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Improvement of DCT-Based Compression
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Abstract—We propose two new image compression—decompres-
sion methods that reproduce images with better visual fidelity,
less blocking artifacts, and better PSNR, particularly in low bit
rates, than those processed by the JPEG Baseline method at the
same bit rates. The additional computational cost is small, i.e.,
linearly proportional to the number of pixels in an input image.
The first method, the “full mode” polyharmonic local cosine
transform (PHLCT), modifies the encoder and decoder parts of
the JPEG Baseline method. The goal of the full mode PHLCT is to
reduce the code size in the encoding part and reduce the blocking
artifacts in the decoder part. The second one, the “partial mode”
PHLCT (or PPHLCT for short), modifies only the decoder part,
and consequently, accepts the JPEG files, yet decompresses them
with higher quality with less blocking artifacts. The key idea
behind these algorithms is a decomposition of each image block
into a polyharmonic component and a residual. The polyharmonic
component in this paper is an approximate solution to Poisson’s
equation with the Neumann boundary condition, which means
that it is a smooth predictor of the original image block only using
the image gradient information across the block boundary. Thus,
the residual—obtained by removing the polyharmonic component
from the original image block—has approximately zero gradient
across the block boundary, which gives rise to the fast-decaying
DCT coefficients, which, in turn, lead to more efficient compres-
sion—decompression algorithms for the same bit rates. We show
that the polyharmonic component of each block can be estimated
solely by the first column and row of the DCT coefficient matrix
of that block and those of its adjacent blocks and can predict an
original image data better than some of the other AC prediction
methods previously proposed. Our numerical experiments objec-
tively and subjectively demonstrate the superiority of PHLCT
over the JPEG Baseline method and the improvement of the
JPEG-compressed images when decompressed by PPHLCT.

Index Terms—Discrete cosine transform (DCT), image compres-
sion, Fourier cosine expansion, JPEG, Poisson’s equation.

1. INTRODUCTION

URRENTLY, the most popular image compression
Cscheme is the JPEG standard for still images and the
MPEG standard for video sequences. Although new standards
such as JPEG-2000 and MPEG-21 (both of them have adopted
wavelets) are emerging, many systems including digital cam-
eras and image databases still use the JPEG standard [1], [2],
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which is based on the discrete cosine transform (DCT) [3]-[5].
The reasons why DCT—sometimes called DCT Type II or
DCT-II [4], [5]—is used in many compression algorithms
instead of the discrete Fourier transform (DFT) or the discrete
sine transform (DST) are the following.

1) DCT theoretically approximates the Karhunen—-Loeve
Transform (KLT) if we assume the first order Markov
property in a given set of signals to be compressed [6]. It is
well known that KLT is the most efficient linear transform
for a collection of signals if the reconstruction error is
measured in the mean square error (MSE) [6], [7].

Even more important is its treatment of the block bound-
aries. Taking DCT of an image block is equivalent to
a) extending the data by even reflection at the block
boundaries, b) taking DFT of the extended data by
viewing it as periodic with the period twice as long as that
of the original block, and c) discarding 3/4 of the resulting
coefficients that were created by the even reflection and
extension. This implies that DCT views the data as a
continuous function across the block boundaries as long
as there is no intrinsic singularity within the block. This
should be contrasted with DFT and DST: they view the
data as discontinuous across the block boundaries even if
there is no intrinsic singularity within the block. This leads
to the faster decay of the DCT coefficients than the DFT
or DST coefficients, which is a desirable property in any
transform coding system because it allows us to approxi-
mate the original data with a fewer number of terms in the
series expansion used in the transform. More precisely, let
F},. be the kth DCT coefficient of an image block, where
k = (ki,ko) is a pair of indices specifying the spatial
frequencies along vertical and horizontal directions. Then,
one can show that [F.| < C|[k||=% = C/(k{ + k3) for
some constant C' > 0 (see also Section II). We denote
this by Fg. = O(||k||~2) in this paper. On the other hand,
the magnitude of the DFT and DST coefficients of the
same block is of O(||k||=1), i.e., those decay slower than
the DCT coefficients (see Theorem 1 in Section II for the
precise statement relating the smoothness of a function
and the decay rate of its Fourier coefficients).

The lowest frequency basis vector of DCT is completely
flat, i.e., truly measuring the important “DC” component
of an image block, which is not the case in DST and in the
other versions of DCT called DCT Type I, III, and IV (see,
e.g., [4] and [5]).

Although DCT-based codecs, such as the JPEG Baseline
sequential codec, are quite popular, there are two problems in
them that we want to overcome. First, the decay rate O(||k[|~2)

2)

3)
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of the DCT coefficients is still too slow. We would like to make
the transformed coefficients decay faster in order to achieve
better compression. Second, such codecs generate the infamous
blocking artifacts (visible discontinuities between adjacent
blocks) when the compressed data—especially the ones with
low bit rates—are decompressed, which are quite noticeable
and annoying for human observers. Many techniques have been
developed to remove the blocking artifacts while keeping the
objectively measured image quality (e.g., PSNR) constant, e.g.,
[8]-[12]. These all operate on the spatial domain, i.e., these are
postprocessing techniques after the decompression is done. On
the other hand, another set of techniques has been suggested
as an option in the JPEG standard [1, Sec. 16.1] and further
explored in [13]-[15]. These methods are all based on the
prediction of the AC coefficients by fitting quadratic or cubic
polynomial surface using the DC coefficients of several blocks.
In general, polynomial surface fitting techniques are effective to
remove the blocking artifacts especially for images compressed
in low bit rates. However, for the actual implementation of
these techniques, there is a common difficulty to distinguish
intrinsic singularities in the original image from the artificial
discontinuities that cause the blocking artifacts.

To address these problems, Saito and Remy recently devel-
oped a new transform called polyharmonic local sine transform
(PHLST) [16], [17]. PHLST decomposes the data in each
block into two components: the polyharmonic component and
the residual. The polyharmonic component is obtained by
solving the polyharmonic equation (e.g., Laplace’s equation,
biharmonic equation, etc.) given the boundary values (i.e., the
pixel values along the block border) possibly with the estimates
of derivatives across the boundary. Once this component is
obtained, this is subtracted from the image block data to obtain
the residual, whose Fourier sine series expansion has quickly
decaying coefficients since the boundary values of the residual
(possibly with their normal derivatives) vanish. If we use
Laplace’s equation as the polyharmonic equation in PHLST,
then the DST coefficients of the residual component decay as
O(||k||=2), which is faster than the DCT coefficients of the
original block do. See Section II-C for more about PHLST. Al-
though PHLST is very promising in certain applications, such
as local feature computation, directional derivatives estimation,
image interpolation, and image zooming, it cannot directly and
fully utilize the infrastructure of the JPEG Baseline method
due to its use of DST instead of DCT, as well as its storage
requirement of the block boundary information.

In this paper, we propose the polyharmonic local cosine
transform (PHLCT) that compensates these problems of
PHLST: It gives us the residual coefficients decaying as
O(||k||=%), yet fully utilizes the JPEG Baseline infrastructure.
There are two modes in PHLCT. One is the full mode that
modifies the encoder and decoder parts of the JPEG Baseline
procedure. The goal of the full mode PHLCT is to: 1) reduce
the code size by encoding the DCT coefficients of the residual
component that decay as O(||k||=*), and 2) reduce the blocking
artifacts in the decoding process by the interpolation using
the polyharmonic function. The other mode is what we call
the partial mode. This mode modifies only the decoder part,
and consequently it can take JPEG-compressed images and
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reproduce images with less blocking artifacts compared to
those reproduced by the JPEG Baseline standard. Our methods
can also be viewed as new and improved AC prediction
methods over the previously proposed ones, e.g., [1, Sec. 16.1],
[13]-[15], and [18].

The organization of this paper is as follows. In Section II,
we set our notation and review the Fourier cosine series and
PHLST. In Section III, we propose PHLCT and show why the
Fourier cosine coefficients of the residual decay as O(||k||=*).
Section IV describes how to compute the PHLCT representa-
tion of an input image from the DCT coefficients of that image.
In Section V, we derive more practical approximation of the
polyharmonic component than that in Section IV solely using
the DC components of the current and adjacent blocks. Then
we describe our compression—decompression algorithms using
full and partial modes of PHLCT in Section VI. Section VII de-
scribes our numerical experiments. There we compare the per-
formance of our methods in predicting the original AC coeffi-
cients with that of the other AC prediction methods mentioned
above. Also, we quantify the image quality improvement of our
methods over the JPEG Baseline method using several image
quality measures. We finally conclude our paper in Section VIII
with our future plan.

II. REVIEW OF FOURIER COSINE SERIES EXPANSION
AND POLYHARMONIC LOCAL SINE TRANSFORM

In this section and in the next section, we shall deal with data
in an arbitrary dimension n € N since our method may be useful
for compressing not only 2-D images but also 3-D data such as
3-D seismic data. We shall then focus on the case of n = 2 for
images starting Section IV.

