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Abstract

We introduce a practical and improved version of thePolyharmonic Local Sine

Transform(PHLST) calledPHLST5. After partitioning an input image into a set

of rectangular blocks, the original PHLST decomposes each block into a polyhar-

monic component and a residual. Each polyharmonic component solves a poly-

harmonic equation with the boundary conditions that match the values and normal

derivatives of even orders along the boundary of the corresponding block with

those of the original image block. Thanks to these boundary conditions, the resid-

ual component can be expanded into a Fourier sine series without facing the Gibbs

phenomenon, and its Fourier sine coefficients decay faster than those of the origi-

nal block. Due to the difficulty of estimating normal derivatives of higher orders,

however, only the harmonic case (i.e., Laplace’s equation)has been implemented

to date, which was called Local Laplace Sine Transform (LLST). In that case, the

Fourier sine coefficients of the residual decay in the orderO(‖k‖−3), wherek is

the frequency index vector. Unlike the original PHLST, PHLST5 only imposes the

boundary values and the first order normal derivatives as theboundary conditions,

which can be estimated using the information of neighbouring image blocks. In
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this paper, we derive a fast algorithm to compute a 5th degreepolyharmonic func-

tion that satisfies such boundary conditions. Although the Fourier sine coefficients

of the residual of PHLST5 possess the same decaying rate as inLLST, by us-

ing additional information of first order normal derivativefrom the boundary, the

blocking artifacts are largely suppressed in PHLST5 and theresidual component

becomes much smaller than that of LLST. Therefore PHLST5 provides a better

approximation result. We shall also show numerical experiments that demonstrate

the superiority of PHLST5 over the original LLST in terms of the efficiency of

approximation.

keywords: local Fourier analysis, polyharmonic equation, discrete sine transform,

image approximation.

1 Introduction

One of us (NS) recently introduced thePolyharmonic Local Sine Transform(PHLST)

[18, 19] in an attempt to develop a local Fourier analysis andsynthesis method without

encountering the infamous Gibbs phenomenon. The PHLST is also to resolve several

problems occurring in the Local Trigonometric Transforms (LTTs) of Coifman and

Meyer [7] and Malvar [14, 13], such as the overlapping windows and the slopes of the

bell functions. PHLST first segments a given function (or input data)f(x), x ∈ Ω ⊂

R
d supported on an open and bounded domainΩ into a set of disjoint blocks{Ωj}

such that

Ω =

J
⋃

j=1

Ωj .

Denote byfj the restriction of the functionf to Ωj , i.e., fj = χΩj
f , whereχΩj

is

the characteristic function on the setΩj , j = 1, 2, · · · , J . Then PHLST decomposes

eachfj into two components asfj = uj + vj . The componentsuj andvj are referred

to as thepolyharmonic componentand theresidual, respectively. The polyharmonic

component is obtained by solving the followingpolyharmonic equation:

∆muj = 0 in Ωj , m ∈ N (1)
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with a set of given boundary values and normal derivatives

∂qℓuj

∂ νqℓ
=

∂qℓf

∂ νqℓ
on∂Ωj , ℓ = 0, . . . , m − 1, (2)

where∆ =
∑d

i=1 ∂2/∂x2
i is the Laplace operator inRd. The natural numberm

is called the degree of polyharmonicity, andqℓ is the order of the normal derivative.

These boundary conditions (2) enforce that the solutionuj interpolates the function

values and the normal derivatives of ordersq1, . . . , qm−1 of the original signalf along

the boundary∂Ωj . The parameterq0 is normally set to0, which means thatuj = f

on the boundary∂Ωj , i.e., the Dirichlet boundary condition. If the blocksΩj , j =

1, 2, · · · , J , are all rectangles (of possibly different sizes), PHLST sets qℓ = 2ℓ, i.e.,

only normal derivatives ofeven ordersare interplolated. It is not necessary to match

normal derivatives of odd orders when the blocksΩj ’s are rectangular domains. This

is because the Fourier sine series of the residualvj is equivalent to the complex Fourier

series expansion of the extendedvj after odd reflection with respect to the boundary

∂Ωj , hence the continuity of the normal derivatives of odd orders (up to order2m− 1)

is automatically guaranteed. Recall that form = 1, 2, the equation (1) is usually called

Laplace’s equation and the biharmonic equation, respectively. We remark that in the

case of the domainΩ ∈ R being an interval (i.e., the spatial dimensiond = 1), the

polyharmonic componentuj for m = 1 is simply a straight line connecting the two

boundary points of the intervalΩj ; while for m = 2, the polyharmonic component

uj is a cubic polynomial connecting the two boundary points. However, when the

spatial dimension is higher (i.e.,d ≥ 2), the solution of the equation (1) with the

boundary conditions (2) is not a simple tensor product of algebraic polynomials in

general. Subtracting suchuj from fj gives us the residualvj = fj − uj satisfying

∂qℓvj

∂ νqℓ
= 0 on∂Ωj , ℓ = 0, . . . , m − 1. (3)

This implies that the values and the normal derivatives ofvj vanish on the boundary

∂Ωj . Thus the Fourier sine expansion coefficients of the residual vj decay rapidly,

i.e., in the orderO(‖k‖−2m−1), provided that there is no other intrinsic singularity in
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the domainΩj , wherek is the frequency index vector. In fact, we have the following

theorem.

