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ABSTRACT

The polyharmonic local cosine transform (PHLCT), presented by Yamatani and Saito1 in 2006, is a new tool for local
image analysis and synthesis. It can compress and decompress images with better visual fidelity, less blocking artifacts,
and better PSNR than those processed by the JPEG-DCT algorithm. Now, we generalize PHLCT to the high-dimensional
case and apply it to compress the high-dimensional data. Forthis purpose, we give the solution of the high-dimensional
Poisson equation with the Neumann boundary condition. In order to reduce the number of coefficients of PHLCT, we use
not only d-dimensional PHLCT decomposition, but alsod − 1, d − 2, . . . , 1 dimensional PHLCT decompositions. We
find that our algorithm can more efficiently compress the high-dimensional data than the block DCT algorithm. We will
demonstrate our claim using both synthetic and real 3D datasets.

Keywords: Discrete Cosine Transform, Polyharmonic local cosine transform, High-dimensional data, Compression, Pois-
son’s equation

1. INTRODUCTION

For a periodic smooth function, the rate of the decay of its Fourier coefficients depends on the smoothness of this function.
However, for a non-periodic smooth function, if, after brute-force segmentation, we extend it to a periodic function, then
we obtain a periodic function that is discontinuous at the boundary. Hence, its Fourier coefficients decay very slow. To
solve this problem, one presents the Discrete Cosine Transform (DCT)5: Let us consider a smooth function defined on
a square. We extend the function by “even” reflection at the boundary. This even extension of a function is continuous
across the square boundaries. Afterwards, we expand the even extension of the function into the Fourier cosine series.
DCT is just the discrete version of Fourier cosine series. However, after even extension, the function is not a continuously
differentiable function across the square boundaries. Hence, DCT coefficients decay still slowly. In 2006, Saito and Remy2

introduced polyharmonic local sine transform (PHLST). Theessential difference between PHLST and DCT is as follows.

For PHLST, the function defined on a square is decomposed intotwo parts. The first part is the polyharmonic com-
ponent which is a solution of the polyharmonic equation∆mu = 0 given the boundary condition. The second part is the
residual that vanishes on the boundary. Afterwards we extend the residual by “odd” reflection at the boundary. Form = 1,
the polyharmonic equation is reduced to Laplace’s equationwith Dirichlet boundary condition. For the two-dimensional
case, Averbuch, Israeli, and Vozovoi3 derived the fast and accurate solution of Laplace’s equation with Dirichlet boundary
condition. Using this method, we obtain the polyharmonic component. This odd extension of the residual is a continuously
differentiable function across the square boundaries. We expand it into the Fourier “sine” series. Now the rate of decayof
the Fourier coefficients isO(‖ℓ‖−3), whereℓ = (ℓ1, ℓ2) is the coefficient index and‖ℓ‖ =

√

ℓ21 + ℓ22.

To improve this rate of decay, we need to take the large integer m. For m = 2, the rate of decay of the Fourier
coefficients of the residual isO(‖ℓ‖−5). However one needs to solve∆2u = 0 with second order normal derivative at
boundaries, which is very difficult to estimate in applications.

In order to compensate this problem of PHLST, Yamatani and Saito presented a new image compression method: the
polyharmonic local cosine transforms (PHLCT)1 that decomposes an image into a polyharmonic component and aresidual.
The polyharmonic component is a solution of Poisson’s equation with the Neumann boundary condition. Subsequently the
polyharmonic component is subtracted from the original function to obtain the residual component. We extend the residual
component by “even” reflection at the boundary. This even extension of the residual is a twice continuously differentiable
function across the square boundaries. We expand it into theFourier cosine series, and the decay rate of the Fourier cosine
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coefficients of the residual isO(‖ℓ‖−4). Thus, it is clear that PHLCT algorithm can compress data more efficiently than
the PHLST and DCT algorithms.