A. Fourier Series Expansion and Periodization

Let 2 be a block domain @ = {z € R"|0 < z; < 1,7 =
1,2,...,n}, where x = (z1,22,...,T,). Let us now consider
a function f defined on the closed domain Q = Q U 09, where
OS2 denotes the boundary of (2. Then let us extend it periodically
over the whole space R™, and let f be this periodic extension of
f. We have the following basic theorem that relates the decay
rate of the Fourier coefficients (i.e., the inner products between f
and the complex exponentials) and the smoothness of the func-
tion f. For the details and the proof, see [17, Appendix]. B

Theorem 1: Let f be a function defined on Q € R™ and f
be its periodic extension to R™. Furthermore, let us assume that
D f ENC”"([R"), where m is some nonnegative integer, and 2)
8m+1f/8a:;”+1,i =1,...,nexists and of bounded variation in
Q. Then, the Fourier coefficient cy, of f decays as O(|[k||~™2),
k= (ky,... ,k,) € Z™, and ||k|| is the Euclidean (i.e., £>) norm
of k.

Note that if some head and tail of f do not match, i.e., unless
we have

flzr,. o mic1,0, 2400, .., ap)

= f(xl"/"'7Ii—1717xi+17-"7$n)

foralli € {1,...,n} and all 24 with 0 < zp < 1, k # 4,
which is almost always violated in real data, then the periodic
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extension f becomes discontinuous. Thus, its Fourier coeffi-
cients decay only as O(]|k||~!) and reveal the annoying Gibbs
phenomenon [19, Sec. 5].

B. Fourier Cosine Series Expansion and Even Reflection

We now consider the Fourier cosine series expansion of a non-
periodic function f € C™ (Q) for some m’ € N. Because
of the equivalence of the Fourier cosine series expansion of f
and the complex Fourier series expansion of the even-reflected
version of f as briefly discussed in Introduction, the even-re-
flected version becomes at least continuous and periodic over
the extended domain [—1, 1]™. Thus, applying Theorem 1 with
m = 0, the Fourier cosine coefficients of f decay as O(||k||=2).
Unfortunately, even if f is sufficiently smooth on the block,
ie., f € C™(Q) with large positive m’ including the case of
m’ = oo, there is no guarantee that the even reflection preserves
the continuity of the derivatives across the boundary. There-
fore, the Fourier cosine coefficients cannot decay faster than

O(||k||=?) in general.

C. Polyharmonic Local Sine Transform

In order to have expansion coefficients decaying as O(||k|| =)
or faster without generating the Gibbs oscillations, Saito and
Remy proposed the PHLST [16], [17]. PHLST also compen-
sates several problems in the local trigonometric transforms
(LTTs) of Coifman and Meyer [20] and Malvar [21], [22], such
as the overlapping windows and the slope of the bell functions.
Although PHLST can be defined quite generally as in [17],
we restrict ourselves to the simplest case in this paper. Let f
be a function defined on the block domain Q as before. Then,
PHLST decomposes f into two components as f = wu + v.
The components « and v are referred to as the polyharmonic
component and the residual, respectively. The polyharmonic
component is obtained by solving Laplace’s equation

Au=0 inQ (D)
with given boundary values
u=f ondQ (2)

where A = 3" | 9%/9x? is the Laplace operator in R". Note
that Laplace’s equation is the simplest case of the more gen-
eral polyharmonic equation: A™u = 0, m € N. Equation (2)
is referred to as the Dirichlet boundary condition that enforces
the function values of the solution w on the boundary 952 to
match those of the original signal f over there. Note that in 1-D
(n = 1), u is simply a straight line connecting two boundary
points of an interval . However, note also that in higher di-
mensions (n > 2), the solution of (1) with (2) is not a tensor
product of algebraic polynomials in general. Now, subtracting
the v component from f gives us the residual v = f — w sat-
isfying v = 0 on 9. Since the values of v on 9€) vanish, the
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extension of v by odd reflection with respect to the boundary
09 is a C! periodic function on the extended domain if there is
no intrinsic singularity in 2. Therefore, one can apply Theorem
1 with m = 1, which implies that the Fourier sine coefficients
of v decay rapidly, i.e., O(||k||=2). More precisely, we have the
following theorem.

Theorem 2: Let € be a bounded rectangular domain in
R", and let f € C%(Q), but nonperiodic. Assume further that
03f)0x3, i = 1,...,n, exist and are of bounded variation.
Furthermore, let f = u + v be the PHLST representation, i.e.,
the polyharmonic component u is the solution of Laplace’s
equation (1) and the Dirichlet boundary condition (2), and
v f — w is the residual. Then, the Fourier sine coefficient
by, of the residual v is of O(||k||~?) for all k& # 0, where
k= (ki,....k) € 1.

The proof of this theorem and its generalization can be
found in [17]. The polyharmonic components can be com-
puted quickly by utilizing the computationally-fast and
numerically-accurate Laplace/Poisson solver developed by
Averbuch et al. [23] and Braverman er al. [24] as long as the
boundary data are available. Combining this feature with the
quickly decaying expansion coefficients of the residuals, the
usefulness of PHLST to image approximation was demon-
strated [16], [17]. However, there are two disadvantages in
PHLST: 1) it has a more complicated data structure because the
boundary pixels of each block must be stored separately from
the inside of the block (although one can use the 1-D version
of PHLST to store the boundary pixels efficiently as shown in
[17]), and 2) it cannot utilize the infrastructure of the JPEG
standard since it is based on DST instead of DCT.

III. POLYHARMONIC LOCAL COSINE TRANSFORM

The disadvantages of PHLST described in the previous sec-
tion motivated us to develop a cosine version of the transform,
the PHLCT. Our goal is to find a decomposition f = u + v so
that: 1) it is based on the Fourier cosine series expansion of the
v components for the compatibility with the JPEG standard; and
2) the expansion coefficients decay as O(]|k|| %) or faster. To do
so, we want to make the residual v a C? periodic function after
the even reflection at the block boundary so that we can apply
Theorem 1 with m = 2. Thus, what we need to do is to match
the normal derivatives of u across the block boundary with those
of f because this forces the residual v to have the zero normal
derivatives over there, which in turn allows the even reflection
of v to have desired C? smoothness if there is no intrinsic sin-
gularity in the original data f in Q. This can be explained more
easily in 1-D, as follows. Let Q& = (0, 1) and ¥ be an even-re-
flected version of v at the boundary x = 0 followed by its pe-
riodic extension of the interval [—1, 1] into the entire real axis
R. Thus, we have v(—x) = v(z) for all € R. It is clear v (0)
is well defined when x approaches to O from both sides. Also,
the condition of the zero derivative at the boundary, v'(0) = 0
sets v(0) = 0. Similary, we can show that 9"/ (1) is well defined
and /(1) = 0. Hence, © becomes a C? periodic function with
period 2.
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Coming back to the higher dimensional case, therefore, we
need to replace the Dirichlet boundary condition(2) by the Neu-
mann boundary condition

Au=0, in§
{%:%, on 0f) 3)

where the normal derivative 9f/0v at £ € OS2 is defined as
the directional derivative v(x) - V f(z) along the normal vector
v(z) that is perpendicular to the boundary 952 at & pointing to
the outside of 2. However, (3) cannot have a solution in general,
and we need to introduce the source term in the righthand side
of Laplace’s equation as follows:

Au=K, inQ
{%:%7 on 0f2 “)

where K := 1/|Q] [,, (0f/0v)do(x), || is the volume of
the block €2, and do(z) is a surface (or boundary) measure.
Appendix I explains why we have to use (4), not (3). Laplace’s
equation with the source term is called Poisson’s equation [25,
Ch. 2]. It is a well-known fact that (4) has a unique solution
modulo an additive constant; see e.g., [25, Sec. 2D].

The solution % to (4) is not only a function having the
matching normal derivative at the boundary with the original
function, but also characterized by the following theorem.

Theorem 3: Let p be a C%(Q) function and M (p) be the total
squared curvature integral defined by

Aﬂp)::lXAdez

For any p with Op/0v = Of/0v on 01, the solution u to(4)
satisfies M(u) < M (p). In other words, the solution u is the
minimizer of the total squared curvature integral on 2.

The proof of this theorem can be found in Appendix II. The-
orem 3 guarantees that the influence of the boundary data to the
entire shape of u is kept to a minimum in terms of the mean
curvature. The u component can also be viewed as a smooth
predictor of the original block f solely based on the gradient
information across the block boundary.

Once we get the solution u, the residual v = f — u clearly
satisfies Ov/9v = 0 on 9. Since f € C*(Q) and Aw is con-
stant in €2, aZU/axiazk, 1 <1,k < n, must be bounded as =
approaches to J€). Therefore, this leads to at least C? smooth-
ness of the residual v across the block boundary when it is ex-
tended by the even reflection. Thus, we can apply Theorem 1
with m = 2, and, consequently, we have the following.