Theorem 1.1. [19] Let Ωj be a bounded rectangular domain inRd, and letfj ∈

C2m(Ωj), but non-periodic. Assume further that(∂/∂xi)
2m+1f , i = 1, . . . , d, ex-

ist and are of bounded variation. Furthermore, letfj = uj + vj be the PHLST

representation, i.e., the polyharmonic componentuj is the solution of the polyhar-

monic equation(1) of degreem satisfying the boundary conditions(2) with qℓ = 2ℓ,

ℓ = 0, 1, . . . , m − 1, andvj = fj − uj is the residual component. Then, the Fourier

sine coefficientbk of the residualvj is of orderO
(

‖k‖−2m−1
)

for all k 6= 0, where

the frequency index vectork = (k1, . . . , kd) ∈ Z
d
+, and‖k‖ is the Euclidean (i.e.,ℓ2)

norm ofk.

The proof of this theorem can be found in the paper [19]. We named this way of

decomposing a functionf into a set of functions{fj = uj + vj}
J
j=1 the Polyhar-

monic Local Sine Transform(PHLST) with degree of polyharmonicitym. Note that

if we employ the complex Fourier series expansion or the Fourier sine expansion of

non-periodicfj by brute-force periodization, the decaying rate becomes only of order

O
(

‖k‖−1
)

even iffj ∈ C2m(Ωj). If we use the Fourier cosine series expansion offj

(as adopted in the JPEG standard), we can obtain a decaying rate of orderO
(

‖k‖−2
)

.

Thus the faster decay of the Fourier sine coefficients ofvj in PHLST allows us to dis-

tinguishintrinsic singularities in the data from the artificial discontinuities created by

local windowing or periodization. It also enables us to interpret the frequency contents

of each block without being influenced by the surrounding blocks and without the edge

effect such as the Gibbs phenomenon. Moreover, as long as theboundary data are

stored and the normal derivatives at the boundary are available, the polyharmonic com-

ponents can be computed quickly by utilizing the FFT-based Laplace solver developed

by Averbuch, Braverman, Israeli, and Vozovoi [1, 4], which we shall call the ABIV

method. Combining the fast solver ABIV with the quickly decaying Fourier sine co-

efficients of the residuals, the usefulness of PHLST to imageapproximation when the
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degree of polyharmonicitym = 1 was demonstrated in the papers [18, 19]. We remark

that to remove boundary artifacts, researchers in the field of image processing have

proposed several approaches, such as replication edge extension, windowed extrapola-

tion, constant extension, reflection edge extension. A niceoverview can be found in

the reference [8].

Soon after developing PHLST, N. Saito and K. Yamatani extended it to thePolyhar-

monic Local Cosine Transform(PHLCT) [23]. The PHLCT allows the Fourier cosine

coefficients of the residual decay in the orderO
(

‖k‖−2m−2
)

by settingqℓ = 2ℓ + 1,

ℓ = 0, . . . , m − 1 in the boundary conditions (2) and by introducing an appropriate

source term on the right hand side of the polyharmonic equation (1). In that work, an

efficient algorithm was developed to improve the quality of images already severely

compressed by the popular JPEG standard, which is based on Discrete Cosine Trans-

form (DCT).

Finally, N. Saito introduced thePolyharmonic Local Fourier Transform(PHLFT)

[19] by settingqℓ = ℓ, ℓ = 0, . . . , m − 1 in Eq. (2) and by replacing the Fourier sine

series with the complex Fourier series in expanding thevj components. With some

sacrifice of the decay rate of the expansion coefficients, i.e., of orderO
(

‖k‖−m−1
)

instead of orderO
(

‖k‖−2m−1
)

or of orderO
(

‖k‖−2m−2
)

, PHLFT allows one to

compute local Fourier magnitudes and phases without facingthe Gibbs phenomenon.

PHLFT also can capture the important information of orientation much better than

PHLST and PHLCT. Moreover, it is fully invertible and shouldbe useful for various

filtering, analysis, and approximation purposes.

In all of the above transforms, however, we have only implemented and tested the

harmonic case, i.e., the degree of polyharmonicitym = 1. In other words, in prac-

tice, we have only used Laplace’s equation as the polyharmonic equation in (1) so

far. Consequently, we only demonstrated the decaying ratesof PHLST, PHLCT, and

PHLFT asO
(

‖k‖−3
)

, O
(

‖k‖−4
)

, andO
(

‖k‖−2
)

, respectively. We call these trans-

forms with polyharmonicitym = 1 Laplace Local Sine Transform (LLST), Laplace

Local Cosine Transform (LLCT), and Laplace Local Fourier Transform (LLFT), re-
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spectively. It is theoretically possible to solve the polyharmonic equation of higher

degree of polyharmonicity (i.e.,m > 1). But in practice, images are discontinuous

almost everywhere and contain noises. The main difficulty isto reliably estimate the

required normal derivatives of higher orders at the boundary of each blockΩj . If one

tries to use boundary derivatives of higher orders (e.g., those estimated by a higher

degree polynomial fit), then their values tend to be chaotically huge. Consequently not

only the polyharmonic solution (i.e., theu component) becomes huge compared to the

original data, the residual componentv is also with large energy. Although the Fourier

sine coefficients of the residualv decay rapidly, it is virtually useless for the purpose

of approximation.Therefore, in practice we shall not only seek fast decaying rate of

the Fourier sine coefficients of the residualv, but also a residualv with a small energy.