In the field of data analysis, one often needs to deal with high-dimensional data, e.g., 3D marine seismic data, medical
tomographic data, etc. In the present paper, we will generalize PHLCT to the high-dimensional case and apply it to
compress such high-dimensional data. We will first investigate the computational issue of the polyharmonic component
of the high-dimensional dataf defined inR

d with d ≥ 3. For this purpose, we must give the series solution of the
high-dimensional version of Poisson’s equation with the Neumann boundary condition. This is an important and difficult
problem, and it has its own interest. We give a satisfying answer. Based on the partition of boundaries of the cube,
the solution given by us has a simple and clear representation and it is convenient to apply it to high-dimensional data
compression problems. When we use PHLCT to compress ad-dimensional data, in order to reduce the number of the
coefficients of PHLCT, we use not onlyd-dimensional PHLCT decomposition, but alsod − 1, d − 2, . . . , 1 dimensional
PHLCT decomposition. The number of PHLCT coefficients obtained by us is equal to the number of the original sample
points. These coefficients decay very fast and can recover the data exactly. Therefore, we can approximate the original
data quite efficiently by truncating the coefficients whose magnitude is small.

At the end of this paper, we use PHLCT and DCT to approximate 3DGaussian data and real 3D seismic data. From
the results of these numerical experiments, we see that PHLCT can compress high-dimensional data more efficiently than
DCT.

2. THE DCT ALGORITHM AND THE PHLCT ALGORITHM

In this section, we will review two important algorithms in image compression. First we introduceDiscrete Cosine Trans-
form (DCT). DCT is very important in history.5 In theory, DCT can approximate the Karhunen-Loève Transform (KLT) if
the signal is the 1st order Markov random process.7 In application, DCT can efficiently compress data.8 The well-known
image compression standard JPEG is just based on it.6 To state the idea of DCT, we need the following notations.

Let ζj = 0.5+j
N , j = 0, 1, .., N − 1 andNd be the set of all the integer lattice points in the cube[0, N − 1]d.

Let Ω = [0, 1]d andf be a function defined onΩ. Let k = (k1, . . . , kd) ∈ Nd andxk = (ζk1
, . . . , ζkd

) ∈ Ω. Then the
DCT coefficients off is defined as

bℓ = Cℓ N−d/2
∑

k∈Nd

f(xk)

d
∏

i=1

cos(πℓi ζki
) ℓ = (ℓ1, . . . , ℓd) ∈ Nd, (1)

whereCℓ = 2Σd
i=1α(ℓi)/2 and α(i) = 1 (i 6= 0), α(0) = 0. The decay rate of the DCT coefficients isO( ‖ℓ‖−2),

‖ℓ‖ =
(

ℓ21 + · · · + ℓ2d
)

1
2 .

In 2006, Yamatani and Saito1 presented the polyharmonic local cosine transforms (PHLCT) as follows. Letf be a
function defined onΩ = [0, 1]d andq be the normal derivative∂u

∂n
of f on∂Ω. ThePolyharmonic Local Cosine Transform

(PHLCT) decomposesf into two components asf = u + v, whereu satisfies Poisson’s equation with the Neumann
boundary condition

∆u = I(q), x ∈ Ω,
∂u

∂n
= q, x ∈ ∂Ω, (2)

andI(q) =
∫

∂Ω

q(x) dx. We callu the polyharmonic component andv the residual.

For d = 2, Yamatani and Saito1 gave the solution of the equation (2). Because the residual has the zero normal
derivatives on the boundary, the even extension off has desiredC2 smoothness if there is no intrinsic singularity in the
original dataf . Consequently, the DCT coefficients of the residual will decay as fast asO(‖ℓ‖−4). From this, we see that
the PHLCT algorithm can compress the two-dimensional data more efficiently than the DCT algorithm both in theory and
in application.



3. D-DIMENSIONAL POLYHARMONIC LOCAL COSINE TRANSFORM

Now we generalize polyharmonic local cosine transform intothe high-dimensional case. The key is to solve Poisson’s
equation with the Neumann boundary condition in (2). For thetwo-dimensional case, Averbuch, Israeli, and Vozovoi3

derived the solution of Laplace’s equation with the Dirichlet or the Neumann boundary conditions. Later on, Yamatani and
Saito1 modified it and apply it to image compression. For the three-dimensional case, Braverman, Israeli, Averbuch, and
Vozovoi4 derived the solution of Poisson’s equation with the Dirichlet boundary condition. Below we derive the solution
of Poisson’s equation with the Neumann boundary condition for the three-dimensional and the higher-dimensional cases.