Corollary 4: Let €2 be a bounded rectangular domain in
R", and let f € C%(Q), but nonperiodic. Assume further that
(0/0x;)3f,i = 1,...,n, exist and are of bounded variation.
Furthermore, let f = u 4+ v be the PHLCT representation,
i.e., the polyharmonic component w is the solution to (4), and
v = f — w is the residual component. Then, the Fourier cosine
coefficients of the residual v is of O(||k||=%) for all k& # O,
where k = (ki1,...,k,) € Z7.
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This fast decay of the Fourier cosine coefficients will shorten
the code size when encoding the residual component. The func-
tion « can also be viewed as an interpolated image surface over
the €2, which can be contrasted with the other AC prediction
methods such as QSFIT [1, Sec. 16.1] and LAKHANI [13]. We
shall compare these methods in Section VII in detail.

1V. CoMPUTATION OF PHLCT FrROM DCT COEFFICIENTS

In Section III, we derived the asymptotic behavior of PHLCT
in the spatial-frequency domain in R”, n € N. From now on,
we shall only deal with 2-D images (i.e., n = 2). Hence, we
set @ = (0,1)2 = {(z,9)|0 <z < 1,0 < y < 1}, the unit
square in R?. We shall now derive the DCT coefficients of the
u component directly from the DCT coefficients of the original
data f. Consequently, we shall achieve the PHLCT represen-
tation of the original data in the DCT domain, which leads us
to our new compression—decompression algorithms, as we shall
examine in detail in Section VI.

Let f(z,y) be in C%(Q). Assume that we are given the

discretized version of f sampled at (z;, y;) € € for
i,j = 0,1,...,N — 1, where z; = (0.5 + 4)/N and
y; = (0.5 4 j)/N.Let F = (Fy, x,) be a matrix of size

N x N, whose entries are the 2-D DCT coefficients of f
defined as

F'kh]€2 =
5 N-1
Akot/ N ZO ()\kﬂ/ Zf T, Yj coswkle) cos Tkay;
]=
(5)
where k1, ke = 0,1,...,N — 1 and
<, if k=0
Ap = { V2’ ) 6)
1, otherwise.

Let us denote the 2-D DCT coefficient matrix of the v compo-
nent, i.e., the solution of (4), by U. The objective of this section
is to compute U when the 2-D DCT coefficient matrix of the
original data F' is available. Clearly, once U is computed, the
2-D DCT coefficients of the residual are readily available via
V=F-U.

A. Computing U Assuming the Ideal Boundary Condition

We shall now solve Poisson’s equation with the Neumann
boundary condition (4). Let us assume for the moment that the
following discretized Neumann boundary data are available

g = = fy(2,0), 9 = fy(i1), ¢ = —fa(0.y5)
(4) = f(1,y;), 4,j=0,1,...,N—1 (7

where f, = Of(z,y)/0xr and f, = Of(x,y)/0y, respec-
tively. In practice, the righthand sides of (7) are not readily avail-
able, and need to be estimated from the image samples. In Sec-
tion IV-B, we shall derive a practical method to approximate the
righthand sides of (7) using the DCT coefficients of the original
data in the current and adjacent blocks, which will be used in
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our implementation. Let us now consider the following finite
Fourier cosine series of the Neumann boundary data

(5) =1/ = Z Ak G ) cos wkt,
(¢ N-1
=4/ = (G Z G(i) cos 7rkt>

0<t<l, 4_1,2,3,4

where A, was already defined in (6), and {G(é)}
0<k<N-1
are the 1-D DCT coefficients determined by the boundary
(0 Ot = ()
data { }0< Nt in (7). Clearly, ¢\"(¢;) = g; ', where

9j
tj = Oo—i—jF/NJ_O,l, ..,N—1,and{ =1,...,4. Now,

it is straightforward to show that for £ = 1, the function

1) () —1)2
u(l)(x,y) :\/%<%(y 21)

(ycoshmk(y — 1)
Z G 7k sinh wk cos whi

satisfies the following Poisson’s equation with the Neumann
boundary condition

G

Ay = f gV (t)dt = , in
Bu(l) . g(1)7 on F(l)
oy 0, on OQ\I'M

where T = {(z,y) € 9|0 < 2 < 1,y = 0} (see also
Fig. 1). Similarly, we can derive 9 for £ = 2, 3, 4, and, con-
sequently, we obtain the solution of (4) as in (8), shown at the
bottom of the page, where c is an arbitrary constant that will be
determined shortly and

t? A
r(t) =g % =0
k . cosh wkt :
- otherwise.
wksinh k"’

We note that we derived the solution (8) by modifying the highly
accurate Dirichlet problem solver developed by Averbuch e al.
[23] for our Neumann problem.
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Q=19 ()
r®— | y
00,-1) Q ..JQ(OJ)

I | A
rf oo r
T

Fig. 1. Configuration of the adjacent blocks and boundary segments of 2.

Finally, by applying 2-D DCT to (8), we obtain Uy, 1,,
ki,ke =0,1,...,N =1

1 2) % 4) %
Ukl,kz = Gél)nkl,kz + G](cl)nkl ko + G]((;Q)nk2 kT G]E;Q)nkg k1

©)

where

Amt = Z Yr(xz; — 1) cosmmaz;

mi=Am \/72:1/1;C (z;) cosmma; = (—1)"ng m. (10)

Note that 7, and 7y, are independent from any image
sample values: once the number of samples N is fixed, they are
completely determined and precomputed independently from
an input image. For the convenience of the reader, the values of
Mk,m for N = 8 are listed in Table L. Note 0} ., = (—1)™ N .-
Finally, we determine the constant ¢ in (8) so that Upo = 0.
In fact, from (9) and (10), we can explicitly determine this
constant

4N? — 1

€T TaN2s

(G Ve 46l +al).
Thanks to Corollary 4, the decay rate of the DCT coefficients of
the residual Vi, = Fy, — Uy, for k = (k1, k2) # (0,0) should
be O([|E[|=*).

u(z,y) =u(z, y) +u®(2,y) + u®(2,y) + u® (2,y)

\/7 Z )\k G,(Cl)z,[}k(y 1)+ G,?)z/;k(y)) cos Tz + (ka(x 1)+ G;‘*)wk(x)) coswky} Yo (®
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TABLE 1
NUMERICAL VALUES OF 1%, COMPUTED UP TO FOUR DECIMAL PLACES

m=0 m=1 m=2 m=3 m=4 m=5 m=6 m=17

k=0 | 06641 0.4026 0.0986 0.0421 0.0221 0.0126 0.0070 0.0032

k=1 04027 0.2000 0.078 0.0376 0.0206 0.0120 0.0067 0.0031

k=2 0.0988 0.078 0.0480 0.0283 0.0171 0.0104 0.0060 0.0028

Nem k=3 ] 00425 0.0380 0.0285 0.0197 0.0132 0.0085 0.0051 0.0024
k=4 | 0.0229 0.0214 0.0177 0.0135 0.0097 0.0066 0.0041 0.0020

k=5 00139 0.0132 0.0115 0.0093 0.0071 0.0051 0.0032 0.0016

k=6 | 0.0090 0.0087 0.0078 0.0066 0.0052 0.0038 0.0025 0.0012

k=71 0.0061 0.0060 0.0054 0.0047 0.0038 0.0028 0.0019 0.0009

B. Approximation of the Neumann Boundary Condition

In practice, the Neumann boundary data, i.e., the righthand
sides of (7), need to be estimated from the image samples. To
do so, we need not only the image samples of the current block
but also those of the adjacent blocks. Let us consider the four
blocks adjacent to €2 as shown in Fig. 1. We assume that f is
also defined on these adjacent blocks and sampled with the same
rate as the current (or center) block €2. Let us denote the image
samples on each block Q%) in Fig. 1 by fi(j.’t) = fz; +
s,yj +1),4,j =0,1,...,N — 1, where 5,t € {—1,0,1}. For
convenience, let us also set Q00 = O and f(0 0 - = f(zi,y;)-
We now approximate the normal derivatives at the boundary of
Q as follows:

91(1) 2Xi(_1) _ Xi(0)7 (@) o Xi(l) _ Xi(O)
g§-3) ij<_1) _ Yj(O), gj(4) ~ Yj(l) _ Yj(O) (11)
where
N— N—
x® . Z (0 t) Y(s : Z (S 0)

j=0 =0

are the row-wise and column-wise averages, respectively. Let
FGH = (F,SZ)Q) be the DCT coefficient matrix of f(**) on
Q") Then, using (5) and (11), we can express each 1-D DCT
coefficient G,(Cl) of the Neumann data ¢(!) as a simple function

of the first column of the 2-D DCT coefficients of the current
and the adjacent blocks as follows:

[ 2
chl):)\k N

Z 9; cos mkx;

@

]\7
2 (-1) _ (0)
~ A= > X T = X cosmhag
Y - x)
1 0,-1
:\/—N(F,g’0 ) —Fro), k=0,1,....N—1.
Similarly, we have
a0 L pon _poy e L L p-10 g
k _\/—N( kO T k,O)v k _\/—N( 0,k O,k)
1
G o —= (3" = Fox)

which are simple functions of either the first column or the first
row of the 2-D DCT coefficients of the current and adjacent
blocks. Inserting these into (9), we have the Uy, x, for the ap-
proximate discretized Neumann data as

1 0,1

Ukl,kZ = \/N {(Flgl,o - Fk1,0)77k1,k2
+ (FRY) = iy o)k, iy + (B0 = Fo g )i s
+(FS LY = Fows )i v, | (12)

for all k1, ko = 0,1,..., N — 1 except k1 = ko = 0. Strictly
speaking, (12) should be an approximation rather than an
equality. However, we assume Uy, i, as the righthand side
of (12) from now on because we only use the approximate
Neumann boundary data (11) in practice. One can view (12)
as the new definition of Uy, 1,. As we discussed at the end of
Section IV-A, Up o, the DC component of u, vanishes. Hence,
the DC component of the original data f is carried over to
that of the v component, i.e., Voo = Fpy . This will become
important for our further modification of PHLCT algorithm in
Section V and our new compression—decompression algorithms
in Section VL

In the above discussion, we have approximated the first
normal derivatives at the block boundary by using the DCT
coefficients of the current and its adjacent blocks. Clearly, this
approximation scheme is not applicable to the outmost blocks
of an input image where some of their adjacent blocks do not
exist. In such a case, we set the Neumann boundary function
simply by zero, i.e., g()(t) = 0 for appropriate /.