In this paper, we explore a different aspect of PHLST. Instead of blindly seeking fast

decaying rate, we consider the polyharmonic equation as a tool to achieve smooth ap-

proximation. Assuming the boundary derivatives are accurately estimated, it is clear

that the more information of boundary derivatives is used, the better the prediction of

the original image from theu component will be. If equally spaced samples are taken

from a smooth function, it is well known that a cubic spline approximation always con-

verges to the original function faster than a piecewise linear approximation as the size

of the sampling mesh converges to zero. Similarly, we seek a tool which is a higher

order approximant than LLST in this paper. In practice, the higher order PHLST can

be regarded as an improvement of LLST by reducing both blocking artifacts and the

energy of the residual component. We also introduce a practical algorithm to compute

PHLST with a 5th degree polyharmonic equation (m = 5), yet constrained only by the

Dirichlet and Neumann conditions, i.e., by using onlyq0 = 0 andq1 = 1 in Eq. (2).

Therefore, we shall name this methodPHLST5. We believe that this is the limit of the

practicality in the line of PHLST of higher degree polyharmonicity.

In order to understand our method better, we also compare it with other polyharmonic-

related work. In particular we compare PHLST5, LLST with an approximation method

using radial basis functions [9, 10, 11, 17, 6, 20]. Radial basis functions are extremely
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useful when interpolating scattered data, especially of high dimensions. LetS be the

set of distinct points inRd, which are traditionally calledcentersin radial basis func-

tion jargon, as radial basis functions are radially symmetric about the centers. The goal

is to approximate an unknown smooth functionf that is only given at those centers via

a set of real valuesfs, s ∈ S. In order to approximate the unknown functionf with

an approximant̃f , a univariate continuous functionφ : R+ → R that is radialized by

composition with the Euclidean norm is chosen as theradial basis function. Addition-

ally, the centerss ∈ S are used to shift the radial basis function and as collocation

points. Therefore the standard radial function approximants have the form

f̃(x) =
∑

s∈S

csφ (‖x − s‖) , x ∈ R
d.

We remark that when the radial function is chosen as a multiquadric, that is,

φ(r) =
√

r2 + c2,

wherec is a positive parameter, the interpolation requirements

f̃ |S = f |S

for given dataf |S lead to a nonsingular interpolation matrix

A = {φ (‖s − t‖)}s,t∈S

due to Micchelli [16].

The paper is organized as follows. Section 2 describes the details of how to con-

struct our new transform, PHLST5. Section 3 shows the results of our numerical ex-

periments and demonstrates the improvements of PHLST5 overLLST in terms of the

efficiency of approximation. We also compare the performance of PHLST5 with that

of radial basis function transform. Finally, we conclude this paper in Section 4 with

our discussion of some potential problems and our future plans. In Appendix A, we

review the ABIV method for readers’ convenience.
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2 Construction of PHLST5

In this section, we shall only deal with two-dimensional images (i.e.,d = 2), and focus

on the analysis of one image blockΩj for a particularj. Therefore, for simplicity, we

shall drop the subscriptj that was used in many equations appeared in Introduction.

Furthermore, we shall assumeΩ = (0, 1)2, the unit square inR2.

2.1 Difficulties in Solving a Biharmonic Equation

Let f(x, y), (x, y) ∈ Ω be a given input image. If we view LLST to be an approximant

to match the intensity values on the boundary, then a naturalway to improve LLST is

to consider a biharmonic equation

∆2u = 0 (x, y) ∈ Ω, (4)

with boundary condition











u = f (x, y) ∈ ∂Ω

∂u

∂ν
=

∂f

∂ν
(x, y) ∈ ∂Ω

. (5)

A solution of such a biharmonic system, compared with LLST, guarantees that

the regularity of the solutionu across the boundary is one order higher. In addition,

a biharmonic solution has the minimum curvature property which minimizes the os-

cillation impact from the boundary data [21]. Theoretically, one can even consider

polyharmonic equations of higher order (i.e.,m > 2) with given boundary data (i.e.,

{∂ℓf/∂νℓ}m−1
ℓ=0 ). One should notice that the normal derivatives of various orders on

the boundary must be estimated from the given original imagesamples. However, in

practice, the estimated values of normal derivative∂ℓf/∂νℓ with ℓ ≥ 2 are fragile and

inaccurate, especially when the original image contains noises. Therefore, any method

requires normal derivatives of higher order (m ≥ 2) is impractical.

Even if we have accurate estimates of the required nomal derivtives, solving this

biharmonic system (4), (5) is numerically difficult. There are quite a few methods to
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numerically solve a biharmonic system. Some representative methods include the fi-

nite difference (FD) or FFT-based solver with the FD approximation of the Laplace

operator [3]; a method that converts it to an integral equation and iteratively solves the

resulting linear system [15]; and the spectral methods based on the Chebyshev or Leg-

endre polynomial expansions [2]. None of them are suitable for our problem though.

The FD-based methods have low accuracy in the computed solutions in general. More-

over, both the FD-based methods and the one using the technique of integral equations

are computationally expensive. The spectral methods usingthe Chebyshev or Legen-

dre polynomial expansions require function values sampledon special grids (i.e., the

Chebyshev or the Legendre nodes), which are usually not available for our problem

because most digital images are sampled on regular rectangular grids.

