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ABSTRACT

The polyharmonic local cosine transform (PHLCT), preseritg Yamatani and Saitoin 2006, is a new tool for local
image analysis and synthesis. It can compress and decariprages with better visual fidelity, less blocking artifact
and better PSNR than those processed by the JPEG-DCT higofitow, we generalize PHLCT to the high-dimensional
case and apply it to compress the high-dimensional datathipurpose, we give the solution of the high-dimensional
Poisson equation with the Neumann boundary condition. dewto reduce the number of coefficients of PHLCT, we use
not only d-dimensional PHLCT decomposition, but alde- 1,d — 2,...,1 dimensional PHLCT decompositions. We
find that our algorithm can more efficiently compress the fdghensional data than the block DCT algorithm. We will
demonstrate our claim using both synthetic and real 3D dttas

Keywords: Discrete Cosine Transform, Polyharmonic local cosinestiam, High-dimensional data, Compression, Pois-
son’s equation

1. INTRODUCTION

For a periodic smooth function, the rate of the decay of itsrlen coefficients depends on the smoothness of this fumctio
However, for a non-periodic smooth function, if, after lefibrce segmentation, we extend it to a periodic functibant
we obtain a periodic function that is discontinuous at tharatary. Hence, its Fourier coefficients decay very slow. To
solve this problem, one presents the Discrete Cosine ToamsfDCTY: Let us consider a smooth function defined on
a square. We extend the function by “even” reflection at thendary. This even extension of a function is continuous
across the square boundaries. Afterwards, we expand tmeestension of the function into the Fourier cosine series.
DCT is just the discrete version of Fourier cosine seriesvél@r, after even extension, the function is not a contisiyou
differentiable function across the square boundariescelddCT coefficients decay still slowly. In 2006, Saito andrfigé
introduced polyharmonic local sine transform (PHLST). Beential difference between PHLST and DCT is as follows.

For PHLST, the function defined on a square is decomposedittgparts. The first part is the polyharmonic com-
ponent which is a solution of the polyharmonic equati®fiu = 0 given the boundary condition. The second part is the
residual that vanishes on the boundary. Afterwards we edttemresidual by “odd” reflection at the boundary. ko 1,
the polyharmonic equation is reduced to Laplace’s equatitm Dirichlet boundary condition. For the two-dimensibna
case, Averbuch, Israeli, and VozoValerived the fast and accurate solution of Laplace’s equatith Dirichlet boundary
condition. Using this method, we obtain the polyharmonimponent. This odd extension of the residual is a continyousl|
differentiable function across the square boundaries. Xfyarg it into the Fourier “sine” series. Now the rate of dechy
the Fourier coefficients i©(||£|| =), wherel = ({1, (5) is the coefficient index anfle| = /¢ + /3.

To improve this rate of decay, we need to take the large intege For m = 2, the rate of decay of the Fourier
coefficients of the residual i9(||£||~®). However one needs to solv&*u = 0 with second order normal derivative at
boundaries, which is very difficult to estimate in applicas.

In order to compensate this problem of PHLST, Yamatani ani $aesented a new image compression method: the
polyharmonic local cosine transforms (PHLCThat decomposes an image into a polyharmonic componentresitiaial.
The polyharmonic component is a solution of Poisson’s egnatith the Neumann boundary condition. Subsequently the
polyharmonic component is subtracted from the originatfiom to obtain the residual component. We extend the rasidu
component by “even” reflection at the boundary. This everresibn of the residual is a twice continuously differerigab
function across the square boundaries. We expand it intBdheer cosine series, and the decay rate of the Fourieneosi
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coefficients of the residual i9(||£||~*). Thus, it is clear that PHLCT algorithm can compress dataenedficiently than
the PHLST and DCT algorithms.