V. MODIFYING PHLCT FOR PRACTICE

At this point, let us consider what information must be
stored in the forward PHLCT described in the previous sec-
tion in order to recover the original data f on the block
Q. Both U and V are of course necessary in order to re-
cover f exactly. However, we do not need to store all these
2N? coefficients in PHLCT. Note that each Uy, j, is a
simple function of the first column or row of F(*) with
(s,t) € Zs := {(0,-1),(-1,0),(0,0),(1,0),(0,1)}. There-
fore, in order to exactly recover f of the current block, we just
need N2 + 6N — 2 coefficients: N2 for all the entries of V;
6N for Fi, 0. Fory. Frog s o) FEO L LY where
ki,ko = 0,1,...N — 1 and —2 for counting the DC compo-
nent Iy o three times (note that o = Vp o). Considering an
application of PHLCT to image compression, this situation is
not desirable although it may be acceptable for other purposes
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such as interpolation, zooming, feature extraction, etc. What we
want to have is to recover f exactly from V' with the smallest
possible number of DCT coefficients from the adjacent blocks.
It turns out that we can manage to recover f exactly by N2 + 4
coefficients: N2 for V and 4 for the DC components of the
adjacent blocks. To do so, we need to modify both w and v
components in the original PHLCT. In the forward PHLCT, we
construct the modified version of U denoted by U as in (13),
shown at the bottom of the page, where Uy, , is defined in
(12). In essence, the only difference between U and U are their
first columns and rows, and those of U can be computed only
using the DC components of the current and adjacent blocks of
the originals. On the other hand, the first column and row of F'
are necessary to compute those of U; examine (12) by setting
k1 = 0 or kz = 0. Once we obtain U, then we complete the
forward PHLCT by computing the modified residual V' simply
by F' — U. More explicitly, we compute (14), shown at the
bottom of the page. As for the storage, we only need to store
V,not U at all.

Let us now consider the inverse PHLCT. Given the 2-D DCT
coefficients V, it is clear that we can reconstruct the original
data f as follows. 1) Recover the first column and row of U
using the DC components, Féfo’t)(: IN/O(’SO’t)), (s,t) € I5 via
(13). 2) Recover the first column and row of F&Y (s,t) € Ts
by summing those of U and V' [see (13) and (14)]. 3) Recover
other entries of U via (12), (13), and the results of Step 2). 4) Set
F =U+ V.5) Apply Inverse 2-D DCT to F' to recover f.

It is now obvious that the forward and inverse PHLCT algo-
rithms of this modified version, in particular, the inverse algo-
rithm, become much simpler than those of the original PHLCT
in the previous section. However, it is natural to ask what we
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have lost instead. Because of the uniqueness theorem [25, Sec.
2D, 3E] (modulo an additive constant), it is true that, the L com-
ponent, the inverse DCT of U, does not satisfy Poisson’s equa-
tion (4) unlike the u component in the previous section. Strictly
speaking, this means that @ does not satisfy Theorem 3 any-
more. However, in terms of the Neumann boundary condition,
it is easy to show that 9u/dv = du/dv on 01, since the differ-
ence (see the equation shown at the bottom of the page) clearly
satisfies d(u — w)/0v = 0 on 9S thanks to the cosine terms
above. TLlus, it is still true that 9v/0v = 0 on 912, and conse-
quently V3. = O(||k||=*). Hence, in practice, we have not lost
anything.

From now on, we shall not use the original PHLCT of the
previous section, and only use the modified version developed
in this section. Therefore, to sinlplify our notation, we shall drop
“and simply use U and V for U and V.

VI. APPLICATION OF PHLCT TO IMAGE COMPRESSION

In this section, we propose new compression—decompression
algorithms using PHLCT and show its practical advantage over
the JPEG Baseline method.

In the JPEG Baseline method, the amount of compression and
the quality of reconstructed images is controlled by an 8 x 8
quantization table. Let () be a quantization table to be used
and let Qf (> 1) be the kth entry of @) where k € K
{(k1, ko) | k1,ka = 0,1,2,...,7 }. Although the JPEG stan-
dard allows one to use any user-supplied quantization table, the
most commonly used one is a scalar multiple of the standard lu-
minance quantization table (LQT) determined by extensive psy-
chophysical experiments on the visibility of the DCT basis vec-
tors [1, Sec. 4.1.3]. The user can change the values of the quanti-

0, i hy =y =0
” Vol {(Fé,_ol’o) — Foo)mok + (Fyg” - FO,O)ng,kl} , ifky #£0 =k
Uk1,k2 = 1 (0,-1) (0,1) " . (]3)
N {(Fo,d — Foo)nok, + (Fog ' — FO,O)Wo,kQ} , ifk1 =0 #ky
Uky ks » otherwise
FO’O’ if ]Cl = kz =0
~1,0 1,0 . .
Vo Fiy0 — \/_lﬁ {(Fo(,o 0) _ Fo,0)m0,k, + (FO(,O ) _ Fo.0)715 1, } . ifk £0=k "
’ Foks = o {(FS6™ = Foolmoks + (FG" = Foo)ie, | ik =0 £k
Fry ks = Uky ks s otherwise

0,1)

[ = Fo)mo+ (G

— Fleo)i o } cos mha+-{ (F§ . = Fos)meo+ (Fy 50 = Fo )i cos why
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zation table by specifying a parameter q called the quality factor
ranging from O (the worst reconstruction quality and the best
amount of compression) to 100 (the best reconstruction quality
and the worst amount of compression). For the details, see [1]
and [2].

A. “Full Mode” PHLCT: Further Reduction of JPEG-DCT
Bit-Rate

As shown in Section III, PHLCT can improve the decay rate
of the DCT coefficients up to O(||k||~*) compared to O(||k[|~?2)
if the approximations of the normal derivatives given by (11) are
effective. This means that for the same prescribed quality, the
bit-rate should be reduced by PHLCT. We shall demonstrate our
claim by numerical experiments in Section VII.

Let us now propose our new compression/decompression
algorithm using our modified PHLCT detailed in Section V.
We shall call our new algorithm the “full mode” PHLCT (or
simply PHLCT for short) because this is a full and direct
application of our decomposition and reconstruction algorithms
in Section V to image compression/decompression, which
requires modifying both the encoder part and the decoder part
of the JPEG Baseline method. We can summarize our proposed
algorithm as shown in the equation at the bottom of the page.

The steps marked by white dots are added to the original
JPEG standard, and the other steps are exactly the same as
the JPEG standard. The new step added in the reconstruction
procedure is exactly the same as the inverse PHLCT algorithm
described in the previous section except that the available
coefficients are quantized. The increment of the computational
cost compared to the original JPEG standard is mainly due to
the computation of U in the encoder and U< in the decoder. It
is clear from (12) and (13) that the computational cost of U or
U< is approximately 3 C; N2 4+ 4 Co N for each block of size
N x N pixels, where C; and C5 denote the unit costs for the
arithmetic addition and multiplication, respectively. The values
of Nk, k,, and 7y, ;. are common in all blocks and computed in
O(N?log, N) operations via FFT (see Table I). These quan-
tities should be computed only once in the encoder and in the
decoder. In addition, both the encoder and the decoder clearly
require C; N2 operations per block for computing F' — U and
U® + V@, respectively.
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B. “Partial Mode” of PHLCT: Restoration of Truncated
JPEG-DCT Coefficients

It is of practical interest to have a new decompression algo-
rithm that can: 1) reproduce images of improved quality com-
pared to the ones obtained by the JPEG Baseline method while
keeping the same bit rate; and 2) accept JPEG files, i.e., image
data already compressed by the JPEG standard. In this section,
we propose an algorithm to do just that. This means that our
algorithm does not touch the encoder and assumes the avail-

ability of the quantized DCT coefficients FI? in each block in-

stead of V2. This new al gorithm will be referred to as the partial
mode PHLCT (or PPHLCT for short) because it only modifies
the decorder part of the JPEG Baseline method unlike the full
mode PHLCT.