Let f be defined onΩ = [0, 1]d andq be the normal derivative off on∂Ω, i.e., ∂f
∂n

= q. Now we give the solution of
the high-dimensional Poisson equation (2) with the Neumannboundary condition.

Notation 3.1. We define the following notations.

(i) Let Nd be stated as above. For eachi = 1, . . . , d, denote the subsets ofNd

H
0
i : = { k = (k1, . . . , kd) | ki = 0, 0 ≤ kj ≤ N − 1, ∀j 6= i },

H
1
i : = { k = (k1, . . . , kd) | ki = N − 1, 0 ≤ kj ≤ N − 1, ∀j 6= i }.

(ii) Let Ω = [0, 1]d. For eachi = 1, . . . , d, denote the faces of the cubeΩ

R
(i,0) : = { x = (x1, . . . , xd) ∈ Ω | xi = 0 },

R
(i,1) : = { x = (x1, . . . , xd) ∈ Ω | xi = 1 }.

From this, we know that

∂Nd := Nd

⋂

∂
(

[0, N − 1]d
)

=
d
⋃

i=1

(

H
0
i

⋃

H
1
i

)

, ∂Ω =
d
⋃

i=1

(

R
(i,0)

⋃

R
(i,1)

)

. (3)

We assume that the discretized data{ q(xk) }k∈∂Nd
of q(x) on boundary∂Ω are available, where

xk = (ζk1
, . . . , ζkd

) and ζkν
=

0.5 + kν

N
, ν = 1, 2, . . . , d.

Denoteq(i,τ)
k

: = q(xk), k ∈ H
τ
i , which is a sample ofq(x) atxk ∈ R

(i,τ).

Let B(i,τ)
k

, k ∈ H
τ
i be the DCT coefficients ofq(i,τ)

k
, k ∈ H

τ
i . Define

q(i,τ)(x) =

(

1

N

)
d−1
2 ∑

k∈Hτ
i

AkB
(i,τ)
k

∏

ν 6=i

cos(π kν xν), x = (x1, . . . , xd), (4)

where

Ak = 2

P

1≤ℓ≤d
ℓ 6=i

α(kℓ)/2

.

andα(0) = 0, α(i) = 1, i 6= 0.

By inverse DCT, we know thatq(i,τ)(x) is a trigonometric polynomial approximatingq(x) on the faceR(i,τ). Hence

q(x) ≈ q(i,τ)(x), x ∈ R
(i,τ), i = 1, . . . , d, τ = 0, 1. (5)

Theorem 3.2. The approximate solution of Poisson’s equation with the Neumann boundary condition

∆u = I(q), x ∈ Ω,
∂u

∂n
= q, x ∈ ∂Ω



 I(q) =

∫

∂Ω

q(x)dx







is written as

u(x) =

d
∑

i=1

(u(i,0)(x) + u(i,1)(x)),

where

u(i,0)(x) :=

(

1

N

)
d−1
2















A0B
(i,0)
0

(xi − 1)2

2
+
∑

k∈H0
i

k 6=0

W1W3















+ C, (6)

u(i,1)(x) :=

(

1

N

)
d−1
2















A0B
(i,1)
0

x2
i

2
+
∑

k∈H1
i

k 6=0

W3W2















+ C, x = (x1, . . . , xd),

hereC are different constants and

W1 : = W i
1,k(x) : = αkB

(i,0)
k

cosh(πηk(xi − 1)),

W2 : = W i
2,k(x) : = αkB

(i,1)
k

cosh(πηkxi), αk =
Ak

πηk sinh(πηk)
, ηk =





∑

ℓ 6=i

k2
ℓ





1/2

, (7)

W3 : = W i
3,k(x) : =

∏

1≤ℓ≤d

ℓ 6=i

cos(π kℓ xℓ).