In the field of data analysis, one often needs to deal with-digtensional data, e.g., 3D marine seismic data, medical
tomographic data, etc. In the present paper, we will geizerd&@HLCT to the high-dimensional case and apply it to
compress such high-dimensional data. We will first invedéighe computational issue of the polyharmonic component
of the high-dimensional dat# defined inR? with d > 3. For this purpose, we must give the series solution of the
high-dimensional version of Poisson’s equation with theidann boundary condition. This is an important and difficult
problem, and it has its own interest. We give a satisfyingnans Based on the partition of boundaries of the cube,
the solution given by us has a simple and clear representatid it is convenient to apply it to high-dimensional data
compression problems. When we use PHLCT to compresslimensional data, in order to reduce the number of the
coefficients of PHLCT, we use not ontitdimensional PHLCT decomposition, but alée- 1,d — 2,...,1 dimensional
PHLCT decomposition. The number of PHLCT coefficients aimdiby us is equal to the number of the original sample
points. These coefficients decay very fast and can recoeeddlta exactly. Therefore, we can approximate the original
data quite efficiently by truncating the coefficients whosegmitude is small.

At the end of this paper, we use PHLCT and DCT to approximaté&saDssian data and real 3D seismic data. From
the results of these numerical experiments, we see that Fia@ compress high-dimensional data more efficiently than
DCT.

2. THE DCT ALGORITHM AND THE PHLCT ALGORITHM

In this section, we will review two important algorithms mage compression. First we introdudiscrete Cosine Trans-
form (DCT). DCT is very important in history. In theory, DCT can approximate the Karhunengke Transform (KLT) if
the signal is the 1st order Markov random proceds. application, DCT can efficiently compress d&tahe well-known
image compression standard JPEG is just based®oi state the idea of DCT, we need the following notations.

Let(; = 23, j=0,1,.,N — 1 andN, be the set of all the integer lattice points in the c{tbeV — 1]¢.

LetQ = [0, 1]¢ andf be a function defined oft. Letk = (ki,...,kq) € Ny andzy = (s - - -, Ck,) € Q. Thenthe
DCT coefficients off is defined as

d
be=CeN~Y2 Y7 flaw) [Jeos(atice) €= (tr,....la) € Na, (1)
i=1

keNy

whereCp = 2%=12(4)/2 anda(i) = 1(i # 0), a(0) = 0. The decay rate of the DCT coefficientsax ||£]~2),
el = (6 + -+ £3)*.

In 2006, Yamatani and Saitqresented the polyharmonic local cosine transforms (PHL&&Tfollows. Letf be a
function defined o = [0, 1]¢ andq be the normal derivativ§% of f onodf2. ThePolyharmonic Local Cosine Transform

(PHLCT) decomposeg into two components ag = u + v, wherew satisfies Poisson’s equation with the Neumann

boundary condition

Au=1I(q), =e€qQ, Z—Z:q, x € 09, (2)

andI(q) = [ q(z)dz. We callu the polyharmonic component andhe residual.
oQ

Ford = 2, Yamatani and Saitogave the solution of the equation (2). Because the residasltie zero normal
derivatives on the boundary, the even extensioyfi bis desired? smoothness if there is no intrinsic singularity in the
original dataf. Consequently, the DCT coefficients of the residual willajeas fast a® (|| €| ~*). From this, we see that
the PHLCT algorithm can compress the two-dimensional dateerefficiently than the DCT algorithm both in theory and
in application.



3. D-DIMENSIONAL POLYHARMONIC LOCAL COSINE TRANSFORM

Now we generalize polyharmonic local cosine transform thi high-dimensional case. The key is to solve Poisson’s
equation with the Neumann boundary condition in (2). Fortthe-dimensional case, Averbuch, Israeli, and Vozdvoi
derived the solution of Laplace’s equation with the Direthdr the Neumann boundary conditions. Later on, Yamatathi an
Saitd' modified it and apply it to image compression. For the thrieeedsional case, Braverman, Israeli, Averbuch, and
Vozovoi* derived the solution of Poisson’s equation with the Dirathloundary condition. Below we derive the solution
of Poisson’s equation with the Neumann boundary conditiorite three-dimensional and the higher-dimensional cases

Let f be defined o2 = [0, 1]¢ andq be the normal derivative of on 99, i.e., 3_£ = ¢. Now we give the solution of
the high-dimensional Poisson equation (2) with the Neuntemmdary condition.

