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Abstract

We introduce a practical and improved version of laéyharmonic Local Sine
Transform(PHLST) calledPHLSTS After partitioning an input image into a set
of rectangular blocks, the original PHLST decomposes edmtklinto a polyhar-
monic component and a residual. Each polyharmonic comp@wves a poly-
harmonic equation with the boundary conditions that mateh/alues and normal
derivatives of even orders along the boundary of the coomrdipg block with
those of the original image block. Thanks to these boundamngitions, the resid-
ual component can be expanded into a Fourier sine serieswtiféicing the Gibbs
phenomenon, and its Fourier sine coefficients decay fdsd@rthose of the origi-
nal block. Due to the difficulty of estimating normal derivat of higher orders,
however, only the harmonic case (i.e., Laplace’s equatias)been implemented
to date, which was called Local Laplace Sine Transform (LL$Tthat case, the
Fourier sine coefficients of the residual decay in the of@@fk| ~?), wherek is
the frequency index vector. Unlike the original PHLST, PHIS®nly imposes the
boundary values and the first order normal derivatives abdhedary conditions,

which can be estimated using the information of neighbauinage blocks. In
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this paper, we derive a fast algorithm to compute a 5th dggogdarmonic func-
tion that satisfies such boundary conditions. Although tharier sine coefficients
of the residual of PHLST5 possess the same decaying rate lasSih, by us-
ing additional information of first order normal derivatifrem the boundary, the
blocking artifacts are largely suppressed in PHLST5 anddl&lual component
becomes much smaller than that of LLST. Therefore PHLSTYiges a better
approximation result. We shall also show numerical expenits that demonstrate
the superiority of PHLST5 over the original LLST in terms bgtefficiency of

approximation.

keywords: local Fourier analysis, polyharmonic equation, discréte sransform,

image approximation.

1 Introduction

One of us (NS) recently introduced tRelyharmonic Local Sine Transfor(RHLST)
[18, 19] in an attempt to develop a local Fourier analysisgmdhesis method without
encountering the infamous Gibbs phenomenon. The PHLSBdstalresolve several
problems occurring in the Local Trigonometric Transforrh$1(s) of Coifman and
Meyer [7] and Malvar [14, 13], such as the overlapping wind@md the slopes of the
bell functions. PHLST first segments a given function (oningata)f (x), x € Q C
R¢ supported on an open and bounded donsaiimto a set of disjoint blockg(2;}

such that ;
a=Ju.
j=1
Denote byf; the restriction of the functiorf to 2}, i.e., f; = Xﬁjf, wherexﬁj is
the characteristic function on the $@f, j = 1,2,---,J. Then PHLST decomposes
eachf; into two components ag; = u; 4 v;. The components; andv; are referred

to as thepolyharmonic componerand theresidual respectively. The polyharmonic

component is obtained by solving the followipglyharmonic equation

Am™y; =0 inQ;, meN @)



with a set of given boundary values and normal derivatives

QUu; QU f B
O e 76yq[ Onana f—O,...,m—L (2)

where A = Zle 0?/0x? is the Laplace operator iR?. The natural numbem

is called the degree of polyharmonicity, aqdis the order of the normal derivative.
These boundary conditions (2) enforce that the solutipinterpolates the function
values and the normal derivatives of orders. . ., ¢,,—1 Of the original signalf along
the boundany$2;. The parametet, is normally set td), which means that; = f
on the boundary)Q};, i.e., the Dirichlet boundary condition. If the blocks;, j =
1,2,---,J, are all rectangles (of possibly different sizes), PHLSE gg = 2/, i.e.,
only normal derivatives oféven ordersare interplolated. It is not necessary to match
normal derivatives of odd orders when the blo€kss are rectangular domains. This
is because the Fourier sine series of the residuisl equivalent to the complex Fourier
series expansion of the extendedafter odd reflection with respect to the boundary
01, hence the continuity of the normal derivatives of odd csdap to orde2m — 1)

is automatically guaranteed. Recall thatfer= 1, 2, the equation (1) is usually called
Laplace’s equation and the biharmonic equation, respegtixVe remark that in the
case of the domaif2 € R being an interval (i.e., the spatial dimensi@n= 1), the
polyharmonic component; for m = 1 is simply a straight line connecting the two
boundary points of the interval;; while for m = 2, the polyharmonic component
u; is a cubic polynomial connecting the two boundary points.weler, when the
spatial dimension is higher (i.ed, > 2), the solution of the equation (1) with the
boundary conditions (2) is not a simple tensor product oélatgic polynomials in
general. Subtracting suel} from f; gives us the residual, = f; — u; satisfying

qeqy .
0%,
oy

=0 onoQy;, (=0,...,m-1 )

This implies that the values and the normal derivatives;ofanish on the boundary
0€);. Thus the Fourier sine expansion coefficients of the residuaecay rapidly,

i.e., in the ordeO(||k||~2™~1), provided that there is no other intrinsic singularity in



the domairf2;, wherek is the frequency index vector. In fact, we have the following

theorem.