On the other hand, we wish to retain the flavor of the ABIV method [1, 4] as much

as possible. For solving Laplace’s equation with the Dirichlet boundary condition on a

rectangular domain, the ABIV method is ideal because: 1) it is computationally fast due

to its use of the FFT algorithm; 2) it is very accurate; 3) the analytical solution provided

by the method allows us to interpolate at any point within thedomain. See Appendix

A for more about the ABIV method. Unfortunately, the biharmonic equation (4) with

the boundary conditions (5) does not permit us to use the ABIVmethod directly.

2.2 Relaxing the Biharmonic System

Instead of directly solving the biharmonic system (4), (5),we relax the polyharmonicity

(i.e.,m > 2) and propose the following polyharmonic system so as to fully incorporate

the ABIV method.



















∆mu = 0 (x, y) ∈ Ω

u = f (x, y) ∈ ∂Ω

∂u

∂ν
=

∂f

∂ν
(x, y) ∈ ∂Ω.

(6)

Although we now lose the minimum curvature property, we still have the regu-

larity improvement across the boundary. Note that the system (6) cannot be solved
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uniquely because the boundary conditions make the problem underdetermined. Instead

of solving the system (6) directly, we shall explicitly find apolyharmonic function that

satisfies the equations in the system (6).

In order to have a proper choice ofm, we shall decouple the system (6) into two

subsystems by representingu in terms of its two componentsu1 andu2 (i.e., u =

u1 + u2). The componentu1 is the solution of Laplace’s equation with the Dirichlet

boundary condition:






∆u1 = 0 (x, y) ∈ Ω

u1 = f (x, y) ∈ ∂Ω
, (7)

which can be solved efficiently by the ABIV method. The componentu2 takes care of

the rest:


















∆mu2 = 0 (x, y) ∈ Ω

u2 = 0 (x, y) ∈ ∂Ω

∂u2

∂ν
= g :=

∂f

∂ν
−

∂u1

∂ν
(x, y) ∈ ∂Ω.

(8)

To find the componentu2 that satisfies the system (8) with certain degree of polyhar-

monicity m, we follow a strategy similar to that used in the ABIV method.The com-

ponentu2 shall be represented as a linear combination of a set of infinitely many poly-

harmonic functions. To this end, we find a sequence of functions denoted by{Gk}
∞
k=1

which have the following properties:

1. Gk = 0 (x, y) ∈ ∂Ω

2. ∂Gk

∂ν
= 0 (x, y) ∈ ∂Ω\{(x, y) |x = 1}

Note: such a property will allow one to treat four edges of theboundary sepa-

rately.

3. { ∂Gk

∂ν

∣

∣

x=1
}∞k=1 is a basis ofL2([0, 1]).

Moreover, define the functionhk(x, y) := sin(kπy) sinh(kπx)
sinh(kπ) , which is used in the

ABIV Laplace solver with the following properties:

1. ∆hk = 0 (x, y) ∈ Ω
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2. hk = 0 (x, y) ∈ ∂Ω\{(x, y) |x = 1}

3. {hk|x=1}
∞
k=1 is a basis ofL2([0, 1]).

A natural way to construct the functionsGk is to seek a form,Gk = hk(x, y)p(x, y),

wherep(x, y) is a polynomial. For the functionsGk to satisfy the above three proper-

ties, we choose a polynomialp such that it vanishes on the boundary∂Ω. The simplest

choice isp(x, y) = x(x− 1)y(y− 1). In fact, by direct computation one can show that

the polyharmonicity ofGk is equal to the summation of the polyharmonicity ofhk and

the degree ofp(x, y) (i.e., ∆(1+4)Gk = 0). Hence, we conclude that the system (6)

with m = 5 is a polyharmonic system that can be computed fast and accurately using

the existing ABIV method.

Once we find this polyharmonicu component, the residualv and its Fourier sine

series expansion are computed as usual. We shall refer to this new version of PHLST

asPHLST5.

In PHLST5 the Fourier sine coefficients of the residualv have the same decaying

rate as that of LLST, but theℓ2 norm of the residual of PHLST5 is smaller for smooth

images (see numerical experiments in Section 3). However, to satisfy the boundary

conditions (5), there are plenty of other methods. In fact, we will show that it is possible

to use scattered data interpolation methods such as a radialbasis function to compute

the u component in our numerical experiment. However, it is computationally more

expensive.

2.3 An Algorithm to Compute PHLST5

Because the system (7) can be solved directly by the ABIV method, our main task is

to find a polyharmonic function that satisfies the system (8).We propose the following

algorithm for this task.
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Step 1: Decompose (8) withm = 5 into four independent subproblems.