Notation 3.1. We define the following notations.

(i) Let N4 be stated as above. For each 1, ..., d, denote the subsets 6f;
H): ={k=(k,....,ka) | k=0,0<k;<N-1,Vj#i},

K2

H!

K2

c={k=(ki,....ka) | ki=N-1,0<k;<N—1,Vj#i}.
(ii) Let Q = [0, 1]¢. For each = 1,...,d, denote the faces of the cube

RO —{x=(21,...,29)€Q | =0},

ROV —{x=(2,...,29) €Q | x;=1}

From this, we know that
d d
ONg = Na[o(0,N - 11%) = | J (H?UH}), o0 = (RWURW)). (3)
i=1 i=1

We assume that the discretized datdx) }reon, Of ¢(x) on boundanp) are available, where

0.5+ k,

xr = (Cky»--->Ck,y) and Cky:T, v=1,2...,d.

Denoteq,(j’” : =q(xx), k€ H],whichis asample of(x) atxy € RO,
Let B'"™) k € HT be the DCT coefficients af."”, k € HJ. Define

d—1
iT 1 oz 1,7
¢ (x) = (ﬁ) Z AkB,(c )Hcos(wk,,xl,), x=(x1,...,24), (4)
keHT v#£i
where
> a(ke)/2
1<e<d
Ap =2 %7

anda(0) = 0, a(i) =1,i # 0.
By inverse DCT, we know that(i™) (z) is a trigonometric polynomial approximatinga) on the faceR“™). Hence

@)~ ¢*(x), xeRY), i=1,....d 7=0,1. (5)
Theorem 3.2. The approximate solution of Poisson’s equation with theriNa&on boundary condition

Au=1(q), x€Q, g—;::q, x € 0N I(q):/q(a:)da:
a0



is written as

=1
where
1 L;l 1 2
w0 (z) = (ﬁ) AoBy” Lg L > AW +C, (6)
keHY
k#0
d—1
(i,1) Ly = (i) 27
u'(x) = N Ao By’ ?+ZW3W2 +C, x=(x1,...,24),
keH}
k#£0
hereC are different constants and
Wy:=Wi,(x): = akB,(:’O) cosh(mng(x; — 1)),
1/2
, ; A
Wo : = Wi (®) : = axBY cosh(mpa; . S = k2 7
2 Qk(w) o By, cosh(mnei), ok Ry — Nk ; 1 ) (7)
Wy =Wi,(x): = H cos(m kg ).
1<e<d
T#i
Proof. By (3), (5), and (6), we only need to prove that for eaeh 1,...,d, 7 =0,1,
Aulim) = / ¢ (@) dw, @e€Q (8)
R(T)
and (4,7) (47)
oule:™ . . oulv™ .
_ ,(i7) (i,7) _ 0 (i,7)
o ", e R, o 0, ze€dQ\R"M™. (9)

By the similarity, we only prove the case= 0. First we prove (8) forr = 0.

Since the Laplace operatayis linear, AC = 0, andA (@) = 1, we conclude by (6) that for each=1, ..., d,

. 1 =R i
Auli0) () = (N) A0BSY + 3 Awws) | (10)
0
P

From the definitions of the Laplace operator and the gradipetator,

0? 0? 0? 0 9] 0

we can check directly the following formula
AW Ws3) = (AW1)Ws + (AW3)W7 + 2V, - VIV;. (11)
This formula gives a great convenience in our calculationaBlirect calculation using (7), we have

o,
a(L’i

9?°W,

proake a BUO w202 cosh (g (z; — 1)), (12)
i

= osz,(:’O)ﬂ'nk sinh (7 (z; — 1)),




oWy W,

and
OWs 2 Ws b _
= = — k k .
oz, , a2 Lli cos(mkexe) | 7°ks, v #i

Hence by (11)A(W;W3) = 0. Furthermore, by (10), we have

AultO)(z) = (%) AoBS©. (14)

On the other hand, by Notation 3.1 (ii), we know that= (z1,...,z4) € R®Y ifandonly if 0 < z, < 1 (v # i)
andx; = 0. From this and (4), we have

d—1
, 1\ =z ;
[ @ae=(5) T X amne (

R(.0) keH?

