the normalized diffusion matrix as a training his-
togram of node connectivities. To classify an unlabeled data
point, we compare its node connectivities to the training his-
tograms using theL2 norm as a bin-by-bin histogram discrim-
inant measure. Through numerical examples we show that
our NCM method is more accurate than using the diffusion
distance.

Index Terms— Diffusion distance, normalized diffusion
matrix, Markov transition probabilities, directed diffusion, his-
togram matching.

1. INTRODUCTION

In recent years, methods in the Diffusion Framework have
been shown to possess vast applications in many different ar-
eas of science, particularly in data mining. When referring to
the Diffusion Framework, we refer to a method or procedure
that involves in some way utilization of the graph Laplacian
on the weighted graph constructed from the data. These meth-
ods are in general robust and effective. M. Belkin et al. ([1]
and the references therein) proposed to use the eigenvectors
of the graph Laplacian for dimension reduction while preserv-
ing local geometry. Related to the graph Laplacian is the dif-
fusion operator (defined in (2) below). R. R. Coifman and
S. Lafon [2, 3, 5] gave an interpretation of the action of the
diffusion operator via a Markov process on the graph and in-
troduced the diffusion maps and diffusion distance to pattern
recognition and many more applications. Following suit are
methods for datasets matching [6, 7], diffusion on a graph for
clustering and image denoising [4, 9], and many more that we
cannot mention due to the limited space here.
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In this paper, we observe that the diffusion distance is
essentially a weighted L2 distance between the rows of the
normalized diffusion matrix P . When we view row i of the
matrix P as a probability distribution for a random walker to
move from node i on the graph constructed from the data to
all other nodes, then the diffusion distance can be viewed as
the weighted L2 distance between transition probability dis-
tributions (as described in [2, 5]). Furthermore, each of these
probability distributions (i.e., rows of the diffusion matrix)
can be viewed as a distribution of connectivities of a node to
all other nodes in the graph. From this observation, we pro-
pose a simple method for classification by directly comparing
distributions of node connectivities, instead of by the diffu-
sion distance which requires computation of the eigenvalues
and eigenfunctions of the normalized diffusion matrix P .

We shall describe our idea in details in Sec. 4. In Sec. 2
we give a brief review of the definition and properties of the
diffusion maps and the diffusion distance. Then in Sec. 3
we briefly describe two known methods within the Diffusion
Framework that are closely related to this work: classification
using diffusion distance and directed diffusion. Finally we
illustrate an application of our proposed Node Connectivity
Matching (NCM) method in Sec. 5.

2. DIFFUSION DISTANCE AND DIFFUSION MAPS

Under the Diffusion Framework [2, 5, 6, 7], diffusion maps
are employed to achieve spectral embedding of the data. Fur-
thermore, the usual Euclidean distance in the embedding space
approximates the diffusion distance defined in (4).

We assume in general that the data X = {x1, · · · ,xN}
lies in a space that possesses a natural dissimilarity measure
δ. For example, if X is a database of image patches of size
32× 32, then X can be treated as a subset of R1024 and δ the
L2 norm in R1024.

Begin by constructing a weighted connected symmetric
graph with points in X as nodes and weights w(xi,xj) ≥ 0
on the edge connecting xi and xj . A common practice is to
use the Gaussian weights

wε(xi,xj)
∆= e−(δ(xi,xj)/ε)2 , ε > 0. (1)



Let W denote the (symmetric) weights matrix with Wij
∆=

wε(xi,xj). The weights give a notion of local geometry
to the dataset X . When the points in X are on a manifold
in Rn, the Gaussian weights W approximates the heat ker-
nel on the manifold [1]. Let D be the diagonal matrix with
Dii

∆=
∑
jWij the degree of node i. The normalized diffu-

sion matrix is defined as

P
∆= D−1W, (2)

The matrix P is essentially the matrix of an averaging op-
erator. It is non-negative and row-stochastic (i.e., its eigen-
values are 1 = λ0 > λ1 ≥ · · · ≥ 0, and the sum of each
row is 1). Hence, it can be viewed as a transition matrix of
a Markov process on X with Pij representing the probability
of moving from xi to xj in one step. When the Markov chain
is forwarded in time, the probability of moving from xi to xj
in t time steps is

P tij =
∑
`

λt`φ`(i)ψ`(j), t ∈ N, (3)

where {φ`} and {ψ`} are (orthonormal) left and right eigen-
vectors of P , and φ`(i) means the ith entry of φ`.