In short, our key idea in PPHLCT is the use of U k? to “fill in”

the truncated F& by the encoder. Let us now discuss this idea in
detail. The amount of data compression in the lossy JPEG stan-
dard mainly comes from the truncation of the high frequency
DCT coefficients. Now, the asymptotic behavior of F, and the
residual V}. are given by

Fi, = O(|IKlI™*), Vg = O([[k[I™*) as [[Kl| — oo.

Hence, we have Fj, ~ U as ||k|| — oo, although we can only
reach ||k|| = 7v/2 ~ 10 when each block consists of 8 x 8
pixels. However, this observation suggests a possibility to ap-
proximately restore the truncated higher frequency components
using Up. It is important to note that Uy, can be well approx-
imated even after the quantization thanks to (12) and (13) in
which Flgs’t) is replaced by F{"99. This is because those low
frequency coefficients used in tlfle righthand side of (12) and (13)
are less affected by the quantization process compared to the
higher frequency coefficients. Since it is obvious from (10) that
7k, k2| = |15, 1, |> We have the following error estimate using
(12) and (13):

|Uk - U]?| < (2Ek1,0|77k1,k2| + 2Ek1,0|7]21,k2|

+ 2E0:k2 |77k27k1 | + 2E07k2 |77;27k1 |)

3~

5=

(Ek1,0|"7k17k2 | + ankz |77k27k1 |)

( Compression :

%
tize V viaig, = round ( o5&
\ eQuantize V via i, = roun 2,

( Reconstruction :

eDivide an input image into blocks of 8 x 8 pixels.
eApply DCT to compute F in each block.
oCompute U via (13) and (12) and set V = F — U.

and encode {ig} in the same way as JPEG.

eDecode {ig} and reconstruct V¢ via V"? = Qp X if,.

oCompute U? via (14), (13), and (12) using V¥, and construct U? + V<,
| eApply IDCT to U? 4+ V? in each block.
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for all k = (k1,k2), where E’f denotes an estimation of the
quantization error max |F" — F,S’t)QL

(s,t)€Ts
From these considerations, we propose the following scheme

for the approximate restoration of the truncated DCT coeffi-
cients

U2, ifkek
Replace F@ by FC +dy., d ::{ k> & 15
place Fig by P e e = 0 F " e v,
where K, = kelC‘Fk =0and [UZ| < Qg/2 }. In
other words, the truncated DCT coefficients FkQ( 0) is

replaced by Uy (# 0) if |UQ| is as small as |F}|. Note also
that do,o = 0 égy deﬁmtion

Unfortunately, this method is not effective enough to elimi-
nate the blocking artifacts that become noticeable and annoying,
particularly in the case of low bit-rate compression. We, there-
fore, propose an additional procedure to reduce the blocking ar-
tifacts. Let us now consider the reduction of the blocking arti-
facts on the boundary T'(1) between the current block  and the
neighboring block Q(%~1 (see also Fig. 1). The reconstructed
image £ (x, y) obtained from F'@ of (15) still has the following
mean discontinuity across the boundary T'(")

s _N Z fQ (2,0

=0

fQ(xh 0+))

S
2

2
=N Z k(FéOk DQ cosrk — F()Qk)
k=0

where f@(z;,0—) and f%(x;,04) denote the left and right
limit values at y = 0, respectively, and the second equality fol-
lows from the definition of the DCT coefficients (5). In order to
remove this discontinuity, we add the following quadratic poly-
nomials to f@(z,y) on Q~1 and Q, respectively

(1)

¢V (@, y) = (ay — 1)(y + 1>6T
s

P(2,y) == (ay — 1)(y — 1)7

where « denotes a constant to be determined. Since
O (z;,0) = —6M/2 and ¢(x;,0) = 61)/2, the mean
discontinuity across ') vanishes as follows:

NZ{ (S5, 0+ 7D (@, 0) ~(f s, 04+) +(x:,0)}

=0.

These polynomials do not affect the mean discontinuity compu-
tation across the boundary segments other than T'(") because:
1) ¢©®=U(z,-1) = 0 and $(z,1) = 0; and 2) the mean
values of ¢~V (z,) and ¢(x,y) along the other boundary
segments of Q and Q(%—1) also vanish if we set the constant
a = (6N?)/(2N? + 1), i.e

N—1 N-—1
>0 T0,55) = > 6O (1,y;) =0
7=0 7=0
N-—1 N-—1
$(0,y;) = #(1,y;) =0.
7=0 7=0
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Applying this procedure to I'®, T'®) and T'¥), we can re-
move the discontinuities at the block boundary of 2. In fact, we
add the DCT coefficient matrix P = (P, x,) of the following
quadratic polynomial to F'%(z, y) on each block

s 52

p(@,y) = (ay =y — 1) — (a(l —y) — Ly—-
§®3) §@)
+(az —1)(z — 1)7 —(a(l—z)— l)xT (16)
where
\/— N-1
63 =35 7 M(Fy? — Fg cos k)
k=0
\/— N-1 B
§G) = N Z )\k(F,S,Ol’O)Q cosTk — F,go)
k=0
\/5 N-1
6 =25 D7 MlFip”? — B cos k).
k=0

By the straightforward computation using (5) and (16), we have

0, ifk)1 =ko =0
b ) VN (080 = 89) itk £ 0=k
k1, ko VN (%25(1) _ 7225(2)) . ifky =0# ks
0, otherwise
a7
where
Tk —)\k\/ Z {(az; — — 1)} cosmka;
\/ x;) — 1)a;} cosmha;

k+1

Based on the above discussions, we propose the following
PPHLCT algorithm that provides better approximation to the
original DCT coefficient F' than the JPEG Baseline method
does:

{Compression : Same as the JPEG standard.
(Reconstruction :

eDecode the compressed sequence and reconstruct F@.
oCompute U? via (13), (12).

oCompute d, as (15).

oCompute Py, via (17).

oReplace FI? by Flg +dp + Py if | + P| < QTk
[ eApply IDCT to F¥ in each block.

The computational cost of PPHLCT is slightly larger than that of
the PHLCT decoder due to the computation of dy, and Pj. The
computation of dj, requires 3N 2 comparisons per block. if we
implement the absolute value computation in (15) simply by the
comparison operation. The cost for P}, is essentially negligible;
in fact, it is of O(IN) per block instead of O(N?) since Py, has
a nonzero value only if k1 - k2 = 0 and the values of i, v are
common for all the blocks.

For the convenience of the reader, we list the numerical values
of 7y, in Table II. Note v; = (—1)F*1,.
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TABLE II
NUMERICAL VALUES OF 7, COMPUTED UP TO FOUR DECIMAL PLACES
k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=17
7% | 0.0000 0.8053 0.5869 0.0842 0.1316 0.0251 0.0417 0.0063

Fig. 2. Original images (512 x 512 pixels, 8 bits/pixel grayscale). (a) Gabor.
(b) Lena. (c) Barbara.

VII. NUMERICAL EXPERIMENTS

In this section, we describe our numerical experiments and
demonstrate the effectiveness of our methods. The grayscale
images ‘“Gabor,” “Lena,” and “Barbara” shown in Fig. 2
(512 x 512 pixels, 8 bits/pixel) are used in the experiments.
The image “Gabor” is a synthetic image, which is a 2-D Gabor
function sampled on the regular grid.

A. How Close U and U are to F ?

As we mentioned in Section III, the w component (or its
DCT representation U) can be viewed as a predictor of f (or its
DCT representation F') using the gradient information across
the block boundary. Clearly, the U component with good
prediction capability helps encoding the residual V' in PHLCT.
It is also of our interest to know how well the U< component
predicts the original F' in the decoding stage, particularly in the
case of PPHLCT (note that, in PHLCT, we should be satisfied
if the U@ predicts F' as well as U does). From the viewpoint
of prediction, there are several algorithms, [1, Sec. 16.1],
[13]-[15], and [18], which predict three to nine low frequency
AC components of F'. Therefore, in this section, we shall
measure the performance of U and U as a predictor of F' and
compare the results with those obtained by [1, Sec. 16.1] and
[13]. We shall not conduct the comparison with the methods
proposed by [14], [15], and [18], because: 1) the predictors F},
for some range of ks proposed by [14] and [18] in the encoding
stage require the values of Fk themselves, and, hence, the
comparison in the encoding stage with our methods does not
make sense; and 2) the method in [15] needs an optimization by
linear programming in order to predict the low frequency AC
components of F, in addition to the same problem described in
1).

The goodness of a given predictor F k. of Fy. for a given input
image can be measured by the following quantity:

(1 = Fl)
(1l
where (-) denotes the mean value over all blocks in the input
image (the outmost Ii)\locks are not included). If F, perfectly

predicts F, then R[F},] = 100.