Proof. By (3), (5), and (6), we only need to prove that for eachi = 1, . . . , d, τ = 0, 1,

∆u(i,τ) =

∫

R(i,τ)

q(i,τ)(x) dx, x ∈ Ω (8)

and
∂u(i,τ)

∂n
= q(i,τ), x ∈ R

(i,τ),
∂u(i,τ)

∂n
= 0, x ∈ ∂Ω \ R

(i,τ). (9)

By the similarity, we only prove the caseτ = 0. First we prove (8) forτ = 0.

Since the Laplace operator∆ is linear,∆C = 0, and∆
(

(xi−1)2

2

)

= 1, we conclude by (6) that for eachi = 1, . . . , d,

∆u(i,0)(x) =

(

1

N

)
d−1
2









A0B
(i,0)
0

+
∑

k∈H0
i

k 6=0

∆(W1W3)









. (10)

From the definitions of the Laplace operator and the gradientoperator,

∆W :=

(

∂2

∂x2
1

+
∂2

∂x2
2

+ · · · +
∂2

∂x2
d

)

W, ∇W :=

(

∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xd

)

W,

we can check directly the following formula

∆(W1W3) = (∆W1)W3 + (∆W3)W1 + 2∇W1 · ∇W3. (11)

This formula gives a great convenience in our calculation. By a direct calculation using (7), we have

∂W1

∂xi
= αkB

(i,0)
k

πηk sinh (πηk(xi − 1)) ,
∂2W1

∂x2
i

= αkB
(i,0)
k

π2η2
k cosh (πηk(xi − 1)) , (12)



∂W1

∂xν
=

∂2W1

∂x2
ν

= 0, ν 6= i (13)

and

∂W3

∂xi
= 0,

∂2W3

∂x2
ν

= −





∏

ℓ 6=i

cos(πkℓxℓ)



π2k2
ν , ν 6= i.

Hence by (11),∆(W1W3) = 0. Furthermore, by (10), we have

∆u(i,0)(x) =

(

1

N

)
d−1
2

A0B
(i,0)
0

. (14)

On the other hand, by Notation 3.1 (ii), we know thatx = (x1, . . . , xd) ∈ R
(i,0) if and only if 0 ≤ xν ≤ 1 (ν 6= i)

andxi = 0. From this and (4), we have

∫

R(i,0)

q(i,0)(x) dx =

(

1

N

)
d−1
2 ∑

k∈H0
i

AkB
(i,0)
k





∏

ν 6=i

∫ 1

0

cos(π kν xν) dxν



 , x = (x1, . . . , xd), k = (k1, . . . , kd).

If k ∈ H
0
i andk 6= 0, then there exists aν 6= i such thatkν 6= 0, so

1
∫

0

cos(π kν xν)dxν = 0. From this, we can

conclude that
∫

R(i,0)

q(i,0)(x) dx =

(

1

N

)
d−1
2

A0B
(i,0)
0

.

Again by (14), we obtain (8) forτ = 0.

Below we prove that the formula (9) holds forτ = 0. Since the gradient operator is linear, by (6) and∇
(

(xi−1)2

2

)

=

(xi − 1)ei, we have

∇u(i,0)(x) =

(

1

N

)
d−1
2









A0B
(i,0)
0

(xi − 1)ei +
∑

k∈H0
i

k 6=0

∇(W1W3)









, (15)

whereei is an unit vector inRd whoseith component is 1. Letn be the outward normal vector of∂Ω. Then, by (15), we
have

∂u

∂n
= n · ∇u(i,0) =

(

1

N

)
d−1
2









A0B
(i,0)
0

(n, (xi − 1)ei) +
∑

k∈H0
i

k 6=0

n · ∇(W1W3)









. (16)

By Notation 3.1 (ii), we know that

if x ∈ ∂Ω \ R
(i,0), thenn⊥ei or xi = 1;

if x ∈ R
(i,0), then n = −ei and xi = 0.