Theorem 1.1. [19] Let ©; be a bounded rectangular domain &, and let f; €
C?m(€);), but non-periodic. Assume further thed/0x;)*™*1f, i = 1,...,d, ex-
ist and are of bounded variation. Furthermore, |t = u; + v; be the PHLST
representation, i.e., the polyharmonic componeptis the solution of the polyhar-
monic equatior(1) of degreem satisfying the boundary conditiorf) with ¢, = 2¢,
¢=0,1,...,m —1,andv; = f; — u; is the residual component. Then, the Fourier
sine coefficient,, of the residual; is of orderO (||k||=2™~") for all k # 0, where
the frequency index vectér= (k1,...,kq) € Z4, and||k|| is the Euclidean (i.e£?)

norm ofk.

The proof of this theorem can be found in the paper [19]. Weeaththis way of
decomposing a functiorf into a set of functions f; = u; + v;}7_, the Polyhar-
monic Local Sine TransforfPHLST) with degree of polyharmonicity:. Note that
if we employ the complex Fourier series expansion or the iEosine expansion of
non-periodicf; by brute-force periodization, the decaying rate becomésairorder
O (||k||7*) evenif f; € C?™(9Q;). If we use the Fourier cosine series expansioffof
(as adopted in the JPEG standard), we can obtain a decayéngfrarderO (|| k| ~2).
Thus the faster decay of the Fourier sine coefficients;oh PHLST allows us to dis-
tinguishintrinsic singularities in the data from the artificial discontinegicreated by
local windowing or periodization. It also enables us toliptet the frequency contents
of each block without being influenced by the surroundingkéoand without the edge
effect such as the Gibbs phenomenon. Moreover, as long asotinedary data are
stored and the normal derivatives at the boundary are &lajldne polyharmonic com-
ponents can be computed quickly by utilizing the FFT-basmpldce solver developed
by Averbuch, Braverman, Israeli, and Vozovoi [1, 4], whicle shall call the ABIV
method. Combining the fast solver ABIV with the quickly dgtey Fourier sine co-

efficients of the residuals, the usefulness of PHLST to imegggroximation when the



degree of polyharmonicityx = 1 was demonstrated in the papers [18, 19]. We remark
that to remove boundary artifacts, researchers in the fielthage processing have
proposed several approaches, such as replication edgesiextewindowed extrapola-
tion, constant extension, reflection edge extension. A ai@view can be found in
the reference [8].

Soon after developing PHLST, N. Saito and K. Yamatani exaeritto thePolyhar-
monic Local Cosine Transfor®HLCT) [23]. The PHLCT allows the Fourier cosine
coefficients of the residual decay in the orde(||k| ~>"~2) by settingg, = 2¢ + 1,
¢ =0,...,m — 1in the boundary conditions (2) and by introducing an appater
source term on the right hand side of the polyharmonic equdfi). In that work, an
efficient algorithm was developed to improve the quality rohges already severely
compressed by the popular JPEG standard, which is basedsorelz Cosine Trans-
form (DCT).

Finally, N. Saito introduced thBolyharmonic Local Fourier TransforPHLFT)
[19] by settingg, = ¢, £ = 0,...,m — 1in Eq. (2) and by replacing the Fourier sine
series with the complex Fourier series in expanding@theomponents. With some
sacrifice of the decay rate of the expansion coefficients, dfeorderO (||k[|—™"!)
instead of ordeiO (k|| =2™~') or of orderO (||k||=?"~2), PHLFT allows one to
compute local Fourier magnitudes and phases without fatiegsibbs phenomenon.
PHLFT also can capture the important information of origatamuch better than
PHLST and PHLCT. Moreover, it is fully invertible and shoudd useful for various
filtering, analysis, and approximation purposes.

In all of the above transforms, however, we have only impletee and tested the
harmonic case, i.e., the degree of polyharmonigity= 1. In other words, in prac-
tice, we have only used Laplace’s equation as the polyhapreguation in (1) so
far. Consequently, we only demonstrated the decaying cdtB$1LST, PHLCT, and
PHLFT asO (||k[|~%), O (||k||=*), andO (||k||~2), respectively. We call these trans-
forms with polyharmonicityn = 1 Laplace Local Sine Transform (LLST), Laplace