∆5u
(1)
2 = 0 (x, y) ∈ Ω

u
(1)
2 = 0 (x, y) ∈ ∂Ω

∂u
(1)
2

∂ν
= g(1) (x, y) ∈ ∂Ω

, g(1) =































g x ∈ (0, 1), y = 0

0 x ∈ (0, 1), y = 1

0 x = 0, y ∈ (0, 1)

0 x = 1, y ∈ (0, 1)

,

(9)






















∆5u
(2)
2 = 0 (x, y) ∈ Ω

u
(2)
2 = 0 (x, y) ∈ ∂Ω

∂u
(2)
2

∂ν
= g(2) (x, y) ∈ ∂Ω

, g(2) =































0 x ∈ (0, 1), y = 0

0 x ∈ (0, 1), y = 1

g x = 0, y ∈ (0, 1)

0 x = 1, y ∈ (0, 1)

,

(10)






















∆5u
(3)
2 = 0 (x, y) ∈ Ω

u
(3)
2 = 0 (x, y) ∈ ∂Ω

∂u
(3)
2

∂ν
= g(3) (x, y) ∈ ∂Ω

, g(3) =































0 x ∈ (0, 1), y = 0

g x ∈ (0, 1), y = 1

0 x = 0, y ∈ (0, 1)

0 x = 1, y ∈ (0, 1)

,

(11)






















∆5u
(4)
2 = 0 (x, y) ∈ Ω

u
(4)
2 = 0 (x, y) ∈ ∂Ω

∂u
(4)
2

∂ν
= g(4) (x, y) ∈ ∂Ω

, g(4) =































0 x ∈ (0, 1), y = 0

0 x ∈ (0, 1), y = 1

0 x = 0, y ∈ (0, 1)

g x = 1, y ∈ (0, 1)

.

(12)

Step 2: Construct four sets of polyharmonic functions satisfying (9)–(12) respectively

as follows:

G1 := {G1k}
∞
k=1 :=

{

x(x − 1) sin(kπx) · y(y − 1) sinh(kπ(1−y))
sinh(kπ)

}∞

k=1

G2 := {G2k}
∞
k=1 :=

{

x(x − 1) sinh(kπ(1−x))
sinh(kπ) · y(y − 1) sin(kπy)

}∞

k=1

G3 := {G3k}
∞
k=1 :=

{

x(x − 1) sin(kπx) · y(y − 1) sinh(kπy)
sinh(kπ)

}∞

k=1

G4 := {G4k}
∞
k=1 :=

{

x(x − 1) sinh(kπx)
sinh(kπ) · y(y − 1) sin(kπy)

}∞

k=1
(13)

One can verify that each function inGi satisfies the zero Dirichlet boundary
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condition as required in (8) and its normal derivatives are zeros on three edges

except the one withg(i) defined as in the equations (9)–(12).

Step 3: Compute the normal derivatives of the functions in each setGi on the bound-

ary.

P1 := {x(x − 1) sin(kπx)}∞k=1 := {P1k}
∞
k=1 x ∈ (0, 1), y = 0

P2 := {y(y − 1) sin(kπy)}∞k=1 := {P2k}
∞
k=1 x = 0, y ∈ (0, 1)

P3 := {x(x − 1) sin(kπx)}∞k=1 := {P3k}
∞
k=1 x ∈ (0, 1), y = 1

P4 := {y(y − 1) sin(kπy)}∞k=1 := {P4k}
∞
k=1 x = 1, y ∈ (0, 1),

(14)

wherePik is the normal derivative ofGik on an appropriate boundary depending

on the values ofi.

Step 4: Expandg(i) =
∞
∑

k=1

w
(i)
k Pik, i = 1, . . . , 4, wherew

(i)
k , k ∈ N are real coeffi-

cients to be identified through this expansion.

Step 5: Setu2 =
4
∑

i=1

∞
∑

k=1

w
(i)
k Gik. This is a desired polyharmonic function with the

degree of polyharmonicitym = 5.

In practice, if we discretize the imagef at(xi, yj) = (i/N, j/N), i, j = 0, 1, . . . , N −

1, N , and view it as a matrix of size(N + 1) × (N + 1), then in Steps 2–4 above, one

should discard the first and last entries on the boundary and useN − 1 terms instead

of infinitely many terms. The overall computational cost is about twice as that of the

ABIV method for solving Laplace’s equation if we do not countthe cost for estimating

normal derivatives. We remark that in Step 4, we first divide the boundary functions

g(i) on (0, 1) by the quadratic polynomialx(x − 1) for i = 1, 3 andy(y − 1) for

i = 2, 4. Since the two endpoints of the interval are not included in the division, there

is no numerical blowup there. Then, we expand the results into Fourier sine series.

Sinceu2 = 0 on the four boundary sides, one can easily see thatg(i) are zeros at the

endpoints of each side, so that these functions are still suitable functions to be expanded

into Fourier sine series even after divided byx(x − 1) or y(y − 1).
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The algorithm by itself is now complete. We still need to decide how to compute

the normal derivativeg on the boundary in the equations (9)–(12). If one takes a close

look at the ABIV Laplace solver, the solutionu1 of (7) is given in an analytic form as

shown in Appendix A. We simply compute the normal derivatives of theu1 component

from two sides of the boundary (between two blocks) by using its analytic form, and

take their averages. Those values will be fed to the algorithm as our estimated normal

derivatives∂f
∂ν

.

We summarize some features of PHLST5 below:

• Since the estimation of the values of the normal derivative is computed from the

u1 component, there is no need to store them. This implies that PHLST5 only

requires the same storage and information as LLST does.

• The computational cost of theu (= u1+u2) component in PHLST5 is just twice

as much as that of LLST.

• Since additional information of the first order normal derivatives are matched on

the grids, PHLST5 produces a globally smootheru component than LLST.