So we have

n · (xi − 1)ei = 0, x ∈ ∂Ω \ R
(i,0) and n · (xi − 1)ei = −(xi − 1) = 1, x ∈ R

(i,0). (17)

Using the formula
∇(W1W3) = (∇W1)W3 + (∇W3)W1, (18)

together with (12) and (13), we have

∇W1 = αkB
(i,0)
k

πηk sinh(π ηk(xi − 1)) ei. (19)



Forx ∈ R
(i,0), xi = 0, by (7), we have

∇W1 = −αkB
(i,0)
k

πηk sinh(πηk)ei = −AkB
(i,0)
k

ei.

Furthermore, by(n, ei) = −1 and (7), we obtain that

n · ((∇W1)W3) = AkB
(i,0)
k

∏

ℓ 6=i

cos(πkℓxℓ). (20)

Since∂W3

∂xi
= 0 andn = −ei, we haven · ∇W3 = 0. So

n · ((∇W3)W1) = 0. (21)

Hence onR(i,0), by (18)–(20),
n · ∇(W1W3) = AkB

(i,0)
k

∏

ℓ 6=i

cos(πkℓxℓ).

From this and (16)-(17), we obtain that

∂u

∂n
=

(

1

N

)
d−1
2









A0B
(i,0)
0

+
∑

k∈H0
i

k 6=0

AkB
(i,0)
k

∏

ℓ 6=i

cos(πkℓxℓ)









, x ∈ R
(i,0).

Fork = 0, we know that eachkν = 0, so
∏

ν 6=i

cos(πkνxν) = 1. From this and (4), we obtain that

∂u

∂n
=

(

1

N

)
d−1
2 ∑

k∈H0
i

AkB
(i,0)
k





∏

ℓ 6=i

cos(πkℓxℓ)



 = q(i,0)(x), x ∈ R
(i,0). (22)

Forx ∈ R
(i,1), xi = 1, by (19), we have

∇W1 = 0, x ∈ R
(i,1).

So n · ((∇W1)W3) = 0. By (7) and (18), we have

n · ∇(W1W3) = n · ((∇W1)W3) + n · ((∇W3)W1) = 0, x ∈ R
(i,1).

Again by (16) and (17), we obtain that

∂u

∂n
= n · ∇u(i,0) = 0, x ∈ R

(i,1). (23)

Forx ∈ ∂Ω andx 6∈ (R(i,0)⋃
R

(i,1)), we haven⊥ei. Furthermore, by (19),

n · ((∇W1)W3) = 0. (24)

Forx = (x1, . . . , xd) ∈ ∂Ω \ (R(i,0)⋃
R

(i,1)), there exists aν 6= i such thatxν = 1 or xν = 0, and the normal vector of
∂Ω atx is eν or −eν , so n = eν or −eν . By (7), we have

∂W3

∂xν
= −









∏

1≤ℓ≤d

ℓ 6=ν, i

cos(πklxl)









πkν sin(πkνxν),

so n · ∇W3 = ±∂W3

∂xν
= 0. Furthermore, by (18) and (24), we obtainn · ∇(W1W3) = 0. Again, by (16) and (17), we

have
∂u

∂n
= 0, x ∈ ∂Ω \ ( R

(i,0)
⋃

R
(i,1) ). (25)

Combining (22), (23) with (25), we conclude that (9) holds for τ = 0. Theorem 3.2 is proved.

Let f be defined onΩ = [0, 1]d. Using Theorem 3.2, we can decomposef into the polyharmonic componentu and the
residualv, i.e.,f(x) = u(x) + v(x), x ∈ Ω.



4. HIGH-DIMENSIONAL DATA COMPRESSION ALGORITHM

In this section, we will present our new algorithm of high-dimensional data compression. In order to reduce the number of
PHLCT coefficients, we need to use not onlyd-dimensional PHLCT decomposition, but alsod−1, d−2, . . . , 1 dimensional
PHLCT decomposition. First we introduce the following notations.

Let Nd = [0, N − 1]d ∩ Zd be stated in Section 2. We divideNd into d + 1 sets.

Notation 4.1. D : = {1, 2, 3, . . . ..d}.

Notation 4.2. Let e be a subset of the setD. Denote the number of the elements ine by |e|.