Let P ti· denote row i of the matrix P t. For t chosen a
priori, the diffusion distance between two points xi and xj is
defined as

Dt(xi,xj)2 ∆=
∥∥P ti· − P tj·∥∥2

L2(X, 1
π )
, (4)

where π is the stationary distribution of the Markov process
dictated by P . Notice that this is simply the weighted L2

distance between row i and row j of the matrix P t.
The diffusion distance measures the difference in how xi

and xj are connected to all other nodes in the graph, that is,
Dt(xi,xj) takes into account all incidences relating xi and
xj . Consequently, it is robust to noise or small perturbations.
It is a good tool for extracting the underlying geometry in
the dataset X , especially when X lies on a low dimensional
manifold in a high-dimensional space.

Using the spectral decomposition (3) of P t and the mutual
orthogonality of {φ`} and {ψ`}, it can be verified that (see
[6])

Dt(xi,xj)2 =
∑
`

λ2t
` (ψ`(i)−ψ`(j))

2
. (5)

Since the eigenvalues λ`’s are non-increasing, the diffu-
sion distance can be approximated to a prescribed relative ac-
curacy τ > 0 by

Dt(xi,xj)2 ≈
s(τ,t)∑
`=0

λ2t
` (ψ`(i)−ψ`(j))

2
, (6)

where
s(τ, t) ∆= arg max

`∈N
{|λ`|t > τ |λ1|t}. (7)

A diffusion map is defined as

Ψt : xi 7→


λt1ψ1(i)
λt2ψ2(i)

...
λts(τ,t)ψs(τ,t)(i)

 . (8)

Ψt embeds all points in X into Rs(τ,t) where the usual
Euclidean distance is an approximation to the diffusion dis-
tance. In general, s(τ, t) is much smaller than the original
dimension of the data points. The key point to note is that
the diffusion map Ψt produces a low-dimensional representa-
tion of the data that highlights the underlying intrinsic local
geometry in the data.

3. CLASSIFICATION UNDER THE DIFFUSION
FRAMEWORK

Numerous approaches within the Diffusion Framework have
been proposed for classification or pattern recognition appli-
cations. We shall describe only two approaches that are most
closely related to the topic of this paper.

One approach is to use the diffusion distance as a dis-
criminant measure [2, 5]. In its simplest form this approach
involves computing a diffusion map using the training data.
Then the diffusion map is extended to the unlabeled (test)
data points by Nyström’s method or its variants [6, 3]. As
described in Sec. 2, the diffusion map embeds the training
data into a low-dimensional Euclidean space Rs(τ,t) in which
the usual Euclidean distance is an approximation of the diffu-
sion distance. The extension of the diffusion map embeds the
unlabeled data into the same space Rs(τ,t). The final step is
to analyze or classify the data using the Euclidean distance in
this space, such as the k-Nearest Neighbor method.

A second approach is known as directed-diffusion or reg-
ularized diffusion on a graph [4, 9]. Here, a graph G is con-
structed using all data points (both training and unlabeled).
Then the normalized diffusion matrix P computed on G is
used as an operator to diffuse the labels from the labeled nodes
to the unlabeled nodes. For a K-class classification problem,
this is achieved by applying P t with some t ∈ N to a N ×K
matrix V whose rows are indexed by the nodes in G. Ini-
tially, V (i, j) = 1 if node i is known to have label j, and
V (i, j) = 0 otherwise. After the label-diffusion process, the
test data point indexed by row i of V is assigned the label ` if
` = arg max1≤j≤K V (i, j).