3 Numerical Experiments

In this section, we shall report the results of our numericalexperiments and compare

the performance of PHLST5 with that of LLST and that of the method using scattered

data approximation by radial basis functions.

3.1 Experiments with Synthetic Data

We set the domainΩ = [0, 1]2. The first image we have chosen is a smooth and flat

functionf defined by

f(x, y) = sin(x + 2y)e−3((x−0.2)2+(y−0.4)2).

14



We sample the image on the regular lattice with129 × 129 grid points. Note that the

values of the first order normal derivatives on the boundary used in PHLST5 can be

calculated analytically. Figure 1 shows the residuals of LLST and PHLST5 in the spa-

tial domain. PHLST5 clearly outperforms LLST in terms of thesize of the residualv.

In fact, the residual componentv of PHLST5 has much smallerℓ2 norm than that of

LLST as we can see from Figure 1 (b) and (c). The ratio of‖v‖2 to ‖f‖2 is 0.1317 in

PHLST5 while that of LLST is0.4969. This implies that the polyharmonicu compo-

nent in PHLST5 predicts and approximates the originalf better than that in LLST in

terms of theℓ2 norm.

Next, we examine a more oscillatory image,

f(x, y) = sin(20(x + 2y))e−3((x−0.2)2+(y−0.4)2).

The image is sampled on a regular lattice with1025 × 1025 grid points. The PHLST5

algorithm is applied at different levels of segmentation this time. Denote byJ the level

of dyadic splitting (J = 0 means no splitting). We shall refer to the union of polyhar-

monic components and the union of residual components of allsegmented pieces asu

andv respectively. In this experiment we do not use the analytic derivative informa-

tion from the given formula of the imagef . Rather, we apply the estimation method

described at the end of Section 2.3. The relativeℓ2 norm (i.e., ||v||||f || ) is computed as

the error (abbreviated as Err in Figures 2 and 3). One can see that in the coarser lev-

els (J = 0, 1), thev component (i.e., the union of the local residual pieces) of LLST

is smaller than that of PHLST5. However as we further segmentthe image into local

pieces, PHLST5 outperforms LLST remarkably. This is because that PHLST5 includes

more information from the boundary. Consequently it predicts the original function

better. Figures 2 and 3 compare the convergence ofu components to our original

function as the level of splitting gets deeper.
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(c) PHLST5 residual

Figure 1: Comparison of the residuals of LLST and PHLST5 using smooth data.

3.2 Experiments with Real Images

We now report our numerical experiments using real images. We have selected two re-

gions of the popular “Barbara” image for our experiments. One is around the face area

(smooth region) with the scarf (some oscillations). The other one is around the leg area

(very oscillatory). The size of both images are129×129 pixels. We first compute theu,

the union of the local polyharmonic components (ui’s), and expand thev, the union of

the local residual components (vi’s), into a Fourier sine series. Then we approximate

the residualv with a few large Fourier sine coefficients and reconstruct the original

image via the computed polyharmonic componentu and the approximated residualv.

The approximation qualities were then compared in PSNR (i.e., Peak Signal-to-Noise

Ratio) and MSSIM (Multiscale Structure SIMilarity) [22]. MSSIM is an image sim-

ilarity index in the interval[0, 1] that compares the difference between two images in

terms of luminance, contrast, and structure. The closer MSSIM to 1, the more similar

the compared two images are. The values of the first order normal derivative are com-

puted using the method described in Section 2.3 again. In addition, we also compare

the results of LLST and PHLST5 with the componentu computed from the radial ba-

sis function transform (RDT) [9, 10, 11, 17, 6, 20]. In RDT, wechoose the most often

applied radial basis function–a multiquadricφ(x) =
√

||x||22 + 1. The componentu
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(i) J = 7, Err = 0.0010

Figure 2: Theu component of LLST in different levels of splitting.
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(h) J = 6, Err = 0.0013
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(i) J = 7, Err = 0.0003

Figure 3: Theu component of PHLST5 in different levels of splitting.
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is calculated by the standard radial function approximant

u(x) =
∑

yi∈S

ciφ(x − yi),

whereS is the set of grid points (“centers” in radial basis functionjargon) where we

sample our image data. The coefficientsci are found by solving the linear system below

resulted from the collocation

∑

yi∈S

ciφ(xj − yi) = f(xj), xj ∈ S, (15)

wheref(xj) is the gray level value of the image at the given spotxj . We note that

the componentu computed by RDT is a function inC∞. In this experiment, we split

the image domain homogeneously into4 × 4 blocks (i.e.,32 × 32 pixels within each

block) and8× 8 blocks (i.e.,16× 16 pixels within each block). Figures 4 and 5 show

the u components from RDT, LLST and PHLST5 of the face image and legimage

respectively. Figure 6 shows the quality difference measured by PSNR and MSSIM.

Figure 7 shows the zoomed up version of Figure 6 of the face part of the Barbara image.

Similarly Figures 8 and 9 are for the leg part of the Barbara image.

From these figures, we observe the following:

• In the face image (smooth):

1. Theu component of PHLST5 shows a visual improvement over that of

LLST in the eye areas.

2. RDT performs the best, followed by PHLST5 and then LLST.

3. With further splitting the image domain, the measurementcurves (PSNR,

MSSIM) of RDT and PHLST5 are separated from that of LLST even more.