Local Cosine Transform (LLCT), and Laplace Local Fouriearisform (LLFT), re-



spectively. It is theoretically possible to solve the palghonic equation of higher
degree of polyharmonicity (i.em > 1). But in practice, images are discontinuous
almost everywhere and contain noises. The main difficultp ieliably estimate the
required normal derivatives of higher orders at the boundéeach block?;. If one
tries to use boundary derivatives of higher orders (e.gsdhestimated by a higher
degree polynomial fit), then their values tend to be challyibaige. Consequently not
only the polyharmonic solution (i.e., thecomponent) becomes huge compared to the
original data, the residual componenis also with large energy. Although the Fourier
sine coefficients of the residualdecay rapidly, it is virtually useless for the purpose
of approximation.Therefore, in practice we shall not only seek fast decayatg of
the Fourier sine coefficients of the residuabut also a residuab with a small energy
In this paper, we explore a different aspect of PHLST. Irsstafablindly seeking fast
decaying rate, we consider the polyharmonic equation aslad@chieve smooth ap-
proximation. Assuming the boundary derivatives are adelyastimated, it is clear
that the more information of boundary derivatives is ushd,lietter the prediction of
the original image from the component will be. If equally spaced samples are taken
from a smooth function, it is well known that a cubic splingpegximation always con-
verges to the original function faster than a piecewisedlirapproximation as the size
of the sampling mesh converges to zero. Similarly, we se@olvthich is a higher
order approximant than LLST in this paper. In practice, tlghér order PHLST can
be regarded as an improvement of LLST by reducing both bhackirtifacts and the
energy of the residual component. We also introduce a pedctigorithm to compute
PHLST with a 5th degree polyharmonic equation € 5), yet constrained only by the
Dirichlet and Neumann conditions, i.e., by using opdy= 0 andq; = 1in Eq. (2).
Therefore, we shall name this methBHLST5 We believe that this is the limit of the
practicality in the line of PHLST of higher degree polyhamniaity.

In order to understand our method better, we also compaithibther polyharmonic-
related work. In particular we compare PHLST5, LLST with @pr@ximation method

using radial basis functions [9, 10, 11, 17, 6, 20]. Radiaidfunctions are extremely



useful when interpolating scattered data, especially gif imensions. Lef be the
set of distinct points ifR?, which are traditionally calledentersin radial basis func-
tion jargon, as radial basis functions are radially symioetoout the centers. The goal
is to approximate an unknown smooth functipthat is only given at those centers via
a set of real valuegs, s € S. In order to approximate the unknown functigrwith
an approximanyf, a univariate continuous functiaf: R, — R thatis radialized by
composition with the Euclidean norm is chosen asréuial basis function Addition-
ally, the centers € S are used to shift the radial basis function and as collooatio
points. Therefore the standard radial function approxisaave the form

fl@)=) cso(lz—s]), xR

ses

We remark that when the radial function is chosen as a maltiga, that is,
o(r) =Vr?+ 2,
wherec is a positive parameter, the interpolation requirements

fls = fls

for given dataf|s lead to a nonsingular interpolation matrix

A=A{o(lls —tl)}stes

due to Micchelli [16].

The paper is organized as follows. Section 2 describes ttaéisief how to con-
struct our new transform, PHLST5. Section 3 shows the resdilbur numerical ex-
periments and demonstrates the improvements of PHLSTS5LW®T in terms of the
efficiency of approximation. We also compare the perforreasfcPHLST5 with that
of radial basis function transform. Finally, we concludéstbaper in Section 4 with
our discussion of some potential problems and our futurespldn Appendix A, we

review the ABIV method for readers’ convenience.



2 Construction of PHLST5

In this section, we shall only deal with two-dimensional gea (i.e.d = 2), and focus
on the analysis of one image blotk for a particularj. Therefore, for simplicity, we
shall drop the subscript that was used in many equations appeared in Introduction.

Furthermore, we shall assurfie= (0, 1)2, the unit square ifR?.

2.1 Difficulties in Solving a Biharmonic Equation

Let f(z,y), (z,y) € Q be a given inputimage. If we view LLST to be an approximant
to match the intensity values on the boundary, then a nataglto improve LLST is

to consider a biharmonic equation
A2y =0 (x,y) € Q, (4)

with boundary condition

W = f (&g eon o
0 0 ’
=W wyeon

A solution of such a biharmonic system, compared with LLSTargntees that
the regularity of the solutiom across the boundary is one order higher. In addition,
a biharmonic solution has the minimum curvature propertyctviminimizes the os-
cillation impact from the boundary data [21]. Theoretigathne can even consider
polyharmonic equations of higher order (i.e:,> 2) with given boundary data (i.e.,
{0°f/0v*} 2,1, One should notice that the normal derivatives of variowers on
the boundary must be estimated from the given original insageples. However, in
practice, the estimated values of normal derivadi¢g/0v with ¢ > 2 are fragile and
inaccurate, especially when the original image containsaso Therefore, any method
requires normal derivatives of higher ordet & 2) is impractical.