R[ﬁk];:100.<1— )7 ki,ko =0,1,...,7

Table III shows the prediction performance of various
methods for the first 14 DCT coefficients in the zig-zag order
after the DC component. Note that this table lists those coef-
ficients not in the usual zig-zag order: it lists the results at the
first column and row followed by those at the other indices. In
the table, we denote the prediction performance at the encoding
stage and the decoding stage by Ry and Rg, respectively. In

PHLCT, we set ﬁk = Uj, in the encoding stage while in the
decoding stage F. = U. ;‘j . The performance values in Table IIT

were obtained from V'¥s compressed at 0.3 bits/pixel (bpp) for
both images.

As for PPHLCT, it is only applicable for the decoding stage.
Thus, we put “NA” (not applicable) in the encoder performance
column in the table. Recall that the predictor ﬁk = U9 in
the decoder stage is computed from the quantized original F'%
instead of V< in PPHLCT. Hence, the performance should
be different from that of the predictor in the decoding stage
of PHLCT. In this case, F'®s were obtained by compressing
the original F's at 0.3 bpp, which were also used in the other
methods described below.

QSFIT in the table denotes an AC prediction method de-
scribed in [1, Sec. 16.1]. This method is based on the quadratic
surface fitting using the DC components of the current and its
eight adjacent blocks. Note that the JPEG standard presents the
prediction formulas for the lowest five AC components corre-
sponding to k € {(0,1),(1,0),(2,0),(1,1),(0,2)} in the en-
coding stage in [1, Eq.(16-2a)-Eq.(16-2e)] and in the decoding
stage in [1, Eq.(16-3a)-Eq.(16-3e)], and, hence, recommends
(as an option) the prediction of these five AC components only.
For comparison with our PHLCT and PPHLCT, however, we
computed the prediction performance of the first 14 AC compo-
nents in the zig-zag order by actually fitting the quadratic sur-
face at each block using true DC components in the encoding
stage and using the quantized DC components in the decoding
stage instead of using the formulas [1, Eq.(16-2a)-Eq.(16-3¢)].

LAKHANI in the table denotes another AC prediction
method proposed in [13] that is also based on the quadratic sur-
face fitting. We computed the prediction performance of the first
nine AC components in the zig-zag order using the prediction
formulas of [13, Eq.(7)-Eq.(15)]. We note that we could not
compute the performance of all the 14 AC components because
we could not derive the equation of the quadratic surface from
the constraints used in [13, Fig. 3], and the detailed derivation
was not given in that paper.

Table I1I shows that the results of QSFIT in the encoding stage
for predicting the first column and row of F' are exactly the
same as those of PHLCT. On the other hand, the QSFIT per-
formance in the decoding stage for those ks is exactly the same
as that of PPHLCT. This is because the first column and row
of U except the DC component are exactly the same as those
of the quadratic surface used in QSFIT. Appendix III describes
the detailed reason why these DCT coefficients agree. However,
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TABLE III
COMPARISON WITH OTHER AC PREDICTION METHODS

Ry for Gabor Ry for Lenna Ry, for Barbara
k PHLCT PPHLCT QSFIT _TAKHANI PHLCT PPHLCT OQSFIT TLAKHANI PHLCT PPHLCT OSFIT __ LAKHANI
(0,1) 61 NA 61 81 28 NA 28 47 31 NA 31 41
(1,0) 61 NA 61 81 33 NA 33 50 34 NA 34 47
(2,0) 76 NA 76 58 13 NA 13 21 12 NA 12 19
(O, 2) 76 NA 76 58 13 NA 13 20 12 NA 12 18
(O, 3) 78 NA 78 87 8.6 NA 8.6 9.3 6.2 NA 6.2 5.3
(3,0) 78 NA 78 87 8.4 NA 8.4 8.8 6.5 NA 6.5 7.2
(4,0) 78 NA 78 NA 5.7 NA 5.7 NA 5.9 NA 5.9 NA
(0,4) 78 NA 78 NA 5.7 NA 5.7 NA 2.5 NA 2.5 NA
(1, 1) 62 NA 39 16 11 NA 2.2 12 12 NA 3.4 —23
(1,2) 72 NA 47 —67 6.2 NA 0.6 —6.6 3.8 NA 0.9 —25
(2, 1) 72 NA 47 —67 6.9 NA —0.1 —24 4.8 NA 0.7 —36
(3,1) 73 NA 47 NA 2.8 NA 0.8 NA 1.3 NA 0.4 NA
(2,2) 64 NA 50 NA 4.1 NA 0.1 NA 1.2 NA 0.2 NA
(1.3) 73 NA 47 NA 1.9 NA 0.5 NA 0.3 NA 0.1 NA
R,(f for Gabor R,(j for Lenna R,(;J for Barbara
k PHLCT PPHLCT QSFIT LAKHANI PHLCT PPHLCT  QSFIT LAKHANI PHLCT PPHLCT QSFIT LAKHANI

(O, 1) 61 61 61 79 28 28 28 43 30 30 30 34
(1,0) 61 61 61 79 32 32 32 42 33 33 33 36
(2,0) 75 74 74 53 12 12 12 17 12 11 11 14
(0,2) 75 74 74 54 12 12 12 19 12 12 12 15
(O, 3) 8 78 78 80 8.5 8.5 8.5 8.8 6.2 6.1 6.1 4.6
(3,0) 78 78 78 80 8.4 8.2 8.2 7.4 6.4 6.3 6.3 5.7
(4,0) 7 76 76 NA 5.5 5.4 5.4 NA 5.6 5.7 5.7 NA
(0,4) d 76 76 NA 5.7 5.6 5.6 NA 2.4 2.5 2.5 NA
(1,1) 63 61 39 22 11 11 2.1 4.0 12 12 3.3 —37
1,2) 72 69 47 —79 6.0 5.9 0.6 —14 4.2 3.5 0.9 —40
2,1) 72 68 47 —78 6.4 6.6 —0.1 —32 4.6 4.5 0.6 —51
(3,1) 73 71 47 NA 2.7 2.7 0.8 NA 1.4 1.4 0.4 NA
(2,2) 65 56 49 NA 3.8 3.9 0.1 NA 1.4 1.3 0.1 NA
(1,3) 73 70 47 NA 1.9 1.9 0.5 NA 0.4 0.4 0.1 NA

our methods outperform QSFIT for the other AC components.
Note that the performance of PHLCT in the decoding stage for
some ks is slightly different from that of QSFIT and PPHLCT
due to the difference in computing the predictor from V% and
from F'©. For the first column and row of F, LAKHANI gives
the best results. However, the difference between the perfor-
mance values before and after quantization is larger than the
other methods. For example, even at k = (1,0), the perfor-
mance drop after quantization is more than 10% relative to the
true mean value (F} o). Concerning the other range of ks, in
particular, at k = (1,1),(1,2), (2, 1), our methods and QSFIT
perform better than LAKHANIL.

B. Image Compression

We now describe our image compression experiments. In ad-
dition to the standard LQT, we also introduce a modified version
of the rule here. This is based on the following observation from
our experiments and experience: the smaller the quantization
error of the DC components (regardless of JPEG-DCT, PHLCT,
or PPHLCT), the more numerically accurate and the perceptu-
ally better the reconstructed images are. In other words, con-
trolling the quantization errors of the DC components is much
more important than those of the other higher frequency AC
components. Thus, we impose an upper bound on the quantiza-
tion step size of the DC components in order to keep the accu-
racy even in the very low bit-rate case. More precisely, the entry
Qo of the quantization table is modified as the following rule:

if Qo > M, then replace Q¢ by M. In other words, the quanti-
zation step size for the DC components is always bounded by a
constant M, whatever the quality factor ¢ is used. In the exper-
iments below, we set the constant M by an ad hoc procedure,
e.g., M = 0.05( Fy ), where ( Fy ) denotes the mean value of
the DC components of all the blocks of size 8 x 8 pixels in an
input image. We shall denote this modified quantization rule by
QM whereas the standard rule by QS.

To measure the performance of compression and decompres-
sion objectively, we use the peak signal-to-noise ratio (PSNR)
and the mean structural similarity index (MSSIM). PSNR is nor-
mally considered a better metric for image quality assessment
than SNR and defined as

where (2 is the entire image domain (not a single block of 8 x 8
pixels) and the root mean-square error (RMSE) is the absolute
£? error between the original image and the reconstruction di-
vided by the square root of the total number of pixels. The unit
of PSNR is the decibel (dB). MSSIM is a more perceptually-cor-
rect measure of similarity between two images that was recently
proposed by Wang et al. [26]. This is based on the comparison of
the local patterns of pixel intensities normalized for luminance
and contrast. If the original image is regarded as the one with
the perfect quality, then the MSSIM between the original and
the reconstruction can be considered as a quality measure of the

- |f9 (2, y)]

201
810 <(z,y>eg RMSE
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Fig. 3. Comparison of the compression performance with PSNR between PHLCT, PPHLCT, and DCT(JPEG Baseline method). (a) Gabor. (b) Lena. (c¢) Barbara.
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Fig. 4. Comparison of the compression performance with MSSIM between PHLCT, PPHLCT, and DCT(JPEG Baseline method). (a) Gabor. (b) Lena. (c) Barbara.

reconstructed image. Note that the value of MSSIM becomes 1
if the reconstruction perfectly recovers the original.