• In the leg image (textured):

1. RDT shows a significant advantage in terms of PSNR over LLSTand

PHLST5. But three approaches are not significantly different in terms of

MSSIM.
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2. Further splitting the image domain benefits RDT and PHLST5in terms of

PSNR.

One can see that RDT outperforms the other two methods in bothregions in terms

of PSNR. This is because RDT is a globally smooth interpolation. In addition to match-

ing the boundary values of a single block, it matches the boundary values of all the

blocks at once. On the other hand, eachu component in PHLST5 is local: it uses the

boundary values of each block and the averages of the derivatives among the neigh-

bouring blocks.

In order to see the visual quality of these approximations, we further examine the

reconstruction quality of this Barbara face image. Figures10–15 show the reconstruc-

tions and the errors by using the top 1500 coefficients (i.e.10.41% of the total coeffi-

cients of the residualv ) with 8× 8 segmentation of the129× 129 Barbara face image.

From these results it is clear that the quality of PHLST5 approximation is better than

that of LLST approximation. The features from eyes, nose andmouth areas are more

obviously shown in the reconstruction error of LLST. In addition, blocking artifacts

present in LLST are less noticeable in PHLST5.

4 Discussion

We have described a new, practical, and improved version of PHLST called PHLST5

that uses a 5th degree polyharmonic function as the ployharmonic componentu. The

values of the polyharmonic component and of the first order normal derivative match

those of the original functionf on the boundary. The Fourier sine coefficients of the

residualv = f − u have the same decaying rate but much smaller energy comparedto

those of LLST. We have demonstrated the advantage of PHLST5 over LLST using two

synthetic images in terms of the size of the residual. Our experiments on the real images

confirm that PHLST5 beats LLST at smooth regions. Similarly to the ABIV method,

our algorithm to compute the PHLST5 representation of an input image is fast, accu-
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(f) The u component of

PHLST5 (8 × 8 segmentation)

Figure 4:u components from RDT, LLST and PHLST5 in the face area.
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(8 × 8 segmentation)
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(f) The u component of

PHLST5 (8 × 8 segmentation)

Figure 5:u components from RDT, LLST and PHLST5 in the leg area.
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(b) PSNR8 × 8 segmentation in Face Im-
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(c) MSSIM4×4 segmentation in Face Im-

age Area
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(d) MSSIM8×8 segmentation in Face Im-

age Area

Figure 6: Quality measurements of face image area.
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(a) PSNR4 × 4 segmentation in Face Im-

age Area
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(b) PSNR8 × 8 segmentation in Face Im-

age Area
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(c) MSSIM4×4 segmentation in Face Im-

age Area
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(d) MSSIM8×8 segmentation in Face Im-

age Area

Figure 7: Zoom up version of Figure 6.
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(a) PSNR4×4 segmentation in Leg Image
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(b) PSNR8×8 segmentation in Leg Image
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(c) MSSIM4× 4 segmentation in Leg Im-

age Area
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(d) MSSIM8× 8 segmentation in Leg Im-

age Area

Figure 8: Quality measurements of leg image area.

25



0 5 10 15 20 25
33

34

35

36

37

38

39

40

41

42

Ratio of retained coefficients (%)

P
S

N
R

RDT
LLST
PHLST5

(a) PSNR4×4 segmentation in Leg Image
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(b) PSNR8×8 segmentation in Leg Image
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(c) MSSIM4× 4 segmentation in Leg Im-

age Area

0 5 10 15 20 25
0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

Ratio of retained coefficients (%)

M
S

S
IM

 in
de

x

RDT
LLST
PHLST5

(d) MSSIM8× 8 segmentation in Leg Im-

age Area

Figure 9: Zoom up version of Figure 8.
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Figure 10: The 1500 coefficient reconstruction from RDT.
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Figure 11: The 1500 coefficient reconstruction from LLST.
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Figure 12: The 1500 coefficient reconstruction from PHLST5.
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Figure 13: The error component from RDT.
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Figure 14: The error component from LLST.
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Figure 15: The error component from PHLST5.
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rate, and based on an analytic formula. Thus, this method canalso be used for image

approximation and zooming without suffering from the Gibbsphenomenon. However,

the current PHLST5 algorithm only works with rectangular domains. This is due to

our treatment of the boundary conditions (see Equations (9)–(12)). We also showed

a radial basis function transform (RDT) to compute theu component. It provides a

globally smooth interpolation. Hence in smooth regions, itpredicts the original image

well and has a very smallv component. The computational cost of RDT, however, is

huge since it requires solving a full linear system (15).

The PHLST5 can also be viewed as the following approximationproblem. LetU

be the set of functions defined by

U :=
{

u ∈ C1(Ω) : ∆5(χΩj
u) = 0, Ω = ∪jΩj

}

.

In other words, the setU consists of functions inC1(Ω) subject to that their restrictions

to each subdomainΩj are polyharmonic of degree 5. One can see immediately thatU

is a subspace ofC1(Ω). Now, given an imagef ∈ L2(Ω), let us decomposef as

f = u + v whereu ∈ U is an approximation tof . The PHLST5 algorithm provides a

way to find suchu. It would be ideal if we could find the least squares approximation

u∗ ∈ U to f ∈ L2(Ω), i.e.,u∗ = arg minu∈U ‖f−u‖L2(Ω). Suchu∗ would, of course,

guarantee that the correspondingv component, sayv∗ is minimal in terms of energy.