1
H/ cos(mky, x,) d:vl,), x=(x1,...,2q), k= (k1,...,kq).
- Jo

v#i

1
If £k € H? andk # 0, then there exists a # i such thatk, # 0, so [ cos(r k, z,,)dz,, = 0. From this, we can
0

d—1
. 1 2 i
/ q(l,O) (.’B) dm = (N) AOB((] 70).

R(,0)
Again by (14), we obtain (8) for = 0.

conclude that

Below we prove that the formula (9) holds fer= 0. Since the gradient operator is linear, by (6) &‘14%) =
(x; — 1)e;, we have

d—1
, 1\ = ;
V0 (z) = <N) AoBG (i = Ver + > V(Wi W3) |, (15)
0
k]:;z)l

wheree; is an unit vector ifR? whoseith component is 1. Leb be the outward normal vector 6f2. Then, by (15), we
have

5, = Vult = [~ AoBy " (n, (zi — Dei)+ Y n- V(Wi Ws) | . (16)
keHY
k+#0

By Notation 3.1 (ii), we know that

if «eco\ RV, thennle; or z; = 1;
if zc R, then n = —e; and z; = 0.
So we have
n-(z;—1)e; =0, xecdQ\RHY and n-(z;—1)e;=—(z;,—1) =1, xe R, (17)
Using the formula
V(W1W3) = (VW1)W3 + (VWg)Wl, (18)

together with (12) and (13), we have

VW, = akB,(ci’O)wnk sinh(7 ng(z; — 1)) e;. (19)



Forz € R4 2, =0, by (7), we have
VW, = —osz,(f’O)ﬂ'nk sinh(7ng)e; = —AkB,(ci’O)ei.
Furthermore, byn, e;) = —1 and (7), we obtain that

n- (VIW)Ws3) = AkB,(;’O) Hcos(wkg:w). (20)
£

W3
69:1-

Since = 0 andn = —e;, we haven - VI¥3 = 0. So

n - (VW3)W;) = 0. (21)
Hence onR"? | by (18)—(20), _

n-V(W1W3) = AkB,(;"O) H cos(mkexy).

O£
From this and (16)-(17), we obtain that
) 1\ 7
8—Z = (N) AOB((]Z’O) + Z AkB,g’O) Hcos(ﬂ'k;gmg) , TE R0,
ke HY L
k#0
Fork = 0, we know that eack, = 0, so [ cos(mk,x,) = 1. From this and (4), we obtain that
v#i
9 1\7
Bn (N> S° 4B | [] cos(rhere) | = ¢ (@), @€ RO (22)
ke H? t#i

Forz € RV, 2; = 1, by (19), we have _
VW, =0, & € RV,

So n- ((VW;)Ws) = 0. By (7) and (18), we have
n-VWWViW;3)=n-(VW))W3)+n-((VW3)W;) =0, x¢€ R
Again by (16) and (17), we obtain that

0 ) .
% =n-Vuh0 = 0, xe€ R, (23)

Forz € 90 andz ¢ (R |JR™Y), we haven_Le;. Furthermore, by (19),
Forx = (z1,...,24) € 00\ (R |JR™V), there exists & # i such thatz, = 1 or z,, = 0, and the normal vector of

o atx is e, or —e,, SO n = ¢, Or —e,. By (7), we have

OW3
ox,

=— H cos(mkixy) | wk, sin(wk,x,),

1<0<d
l#£v, 1

son-VW; = i%‘;‘f = 0. Furthermore, by (18) and (24), we obtain- V(W;W3) = 0. Again, by (16) and (17), we
have

ou ) )
_ (1,0 i,1)
on =0 TEN\(R ' JREY). (25)

Combining (22), (23) with (25), we conclude that (9) holdsfo= 0. Theorem 3.2 is proved.