4. CLASSIFICATION VIA NODE CONNECTIVITY
MATCHING

In this section, we describe a new discriminant measure that
can be utilized for pattern recognition and signal classifica-
tion. Our idea of Node Connectivity Matching (NCM) is de-
rived directly from (4), the definition of the diffusion distance.



First, we construct a connected weighted graph G with Gaus-
sian weights on the training data. Let the nodes be indexed
by the training data points (i.e., if X = {x1, · · · ,xN1} is the
training set, then the nodes inG are labeled by x1, · · · ,xN1 ).
Next, we consider each row i of the normalized diffusion ma-
trix on G as a probability distribution (or histogram) of the
connectivities of the node xi to all other nodes in G. Suppose
Y = {y1, · · · ,yN2

} is the set of unlabeled data. We add
N2 nodes to G (indexed by yj). For each yj , we construct a
probability distribution Hj of connectivities of yj to all xi.
More precisely, Hj is an N1-bin histogram given by

Hj(i)
∆=

wε(yj ,xi)∑N1
i=1 wε(yj ,xi)

, (9)

where wε denotes the Gaussian weights defined in (1) and
i = 1, · · · , N1, j = 1, · · · , N2.

To classify an unlabeled data point yj , we compare its his-
togram of node connectivities to the training histograms us-
ing a bin-by-bin histogram discriminant measure (such as the
usual L2 norm, the Hellinger distance, Jeffrey’s divergence,
and one-dimensional Earth Mover’s Distance). Then use the
nearest neighbor classifier to infer a label for yj .

Note that when we use the weighted L2 norm given in (4)
to measure the difference between any two node connectiv-
ity histograms of any two training data points, we get exactly
the diffusion distance. In general, it is not common practice
to compute the exact diffusion distance between the training
data and the unlabeled data because that requires computing
the normalized diffusion matrix on the union of the training
and unlabeled sets. This is infeasible if the size of the unla-
beled set is large. Instead, an approximation of the diffusion
distance is used, as in the first approach described in Sec. 3.
This process requires computing an extension of the diffusion
map to the unlabeled data. In the approximation and exten-
sion process some error is admitted, which results in less ac-
curacy. Our NCM approach mirrors the diffusion distance in
that it takes into account all incidences relating the unlabeled
data to the training data. This makes it robust to noise. In ad-
dition, we compare the histograms of connectivities directly,
instead of performing spectral embedding. This saves time
and improves accuracy.

A related method within the Diffusion Framework that
does not perform spectral embedding is the directed-diffusion
approach described in Sec. 3. Our proposed approach and the
directed-diffusion approach are also similar in that both re-
quires a small number of training data. On the other hand,
directed diffusion requires the normalized diffusion matrix P
to be computed using both training and unlabeled data and
a procedure to determine the stopping time for the diffusion
process (i.e., the number of time steps t for the operator P t).
Our approach involves computing the matrix P using only
the training data and a straightforward comparison between
the training histograms and the histograms of the unlabeled
data.

(a) Seeds (b) Result

Fig. 1. (a) Three regions selected for training. (b) The result
of segmentation by NCM algorithm (Green: leaf pixels, Blue:
flower pixels, Black: background pixels).

5. NUMERICAL EXPERIMENTS

We apply our NCM algorithm to classify pixels in a collection
of hyperspectral images of natural scenes. For example, in
an image of a flowering shrub, we identify a pixel as leaf,
flower, or background pixel. One application of such task is
segmentation of the image into regions of same pixel types.

Each hyperspectral image is of size 128× 128 pixels, and
each pixel consists of 43 reflectance values at different wave-
lengths. In other words, each image is a data cube of size
128×128×43. Details on all technicalities in the acquisition
of the images can be found in [8].

We first extract a 3-by-3 window around each hyperspec-
tral pixel and define this as the feature vector for the pixel. In
other words, we run our algorithm on the set of feature vec-
tors associated with the pixels, and each feature vector has
length 387(= 9 × 43) in this case. To compute the Gaussian
weights we treat the feature vectors as points in R387 and use
the Euclidean distance for δ. The readers are referred to [7]
for a detailed description on how to select a value for the scale
parameter ε. To measure the dissimilarity between the his-
tograms of node connectivities, we use Jeffrey’s divergence,
Hellinger distance, one-dimensional Earth Mover’s Distance,
andL2 distance. However, these histogram discriminant mea-
sures give similar classification results. Therefore, we will
report only the results from using the L2 distance.