Even if we have accurate estimates of the required nomaltdes, solving this

biharmonic system (4), (5) is numerically difficult. Thenme &uite a few methods to



numerically solve a biharmonic system. Some represeptatigthods include the fi-
nite difference (FD) or FFT-based solver with the FD appmedion of the Laplace
operator [3]; a method that converts it to an integral equiedind iteratively solves the
resulting linear system [15]; and the spectral methodstasdhe Chebyshev or Leg-
endre polynomial expansions [2]. None of them are suitatme@r problem though.
The FD-based methods have low accuracy in the computeds@uh general. More-
over, both the FD-based methods and the one using the teehofdntegral equations
are computationally expensive. The spectral methods ubm@hebyshev or Legen-
dre polynomial expansions require function values samptedpecial grids (i.e., the
Chebyshev or the Legendre nodes), which are usually nokaieifor our problem
because most digital images are sampled on regular redtargids.

On the other hand, we wish to retain the flavor of the ABIV metfo 4] as much
as possible. For solving Laplace’s equation with the Dlgtboundary condition on a
rectangular domain, the ABIV method is ideal because: $)dbmputationally fast due
to its use of the FFT algorithm; 2) it is very accurate; 3) thalgtical solution provided
by the method allows us to interpolate at any point withindbenain. See Appendix
A for more about the ABIV method. Unfortunately, the bihammequation (4) with

the boundary conditions (5) does not permit us to use the AB&thod directly.

2.2 Relaxing the Biharmonic System

Instead of directly solving the biharmonic system (4), {8,relax the polyharmonicity
(i.e.,,m > 2) and propose the following polyharmonic system so as tg follorporate

the ABIV method.

A™y o= 0 (z,y) €
u = f (z,y) € 09 (6)
ou  Of

Although we now lose the minimum curvature property, we s@ve the regu-

larity improvement across the boundary. Note that the ayg& cannot be solved



uniquely because the boundary conditions make the probhelardetermined. Instead
of solving the system (6) directly, we shall explicitly finghalyharmonic function that
satisfies the equations in the system (6).

In order to have a proper choice of, we shall decouple the system (6) into two
subsystems by representingin terms of its two components; andu, (i.e., u =
u1 + ug). The component; is the solution of Laplace’s equation with the Dirichlet

boundary condition:

{Aul =0 (xz,y) € Q 7 @

u = f (z,y) € 00

which can be solved efficiently by the ABIV method. The comgat, takes care of

the rest:
AMys = 0 (x,y) €
uy = 0 (z,y) € 9Q (8)
o _ 05w
o 9= ov v (z,y) € 9.

To find the component, that satisfies the system (8) with certain degree of polyhar-
monicity m, we follow a strategy similar to that used in the ABIV methddhe com-
ponentu, shall be represented as a linear combination of a set oftielfjmhany poly-
harmonic functions. To this end, we find a sequence of funstienoted by Gy, } 72 ;

which have the following properties:
1. G, =0 (m,y)eaQ

2. %6k =0 (2,y) € 00\{(z.y) |z =1}
Note: such a property will allow one to treat four edges of thendary sepa-

rately.

3. { %] _ 32, isabasis ofL2([0,1]).

Moreover, define the functiohy,(z,y) = sin(kmy) Si?n};f(kk’:”)), which is used in the

ABIV Laplace solver with the following properties:

1. Ahp =0 (z,y) €Q

10



2. hp =0 (z,y) € 00{(z,y) |z =1}
3. {hg|s=11}52, is a basis of.2([0, 1]).

A natural way to construct the functios; is to seek a form;, = hi(x, y)p(x,y),
wherep(z, y) is a polynomial. For the function§}, to satisfy the above three proper-
ties, we choose a polynomialsuch that it vanishes on the boundaxy. The simplest
choice isp(x, y) = z(x — 1)y(y — 1). In fact, by direct computation one can show that
the polyharmonicity of7;, is equal to the summation of the polyharmonicityhgfand
the degree op(z,y) (i.e., ACTH G, = 0). Hence, we conclude that the system (6)
with m = 5 is a polyharmonic system that can be computed fast and daetutesing
the existing ABIV method.

Once we find this polyharmonie component, the residualand its Fourier sine
series expansion are computed as usual. We shall referstodhi version of PHLST
asPHLSTS

In PHLSTS the Fourier sine coefficients of the residuélave the same decaying
rate as that of LLST, but th€& norm of the residual of PHLST5 is smaller for smooth
images (see numerical experiments in Section 3). Howevesatisfy the boundary
conditions (5), there are plenty of other methods. In faetwill show that it is possible
to use scattered data interpolation methods such as a baedissl function to compute
the w component in our numerical experiment. However, it is cotaponally more

expensive.

2.3 An Algorithm to Compute PHLST5

Because the system (7) can be solved directly by the ABIV otgtbur main task is
to find a polyharmonic function that satisfies the system\(&.propose the following

algorithm for this task.

11



Step 1: Decompose (8) withn = 5 into four independent subproblems.