Let f be defined of2 = [0, 1]¢. Using Theorem 3.2, we can decompgsieto the polyharmonic componentand the
residual, i.e., f(z) = u(xz) + v(x), © € Q.



4. HIGH-DIMENSIONAL DATA COMPRESSION ALGORITHM

In this section, we will present our new algorithm of higmdinsional data compression. In order to reduce the number of
PHLCT coefficients, we need to use not ordtdimensional PHLCT decomposition, butatée 1, d—2, ..., 1 dimensional
PHLCT decomposition. First we introduce the following rtans.

Let Ny = [0, N —1]? N Z, be stated in Section 2. We dividé; into d + 1 sets.

Notation 4.1. D : ={1,2,3,.....d}.

Notation 4.2. Let e be a subset of the s&. Denote the number of the elementsiby |e|.

Notation 4.3. Let£ = (¢4,...... ,03) € Ng. If £, =0, i € eandl; £ 0, i ¢ e, thenwe say € D,.
Notation 4.4. D, :={ D, |e|] =r},whereDy = {£ € Ny, each?; #0}.

d
Proposition 45. Ny, = |J D,.
r=0

Let f be defined or{0, 1]¢. Assume that the discretized version pfsampled atcy, k € N, are given, where
Tie = {Chys - s Gy ANAG, = 238 k= (k... k).

Proposition 4.6. Let f be defined o2 = [0, 1]¢, and let € D, |e| =randD \ e = (iy,...,i4_). Thenthe DCT
coefficientb, (£ € D.) of f is equal to the DCT coefficient of tHe — r)—dimensional functiotk(»1, . . ., n4—,) defined

as
h’(Cki,l)' "?CkidiT) = Nﬁ% ZZf(CkN DR de) (26)

1€e k;

Proof. Fore = (¢4,...,¢4) € D, by Notation 4.3, we havg = 0, ¢ € e. By (1), we have

be=CeN™% 3 fla) [[eos(mliG,), k= (k..o k), = (Chrren s Cra) (27)

kENy Z'QE
whereC, = 2Xi-1 @(4)/2 | (27), the produci ] cos( ¢; (s, ) does not depend afi,, i € e. By Notation 4.3, we have
iZe

by = ClNig Z Z <f(<k17"'a<kd)HCOS(WZZ'QW)>

k’i,i¢e kiji€e ife

kijide Jice ide

= CZN_d;T Z ( (N_% kz f(CkN"'kad) ) H COS(TF&CM)> .

From this and (26), we obtain that

bl - CZN_ d;T Z ( h(Ck71 P Ckidir) H COS(’]T ‘el CI&) ) ) (28)

kiite ide

d
whereh is stated in (26). Sincg =0, i € e, we haved_ a({;)/2= > a(l;)/2. So
i=1 ide

Oy = 951 at)/2 _ 9T g alt)/2,

From this and (28), noticing tha¢| = r, we know thath, is the DCT coefficient of théd — r)—dimensional function
h(ni,...,na—r). Proposition 4.6 is proved.

Now, for the functionf defined orf2 = [0, 1]¢, we present the following compression algorithm to comphugePHLCT
coefficients in processes of repeated PHLCT-decomposition

Step 0. Compute DCT coefficient, , £ € N, of f.



Step 1. Consider DCT coefficients, (£ € Dy) of f. We decompose thé-dimensional function ag = u® + v°,
whereu? is the solution of the Poisson equation in Theorem 3.2:4rid the residual. Compute the DCT coefficigniof
u?, we will obtain the PHLCT coefficient, = by — q¢, £ € Dy.

Step (r + 1). Consider DCT coefficients, (£ € D,.) of f. By Notation 4.4, we havd®,. = { D, |e| = r}. For
le D.andD\ e = (iy,...,iq-,), by Proposition 4.6, we see thatis the DCT coefficient of théd — r)—dimensional
function h which is stated in (26). Now we ug@ — r)—dimensional PHLCT to decompose tf# — r)—dimensional
function h into h = «" 4+ v". Compute the DCT coefficiente of u", we will obtain the PHLCT coefficienp, =
be — qe, £ € De.