Moreover, even if the original imagef contains noise, the resulting decomposition

f = u∗ + v∗ still makes good sense. Although our PHLST5 algorithm provides a

good and smooth approximationu ∈ U to f , ouru is not the least squares solutionu∗

unfortunately. Deriving a practical algorithm to compute such least squares solutions

has the first priority in our research along this direction.

There are a few more issues still left open. First, the theoretical aspect of PHLST5

is still open. This is not an easy task since we are using the 5th degree polyharmonic

operator that is not well studied. At this point we only numerically demonstrated the

polyharmonicu component of PHLST5 converges to the original function muchfaster

than LLST if we further split the domain. We will set this topic also as our high priority
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research. Second, PHLST5 has been shown to improve LLST at smooth regions of an

image. It is necessary to come up with a criterion while splitting an image so that we

can tell a priori where exactly PHLST5 should be applied.

Finally, due to the difficulty of estimating higher order derivatives, we consider

PHLST5 as the practical limitation of implementing PHLST with higher degree poly-

harmonicity.
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A The Laplace Solver of Averbuch, Braverman, Israeli

& Vozovoi

If the underlying domainΩ and its subdomainsΩj ’s are rectangular regions inRd,

which is the most practical case in numerical implementation, we can employ the Dis-

crete Sine Transform (DST) based on the FFT algorithm to rapidly compute both the

polyharmonic components and the Fourier sine series expansions of the residual com-

ponents. In particular, we use the algorithm proposed by Averbuch, Braverman, Israeli,

and Vozovoi [1, 4], which seems to us the most natural and practical Laplace/Poisson

equation solver on rectangular domains. The ABIV method offers more accurate solu-

tions than those based on the finite difference (FD) approximation of the Laplace oper-

ator followed by FFT [5, 12], which only gives solutions withaccuracy of orderO(h2)

or O(h4) for the so-called 5-point or modified 9-point FD approximation, respectively

(h is, of course, the size of the spacing distance of the sampling grid). Moreover, the
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computational cost of the ABIV algorithm is of orderO(Nd log N), whereN is the

number of grid points in each direction of a rectangular domain. This implies that the

ABIV method is a fast algorithm. To describe the ABIV method,let us consider the

domainΩ = (0, 1)2 and Laplace’s equation with its boundary conditions given by

∆u = 0 (x, y) ∈ Ω

u = φ1 (x, y) ∈ [0, 1] × {y = 0}

u = φ2 (x, y) ∈ {x = 0} × [0, 1]

u = φ3 (x, y) ∈ [0, 1] × {y = 1}

u = φ4 (x, y) ∈ {x = 1} × [0, 1].

(16)

One simplest analytic solution can be sought as

u(x, y) =
∞
∑

k=1

b
(1)
k hk(x, 1 − y) +

∞
∑

k=1

b
(2)
k hk(y, 1 − x) +

∞
∑

k=1

b
(3)
k hk(x, y)+

∞
∑

k=1

b
(4)
k hk(y, x)

(17)

with

hk(x, y) = sin kπx
sinh kπy

sinh kπ
.

The functionhk(x, y) satisfies:

1. ∆hk = 0 (x, y) ∈ Ω.

2. hk(x, y) vanishes on three sides ofΩ i.e., onx = 0, x = 1 andy = 0.

3. {hk(x, 1)}∞k=1 serves as a Fourier sine basis forL2([0, 1]).

4. {b
(i)
k } are Fourier sine coefficients ofφi.

A mental picture of (17) can be depicted as four independent harmonic flows coming

from each direction (see Figure 16).

However, in practice,φi’s are given as sampled data points on the boundary. The

infinite sum in (17) is replaced by the sum of the firstN terms. Those coefficients are

calculated via DST. Hence, how well the sum of the firstN terms approximate the true

function, from which the boundary data are sampled, will directly affect the accuracy
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Figure 16: Each infinite sum in (17) is represented as a flow.

of the solution. One should notice that Fourier sine expansion is most suitable (efficient

N term approximation) for functions that vanish at two ends.

We next state the most practical version of the ABIV method for solving the system

(16). Assume the continuity of the boundaries at four corners (i.e.,φ1(0) = φ2(0) =

A, φ2(1) = φ3(0) = B, φ3(1) = φ4(1) = C, φ4(0) = φ1(1) = D). The ABIV

algorithm proceeds as follows:

1. Seek a polynomial,p(x, y) = a3xy + a2x + a1y + a0, such that:

p(0, 0) = A p(0, 1) = B p(1, 1) = C p(1, 0) = D.
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2. Solve forw

∆w = 0 (x, y) ∈ Ω

w = φ1 − p (x, y) ∈ [0, 1] × {y = 0}

w = φ2 − p (x, y) ∈ {x = 0} × [0, 1]

w = φ3 − p (x, y) ∈ [0, 1] × {y = 1}

w = φ4 − p (x, y) ∈ {x = 1} × [0, 1].

(18)

Note: φi − p vanishes at two ends. Hence theN term approximation in (17) is

suitable forw.

3. Setu = p + w.

For more complicated situations such as end value jumps at four corners or solu-

tions with higher order accuracy, we refer the readers to their original papers [1, 4].
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