0,1 0
A5u§1) - 0 (z,y) € Q 9 €(0,1),y=
0 0,1),y =1
uél) =0 (z,y) €0 | ¢ = €(0.1),y = 7
(1) 0 x:07ye(071)
O g () e 00
ov 0 z=1,y€(0,1)
9)
0 z€(0,1),y=0
AsuéQ) -0 (2,y) € Q z€(0,1),y
0 z€(0,1),y=1
W = 0 (@yeon , g0 TEODy=1
g ©=0,y€(0,1)
Qus " _ 4@ (z,y) € 0Q
ov 0 z=1,y5¢€(0,1)
(10)
, 0 z€(0,1),y=0
A5ué‘3) =0 (z,y) € Q v€(0.1).y
€(0,1),y=1
ug’) = 0 (z,y) €0Q , ¢ = g »€(0.1)y ,
(3) 0 2=0,y€(0,1)
Vi g0 (ay) e o0
ov 0 z=1,y5¢€(0,1)
(11)
0 z€(0,1),y=0
AE’ugL) =0 (z,y) € z€(0.1),y
0 z€(0,1),y=1
W =0 @yeon , gn=] 0 TEODY
(4) 0 z=0,y€(0,1)
Ouy gW  (z,y) €09
v g z=1,9€(0,1)

Step 2: Construct four sets of polyharmonic functions satisfyi@g-(12) respectively

as follows:
inh(km(1— o
G = {Guli, = {x (z = 1) sin(kmz) - y(y — 1)$((klw)y))}k:1
Gy = {Gu}ie, = {‘T sm}sllr’flir((klw)m)) Yy - 1)Sin(lmy)}k:1
Gy = {Gx}2, = {x x —1)sin(knz) - y(y — 1)551?11111((ng7;2!))},€ 1
Gy = {Guye, = 1)sinhkre) 1 sin(kry)
4 = { 4k}k:1 = £L'(£L'— )sinh(kﬂ) .y(y_ )SIII( ﬂ—y) k=1

(13)

One can verify that each function i@, satisfies the zero Dirichlet boundary

12



condition as required in (8) and its normal derivatives ag on three edges

except the one with(*) defined as in the equations (9)—(12).

Step 3: Compute the normal derivatives of the functions in eacleain the bound-

ary.
P = {z(z—1)sin(krz)}2, :={Pu}>, z€(0,1),y=0
Py = {yly = Dsin(kry) 32, = { P iy 2 =0,y € (0,1)
(14)
Py = e - Dsin(hro) e, = (Pality £€ (0,1), y=1
Py = A{yly — Dsin(kry) 132, == {Pu}pz, z=1,y€(0,1),

whereP;;, is the normal derivative af7;;, on an appropriate boundary depending

on the values of.

Step 4: Expandg() = 3 w,(j)P?;k, i=1,...,4, Wherew,(f), k € N are real coeffi-
k=1

cients to be identified through this expansion.

Step 5: Setuy = _24: ioj w,Ef)Gik. This is a desired polyharmonic function with the
degree of p(Z)I:;hkaTrlmonicitm = 5.

In practice, if we discretize the imageat (z;,y;) = (¢/N,j/N),i,7 =0,1,...,N —

1, N, and view it as a matrix of siz€V + 1) x (N + 1), then in Steps 2—4 above, one
should discard the first and last entries on the boundary aed&/u- 1 terms instead
of infinitely many terms. The overall computational costli®at twice as that of the
ABIV method for solving Laplace’s equation if we do not cotim cost for estimating
normal derivatives. We remark that in Step 4, we first divide boundary functions
g on (0,1) by the quadratic polynomiat(z — 1) for i = 1,3 andy(y — 1) for

i = 2,4. Since the two endpoints of the interval are not includedhéndivision, there
is no numerical blowup there. Then, we expand the resultsFourier sine series.
Sinceus = 0 on the four boundary sides, one can easily seedfiatire zeros at the
endpoints of each side, so that these functions are stifiideifunctions to be expanded

into Fourier sine series even after divideddy — 1) ory(y — 1).
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The algorithm by itself is now complete. We still need to dechow to compute
the normal derivativg on the boundary in the equations (9)—(12). If one takes aclos
look at the ABIV Laplace solver, the solutian of (7) is given in an analytic form as
shown in Appendix A. We simply compute the normal derivatioétheu; component
from two sides of the boundary (between two blocks) by usiaginalytic form, and
take their averages. Those values will be fed to the alguorék our estimated normal
derivatives3..

We summarize some features of PHLST5 below:

¢ Since the estimation of the values of the normal derivawvemputed from the
up component, there is no need to store them. This implies tHaSH'5 only

requires the same storage and information as LLST does.

e The computational cost of the(= wu; +u2) component in PHLSTS5 is just twice

as much as that of LLST.

e Since additional information of the first order normal datives are matched on

the grids, PHLST5 produces a globally smoothe@omponent than LLST.