Figs. 3 and 4 show the comparison between PHLCT,
PPHLCT, and the JPEG Baseline method for 512 x 512
grayscale images of Gabor, Lena, and Barbara, respectively.
In these figures, the quality factor ¢ was sampled uniformly
with the sampling rate Ag = 3 so that the bit rates take values
approximately from 0.15 up to 1.0 bpp. Then, the images were
compressed accordingly using the rules QM and QS in all
cases. The bit rates were computed from the Huffman codes
of the quantized data in the zig-zag order. Finally, PSNR and
MSSIM were computed after decompressing them. We note
that in order to obtain the results indicated by QM, not only the
decoder but also the encoder must use the QM rule. Therefore,
PPHLCT with QM is effective only when the QM rule has been
used in the encoder of the JPEG Baseline method.

In Figs. 3 and 4, PHLCT(QM) is the overall winner, and the
improvement over other methods by PHLCT and PPHLCT is
more clearly shown in MSSIM than in PSNR. In all cases, the
performance difference between QS and QM is particularly no-
ticeable for the low bit-rate range smaller than 0.3 bpp. On the
other hand, if one can afford to use more than 0.3 bpp, there

seems no need to use QM. The improvement by PPHLCT(QS)
is the smallest among our proposed methods, which was also
expected since this is the only case that does not modify the
encoder of the JPEG Baseline method at all. The improvement
by PPHLCT(QM) is slightly larger than that by PPHLCT(QS)
while it is still smaller than that by PHLCT(QS). In addition,
these figures also indicate that it is tougher to compress the Bar-
bara image than the other images.

Next, we show the performance difference between PHLCT,
QSFIT, and LAKHANI using PSNR. The AC predictors F of
QSFIT and LAKHANI were applied in the same manner as
PHLCT. Only the residuals V' = F' — F' were coded at the
encoding stage. We computed F' from V® and reconstructed
FQ = F 4+ VQ at the decoding stage. As for the “partial
mode” versions of QSFIT and LAKHANI, which are denoted
by PQSFIT and PLAKHANI, F were used in the same manner
as PPHLCT only for the decoding stage, such that

Replace Flg by ﬁk, if ke Ky

= Q
ICt::{keIC‘FI?ZOand|Fk|<7k .
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Fig. 5. PSNR gain by PHLCT, PPHLCT, QSFIT, PQSFIT, LAKHANI, and PLAKHANI over the JPEG Baseline method. (a) Gabor, QS. (b) Gabor, QM. (c) Lena,
QS. (d) Lena, QM. (e) Barbara, QS. (f) Barbara, QM.

Fig. 5 shows the PSNR gain by PHLCT, PPHLCT, QSFIT,
PQSFIT, LAKHANI, and PLAKHANI over the JPEG Baseline

method for the bit rates from 0.15 up to 1.0 bpp. In Fig. 5, it
is clear that the gain by PHLCT is the largest in all cases and
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Fig. 6. Center part of the reconstructed Gabor images (QM rule). The figures in the first row are the reconstructions from the compressed representation with 0.15
bpp, whereas those in the second row are from the 0.3-bpp representations. The bit rates and the PSNR values listed with the images are computed from the entire
image, not from the center part. (a) PHLCT, 39.21 dB. (b) QSFIT, 35.79 dB. (c) PPHLCT, 35.69 dB. (d) PQSFIT, 33.37 dB. (¢) DCT, 31.41 dB. (f) PHLCT, 47.02
dB. (g) QSFIT, 41.26 dB. (h) PPHLCT, 40.89 dB. (i) PQSFIT, 38.68 dB. (j) DCT, 38.12 dB.

the gain by PPHLCT is larger than PQSFIT and PLAKHANI.
The gain by QSFIT (full mode) is larger than PPHLCT (partial
mode) for the Lena and Barbara images, which is understand-
able. However, for the Gabor image, the gain by PPHLCT is
larger than the full mode versions of QSFIT and LAKHANI
in the range of 0.4-1.0 bpp. In each method, the results of
full mode version are better than those of partial mode version
except LAKHANI/PLAKHANI. The reason why the gain by
LAKHANTI is smaller than PLAKHANI seems to be due to the
large difference between the AC prediction performance before
and after quantization compared to the other methods.

Finally, to show the effect of the compression—decompression
quality of our methods more clearly, we display the center part
of the reconstructed Gabor images in Fig. 6 and the face region
of the reconstructed Lena and Barbara images in Figs. 7 and 8.
The figures in the first row are the reconstructions from the
compressed representation with 0.15 bpp, whereas those in the
second row are from the 0.3-bpp representations. Note that the
bit rates and the PSNR values listed with the images are com-
puted from the entire images. It is clear that both PHLCT and
PPHLCT improved the quality of the JPEG-compressed images
under the constraint of keeping the same bit rates. The difference
is particularly noticeable for the low bit-rate case (0.15 bpp).

C. Quantification of Blocking Artifacts Reduction

We also evaluated the performance of the reduction of
blocking artifacts in the decompressed images by using a
measure called the mean squared difference of slope (MSDS)
proposed in [27] and used (with modification) in [28] and [18].
The MSDS values were computed from the sequences of four
consecutive pixel values in horizontal/vertical directions across

a block boundary or of four pixel values in diagonal directions
at an intersection of diagonally adjacent blocks as in [18]. We
computed MSDS for all block boundaries and all intersections
in each image.

Table IV shows our computational results of MSDS for the
Gabor, Lena, and Barbara images compressed by PHLCT(QM),
PPHLCT(QM), QSFIT(QM), PQSFIT(QM), LAKHANI(QM),
PLAKHANI(QM), and DCT(QM). In this table, MSDSb and
MSDSi denote the mean value of MSDS computed at all the
block boundaries and that computed at all the intersections,
respectively. We can observe several things from this table.
First of all, this table demonstrates that PHLCT is the best (i.e.,
smallest in terms of MSDS values) among all the full version
methods we examined, so is PPHLCT among all the partial
versions.

Second, the performance difference between PHLCT and the
other methods for the Gabor image is particularly noticeable.
This is understandable because the original Gabor image do not
have any intrinsic discontinuity and PHLCT efficiently reduces
the code size of such an image with less artifacts thanks to its
fast decaying DCT coefficients of the residual as Corollary 4
suggests.

Finally, the MSDS values for the Barbara images recon-
structed from the compressed representations of 0.3 bpp are
larger than those of 0.15 bpp. This is because the intrinsic
discontinuities and textures in the original Barbara image had
been too much smoothed in the case of 0.15 bpp. However,
for each bit rate, the MSDS values of PHLCT are still smaller
than the other full version methods, so are those of PPHLCT
than the other partial versions. Therefore, we can conclude that
both PHLCT and PPHLCT are effective for the reduction of
blocking artifacts in terms of MSDS.
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Fig. 7. Face part of the reconstructed Lena images (QM rule). The figures in the first row are the reconstructions from the compressed representation with 0.15
bpp, whereas those in the second row are from the 0.3-bpp representations. The bit rates and the PSNR values listed with the images are computed from the entire
image, not from the face part. (a) PHLCT, 29.84 dB. (b) QSFIT, 29.46 dB. (c) PPHLCT, 29.38 dB. (d) PQSFIT, 29.00 dB. (e) DCT, 28.93 dB. (f) PHLCT, 32.80
dB. (g) QSFIT, 32.57 dB. (h) PPHLCT, 32.36 dB. (i) PQSFIT, 32.22 dB. (j) DCT, 32.22 dB.

W
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Fig. 8. Face part of the reconstructed Barbara images (QM rule). The figures in the first row are the reconstructions from the compressed representation with 0.15
bpp, whereas those in the second row are from the 0.3-bpp representations. The bit rates and the PSNR values listed with the images are computed from the entire
image, not from the face part. (a) PHLCT, 24.19 dB. (b) QSFIT, 23.98. (c) PPHLCT, 23.97 dB. (d) PQSFIT, 23.73 dB. (e) DCT, 23.61 dB. (f) PHLCT, 26.05 dB.
(g) QSFIT, 25.93 dB. (h) PPHLCT, 25.73 dB. (i) PQSFIT, 25.67 dB. (j) DCT, 25.67 dB.