Notation 4.3. Let ℓ = (ℓ1, . . . . . . , ℓd) ∈ Nd. If ℓi = 0, i ∈ e andℓi 6= 0, i /∈ e, then we sayℓ ∈ De.

Notation 4.4. Dr := {De, |e| = r }, whereD0 = { ℓ ∈ Nd, each ℓi 6= 0 }.

Proposition 4.5. Nd =
d
⋃

r=0
Dr.

Let f be defined on[0, 1]d. Assume that the discretized version off sampled atxk, k ∈ Nd are given, where
xk = {ζk1

, . . . , ζkd
} andζki

= 0.5+ki

N , k = (k1, . . . , kd).

Proposition 4.6. Let f be defined onΩ = [0, 1]d, and letℓ ∈ De, |e| = r andD \ e = (i1, . . . , id−r). Then the DCT
coefficientbℓ (ℓ ∈ De) of f is equal to the DCT coefficient of the(d− r)−dimensional functionh(η1, . . . , ηd−r) defined
as

h(ζki1
, . . . , ζkid−r

) = N− r
2

∑

i∈e

∑

ki

f(ζk1
, . . . , ζkd

). (26)

Proof. Forℓ = (ℓ1, . . . , ℓd) ∈ De, by Notation 4.3, we haveℓi = 0, i ∈ e. By (1), we have

bℓ = CℓN
− d

2

∑

k∈Nd

f(xk)
∏

i 6∈e

cos(π ℓi ζki
), k = (k1, . . . , kd), xk = (ζk1

, . . . , ζkd
) (27)

whereCℓ = 2
Pd

i=1 α(ℓi)/2. In (27), the product
∏

i 6∈e

cos(π ℓi ζki
) does not depend onζki

, i ∈ e. By Notation 4.3, we have

bℓ = CℓN
− d

2

∑

ki,i/∈e

∑

ki,i∈e

(

f(ζk1
, . . . , ζkd

)
∏

i 6∈e

cos(π ℓi ζki
)

)

= CℓN
− d−r

2

∑

ki,i/∈e

(

( N− r
2

∑

ki,i∈e

f(ζk1
, . . . , ζkd

) )
∏

i 6∈e

cos(π ℓi ζki
)

)

.

From this and (26), we obtain that

bℓ = CℓN
− d−r

2

∑

ki,i/∈e



 h(ζki1
, . . . , ζkid−r

)
∏

i 6∈e

cos(π ℓi ζki
)



 , (28)

whereh is stated in (26). Sinceℓi = 0, i ∈ e, we have
d
∑

i=1

α(ℓi)/2 =
∑

i 6∈e

α(ℓi)/2. So

Cℓ = 2
Pd

i=1 α(ℓi)/2 = 2
P

i6∈e
α(ℓi)/2.

From this and (28), noticing that|e| = r, we know thatbℓ is the DCT coefficient of the(d − r)−dimensional function
h(η1, . . . , ηd−r). Proposition 4.6 is proved.

Now, for the functionf defined onΩ = [0, 1]d, we present the following compression algorithm to computethe PHLCT
coefficients in processes of repeated PHLCT-decompositions.

Step 0. Compute DCT coefficientsbℓ , ℓ ∈ Nd of f .



Step 1. Consider DCT coefficientsbℓ (ℓ ∈ D0) of f . We decompose thed-dimensional function asf = u0 + v0,
whereu0 is the solution of the Poisson equation in Theorem 3.2 andv0 is the residual. Compute the DCT coefficientqℓ of
u0, we will obtain the PHLCT coefficientpℓ = bℓ − qℓ, ℓ ∈ D0.

. . . . . . . . . . . . . . . . . . . . .

Step (r + 1). Consider DCT coefficientsbℓ (ℓ ∈ Dr) of f . By Notation 4.4, we haveDr = {De, |e| = r }. For
l ∈ De andD \ e = (i1, . . . , id−r), by Proposition 4.6, we see thatbℓ is the DCT coefficient of the(d − r)−dimensional
function h which is stated in (26). Now we use(d − r)−dimensional PHLCT to decompose the(d − r)−dimensional
function h into h = ur + vr. Compute the DCT coefficientqℓ of ur, we will obtain the PHLCT coefficientpℓ =
bℓ − qℓ, ℓ ∈ De.