3 Numerical Experiments

In this section, we shall report the results of our numer@ggderiments and compare
the performance of PHLST5 with that of LLST and that of the moettusing scattered
data approximation by radial basis functions.

3.1 Experiments with Synthetic Data

We set the domaif = [0,1]2. The first image we have chosen is a smooth and flat

function f defined by

J(@,y) = sin(z + 2y)e (702 FW0D),

14



We sample the image on the regular lattice wifl9 x 129 grid points. Note that the
values of the first order normal derivatives on the boundaegdun PHLST5 can be
calculated analytically. Figure 1 shows the residuals dbTland PHLSTS5 in the spa-
tial domain. PHLSTS5 clearly outperforms LLST in terms of giee of the residual.
In fact, the residual componentof PHLST5 has much smallé? norm than that of
LLST as we can see from Figure 1 (b) and (c). The rati¢ydf to || f||2 is 0.1317 in
PHLST5 while that of LLST i9.4969. This implies that the polyharmoniccompo-
nent in PHLST5 predicts and approximates the origihlktter than that in LLST in
terms of the/? norm.

Next, we examine a more oscillatory image,
f(z,y) = sin(20(x + 2y))673((170'2)2“7’*0'4)2).

The image is sampled on a regular lattice wift25 x 1025 grid points. The PHLST5
algorithm is applied at different levels of segmentatias ttme. Denote by/ the level

of dyadic splitting / = 0 means no splitting). We shall refer to the union of polyhar-
monic components and the union of residual components séglhented pieces as
andv respectively. In this experiment we do not use the analygiivetive informa-

tion from the given formula of the imagg Rather, we apply the estimation method

described at the end of Section 2.3. The relativ@orm (i.e., H“JZH) is computed as
the error (abbreviated as Err in Figures 2 and 3). One carhs¢éntthe coarser lev-
els (/ = 0,1), thew component (i.e., the union of the local residual pieces)I&3T

is smaller than that of PHLST5. However as we further segrttenimage into local
pieces, PHLST5 outperforms LLST remarkably. This is beedliat PHLSTS includes
more information from the boundary. Consequently it predibe original function

better. Figures 2 and 3 compare the convergence amponents to our original

function as the level of splitting gets deeper.
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(a) Original (b) LLST residual (c) PHLSTS5 residual

Figure 1: Comparison of the residuals of LLST and PHLST5gisimooth data.

3.2 Experiments with Real Images

We now report our numerical experiments using real imagesh#Ve selected two re-
gions of the popular “Barbara” image for our experimentse @maround the face area
(smooth region) with the scarf (some oscillations). Theeotine is around the leg area
(very oscillatory). The size of both images ag® x 129 pixels. We first compute the,

the union of the local polyharmonic componentss), and expand the, the union of
the local residual components;’§), into a Fourier sine series. Then we approximate
the residual with a few large Fourier sine coefficients and reconstruetdhginal
image via the computed polyharmonic componeraind the approximated residual
The approximation gualities were then compared in PSNR feak Signal-to-Noise
Ratio) and MSSIM (Multiscale Structure SIMilarity) [22]. $6IM is an image sim-
ilarity index in the interval0, 1] that compares the difference between two images in
terms of luminance, contrast, and structure. The closerIM38& 1, the more similar
the compared two images are. The values of the first orderalaterivative are com-
puted using the method described in Section 2.3 again. liti@ddwe also compare
the results of LLST and PHLST5 with the componeartomputed from the radial ba-
sis function transform (RDT) [9, 10, 11, 17, 6, 20]. In RDT, alose the most often
applied radial basis function-a multiquaddi¢z) = +/||z[|3 + 1. The component
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Figure 2: Thew component of LLST in different levels of splitting.
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Figure 3: Thex component of PHLSTS5 in different levels of splitting.
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is calculated by the standard radial function approximant
u(@) =Y cp(@—y,),
y,€8

whereS is the set of grid points (“centers” in radial basis functjargon) where we
sample ourimage data. The coefficienitare found by solving the linear system below
resulted from the collocation

Y oz —y;) = f(z;), =z €S8, (15)

Y, €S

where f(x;) is the gray level value of the image at the given sppt We note that
the component. computed by RDT is a function i6*°. In this experiment, we split
the image domain homogeneously idtx 4 blocks (i.e.,32 x 32 pixels within each
block) and8 x 8 blocks (i.e.,16 x 16 pixels within each block). Figures 4 and 5 show
the u components from RDT, LLST and PHLST5 of the face image andreage
respectively. Figure 6 shows the quality difference meagilny PSNR and MSSIM.
Figure 7 shows the zoomed up version of Figure 6 of the fadeptre Barbara image.
Similarly Figures 8 and 9 are for the leg part of the Barbaragm

From these figures, we observe the following:
¢ In the face image (smooth):

1. Theu component of PHLST5 shows a visual improvement over that of
LLST in the eye areas.

2. RDT performs the best, followed by PHLST5 and then LLST.

3. With further splitting the image domain, the measurenoentes (PSNR,
MSSIM) of RDT and PHLSTS5 are separated from that of LLST evemnen

¢ In the leg image (textured):

1. RDT shows a significant advantage in terms of PSNR over LBS@
PHLST5. But three approaches are not significantly diffenenerms of
MSSIM.
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2. Further splitting the image domain benefits RDT and PHLBT®rms of
PSNR.