VIII. CONCLUSION

In this paper, we have described two new image compres-
sion—decompression schemes that reproduce images with better
visual fidelity, less blocking artifacts, and better PSNR, particu-
larly in low bit rates, than those processed by the JPEG Baseline
method at the same bit rates. The first one, the “full mode” poly-
harmonic local cosine transform (or PHLCT for short), mod-
ifies both the encoder and decoder parts of the JPEG Base-

line method. The second one, the “partial mode” PHLCT (or
PPHLCT for short), only modifies the decoder part: it accepts
the JPEG files, yet decompresses them with higher quality than
the JPEG standard. The key idea behind these algorithms is a de-
composition of each image block into a polyharmonic compo-
nent and a residual. The polyharmonic component in this paper
is an approximate solution to Poisson’s equation with the Neu-
mann boundary condition, which can be considered as a smooth
predictor of the original image block using the image gradient
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TABLE IV
MSDS OF RECONSTRUCTED IMAGES (QM RULE)

Gabor Lenna Barbara
MSDSb  MSDSi PSNR MSDSb ~ MSDSi PSNR MSDSb ~ MSDSi PSNR
Original 3 2 645 379 5190 3082
PHLCT 105 40 39.21 1372 889 29.84 6120 2893 24.19
QSFIT 863 352 35.79 2311 1250 29.46 7831 3371 23.98
LAK HANI 311 383 34.34 1742 1163 28.97 7547 3850 23.37
0.15 bpp PPHLCT 282 125 35.69 1452 932 29.38 5743 2657 23.97
PQSFIT 1245 290 33.37 2386 1275 29.00 7589 3233 23.73
PLAKHANI 1107 458 31.96 2257 1374 28.67 7232 3564 23.41
DCT 2004 710 31.41 2658 1455 28.93 8360 3593 23.61
PHLCT 30 11 47.02 1062 670 32.80 9113 4121 26.05
QSFIT 253 135 41.26 1376 817 32.57 10119 4426 25.93
LAK HANI 193 156 39.41 1230 797 32.08 9908 4663 25.38
0.3 bpp PPHLCT 62 28 40.89 1079 689 32.36 9052 4154 25.73
PQSFIT 351 181 38.68 1426 831 32.22 10047 4454 25.67
PLAKHANI 348 228 38.05 1393 851 32.06 9996 4546 25.54
DCT 417 223 38.12 1470 862 32.22 10203 4522 25.67

information across the block boundary. The residual—obtained
by removing the polyharmonic component from the original
image block—has, thus, approximately zero gradient across the
block boundary, which gives rise to the DCT coefficients de-
caying as O(||k||~*) whereas those of the original image block
decay only as O(||k||=2). This fast decay rate in turn has led
us to more efficient compression—decompression algorithms for
the same bit rates. Moreover, we have shown that the polyhar-
monic component of each block can be estimated solely by the
first column and row of the DCT coefficient matrix of that block
and those of its adjacent blocks. This is important in two aspects:
1) it provides a simpler decompression algorithm; and 2) it al-
lows us to develop PPHLCT that fills in the truncated small DCT
coefficients of the original image due to quantization with the
corresponding polyharmonic components.

The additional computational cost incurred by our new
methods is small. In addition to the cost of the JPEG Base-
line method, both the encoder and decoder parts of PHLCT
requires O(N?) operations per block of size N x N pixels
and O(N?log, N) operations to compute Table I or (10) per
image, where typically N = 8. The cost of computing Table I
is essentially negligible since this is done only once in the
encoder as well as in the decoder. As for PPHLCT, it has only
a decoder part and requires O(3N?) comparison operations
per block in addition to the cost of the decoder part of PHLCT.
Hence, we can claim that the additional cost incurred by our
methods beyond the JPEG Baseline method is just linearly
proportional to the number of pixels in the image.

Our numerical experiments in Section VII have demonstrated
that PHLCT and PPHLCT improve the decompressed image
quality over the JPEG Baseline method under the constraint
of keeping the same bit rates. Here, we have used PSNR and
MSSIM as a measure of image quality and MSDS to specifi-
cally quantify the reduction of blocking artifacts. The subjec-
tive image quality is also improved by our methods as shown
in Figs. 6-8. We have also numerically demonstrated that the
polyharmonic component of our methods can predict an original

image data better and more stably than the other AC prediction
methods such as [1, Sec.16 .1] and [13]. Due to the shortage
of the space, we could not show our addtional numerical ex-
periments using six more images with different characteristics.
The results were similar to those shown in Section VII. Overall,
PHLCT was the winner among the full mode versions of the
methods we examined, so was PPHLCT among the partial mode
versions.

Our future work will include a more thorough investigation
of polyharmonic components that may be obtained by a poly-
harmonic equation of higher degree of polyharmonicity or by a
different type of elliptic equation. Furthermore, we are currently
generalizing the polyharmonic local trigonometric transform for
analyzing objects of various shapes in an image, which we hope
to report at a later date.

APPENDIX 1
ON THE NEUMANN BOUNDARY CONDITION

The reason why we cannot use Laplace’s equation with the
Neumann boundary condition in general is due to Green’s
second identity, which claims that for any u,v € C*(£2)

/{;(’U,AU —vAu)dz = /B'Q (u% - v%) do(z) (18)

where do(z) is a surface (or boundary) measure. Setting v = 1
in (18) together with the Neumann boundary condition in (3),
we have

ou
Audz:/ —do(z) =
/Q o0 Ov (=)

This is a necessary condition that v must satisfy. Therefore, we
need to introduce the constant source term in Laplace’s equation
(3) as

af
—d
N 81/ 7

(). (19

Qu ‘?—f, on 0f) (20)

{Au:K, inQ
ov — Ov
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where K := 1/1Q| [,, 0f/0v do(z), || is the volume of the
block 2. It is easy to see that with this constant source term, the
solution of (20) satisfies (19).

APPENDIX II
PROOF OF THEOREM 3

Proof: Recall that u is the solution to the Neumann
boundary problem of Poisson’s equation (4) (modulo an addi-
tive constant)

M(p)~ M(u) = / (4p)* - (Au)?) dz

_ /Q(Ap—

:/(Ap—Au)zdz+2K/(Ap—Au)dx
Q Q

Au)de—l—Q/(Ap—Au)Auda;
Q

Using Green’s second identity, we have

/Q(Ap—Au)dz:/{m%da(z)—/{m%da( )=0.

Therefore

M(p)—M(u):/Q(Ap—Au)ZdzZO.

APPENDIX III
EQUIVALENCE OF THE FIRST COLUMN AND ROW OF U AND
THOSE OF THE QUADRATIC SURFACE USED IN QSFIT

As shown in [1, Sec. 16.1], QSFIT uses a quadratic surface

= A2y + Asa®y + Aszy® + Aua?®
+Asxy + A6y2 + A7z + Agy + Ag.

p(w,y)

The coefficients Ay,..., Ag are determined by requiring that
the DC components of the current (or center) block and its sur-
rounding eight blocks of an input image match those of p(z, y)
when p(z,y) is fitted to these nine blocks.

First of all, we show that the first column of U in (13) except
the DC component are exactly the same as those of the DCT
coefficients of p(z,y) at the current block. Let Py, j, be the
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DCT coefficients of p(z,y) on the current block €. The first
column of P, 1, can be expressed as

V3N N-1
Prio= N Z <)\k1 Z p(z;, yj)COSWk1$i>

7=0 =0
N-1 [N-1
2
= %Akl Z , p(a:i, yj) COS7F]<71112'
1=0 7=0
N-1
2
= %/\kl ; (azx? + bx; + c) cos Thy;
where
N-1
a= (Alyjz' + Asgy; + As)
7=0
N-1
b= (Asy] + Asy; + A7)
J=0
N-1

(AG'UJ + ASUJ + AQ)

~.
I
=]

Using a, b, and ¢, the DC component P g is expressed by
L V=l
PO,O :N ;(axg—l—bxz +C)
_4N? -1

1
N2 a+—b+c.

Let P( 19 and P(1 % be the DC components of p(z,y) on
the adjacent blocks Q( 1,0) and Q19 respectively. Similarly,
we can derive the following DC components of p(z,y) at the
adjacent blocks:

2.1 1

Py ket TNz T bt
(1,00 28N%—1 3

Fog” =—gne ot b te

Solving these equations for a and b, the first column of Py, x,
(except the DC component) can be written by (21), shown at
the bottom of the page, where we used Ef\:)l cosmkiz; = 0
to derive the second equality and the definition of 7, n* in (10)
to derive the last equality. Now, the DC components of p(z, y)
on ©, Q=19 and Q10 must match those of an input image

N-—-1

Py,
1=0

N-1

_ (PO(,?JLO) _ PO,O) Q/\kl Z @

N
)\/5

+ (P(lo) Py

1=0

= (Pé,_ol’o) - Po,o) 770,;; +

V2 1,0 ~1,0
0= Y {(ngo D+ PG —2k0)

(PG = Pog) ok

w?
5 + (PO 0— Pé,_ol’o)) T; + c} cos mk1x;

2
cosmkix;

W)\k‘ Z % cosTkixz;

21
N 2D
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in QSFIT. This means that we have Py o = Fj,o, Pé,_ol’o) =
Fé;)l’o), and Pé,lo’o) = Fé,lo’o). Putting these into (21) and com-
paring it with (13), we obtain

tho:Uk1,07 k1:1,2,...7N—1_

Similarly to the case of the first column described above, it is
also straightforward to show that the first row of U except the
DC component are the same as those of P i.e.,

PO,kQZUO,kzv k2:1727"'7N_1'
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