. . . . . . . . . . . . . . . . . . . . . .

Step d. Consider DCT coefficientsbℓ (ℓ ∈ Dd−1) of f . Similar to the argument of Step(r + 1), applying the one-
dimensional PHLCT decomposition, we can compute PHLCT coefficientspℓ, whereℓ ∈ Dd−1.

Step (d + 1). Consider the DCT coefficientb0 of f . The PHLCT coefficientp0 = b0.

Remark 4.7. Using these PHLCT coefficients, we can also reconstruct the data perfectly. Since the reconstruction
algorithm is simply the inverse of the above compression algorithm, we will not state it here.

5. NUMERICAL EXPERIMENTS

In this section, we demonstrate the effectiveness of our algorithm by numerical experiments. We split high-dimensional
data into small blocks and apply high-dimensional PHLCT algorithm on every block to approximate the data. Our data
approximation strategy is the following: 1) retain all “DC”components; 2) select a certain number of the largest PHLCT
coefficients in energy among all the PHLCT coefficients of allthe blocks; and 3) reconstruct the data from these retained
coefficients. The quality of approximation is measured by PSNR (peak signal-to-noise ratio).

In order to demonstrate the effectiveness of our algorithm,first we use PHLCT and DCT to approximate 3D Gaussian
data. The size of 3D Gaussian data is128 × 128 × 128. We split it into a set of small blocks each of which has8 × 8 × 8
samples. Table 1 shows PSNR values of the 3D Gaussian data approximated by PHLCT and DCT. The PSNR values of
PHLCT are 25 dB higher than those of DCT. From this, we can see the clear superiority of 3D PHLCT over 3D DCT for
such a smooth dataset.

Table 1: PSNR values (dB) of 3D Gaussian data approximated by3D PHLCT and 3D DCT

Ratio of retained coefficients 1.0% 1.5% 2.0% 2.5%

PHLCT 86.5990 93.3359 98.4086 102.5149

DCT 61.3616 67.7792 72.4882 76.4468

Now, we examine the approximation performance of these transforms using real 3D real seismic data. The size of 3D
seismic data is also128 × 128 × 128. Table 2 shows PSNR values of the 3D seismic data approximated by PHLCT and
DCT, where the size of each block is also8 × 8 × 8. The PSNR values of PHLCT are 0.2 dB higher than those of DCT.
3D PHLCT also performs better than 3D DCT.

Table 2: PSNR values (dB) of 3D real seismic data approximated by 3D PHLCT and 3D DCT

Ratio of retained coefficients 1.0% 1.5% 2.0% 2.5%

PHLCT 15.4084 16.5051 17.2654 17.8589

DCT 15.1489 16.2813 17.0713 17.6881



(a) Slice A (b) Slice B (c) Slice C

Figure 1. 2D slices from 3D seismic data.

Finally, we will compare 2D PHLCT with 3D PHLCT. From the different directions, we take three slices from 3D
seismic data and approximate them by 2D PHLCT. PSNR values are shown in Table 3. From this, we find that the PSNR
value of Slice A is higher than that of Slice B or Slice C. This is because Slice A is much smoother than Slice B and
Slice C. Comparing Table 3 with Table 2, we find that for the same rate of the retained coefficients, the PSNR values of
3D PHLCT are higher than that of 2D PHLCT, so 3D PHLCT performsbetter than 2D PHLCT when we approximate 3D
seismic data. This is also true in approximation theory.9

Table 3: PSNR values (dB) of slices of 3D real seismic data approximated by 2D PHLCT

Ratio of retained coefficients 1.0% 1.5% 2.0% 2.5%

Slice A 13.4705 14.0368 15.5340 16.2911

Slice B 7.9232 7.9559 9.7533 11.0347

Slice C 8.2771 8.3082 10.1260 11.4538

From these tables, we see that high-dimensional PHLCT algorithm can approximate high-dimensional data more effi-
ciently than DCT algorithm and 2D PHLCT algorithm.
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