Step d. Consider DCT coefficients, (£ € D,_1) of f. Similar to the argument of Step + 1), applying the one-
dimensional PHLCT decomposition, we can compute PHLCTfweffitsp,, wherel € D, ;.

Step (d + 1). Consider the DCT coefficiey of f. The PHLCT coefficienpg = bo.

Remark 4.7. Using these PHLCT coefficients, we can also reconstruct #te perfectly. Since the reconstruction
algorithm is simply the inverse of the above compressioorétym, we will not state it here.

5. NUMERICAL EXPERIMENTS

In this section, we demonstrate the effectiveness of owrilgn by numerical experiments. We split high-dimenslona
data into small blocks and apply high-dimensional PHLCTodthm on every block to approximate the data. Our data

approximation strategy is the following: 1) retain all “D€dmponents; 2) select a certain number of the largest PHLCT
coefficients in energy among all the PHLCT coefficients otfadl blocks; and 3) reconstruct the data from these retained

coefficients. The quality of approximation is measured bi{R$peak signal-to-noise ratio).

In order to demonstrate the effectiveness of our algoritinst,we use PHLCT and DCT to approximate 3D Gaussian
data. The size of 3D Gaussian datd28 x 128 x 128. We split it into a set of small blocks each of which I8ag 8 x 8
samples. Table 1 shows PSNR values of the 3D Gaussian dataxapated by PHLCT and DCT. The PSNR values of
PHLCT are 25 dB higher than those of DCT. From this, we canlseelear superiority of 3D PHLCT over 3D DCT for
such a smooth dataset.

Table 1: PSNR values (dB) of 3D Gaussian data approximat&DyHLCT and 3D DCT

Ratio of retained coefficients 1.0% 1.5% 2.0% 2.5%
PHLCT 86.5990| 93.3359| 98.4086| 102.5149
DCT 61.3616| 67.7792| 72.4882| 76.4468

Now, we examine the approximation performance of thesestoams using real 3D real seismic data. The size of 3D
seismic data is alst28 x 128 x 128. Table 2 shows PSNR values of the 3D seismic data approxihigt&®HLCT and

DCT, where the size of each block is alsx 8 x 8. The PSNR values of PHLCT are 0.2 dB higher than those of DCT.

3D PHLCT also performs better than 3D DCT.

Table 2: PSNR values (dB) of 3D real seismic data approxidhbye3D PHLCT and 3D DCT

Ratio of retained coefficients 1.0% 1.5% 2.0% 2.5%
PHLCT 15.4084| 16.5051| 17.2654| 17.8589

DCT 15.1489| 16.2813| 17.0713| 17.6881




(a) Slice A (b) Slice B (c) Slice C

Figure 1. 2D slices from 3D seismic data.

Finally, we will compare 2D PHLCT with 3D PHLCT. From the difent directions, we take three slices from 3D
seismic data and approximate them by 2D PHLCT. PSNR valweshown in Table 3. From this, we find that the PSNR
value of Slice A is higher than that of Slice B or Slice C. Thasbecause Slice A is much smoother than Slice B and
Slice C. Comparing Table 3 with Table 2, we find that for the saate of the retained coefficients, the PSNR values of
3D PHLCT are higher than that of 2D PHLCT, so 3D PHLCT perfobatter than 2D PHLCT when we approximate 3D
seismic data. This is also true in approximation thebry.

Table 3: PSNR values (dB) of slices of 3D real seismic dataamated by 2D PHLCT

Ratio of retained coefficients 1.0% 1.5% 2.0% 2.5%

Slice A 13.4705| 14.0368| 15.5340| 16.2911
Slice B 7.9232 | 7.9559 | 9.7533 | 11.0347
Slice C 8.2771 | 8.3082 | 10.1260| 11.4538

From these tables, we see that high-dimensional PHLCT ittigoican approximate high-dimensional data more effi-

ciently than DCT algorithm and 2D PHLCT algorithm.
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