We perform our first numerical experiment on a hyper-
spectral image of a flowering shrub shown in Fig.1. The im-
age consists of three types of pixels (leaf, flowers, and dark
background). We identified three small regions (Fig.1a) cor-
responding to each type for training. The remaining pixels are
set as unlabeled pixels. The classification result is shown in
Fig.1b.

In order to numerically evaluate the accuracy of our NCM
algorithm, we perform more controlled experiments. We seg-
ment by hand some leaf, trunk, and rocks regions from four
different hyperspectral images. This gives us a three-class
recognition problem. We run our experiments on the set of
feature vectors associated to these hand picked pixels. For



comparison, we also perform classification via diffusion dis-
tance (Diff Dist) and directed-diffusion (Dir Diff) approach
described in Sec. 3. Furthermore, to study the importance of
the node connectivity histograms, we also try classification
via nearest neighbor (NN) in L2 distance between the feature
vectors, i.e., we skip the computation of the node connectivity
histograms and move directly to the classification phase.

First, we focus on the feature vectors extracted from the
same hyperspectral image (that is, both training and test data
come from the same image). For each class, we randomly
selected 200 out of approximately 800 feature vectors to use
as training data (i.e., we have 600 training points and approx-
imately 1800 test points in total). We repeated this process
three times. The average recognition errors over three trials
are shown in the first row of Table 1.

Next, we enforce that the training data and the unlabeled
data come from four different images. Due to different il-
lumination, the reflectance values in any two leaf, trunk, or
rock pixels belonging to different images can be very dif-
ferent. Our goal is to compare the practical applicability of
these different classification algorithms. As before, we ran-
domly selected 25% of feature vectors from each class to use
as training data. The total sizes are 1500(= 500 × 3) train-
ing points and approximately 4500 test points. The average
recognition errors over three randomly trials are listed in the
second row of Table 1. We see that NCM performs 11% better
in error rate than NN. In other words, the extra computation
time spent on constructing node connectivity histograms im-
proves recognition by 11%. The Dir Diff method performs
best in our experiments because we computed the (full) diffu-
sion matrix P using both training and test data. It contains all
statistics between all data points. Therefore, the performance
is best. However, the matrix P in this case is 16 times larger
than the one in the NCM method, since the size of training set
is only one fourth of the whole.

One advantage of classification under the Diffusion Frame-
work is the ability to handle more effectively the variations in
the data caused by different sensing processes, such as han-
dling the difference in illumination in the example above. We
can adjust the scale parameter ε in the Gaussian kernel to ac-
commodate these differences. Although, the high error rate
admitted by the diffusion distance approach in the example
above argues the opposite. However, this high rate is mostly
due to approximation error, since we do not compute the dif-
fusion distance exactly. Our NCM algorithm bypasses the ap-
proximation process, hence improves accuracy, while main-
taining the advantages of classification under the Diffusion
Framework.

6. CONCLUSIONS

We have proposed a simple approach based on the diffusion
distance for pattern recognition and signal classification. Via
numerical experiments on hyperspectral images, we see evi-

Method NCM Diff Dist Dir Diff NN
Single image 2.23 3.13 1.19 1.37
Multiple images 20.00 57.23 10.57 31.26

Table 1. Classification Error Rates (%). Row 1: training
and test data are from same image. Row 2: training and test
data are from different images. Column 1: NCM with L2 as
histogram discriminant measure. Columns 2, 3: diffusion dis-
tance and directed diffusion approach as described in Sec. 3.
Column 4: nearest neighbor in L2 distance between feature
vectors.

dence that our NCM algorithm improves over the approach
that uses the diffusion distance for classification. Further-
more, we see that our NCM algorithm can handle variations in
images caused by illumination better than directly comparing
local feature patches.
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