One can see that RDT outperforms the other two methods inrbgtbns in terms
of PSNR. This is because RDT is a globally smooth interpmatin addition to match-
ing the boundary values of a single block, it matches the Bagnvalues of all the
blocks at once. On the other hand, eacbomponent in PHLSTS is local: it uses the
boundary values of each block and the averages of the deesaimong the neigh-
bouring blocks.

In order to see the visual quality of these approximatiores fuvther examine the
reconstruction quality of this Barbara face image. Figd@sl15 show the reconstruc-
tions and the errors by using the top 1500 coefficients {i0et1% of the total coeffi-
cients of the residual ) with 8 x 8 segmentation of th&29 x 129 Barbara face image.
From these results it is clear that the quality of PHLSTS apipnation is better than
that of LLST approximation. The features from eyes, noserandth areas are more
obviously shown in the reconstruction error of LLST. In autdi, blocking artifacts

presentin LLST are less noticeable in PHLSTS5.

4 Discussion

We have described a new, practical, and improved versiotHofST called PHLSTS
that uses a 5th degree polyharmonic function as the ploydr@imtomponent.. The
values of the polyharmonic component and of the first ordemabderivative match
those of the original functiorf on the boundary. The Fourier sine coefficients of the
residualv = f — u have the same decaying rate but much smaller energy comimared
those of LLST. We have demonstrated the advantage of PHL8&H.4 ST using two
synthetic images in terms of the size of the residual. Ouegrgents on the real images
confirm that PHLSTS5 beats LLST at smooth regions. Similaslyhe ABIV method,

our algorithm to compute the PHLSTS5 representation of antiimpage is fast, accu-
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(@) Thew component of RDTb) Thew component of LLST(c) The w component of
(4 x 4 segmentation) (4 x 4 segmentation) PHLSTS5 @ x 4 segmentation)

(d) The v component of RDTe) Theu component of LLST(f) The « component of
(8 x 8 segmentation) (8 x 8 segmentation) PHLST5 @ x 8 segmentation)

Figure 4:u components from RDT, LLST and PHLSTS5 in the face area.
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(@) Thew component of RDTb) Thew component of LLST(c) The w component of
(4 x 4 segmentation) (4 x 4 segmentation) PHLSTS5 @ x 4 segmentation)

o

(d) The v component of RDTe) Theu component of LLST(f) The « component of
(8 x 8 segmentation) (8 x 8 segmentation) PHLST5 @ x 8 segmentation)

Figure 5:u4 components from RDT, LLST and PHLSTS5 in the leg area.
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Figure 10: The 1500 coefficient reconstruction from RDT.

27



20

40

60

80

100

20 40 60 80 100 120

Figure 11: The 1500 coefficient reconstruction from LLST.
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Figure 12: The 1500 coefficient reconstruction from PHLSTS5.
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Figure 13: The error component from RDT.
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Figure 14: The error component from LLST.
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Figure 15: The error component from PHLSTS5.
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rate, and based on an analytic formula. Thus, this methodisanbe used for image
approximation and zooming without suffering from the Gilpbenomenon. However,
the current PHLSTS5 algorithm only works with rectangulandons. This is due to
our treatment of the boundary conditions (see Equationg12)). We also showed

a radial basis function transform (RDT) to compute theomponent. It provides a
globally smooth interpolation. Hence in smooth regionprédicts the original image
well and has a very small component. The computational cost of RDT, however, is
huge since it requires solving a full linear system (15).

The PHLST5 can also be viewed as the following approximapiablem. LetU

be the set of functions defined by
U:={ueC'(Q): A%xqu) =0, 2=U,;Q;}.

In other words, the séf consists of functions i (2) subject to that their restrictions
to each subdomaift; are polyharmonic of degree 5. One can see immediatelythat
is a subspace of'*(2). Now, given an imagef € L%(Q), let us decompos¢ as

f =wu+vwhereu € U is an approximation tg. The PHLST5 algorithm provides a
way to find suchu. It would be ideal if we could find the least squares approxioma
u* € Uto f € L*(Q),i.e.,u* = argminyey || f —ul|12(n). Suchu® would, of course,
guarantee that the correspondimgomponent, say* is minimal in terms of energy.
Moreover, even if the original imagg¢ contains noise, the resulting decomposition
f = u* 4+ v* still makes good sense. Although our PHLSTS5 algorithm mtesia
good and smooth approximatianc U to f, ourw is not the least squares solutioh
unfortunately. Deriving a practical algorithm to computels least squares solutions
has the first priority in our research along this direction.

There are a few more issues still left open. First, the themleaspect of PHLST5
is still open. This is not an easy task since we are using thel&jree polyharmonic
operator that is not well studied. At this point we only nuicalty demonstrated the
polyharmonicu component of PHLST5 converges to the original function miasier

than LLST if we further split the domain. We will set this togilso as our high priority
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research. Second, PHLST5 has been shown to improve LLSTadtemegions of an
image. It is necessary to come up with a criterion while 8ptitan image so that we
can tell a priori where exactly PHLST5 should be applied.

Finally, due to the difficulty of estimating higher order n¥atives, we consider
PHLSTS5 as the practical limitation of implementing PHLSTtlwhigher degree poly-

harmonicity.
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A The Laplace Solver of Averbuch, Braverman, Israel
& Vozovoi

If the underlying domairf2 and its subdomaing,'’s are rectangular regions iR¢,
which is the most practical case in numerical implementatice can employ the Dis-
crete Sine Transform (DST) based on the FFT algorithm tadtggiompute both the
polyharmonic components and the Fourier sine series eigrensf the residual com-
ponents. In particular, we use the algorithm proposed bylAweh, Braverman, Israeli,
and Vozovoi [1, 4], which seems to us the most natural anctipedd.aplace/Poisson
equation solver on rectangular domains. The ABIV methodreffnore accurate solu-
tions than those based on the finite difference (FD) appration of the Laplace oper-
ator followed by FFT [5, 12], which only gives solutions wilcuracy of orde©(h?)
or O(h*) for the so-called 5-point or modified 9-point FD approximatirespectively

(h is, of course, the size of the spacing distance of the samgiiid). Moreover, the
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computational cost of the ABIV algorithm is of ordér(N?log N), whereN is the
number of grid points in each direction of a rectangular dom@his implies that the
ABIV method is a fast algorithm. To describe the ABIV methtet,us consider the

domainQ = (0, 1)? and Laplace’s equation with its boundary conditions givgn b

Au = 0 (z,y) €N

u = ¢ (z,9)€[0,1] x {y =0}

u = ¢ (z,9) € {xr=0}x][0,1] (16)
u = ¢3 (z,9)€[0,1] x{y=1}

u = ¢y (z,y)€{r=1}x]0,1]

One simplest analytic solution can be sought as

u(z,y) = bV hi(2, 1 —y) + 3 b hi(y, 1 — 2) + 3 0P () +
k=1 k=1

>
k:O:OI
> 0\ iy, @)
k=1

(17)

with
sinh kmy

hi(z,y) = sin kmcm.

The functionhy (z, y) satisfies:
1. Ahp=0 (x,y) €.
2. hy(z,y) vanishes on three sides@fi.e., onz = 0,2 = 1 andy = 0.
3. {hi(z, 1)}, serves as a Fourier sine basis &[0, 1]).
4. {b,(j)} are Fourier sine coefficients @f.

A mental picture of (17) can be depicted as four independarhbnic flows coming
from each direction (see Figure 16).

However, in practiceg;’s are given as sampled data points on the boundary. The
infinite sum in (17) is replaced by the sum of the fiNsterms. Those coefficients are
calculated via DST. Hence, how well the sum of the fivsterms approximate the true

function, from which the boundary data are sampled, wikdily affect the accuracy
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Figure 16: Each infinite sum in (17) is represented as a flow.

of the solution. One should notice that Fourier sine expmamisimost suitable (efficient
N term approximation) for functions that vanish at two ends.

We next state the most practical version of the ABIV methadtidving the system
(16). Assume the continuity of the boundaries at four cargiee.,¢; (0) = ¢2(0)
A, 9a(1) = ¢3(0) = B,¢s(1) = ¢4(1) = C,4(0) = ¢1(1) = D). The ABIV

algorithm proceeds as follows:

1. Seek a polynomiah(z,y) = aszy + asx + a1y + ag, such that:
p(0,00=A p(0,1)=B p(1,1)=C p(1,0)=D.
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2. Solve forw

Aw = 0 (x,y) e

w = ¢r—p (z,y)€[0,1]x{y=0}
w = ¢a—p (x,y)€{x=0}x][0,1] (18)
w = ¢3—p (z,y)€0,1]x{y=1}
w = ¢s—p (z,y)€{z=1}x[0,1]

Note: ¢, — p vanishes at two ends. Hence tiveterm approximation in (17) is

suitable forw.
3. Setu = p+ w.

For more complicated situations such as end value jumpsuatcfarners or solu-

tions with higher order accuracy, we refer the readers tio thiginal papers [1, 4].
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